1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.rst for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * fault() vm_op implementation for relay file mapping. 32 */ 33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf) 34 { 35 struct page *page; 36 struct rchan_buf *buf = vmf->vma->vm_private_data; 37 pgoff_t pgoff = vmf->pgoff; 38 39 if (!buf) 40 return VM_FAULT_OOM; 41 42 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 43 if (!page) 44 return VM_FAULT_SIGBUS; 45 get_page(page); 46 vmf->page = page; 47 48 return 0; 49 } 50 51 /* 52 * vm_ops for relay file mappings. 53 */ 54 static const struct vm_operations_struct relay_file_mmap_ops = { 55 .fault = relay_buf_fault, 56 }; 57 58 /* 59 * allocate an array of pointers of struct page 60 */ 61 static struct page **relay_alloc_page_array(unsigned int n_pages) 62 { 63 const size_t pa_size = n_pages * sizeof(struct page *); 64 if (pa_size > PAGE_SIZE) 65 return vzalloc(pa_size); 66 return kzalloc(pa_size, GFP_KERNEL); 67 } 68 69 /* 70 * free an array of pointers of struct page 71 */ 72 static void relay_free_page_array(struct page **array) 73 { 74 kvfree(array); 75 } 76 77 /** 78 * relay_mmap_buf: - mmap channel buffer to process address space 79 * @buf: relay channel buffer 80 * @vma: vm_area_struct describing memory to be mapped 81 * 82 * Returns 0 if ok, negative on error 83 * 84 * Caller should already have grabbed mmap_lock. 85 */ 86 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 87 { 88 unsigned long length = vma->vm_end - vma->vm_start; 89 90 if (!buf) 91 return -EBADF; 92 93 if (length != (unsigned long)buf->chan->alloc_size) 94 return -EINVAL; 95 96 vma->vm_ops = &relay_file_mmap_ops; 97 vma->vm_flags |= VM_DONTEXPAND; 98 vma->vm_private_data = buf; 99 100 return 0; 101 } 102 103 /** 104 * relay_alloc_buf - allocate a channel buffer 105 * @buf: the buffer struct 106 * @size: total size of the buffer 107 * 108 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 109 * passed in size will get page aligned, if it isn't already. 110 */ 111 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 112 { 113 void *mem; 114 unsigned int i, j, n_pages; 115 116 *size = PAGE_ALIGN(*size); 117 n_pages = *size >> PAGE_SHIFT; 118 119 buf->page_array = relay_alloc_page_array(n_pages); 120 if (!buf->page_array) 121 return NULL; 122 123 for (i = 0; i < n_pages; i++) { 124 buf->page_array[i] = alloc_page(GFP_KERNEL); 125 if (unlikely(!buf->page_array[i])) 126 goto depopulate; 127 set_page_private(buf->page_array[i], (unsigned long)buf); 128 } 129 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 130 if (!mem) 131 goto depopulate; 132 133 memset(mem, 0, *size); 134 buf->page_count = n_pages; 135 return mem; 136 137 depopulate: 138 for (j = 0; j < i; j++) 139 __free_page(buf->page_array[j]); 140 relay_free_page_array(buf->page_array); 141 return NULL; 142 } 143 144 /** 145 * relay_create_buf - allocate and initialize a channel buffer 146 * @chan: the relay channel 147 * 148 * Returns channel buffer if successful, %NULL otherwise. 149 */ 150 static struct rchan_buf *relay_create_buf(struct rchan *chan) 151 { 152 struct rchan_buf *buf; 153 154 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *)) 155 return NULL; 156 157 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 158 if (!buf) 159 return NULL; 160 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *), 161 GFP_KERNEL); 162 if (!buf->padding) 163 goto free_buf; 164 165 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 166 if (!buf->start) 167 goto free_buf; 168 169 buf->chan = chan; 170 kref_get(&buf->chan->kref); 171 return buf; 172 173 free_buf: 174 kfree(buf->padding); 175 kfree(buf); 176 return NULL; 177 } 178 179 /** 180 * relay_destroy_channel - free the channel struct 181 * @kref: target kernel reference that contains the relay channel 182 * 183 * Should only be called from kref_put(). 184 */ 185 static void relay_destroy_channel(struct kref *kref) 186 { 187 struct rchan *chan = container_of(kref, struct rchan, kref); 188 free_percpu(chan->buf); 189 kfree(chan); 190 } 191 192 /** 193 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 194 * @buf: the buffer struct 195 */ 196 static void relay_destroy_buf(struct rchan_buf *buf) 197 { 198 struct rchan *chan = buf->chan; 199 unsigned int i; 200 201 if (likely(buf->start)) { 202 vunmap(buf->start); 203 for (i = 0; i < buf->page_count; i++) 204 __free_page(buf->page_array[i]); 205 relay_free_page_array(buf->page_array); 206 } 207 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 208 kfree(buf->padding); 209 kfree(buf); 210 kref_put(&chan->kref, relay_destroy_channel); 211 } 212 213 /** 214 * relay_remove_buf - remove a channel buffer 215 * @kref: target kernel reference that contains the relay buffer 216 * 217 * Removes the file from the filesystem, which also frees the 218 * rchan_buf_struct and the channel buffer. Should only be called from 219 * kref_put(). 220 */ 221 static void relay_remove_buf(struct kref *kref) 222 { 223 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 224 relay_destroy_buf(buf); 225 } 226 227 /** 228 * relay_buf_empty - boolean, is the channel buffer empty? 229 * @buf: channel buffer 230 * 231 * Returns 1 if the buffer is empty, 0 otherwise. 232 */ 233 static int relay_buf_empty(struct rchan_buf *buf) 234 { 235 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 236 } 237 238 /** 239 * relay_buf_full - boolean, is the channel buffer full? 240 * @buf: channel buffer 241 * 242 * Returns 1 if the buffer is full, 0 otherwise. 243 */ 244 int relay_buf_full(struct rchan_buf *buf) 245 { 246 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 247 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 248 } 249 EXPORT_SYMBOL_GPL(relay_buf_full); 250 251 /* 252 * High-level relay kernel API and associated functions. 253 */ 254 255 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf, 256 void *prev_subbuf, size_t prev_padding) 257 { 258 if (!buf->chan->cb->subbuf_start) 259 return !relay_buf_full(buf); 260 261 return buf->chan->cb->subbuf_start(buf, subbuf, 262 prev_subbuf, prev_padding); 263 } 264 265 /** 266 * wakeup_readers - wake up readers waiting on a channel 267 * @work: contains the channel buffer 268 * 269 * This is the function used to defer reader waking 270 */ 271 static void wakeup_readers(struct irq_work *work) 272 { 273 struct rchan_buf *buf; 274 275 buf = container_of(work, struct rchan_buf, wakeup_work); 276 wake_up_interruptible(&buf->read_wait); 277 } 278 279 /** 280 * __relay_reset - reset a channel buffer 281 * @buf: the channel buffer 282 * @init: 1 if this is a first-time initialization 283 * 284 * See relay_reset() for description of effect. 285 */ 286 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 287 { 288 size_t i; 289 290 if (init) { 291 init_waitqueue_head(&buf->read_wait); 292 kref_init(&buf->kref); 293 init_irq_work(&buf->wakeup_work, wakeup_readers); 294 } else { 295 irq_work_sync(&buf->wakeup_work); 296 } 297 298 buf->subbufs_produced = 0; 299 buf->subbufs_consumed = 0; 300 buf->bytes_consumed = 0; 301 buf->finalized = 0; 302 buf->data = buf->start; 303 buf->offset = 0; 304 305 for (i = 0; i < buf->chan->n_subbufs; i++) 306 buf->padding[i] = 0; 307 308 relay_subbuf_start(buf, buf->data, NULL, 0); 309 } 310 311 /** 312 * relay_reset - reset the channel 313 * @chan: the channel 314 * 315 * This has the effect of erasing all data from all channel buffers 316 * and restarting the channel in its initial state. The buffers 317 * are not freed, so any mappings are still in effect. 318 * 319 * NOTE. Care should be taken that the channel isn't actually 320 * being used by anything when this call is made. 321 */ 322 void relay_reset(struct rchan *chan) 323 { 324 struct rchan_buf *buf; 325 unsigned int i; 326 327 if (!chan) 328 return; 329 330 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 331 __relay_reset(buf, 0); 332 return; 333 } 334 335 mutex_lock(&relay_channels_mutex); 336 for_each_possible_cpu(i) 337 if ((buf = *per_cpu_ptr(chan->buf, i))) 338 __relay_reset(buf, 0); 339 mutex_unlock(&relay_channels_mutex); 340 } 341 EXPORT_SYMBOL_GPL(relay_reset); 342 343 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 344 struct dentry *dentry) 345 { 346 buf->dentry = dentry; 347 d_inode(buf->dentry)->i_size = buf->early_bytes; 348 } 349 350 static struct dentry *relay_create_buf_file(struct rchan *chan, 351 struct rchan_buf *buf, 352 unsigned int cpu) 353 { 354 struct dentry *dentry; 355 char *tmpname; 356 357 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 358 if (!tmpname) 359 return NULL; 360 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 361 362 /* Create file in fs */ 363 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 364 S_IRUSR, buf, 365 &chan->is_global); 366 if (IS_ERR(dentry)) 367 dentry = NULL; 368 369 kfree(tmpname); 370 371 return dentry; 372 } 373 374 /* 375 * relay_open_buf - create a new relay channel buffer 376 * 377 * used by relay_open() and CPU hotplug. 378 */ 379 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 380 { 381 struct rchan_buf *buf = NULL; 382 struct dentry *dentry; 383 384 if (chan->is_global) 385 return *per_cpu_ptr(chan->buf, 0); 386 387 buf = relay_create_buf(chan); 388 if (!buf) 389 return NULL; 390 391 if (chan->has_base_filename) { 392 dentry = relay_create_buf_file(chan, buf, cpu); 393 if (!dentry) 394 goto free_buf; 395 relay_set_buf_dentry(buf, dentry); 396 } else { 397 /* Only retrieve global info, nothing more, nothing less */ 398 dentry = chan->cb->create_buf_file(NULL, NULL, 399 S_IRUSR, buf, 400 &chan->is_global); 401 if (IS_ERR_OR_NULL(dentry)) 402 goto free_buf; 403 } 404 405 buf->cpu = cpu; 406 __relay_reset(buf, 1); 407 408 if(chan->is_global) { 409 *per_cpu_ptr(chan->buf, 0) = buf; 410 buf->cpu = 0; 411 } 412 413 return buf; 414 415 free_buf: 416 relay_destroy_buf(buf); 417 return NULL; 418 } 419 420 /** 421 * relay_close_buf - close a channel buffer 422 * @buf: channel buffer 423 * 424 * Marks the buffer finalized and restores the default callbacks. 425 * The channel buffer and channel buffer data structure are then freed 426 * automatically when the last reference is given up. 427 */ 428 static void relay_close_buf(struct rchan_buf *buf) 429 { 430 buf->finalized = 1; 431 irq_work_sync(&buf->wakeup_work); 432 buf->chan->cb->remove_buf_file(buf->dentry); 433 kref_put(&buf->kref, relay_remove_buf); 434 } 435 436 int relay_prepare_cpu(unsigned int cpu) 437 { 438 struct rchan *chan; 439 struct rchan_buf *buf; 440 441 mutex_lock(&relay_channels_mutex); 442 list_for_each_entry(chan, &relay_channels, list) { 443 if ((buf = *per_cpu_ptr(chan->buf, cpu))) 444 continue; 445 buf = relay_open_buf(chan, cpu); 446 if (!buf) { 447 pr_err("relay: cpu %d buffer creation failed\n", cpu); 448 mutex_unlock(&relay_channels_mutex); 449 return -ENOMEM; 450 } 451 *per_cpu_ptr(chan->buf, cpu) = buf; 452 } 453 mutex_unlock(&relay_channels_mutex); 454 return 0; 455 } 456 457 /** 458 * relay_open - create a new relay channel 459 * @base_filename: base name of files to create, %NULL for buffering only 460 * @parent: dentry of parent directory, %NULL for root directory or buffer 461 * @subbuf_size: size of sub-buffers 462 * @n_subbufs: number of sub-buffers 463 * @cb: client callback functions 464 * @private_data: user-defined data 465 * 466 * Returns channel pointer if successful, %NULL otherwise. 467 * 468 * Creates a channel buffer for each cpu using the sizes and 469 * attributes specified. The created channel buffer files 470 * will be named base_filename0...base_filenameN-1. File 471 * permissions will be %S_IRUSR. 472 * 473 * If opening a buffer (@parent = NULL) that you later wish to register 474 * in a filesystem, call relay_late_setup_files() once the @parent dentry 475 * is available. 476 */ 477 struct rchan *relay_open(const char *base_filename, 478 struct dentry *parent, 479 size_t subbuf_size, 480 size_t n_subbufs, 481 const struct rchan_callbacks *cb, 482 void *private_data) 483 { 484 unsigned int i; 485 struct rchan *chan; 486 struct rchan_buf *buf; 487 488 if (!(subbuf_size && n_subbufs)) 489 return NULL; 490 if (subbuf_size > UINT_MAX / n_subbufs) 491 return NULL; 492 if (!cb || !cb->create_buf_file || !cb->remove_buf_file) 493 return NULL; 494 495 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 496 if (!chan) 497 return NULL; 498 499 chan->buf = alloc_percpu(struct rchan_buf *); 500 if (!chan->buf) { 501 kfree(chan); 502 return NULL; 503 } 504 505 chan->version = RELAYFS_CHANNEL_VERSION; 506 chan->n_subbufs = n_subbufs; 507 chan->subbuf_size = subbuf_size; 508 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 509 chan->parent = parent; 510 chan->private_data = private_data; 511 if (base_filename) { 512 chan->has_base_filename = 1; 513 strlcpy(chan->base_filename, base_filename, NAME_MAX); 514 } 515 chan->cb = cb; 516 kref_init(&chan->kref); 517 518 mutex_lock(&relay_channels_mutex); 519 for_each_online_cpu(i) { 520 buf = relay_open_buf(chan, i); 521 if (!buf) 522 goto free_bufs; 523 *per_cpu_ptr(chan->buf, i) = buf; 524 } 525 list_add(&chan->list, &relay_channels); 526 mutex_unlock(&relay_channels_mutex); 527 528 return chan; 529 530 free_bufs: 531 for_each_possible_cpu(i) { 532 if ((buf = *per_cpu_ptr(chan->buf, i))) 533 relay_close_buf(buf); 534 } 535 536 kref_put(&chan->kref, relay_destroy_channel); 537 mutex_unlock(&relay_channels_mutex); 538 return NULL; 539 } 540 EXPORT_SYMBOL_GPL(relay_open); 541 542 struct rchan_percpu_buf_dispatcher { 543 struct rchan_buf *buf; 544 struct dentry *dentry; 545 }; 546 547 /* Called in atomic context. */ 548 static void __relay_set_buf_dentry(void *info) 549 { 550 struct rchan_percpu_buf_dispatcher *p = info; 551 552 relay_set_buf_dentry(p->buf, p->dentry); 553 } 554 555 /** 556 * relay_late_setup_files - triggers file creation 557 * @chan: channel to operate on 558 * @base_filename: base name of files to create 559 * @parent: dentry of parent directory, %NULL for root directory 560 * 561 * Returns 0 if successful, non-zero otherwise. 562 * 563 * Use to setup files for a previously buffer-only channel created 564 * by relay_open() with a NULL parent dentry. 565 * 566 * For example, this is useful for perfomring early tracing in kernel, 567 * before VFS is up and then exposing the early results once the dentry 568 * is available. 569 */ 570 int relay_late_setup_files(struct rchan *chan, 571 const char *base_filename, 572 struct dentry *parent) 573 { 574 int err = 0; 575 unsigned int i, curr_cpu; 576 unsigned long flags; 577 struct dentry *dentry; 578 struct rchan_buf *buf; 579 struct rchan_percpu_buf_dispatcher disp; 580 581 if (!chan || !base_filename) 582 return -EINVAL; 583 584 strlcpy(chan->base_filename, base_filename, NAME_MAX); 585 586 mutex_lock(&relay_channels_mutex); 587 /* Is chan already set up? */ 588 if (unlikely(chan->has_base_filename)) { 589 mutex_unlock(&relay_channels_mutex); 590 return -EEXIST; 591 } 592 chan->has_base_filename = 1; 593 chan->parent = parent; 594 595 if (chan->is_global) { 596 err = -EINVAL; 597 buf = *per_cpu_ptr(chan->buf, 0); 598 if (!WARN_ON_ONCE(!buf)) { 599 dentry = relay_create_buf_file(chan, buf, 0); 600 if (dentry && !WARN_ON_ONCE(!chan->is_global)) { 601 relay_set_buf_dentry(buf, dentry); 602 err = 0; 603 } 604 } 605 mutex_unlock(&relay_channels_mutex); 606 return err; 607 } 608 609 curr_cpu = get_cpu(); 610 /* 611 * The CPU hotplug notifier ran before us and created buffers with 612 * no files associated. So it's safe to call relay_setup_buf_file() 613 * on all currently online CPUs. 614 */ 615 for_each_online_cpu(i) { 616 buf = *per_cpu_ptr(chan->buf, i); 617 if (unlikely(!buf)) { 618 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 619 err = -EINVAL; 620 break; 621 } 622 623 dentry = relay_create_buf_file(chan, buf, i); 624 if (unlikely(!dentry)) { 625 err = -EINVAL; 626 break; 627 } 628 629 if (curr_cpu == i) { 630 local_irq_save(flags); 631 relay_set_buf_dentry(buf, dentry); 632 local_irq_restore(flags); 633 } else { 634 disp.buf = buf; 635 disp.dentry = dentry; 636 smp_mb(); 637 /* relay_channels_mutex must be held, so wait. */ 638 err = smp_call_function_single(i, 639 __relay_set_buf_dentry, 640 &disp, 1); 641 } 642 if (unlikely(err)) 643 break; 644 } 645 put_cpu(); 646 mutex_unlock(&relay_channels_mutex); 647 648 return err; 649 } 650 EXPORT_SYMBOL_GPL(relay_late_setup_files); 651 652 /** 653 * relay_switch_subbuf - switch to a new sub-buffer 654 * @buf: channel buffer 655 * @length: size of current event 656 * 657 * Returns either the length passed in or 0 if full. 658 * 659 * Performs sub-buffer-switch tasks such as invoking callbacks, 660 * updating padding counts, waking up readers, etc. 661 */ 662 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 663 { 664 void *old, *new; 665 size_t old_subbuf, new_subbuf; 666 667 if (unlikely(length > buf->chan->subbuf_size)) 668 goto toobig; 669 670 if (buf->offset != buf->chan->subbuf_size + 1) { 671 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 672 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 673 buf->padding[old_subbuf] = buf->prev_padding; 674 buf->subbufs_produced++; 675 if (buf->dentry) 676 d_inode(buf->dentry)->i_size += 677 buf->chan->subbuf_size - 678 buf->padding[old_subbuf]; 679 else 680 buf->early_bytes += buf->chan->subbuf_size - 681 buf->padding[old_subbuf]; 682 smp_mb(); 683 if (waitqueue_active(&buf->read_wait)) { 684 /* 685 * Calling wake_up_interruptible() from here 686 * will deadlock if we happen to be logging 687 * from the scheduler (trying to re-grab 688 * rq->lock), so defer it. 689 */ 690 irq_work_queue(&buf->wakeup_work); 691 } 692 } 693 694 old = buf->data; 695 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 696 new = buf->start + new_subbuf * buf->chan->subbuf_size; 697 buf->offset = 0; 698 if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) { 699 buf->offset = buf->chan->subbuf_size + 1; 700 return 0; 701 } 702 buf->data = new; 703 buf->padding[new_subbuf] = 0; 704 705 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 706 goto toobig; 707 708 return length; 709 710 toobig: 711 buf->chan->last_toobig = length; 712 return 0; 713 } 714 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 715 716 /** 717 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 718 * @chan: the channel 719 * @cpu: the cpu associated with the channel buffer to update 720 * @subbufs_consumed: number of sub-buffers to add to current buf's count 721 * 722 * Adds to the channel buffer's consumed sub-buffer count. 723 * subbufs_consumed should be the number of sub-buffers newly consumed, 724 * not the total consumed. 725 * 726 * NOTE. Kernel clients don't need to call this function if the channel 727 * mode is 'overwrite'. 728 */ 729 void relay_subbufs_consumed(struct rchan *chan, 730 unsigned int cpu, 731 size_t subbufs_consumed) 732 { 733 struct rchan_buf *buf; 734 735 if (!chan || cpu >= NR_CPUS) 736 return; 737 738 buf = *per_cpu_ptr(chan->buf, cpu); 739 if (!buf || subbufs_consumed > chan->n_subbufs) 740 return; 741 742 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 743 buf->subbufs_consumed = buf->subbufs_produced; 744 else 745 buf->subbufs_consumed += subbufs_consumed; 746 } 747 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 748 749 /** 750 * relay_close - close the channel 751 * @chan: the channel 752 * 753 * Closes all channel buffers and frees the channel. 754 */ 755 void relay_close(struct rchan *chan) 756 { 757 struct rchan_buf *buf; 758 unsigned int i; 759 760 if (!chan) 761 return; 762 763 mutex_lock(&relay_channels_mutex); 764 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 765 relay_close_buf(buf); 766 else 767 for_each_possible_cpu(i) 768 if ((buf = *per_cpu_ptr(chan->buf, i))) 769 relay_close_buf(buf); 770 771 if (chan->last_toobig) 772 printk(KERN_WARNING "relay: one or more items not logged " 773 "[item size (%zd) > sub-buffer size (%zd)]\n", 774 chan->last_toobig, chan->subbuf_size); 775 776 list_del(&chan->list); 777 kref_put(&chan->kref, relay_destroy_channel); 778 mutex_unlock(&relay_channels_mutex); 779 } 780 EXPORT_SYMBOL_GPL(relay_close); 781 782 /** 783 * relay_flush - close the channel 784 * @chan: the channel 785 * 786 * Flushes all channel buffers, i.e. forces buffer switch. 787 */ 788 void relay_flush(struct rchan *chan) 789 { 790 struct rchan_buf *buf; 791 unsigned int i; 792 793 if (!chan) 794 return; 795 796 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 797 relay_switch_subbuf(buf, 0); 798 return; 799 } 800 801 mutex_lock(&relay_channels_mutex); 802 for_each_possible_cpu(i) 803 if ((buf = *per_cpu_ptr(chan->buf, i))) 804 relay_switch_subbuf(buf, 0); 805 mutex_unlock(&relay_channels_mutex); 806 } 807 EXPORT_SYMBOL_GPL(relay_flush); 808 809 /** 810 * relay_file_open - open file op for relay files 811 * @inode: the inode 812 * @filp: the file 813 * 814 * Increments the channel buffer refcount. 815 */ 816 static int relay_file_open(struct inode *inode, struct file *filp) 817 { 818 struct rchan_buf *buf = inode->i_private; 819 kref_get(&buf->kref); 820 filp->private_data = buf; 821 822 return nonseekable_open(inode, filp); 823 } 824 825 /** 826 * relay_file_mmap - mmap file op for relay files 827 * @filp: the file 828 * @vma: the vma describing what to map 829 * 830 * Calls upon relay_mmap_buf() to map the file into user space. 831 */ 832 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 833 { 834 struct rchan_buf *buf = filp->private_data; 835 return relay_mmap_buf(buf, vma); 836 } 837 838 /** 839 * relay_file_poll - poll file op for relay files 840 * @filp: the file 841 * @wait: poll table 842 * 843 * Poll implemention. 844 */ 845 static __poll_t relay_file_poll(struct file *filp, poll_table *wait) 846 { 847 __poll_t mask = 0; 848 struct rchan_buf *buf = filp->private_data; 849 850 if (buf->finalized) 851 return EPOLLERR; 852 853 if (filp->f_mode & FMODE_READ) { 854 poll_wait(filp, &buf->read_wait, wait); 855 if (!relay_buf_empty(buf)) 856 mask |= EPOLLIN | EPOLLRDNORM; 857 } 858 859 return mask; 860 } 861 862 /** 863 * relay_file_release - release file op for relay files 864 * @inode: the inode 865 * @filp: the file 866 * 867 * Decrements the channel refcount, as the filesystem is 868 * no longer using it. 869 */ 870 static int relay_file_release(struct inode *inode, struct file *filp) 871 { 872 struct rchan_buf *buf = filp->private_data; 873 kref_put(&buf->kref, relay_remove_buf); 874 875 return 0; 876 } 877 878 /* 879 * relay_file_read_consume - update the consumed count for the buffer 880 */ 881 static void relay_file_read_consume(struct rchan_buf *buf, 882 size_t read_pos, 883 size_t bytes_consumed) 884 { 885 size_t subbuf_size = buf->chan->subbuf_size; 886 size_t n_subbufs = buf->chan->n_subbufs; 887 size_t read_subbuf; 888 889 if (buf->subbufs_produced == buf->subbufs_consumed && 890 buf->offset == buf->bytes_consumed) 891 return; 892 893 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 894 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 895 buf->bytes_consumed = 0; 896 } 897 898 buf->bytes_consumed += bytes_consumed; 899 if (!read_pos) 900 read_subbuf = buf->subbufs_consumed % n_subbufs; 901 else 902 read_subbuf = read_pos / buf->chan->subbuf_size; 903 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 904 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 905 (buf->offset == subbuf_size)) 906 return; 907 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 908 buf->bytes_consumed = 0; 909 } 910 } 911 912 /* 913 * relay_file_read_avail - boolean, are there unconsumed bytes available? 914 */ 915 static int relay_file_read_avail(struct rchan_buf *buf) 916 { 917 size_t subbuf_size = buf->chan->subbuf_size; 918 size_t n_subbufs = buf->chan->n_subbufs; 919 size_t produced = buf->subbufs_produced; 920 size_t consumed; 921 922 relay_file_read_consume(buf, 0, 0); 923 924 consumed = buf->subbufs_consumed; 925 926 if (unlikely(buf->offset > subbuf_size)) { 927 if (produced == consumed) 928 return 0; 929 return 1; 930 } 931 932 if (unlikely(produced - consumed >= n_subbufs)) { 933 consumed = produced - n_subbufs + 1; 934 buf->subbufs_consumed = consumed; 935 buf->bytes_consumed = 0; 936 } 937 938 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 939 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 940 941 if (consumed > produced) 942 produced += n_subbufs * subbuf_size; 943 944 if (consumed == produced) { 945 if (buf->offset == subbuf_size && 946 buf->subbufs_produced > buf->subbufs_consumed) 947 return 1; 948 return 0; 949 } 950 951 return 1; 952 } 953 954 /** 955 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 956 * @read_pos: file read position 957 * @buf: relay channel buffer 958 */ 959 static size_t relay_file_read_subbuf_avail(size_t read_pos, 960 struct rchan_buf *buf) 961 { 962 size_t padding, avail = 0; 963 size_t read_subbuf, read_offset, write_subbuf, write_offset; 964 size_t subbuf_size = buf->chan->subbuf_size; 965 966 write_subbuf = (buf->data - buf->start) / subbuf_size; 967 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 968 read_subbuf = read_pos / subbuf_size; 969 read_offset = read_pos % subbuf_size; 970 padding = buf->padding[read_subbuf]; 971 972 if (read_subbuf == write_subbuf) { 973 if (read_offset + padding < write_offset) 974 avail = write_offset - (read_offset + padding); 975 } else 976 avail = (subbuf_size - padding) - read_offset; 977 978 return avail; 979 } 980 981 /** 982 * relay_file_read_start_pos - find the first available byte to read 983 * @buf: relay channel buffer 984 * 985 * If the read_pos is in the middle of padding, return the 986 * position of the first actually available byte, otherwise 987 * return the original value. 988 */ 989 static size_t relay_file_read_start_pos(struct rchan_buf *buf) 990 { 991 size_t read_subbuf, padding, padding_start, padding_end; 992 size_t subbuf_size = buf->chan->subbuf_size; 993 size_t n_subbufs = buf->chan->n_subbufs; 994 size_t consumed = buf->subbufs_consumed % n_subbufs; 995 size_t read_pos = consumed * subbuf_size + buf->bytes_consumed; 996 997 read_subbuf = read_pos / subbuf_size; 998 padding = buf->padding[read_subbuf]; 999 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1000 padding_end = (read_subbuf + 1) * subbuf_size; 1001 if (read_pos >= padding_start && read_pos < padding_end) { 1002 read_subbuf = (read_subbuf + 1) % n_subbufs; 1003 read_pos = read_subbuf * subbuf_size; 1004 } 1005 1006 return read_pos; 1007 } 1008 1009 /** 1010 * relay_file_read_end_pos - return the new read position 1011 * @read_pos: file read position 1012 * @buf: relay channel buffer 1013 * @count: number of bytes to be read 1014 */ 1015 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1016 size_t read_pos, 1017 size_t count) 1018 { 1019 size_t read_subbuf, padding, end_pos; 1020 size_t subbuf_size = buf->chan->subbuf_size; 1021 size_t n_subbufs = buf->chan->n_subbufs; 1022 1023 read_subbuf = read_pos / subbuf_size; 1024 padding = buf->padding[read_subbuf]; 1025 if (read_pos % subbuf_size + count + padding == subbuf_size) 1026 end_pos = (read_subbuf + 1) * subbuf_size; 1027 else 1028 end_pos = read_pos + count; 1029 if (end_pos >= subbuf_size * n_subbufs) 1030 end_pos = 0; 1031 1032 return end_pos; 1033 } 1034 1035 static ssize_t relay_file_read(struct file *filp, 1036 char __user *buffer, 1037 size_t count, 1038 loff_t *ppos) 1039 { 1040 struct rchan_buf *buf = filp->private_data; 1041 size_t read_start, avail; 1042 size_t written = 0; 1043 int ret; 1044 1045 if (!count) 1046 return 0; 1047 1048 inode_lock(file_inode(filp)); 1049 do { 1050 void *from; 1051 1052 if (!relay_file_read_avail(buf)) 1053 break; 1054 1055 read_start = relay_file_read_start_pos(buf); 1056 avail = relay_file_read_subbuf_avail(read_start, buf); 1057 if (!avail) 1058 break; 1059 1060 avail = min(count, avail); 1061 from = buf->start + read_start; 1062 ret = avail; 1063 if (copy_to_user(buffer, from, avail)) 1064 break; 1065 1066 buffer += ret; 1067 written += ret; 1068 count -= ret; 1069 1070 relay_file_read_consume(buf, read_start, ret); 1071 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1072 } while (count); 1073 inode_unlock(file_inode(filp)); 1074 1075 return written; 1076 } 1077 1078 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1079 { 1080 rbuf->bytes_consumed += bytes_consumed; 1081 1082 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1083 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1084 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1085 } 1086 } 1087 1088 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1089 struct pipe_buffer *buf) 1090 { 1091 struct rchan_buf *rbuf; 1092 1093 rbuf = (struct rchan_buf *)page_private(buf->page); 1094 relay_consume_bytes(rbuf, buf->private); 1095 } 1096 1097 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1098 .release = relay_pipe_buf_release, 1099 .try_steal = generic_pipe_buf_try_steal, 1100 .get = generic_pipe_buf_get, 1101 }; 1102 1103 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1104 { 1105 } 1106 1107 /* 1108 * subbuf_splice_actor - splice up to one subbuf's worth of data 1109 */ 1110 static ssize_t subbuf_splice_actor(struct file *in, 1111 loff_t *ppos, 1112 struct pipe_inode_info *pipe, 1113 size_t len, 1114 unsigned int flags, 1115 int *nonpad_ret) 1116 { 1117 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1118 struct rchan_buf *rbuf = in->private_data; 1119 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1120 uint64_t pos = (uint64_t) *ppos; 1121 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1122 size_t read_start = (size_t) do_div(pos, alloc_size); 1123 size_t read_subbuf = read_start / subbuf_size; 1124 size_t padding = rbuf->padding[read_subbuf]; 1125 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1126 struct page *pages[PIPE_DEF_BUFFERS]; 1127 struct partial_page partial[PIPE_DEF_BUFFERS]; 1128 struct splice_pipe_desc spd = { 1129 .pages = pages, 1130 .nr_pages = 0, 1131 .nr_pages_max = PIPE_DEF_BUFFERS, 1132 .partial = partial, 1133 .ops = &relay_pipe_buf_ops, 1134 .spd_release = relay_page_release, 1135 }; 1136 ssize_t ret; 1137 1138 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1139 return 0; 1140 if (splice_grow_spd(pipe, &spd)) 1141 return -ENOMEM; 1142 1143 /* 1144 * Adjust read len, if longer than what is available 1145 */ 1146 if (len > (subbuf_size - read_start % subbuf_size)) 1147 len = subbuf_size - read_start % subbuf_size; 1148 1149 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1150 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1151 poff = read_start & ~PAGE_MASK; 1152 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1153 1154 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1155 unsigned int this_len, this_end, private; 1156 unsigned int cur_pos = read_start + total_len; 1157 1158 if (!len) 1159 break; 1160 1161 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1162 private = this_len; 1163 1164 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1165 spd.partial[spd.nr_pages].offset = poff; 1166 1167 this_end = cur_pos + this_len; 1168 if (this_end >= nonpad_end) { 1169 this_len = nonpad_end - cur_pos; 1170 private = this_len + padding; 1171 } 1172 spd.partial[spd.nr_pages].len = this_len; 1173 spd.partial[spd.nr_pages].private = private; 1174 1175 len -= this_len; 1176 total_len += this_len; 1177 poff = 0; 1178 pidx = (pidx + 1) % subbuf_pages; 1179 1180 if (this_end >= nonpad_end) { 1181 spd.nr_pages++; 1182 break; 1183 } 1184 } 1185 1186 ret = 0; 1187 if (!spd.nr_pages) 1188 goto out; 1189 1190 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1191 if (ret < 0 || ret < total_len) 1192 goto out; 1193 1194 if (read_start + ret == nonpad_end) 1195 ret += padding; 1196 1197 out: 1198 splice_shrink_spd(&spd); 1199 return ret; 1200 } 1201 1202 static ssize_t relay_file_splice_read(struct file *in, 1203 loff_t *ppos, 1204 struct pipe_inode_info *pipe, 1205 size_t len, 1206 unsigned int flags) 1207 { 1208 ssize_t spliced; 1209 int ret; 1210 int nonpad_ret = 0; 1211 1212 ret = 0; 1213 spliced = 0; 1214 1215 while (len && !spliced) { 1216 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1217 if (ret < 0) 1218 break; 1219 else if (!ret) { 1220 if (flags & SPLICE_F_NONBLOCK) 1221 ret = -EAGAIN; 1222 break; 1223 } 1224 1225 *ppos += ret; 1226 if (ret > len) 1227 len = 0; 1228 else 1229 len -= ret; 1230 spliced += nonpad_ret; 1231 nonpad_ret = 0; 1232 } 1233 1234 if (spliced) 1235 return spliced; 1236 1237 return ret; 1238 } 1239 1240 const struct file_operations relay_file_operations = { 1241 .open = relay_file_open, 1242 .poll = relay_file_poll, 1243 .mmap = relay_file_mmap, 1244 .read = relay_file_read, 1245 .llseek = no_llseek, 1246 .release = relay_file_release, 1247 .splice_read = relay_file_splice_read, 1248 }; 1249 EXPORT_SYMBOL_GPL(relay_file_operations); 1250