xref: /openbmc/linux/kernel/relay.c (revision 002dff36)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vmf->vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84 	kvfree(array);
85 }
86 
87 /**
88  *	relay_mmap_buf: - mmap channel buffer to process address space
89  *	@buf: relay channel buffer
90  *	@vma: vm_area_struct describing memory to be mapped
91  *
92  *	Returns 0 if ok, negative on error
93  *
94  *	Caller should already have grabbed mmap_lock.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 	unsigned long length = vma->vm_end - vma->vm_start;
99 	struct file *filp = vma->vm_file;
100 
101 	if (!buf)
102 		return -EBADF;
103 
104 	if (length != (unsigned long)buf->chan->alloc_size)
105 		return -EINVAL;
106 
107 	vma->vm_ops = &relay_file_mmap_ops;
108 	vma->vm_flags |= VM_DONTEXPAND;
109 	vma->vm_private_data = buf;
110 	buf->chan->cb->buf_mapped(buf, filp);
111 
112 	return 0;
113 }
114 
115 /**
116  *	relay_alloc_buf - allocate a channel buffer
117  *	@buf: the buffer struct
118  *	@size: total size of the buffer
119  *
120  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *	passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 	void *mem;
126 	unsigned int i, j, n_pages;
127 
128 	*size = PAGE_ALIGN(*size);
129 	n_pages = *size >> PAGE_SHIFT;
130 
131 	buf->page_array = relay_alloc_page_array(n_pages);
132 	if (!buf->page_array)
133 		return NULL;
134 
135 	for (i = 0; i < n_pages; i++) {
136 		buf->page_array[i] = alloc_page(GFP_KERNEL);
137 		if (unlikely(!buf->page_array[i]))
138 			goto depopulate;
139 		set_page_private(buf->page_array[i], (unsigned long)buf);
140 	}
141 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 	if (!mem)
143 		goto depopulate;
144 
145 	memset(mem, 0, *size);
146 	buf->page_count = n_pages;
147 	return mem;
148 
149 depopulate:
150 	for (j = 0; j < i; j++)
151 		__free_page(buf->page_array[j]);
152 	relay_free_page_array(buf->page_array);
153 	return NULL;
154 }
155 
156 /**
157  *	relay_create_buf - allocate and initialize a channel buffer
158  *	@chan: the relay channel
159  *
160  *	Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 	struct rchan_buf *buf;
165 
166 	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 		return NULL;
168 
169 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 	if (!buf)
171 		return NULL;
172 	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
173 				     GFP_KERNEL);
174 	if (!buf->padding)
175 		goto free_buf;
176 
177 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
178 	if (!buf->start)
179 		goto free_buf;
180 
181 	buf->chan = chan;
182 	kref_get(&buf->chan->kref);
183 	return buf;
184 
185 free_buf:
186 	kfree(buf->padding);
187 	kfree(buf);
188 	return NULL;
189 }
190 
191 /**
192  *	relay_destroy_channel - free the channel struct
193  *	@kref: target kernel reference that contains the relay channel
194  *
195  *	Should only be called from kref_put().
196  */
197 static void relay_destroy_channel(struct kref *kref)
198 {
199 	struct rchan *chan = container_of(kref, struct rchan, kref);
200 	kfree(chan);
201 }
202 
203 /**
204  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205  *	@buf: the buffer struct
206  */
207 static void relay_destroy_buf(struct rchan_buf *buf)
208 {
209 	struct rchan *chan = buf->chan;
210 	unsigned int i;
211 
212 	if (likely(buf->start)) {
213 		vunmap(buf->start);
214 		for (i = 0; i < buf->page_count; i++)
215 			__free_page(buf->page_array[i]);
216 		relay_free_page_array(buf->page_array);
217 	}
218 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
219 	kfree(buf->padding);
220 	kfree(buf);
221 	kref_put(&chan->kref, relay_destroy_channel);
222 }
223 
224 /**
225  *	relay_remove_buf - remove a channel buffer
226  *	@kref: target kernel reference that contains the relay buffer
227  *
228  *	Removes the file from the filesystem, which also frees the
229  *	rchan_buf_struct and the channel buffer.  Should only be called from
230  *	kref_put().
231  */
232 static void relay_remove_buf(struct kref *kref)
233 {
234 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
235 	relay_destroy_buf(buf);
236 }
237 
238 /**
239  *	relay_buf_empty - boolean, is the channel buffer empty?
240  *	@buf: channel buffer
241  *
242  *	Returns 1 if the buffer is empty, 0 otherwise.
243  */
244 static int relay_buf_empty(struct rchan_buf *buf)
245 {
246 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
247 }
248 
249 /**
250  *	relay_buf_full - boolean, is the channel buffer full?
251  *	@buf: channel buffer
252  *
253  *	Returns 1 if the buffer is full, 0 otherwise.
254  */
255 int relay_buf_full(struct rchan_buf *buf)
256 {
257 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
258 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
259 }
260 EXPORT_SYMBOL_GPL(relay_buf_full);
261 
262 /*
263  * High-level relay kernel API and associated functions.
264  */
265 
266 /*
267  * rchan_callback implementations defining default channel behavior.  Used
268  * in place of corresponding NULL values in client callback struct.
269  */
270 
271 /*
272  * subbuf_start() default callback.  Does nothing.
273  */
274 static int subbuf_start_default_callback (struct rchan_buf *buf,
275 					  void *subbuf,
276 					  void *prev_subbuf,
277 					  size_t prev_padding)
278 {
279 	if (relay_buf_full(buf))
280 		return 0;
281 
282 	return 1;
283 }
284 
285 /*
286  * buf_mapped() default callback.  Does nothing.
287  */
288 static void buf_mapped_default_callback(struct rchan_buf *buf,
289 					struct file *filp)
290 {
291 }
292 
293 /*
294  * buf_unmapped() default callback.  Does nothing.
295  */
296 static void buf_unmapped_default_callback(struct rchan_buf *buf,
297 					  struct file *filp)
298 {
299 }
300 
301 /*
302  * create_buf_file_create() default callback.  Does nothing.
303  */
304 static struct dentry *create_buf_file_default_callback(const char *filename,
305 						       struct dentry *parent,
306 						       umode_t mode,
307 						       struct rchan_buf *buf,
308 						       int *is_global)
309 {
310 	return NULL;
311 }
312 
313 /*
314  * remove_buf_file() default callback.  Does nothing.
315  */
316 static int remove_buf_file_default_callback(struct dentry *dentry)
317 {
318 	return -EINVAL;
319 }
320 
321 /* relay channel default callbacks */
322 static struct rchan_callbacks default_channel_callbacks = {
323 	.subbuf_start = subbuf_start_default_callback,
324 	.buf_mapped = buf_mapped_default_callback,
325 	.buf_unmapped = buf_unmapped_default_callback,
326 	.create_buf_file = create_buf_file_default_callback,
327 	.remove_buf_file = remove_buf_file_default_callback,
328 };
329 
330 /**
331  *	wakeup_readers - wake up readers waiting on a channel
332  *	@work: contains the channel buffer
333  *
334  *	This is the function used to defer reader waking
335  */
336 static void wakeup_readers(struct irq_work *work)
337 {
338 	struct rchan_buf *buf;
339 
340 	buf = container_of(work, struct rchan_buf, wakeup_work);
341 	wake_up_interruptible(&buf->read_wait);
342 }
343 
344 /**
345  *	__relay_reset - reset a channel buffer
346  *	@buf: the channel buffer
347  *	@init: 1 if this is a first-time initialization
348  *
349  *	See relay_reset() for description of effect.
350  */
351 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
352 {
353 	size_t i;
354 
355 	if (init) {
356 		init_waitqueue_head(&buf->read_wait);
357 		kref_init(&buf->kref);
358 		init_irq_work(&buf->wakeup_work, wakeup_readers);
359 	} else {
360 		irq_work_sync(&buf->wakeup_work);
361 	}
362 
363 	buf->subbufs_produced = 0;
364 	buf->subbufs_consumed = 0;
365 	buf->bytes_consumed = 0;
366 	buf->finalized = 0;
367 	buf->data = buf->start;
368 	buf->offset = 0;
369 
370 	for (i = 0; i < buf->chan->n_subbufs; i++)
371 		buf->padding[i] = 0;
372 
373 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
374 }
375 
376 /**
377  *	relay_reset - reset the channel
378  *	@chan: the channel
379  *
380  *	This has the effect of erasing all data from all channel buffers
381  *	and restarting the channel in its initial state.  The buffers
382  *	are not freed, so any mappings are still in effect.
383  *
384  *	NOTE. Care should be taken that the channel isn't actually
385  *	being used by anything when this call is made.
386  */
387 void relay_reset(struct rchan *chan)
388 {
389 	struct rchan_buf *buf;
390 	unsigned int i;
391 
392 	if (!chan)
393 		return;
394 
395 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
396 		__relay_reset(buf, 0);
397 		return;
398 	}
399 
400 	mutex_lock(&relay_channels_mutex);
401 	for_each_possible_cpu(i)
402 		if ((buf = *per_cpu_ptr(chan->buf, i)))
403 			__relay_reset(buf, 0);
404 	mutex_unlock(&relay_channels_mutex);
405 }
406 EXPORT_SYMBOL_GPL(relay_reset);
407 
408 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409 					struct dentry *dentry)
410 {
411 	buf->dentry = dentry;
412 	d_inode(buf->dentry)->i_size = buf->early_bytes;
413 }
414 
415 static struct dentry *relay_create_buf_file(struct rchan *chan,
416 					    struct rchan_buf *buf,
417 					    unsigned int cpu)
418 {
419 	struct dentry *dentry;
420 	char *tmpname;
421 
422 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423 	if (!tmpname)
424 		return NULL;
425 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
426 
427 	/* Create file in fs */
428 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429 					   S_IRUSR, buf,
430 					   &chan->is_global);
431 	if (IS_ERR(dentry))
432 		dentry = NULL;
433 
434 	kfree(tmpname);
435 
436 	return dentry;
437 }
438 
439 /*
440  *	relay_open_buf - create a new relay channel buffer
441  *
442  *	used by relay_open() and CPU hotplug.
443  */
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445 {
446  	struct rchan_buf *buf = NULL;
447 	struct dentry *dentry;
448 
449  	if (chan->is_global)
450 		return *per_cpu_ptr(chan->buf, 0);
451 
452 	buf = relay_create_buf(chan);
453 	if (!buf)
454 		return NULL;
455 
456 	if (chan->has_base_filename) {
457 		dentry = relay_create_buf_file(chan, buf, cpu);
458 		if (!dentry)
459 			goto free_buf;
460 		relay_set_buf_dentry(buf, dentry);
461 	} else {
462 		/* Only retrieve global info, nothing more, nothing less */
463 		dentry = chan->cb->create_buf_file(NULL, NULL,
464 						   S_IRUSR, buf,
465 						   &chan->is_global);
466 		if (IS_ERR_OR_NULL(dentry))
467 			goto free_buf;
468 	}
469 
470  	buf->cpu = cpu;
471  	__relay_reset(buf, 1);
472 
473  	if(chan->is_global) {
474 		*per_cpu_ptr(chan->buf, 0) = buf;
475  		buf->cpu = 0;
476   	}
477 
478 	return buf;
479 
480 free_buf:
481  	relay_destroy_buf(buf);
482 	return NULL;
483 }
484 
485 /**
486  *	relay_close_buf - close a channel buffer
487  *	@buf: channel buffer
488  *
489  *	Marks the buffer finalized and restores the default callbacks.
490  *	The channel buffer and channel buffer data structure are then freed
491  *	automatically when the last reference is given up.
492  */
493 static void relay_close_buf(struct rchan_buf *buf)
494 {
495 	buf->finalized = 1;
496 	irq_work_sync(&buf->wakeup_work);
497 	buf->chan->cb->remove_buf_file(buf->dentry);
498 	kref_put(&buf->kref, relay_remove_buf);
499 }
500 
501 static void setup_callbacks(struct rchan *chan,
502 				   struct rchan_callbacks *cb)
503 {
504 	if (!cb) {
505 		chan->cb = &default_channel_callbacks;
506 		return;
507 	}
508 
509 	if (!cb->subbuf_start)
510 		cb->subbuf_start = subbuf_start_default_callback;
511 	if (!cb->buf_mapped)
512 		cb->buf_mapped = buf_mapped_default_callback;
513 	if (!cb->buf_unmapped)
514 		cb->buf_unmapped = buf_unmapped_default_callback;
515 	if (!cb->create_buf_file)
516 		cb->create_buf_file = create_buf_file_default_callback;
517 	if (!cb->remove_buf_file)
518 		cb->remove_buf_file = remove_buf_file_default_callback;
519 	chan->cb = cb;
520 }
521 
522 int relay_prepare_cpu(unsigned int cpu)
523 {
524 	struct rchan *chan;
525 	struct rchan_buf *buf;
526 
527 	mutex_lock(&relay_channels_mutex);
528 	list_for_each_entry(chan, &relay_channels, list) {
529 		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
530 			continue;
531 		buf = relay_open_buf(chan, cpu);
532 		if (!buf) {
533 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
534 			mutex_unlock(&relay_channels_mutex);
535 			return -ENOMEM;
536 		}
537 		*per_cpu_ptr(chan->buf, cpu) = buf;
538 	}
539 	mutex_unlock(&relay_channels_mutex);
540 	return 0;
541 }
542 
543 /**
544  *	relay_open - create a new relay channel
545  *	@base_filename: base name of files to create, %NULL for buffering only
546  *	@parent: dentry of parent directory, %NULL for root directory or buffer
547  *	@subbuf_size: size of sub-buffers
548  *	@n_subbufs: number of sub-buffers
549  *	@cb: client callback functions
550  *	@private_data: user-defined data
551  *
552  *	Returns channel pointer if successful, %NULL otherwise.
553  *
554  *	Creates a channel buffer for each cpu using the sizes and
555  *	attributes specified.  The created channel buffer files
556  *	will be named base_filename0...base_filenameN-1.  File
557  *	permissions will be %S_IRUSR.
558  *
559  *	If opening a buffer (@parent = NULL) that you later wish to register
560  *	in a filesystem, call relay_late_setup_files() once the @parent dentry
561  *	is available.
562  */
563 struct rchan *relay_open(const char *base_filename,
564 			 struct dentry *parent,
565 			 size_t subbuf_size,
566 			 size_t n_subbufs,
567 			 struct rchan_callbacks *cb,
568 			 void *private_data)
569 {
570 	unsigned int i;
571 	struct rchan *chan;
572 	struct rchan_buf *buf;
573 
574 	if (!(subbuf_size && n_subbufs))
575 		return NULL;
576 	if (subbuf_size > UINT_MAX / n_subbufs)
577 		return NULL;
578 
579 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
580 	if (!chan)
581 		return NULL;
582 
583 	chan->buf = alloc_percpu(struct rchan_buf *);
584 	if (!chan->buf) {
585 		kfree(chan);
586 		return NULL;
587 	}
588 
589 	chan->version = RELAYFS_CHANNEL_VERSION;
590 	chan->n_subbufs = n_subbufs;
591 	chan->subbuf_size = subbuf_size;
592 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
593 	chan->parent = parent;
594 	chan->private_data = private_data;
595 	if (base_filename) {
596 		chan->has_base_filename = 1;
597 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
598 	}
599 	setup_callbacks(chan, cb);
600 	kref_init(&chan->kref);
601 
602 	mutex_lock(&relay_channels_mutex);
603 	for_each_online_cpu(i) {
604 		buf = relay_open_buf(chan, i);
605 		if (!buf)
606 			goto free_bufs;
607 		*per_cpu_ptr(chan->buf, i) = buf;
608 	}
609 	list_add(&chan->list, &relay_channels);
610 	mutex_unlock(&relay_channels_mutex);
611 
612 	return chan;
613 
614 free_bufs:
615 	for_each_possible_cpu(i) {
616 		if ((buf = *per_cpu_ptr(chan->buf, i)))
617 			relay_close_buf(buf);
618 	}
619 
620 	kref_put(&chan->kref, relay_destroy_channel);
621 	mutex_unlock(&relay_channels_mutex);
622 	return NULL;
623 }
624 EXPORT_SYMBOL_GPL(relay_open);
625 
626 struct rchan_percpu_buf_dispatcher {
627 	struct rchan_buf *buf;
628 	struct dentry *dentry;
629 };
630 
631 /* Called in atomic context. */
632 static void __relay_set_buf_dentry(void *info)
633 {
634 	struct rchan_percpu_buf_dispatcher *p = info;
635 
636 	relay_set_buf_dentry(p->buf, p->dentry);
637 }
638 
639 /**
640  *	relay_late_setup_files - triggers file creation
641  *	@chan: channel to operate on
642  *	@base_filename: base name of files to create
643  *	@parent: dentry of parent directory, %NULL for root directory
644  *
645  *	Returns 0 if successful, non-zero otherwise.
646  *
647  *	Use to setup files for a previously buffer-only channel created
648  *	by relay_open() with a NULL parent dentry.
649  *
650  *	For example, this is useful for perfomring early tracing in kernel,
651  *	before VFS is up and then exposing the early results once the dentry
652  *	is available.
653  */
654 int relay_late_setup_files(struct rchan *chan,
655 			   const char *base_filename,
656 			   struct dentry *parent)
657 {
658 	int err = 0;
659 	unsigned int i, curr_cpu;
660 	unsigned long flags;
661 	struct dentry *dentry;
662 	struct rchan_buf *buf;
663 	struct rchan_percpu_buf_dispatcher disp;
664 
665 	if (!chan || !base_filename)
666 		return -EINVAL;
667 
668 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
669 
670 	mutex_lock(&relay_channels_mutex);
671 	/* Is chan already set up? */
672 	if (unlikely(chan->has_base_filename)) {
673 		mutex_unlock(&relay_channels_mutex);
674 		return -EEXIST;
675 	}
676 	chan->has_base_filename = 1;
677 	chan->parent = parent;
678 
679 	if (chan->is_global) {
680 		err = -EINVAL;
681 		buf = *per_cpu_ptr(chan->buf, 0);
682 		if (!WARN_ON_ONCE(!buf)) {
683 			dentry = relay_create_buf_file(chan, buf, 0);
684 			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
685 				relay_set_buf_dentry(buf, dentry);
686 				err = 0;
687 			}
688 		}
689 		mutex_unlock(&relay_channels_mutex);
690 		return err;
691 	}
692 
693 	curr_cpu = get_cpu();
694 	/*
695 	 * The CPU hotplug notifier ran before us and created buffers with
696 	 * no files associated. So it's safe to call relay_setup_buf_file()
697 	 * on all currently online CPUs.
698 	 */
699 	for_each_online_cpu(i) {
700 		buf = *per_cpu_ptr(chan->buf, i);
701 		if (unlikely(!buf)) {
702 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
703 			err = -EINVAL;
704 			break;
705 		}
706 
707 		dentry = relay_create_buf_file(chan, buf, i);
708 		if (unlikely(!dentry)) {
709 			err = -EINVAL;
710 			break;
711 		}
712 
713 		if (curr_cpu == i) {
714 			local_irq_save(flags);
715 			relay_set_buf_dentry(buf, dentry);
716 			local_irq_restore(flags);
717 		} else {
718 			disp.buf = buf;
719 			disp.dentry = dentry;
720 			smp_mb();
721 			/* relay_channels_mutex must be held, so wait. */
722 			err = smp_call_function_single(i,
723 						       __relay_set_buf_dentry,
724 						       &disp, 1);
725 		}
726 		if (unlikely(err))
727 			break;
728 	}
729 	put_cpu();
730 	mutex_unlock(&relay_channels_mutex);
731 
732 	return err;
733 }
734 EXPORT_SYMBOL_GPL(relay_late_setup_files);
735 
736 /**
737  *	relay_switch_subbuf - switch to a new sub-buffer
738  *	@buf: channel buffer
739  *	@length: size of current event
740  *
741  *	Returns either the length passed in or 0 if full.
742  *
743  *	Performs sub-buffer-switch tasks such as invoking callbacks,
744  *	updating padding counts, waking up readers, etc.
745  */
746 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
747 {
748 	void *old, *new;
749 	size_t old_subbuf, new_subbuf;
750 
751 	if (unlikely(length > buf->chan->subbuf_size))
752 		goto toobig;
753 
754 	if (buf->offset != buf->chan->subbuf_size + 1) {
755 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
756 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
757 		buf->padding[old_subbuf] = buf->prev_padding;
758 		buf->subbufs_produced++;
759 		if (buf->dentry)
760 			d_inode(buf->dentry)->i_size +=
761 				buf->chan->subbuf_size -
762 				buf->padding[old_subbuf];
763 		else
764 			buf->early_bytes += buf->chan->subbuf_size -
765 					    buf->padding[old_subbuf];
766 		smp_mb();
767 		if (waitqueue_active(&buf->read_wait)) {
768 			/*
769 			 * Calling wake_up_interruptible() from here
770 			 * will deadlock if we happen to be logging
771 			 * from the scheduler (trying to re-grab
772 			 * rq->lock), so defer it.
773 			 */
774 			irq_work_queue(&buf->wakeup_work);
775 		}
776 	}
777 
778 	old = buf->data;
779 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
780 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
781 	buf->offset = 0;
782 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
783 		buf->offset = buf->chan->subbuf_size + 1;
784 		return 0;
785 	}
786 	buf->data = new;
787 	buf->padding[new_subbuf] = 0;
788 
789 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
790 		goto toobig;
791 
792 	return length;
793 
794 toobig:
795 	buf->chan->last_toobig = length;
796 	return 0;
797 }
798 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
799 
800 /**
801  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
802  *	@chan: the channel
803  *	@cpu: the cpu associated with the channel buffer to update
804  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
805  *
806  *	Adds to the channel buffer's consumed sub-buffer count.
807  *	subbufs_consumed should be the number of sub-buffers newly consumed,
808  *	not the total consumed.
809  *
810  *	NOTE. Kernel clients don't need to call this function if the channel
811  *	mode is 'overwrite'.
812  */
813 void relay_subbufs_consumed(struct rchan *chan,
814 			    unsigned int cpu,
815 			    size_t subbufs_consumed)
816 {
817 	struct rchan_buf *buf;
818 
819 	if (!chan || cpu >= NR_CPUS)
820 		return;
821 
822 	buf = *per_cpu_ptr(chan->buf, cpu);
823 	if (!buf || subbufs_consumed > chan->n_subbufs)
824 		return;
825 
826 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
827 		buf->subbufs_consumed = buf->subbufs_produced;
828 	else
829 		buf->subbufs_consumed += subbufs_consumed;
830 }
831 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
832 
833 /**
834  *	relay_close - close the channel
835  *	@chan: the channel
836  *
837  *	Closes all channel buffers and frees the channel.
838  */
839 void relay_close(struct rchan *chan)
840 {
841 	struct rchan_buf *buf;
842 	unsigned int i;
843 
844 	if (!chan)
845 		return;
846 
847 	mutex_lock(&relay_channels_mutex);
848 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
849 		relay_close_buf(buf);
850 	else
851 		for_each_possible_cpu(i)
852 			if ((buf = *per_cpu_ptr(chan->buf, i)))
853 				relay_close_buf(buf);
854 
855 	if (chan->last_toobig)
856 		printk(KERN_WARNING "relay: one or more items not logged "
857 		       "[item size (%zd) > sub-buffer size (%zd)]\n",
858 		       chan->last_toobig, chan->subbuf_size);
859 
860 	list_del(&chan->list);
861 	kref_put(&chan->kref, relay_destroy_channel);
862 	mutex_unlock(&relay_channels_mutex);
863 }
864 EXPORT_SYMBOL_GPL(relay_close);
865 
866 /**
867  *	relay_flush - close the channel
868  *	@chan: the channel
869  *
870  *	Flushes all channel buffers, i.e. forces buffer switch.
871  */
872 void relay_flush(struct rchan *chan)
873 {
874 	struct rchan_buf *buf;
875 	unsigned int i;
876 
877 	if (!chan)
878 		return;
879 
880 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
881 		relay_switch_subbuf(buf, 0);
882 		return;
883 	}
884 
885 	mutex_lock(&relay_channels_mutex);
886 	for_each_possible_cpu(i)
887 		if ((buf = *per_cpu_ptr(chan->buf, i)))
888 			relay_switch_subbuf(buf, 0);
889 	mutex_unlock(&relay_channels_mutex);
890 }
891 EXPORT_SYMBOL_GPL(relay_flush);
892 
893 /**
894  *	relay_file_open - open file op for relay files
895  *	@inode: the inode
896  *	@filp: the file
897  *
898  *	Increments the channel buffer refcount.
899  */
900 static int relay_file_open(struct inode *inode, struct file *filp)
901 {
902 	struct rchan_buf *buf = inode->i_private;
903 	kref_get(&buf->kref);
904 	filp->private_data = buf;
905 
906 	return nonseekable_open(inode, filp);
907 }
908 
909 /**
910  *	relay_file_mmap - mmap file op for relay files
911  *	@filp: the file
912  *	@vma: the vma describing what to map
913  *
914  *	Calls upon relay_mmap_buf() to map the file into user space.
915  */
916 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
917 {
918 	struct rchan_buf *buf = filp->private_data;
919 	return relay_mmap_buf(buf, vma);
920 }
921 
922 /**
923  *	relay_file_poll - poll file op for relay files
924  *	@filp: the file
925  *	@wait: poll table
926  *
927  *	Poll implemention.
928  */
929 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
930 {
931 	__poll_t mask = 0;
932 	struct rchan_buf *buf = filp->private_data;
933 
934 	if (buf->finalized)
935 		return EPOLLERR;
936 
937 	if (filp->f_mode & FMODE_READ) {
938 		poll_wait(filp, &buf->read_wait, wait);
939 		if (!relay_buf_empty(buf))
940 			mask |= EPOLLIN | EPOLLRDNORM;
941 	}
942 
943 	return mask;
944 }
945 
946 /**
947  *	relay_file_release - release file op for relay files
948  *	@inode: the inode
949  *	@filp: the file
950  *
951  *	Decrements the channel refcount, as the filesystem is
952  *	no longer using it.
953  */
954 static int relay_file_release(struct inode *inode, struct file *filp)
955 {
956 	struct rchan_buf *buf = filp->private_data;
957 	kref_put(&buf->kref, relay_remove_buf);
958 
959 	return 0;
960 }
961 
962 /*
963  *	relay_file_read_consume - update the consumed count for the buffer
964  */
965 static void relay_file_read_consume(struct rchan_buf *buf,
966 				    size_t read_pos,
967 				    size_t bytes_consumed)
968 {
969 	size_t subbuf_size = buf->chan->subbuf_size;
970 	size_t n_subbufs = buf->chan->n_subbufs;
971 	size_t read_subbuf;
972 
973 	if (buf->subbufs_produced == buf->subbufs_consumed &&
974 	    buf->offset == buf->bytes_consumed)
975 		return;
976 
977 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
978 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
979 		buf->bytes_consumed = 0;
980 	}
981 
982 	buf->bytes_consumed += bytes_consumed;
983 	if (!read_pos)
984 		read_subbuf = buf->subbufs_consumed % n_subbufs;
985 	else
986 		read_subbuf = read_pos / buf->chan->subbuf_size;
987 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
988 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
989 		    (buf->offset == subbuf_size))
990 			return;
991 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
992 		buf->bytes_consumed = 0;
993 	}
994 }
995 
996 /*
997  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
998  */
999 static int relay_file_read_avail(struct rchan_buf *buf)
1000 {
1001 	size_t subbuf_size = buf->chan->subbuf_size;
1002 	size_t n_subbufs = buf->chan->n_subbufs;
1003 	size_t produced = buf->subbufs_produced;
1004 	size_t consumed = buf->subbufs_consumed;
1005 
1006 	relay_file_read_consume(buf, 0, 0);
1007 
1008 	consumed = buf->subbufs_consumed;
1009 
1010 	if (unlikely(buf->offset > subbuf_size)) {
1011 		if (produced == consumed)
1012 			return 0;
1013 		return 1;
1014 	}
1015 
1016 	if (unlikely(produced - consumed >= n_subbufs)) {
1017 		consumed = produced - n_subbufs + 1;
1018 		buf->subbufs_consumed = consumed;
1019 		buf->bytes_consumed = 0;
1020 	}
1021 
1022 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1023 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1024 
1025 	if (consumed > produced)
1026 		produced += n_subbufs * subbuf_size;
1027 
1028 	if (consumed == produced) {
1029 		if (buf->offset == subbuf_size &&
1030 		    buf->subbufs_produced > buf->subbufs_consumed)
1031 			return 1;
1032 		return 0;
1033 	}
1034 
1035 	return 1;
1036 }
1037 
1038 /**
1039  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1040  *	@read_pos: file read position
1041  *	@buf: relay channel buffer
1042  */
1043 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1044 					   struct rchan_buf *buf)
1045 {
1046 	size_t padding, avail = 0;
1047 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1048 	size_t subbuf_size = buf->chan->subbuf_size;
1049 
1050 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1051 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1052 	read_subbuf = read_pos / subbuf_size;
1053 	read_offset = read_pos % subbuf_size;
1054 	padding = buf->padding[read_subbuf];
1055 
1056 	if (read_subbuf == write_subbuf) {
1057 		if (read_offset + padding < write_offset)
1058 			avail = write_offset - (read_offset + padding);
1059 	} else
1060 		avail = (subbuf_size - padding) - read_offset;
1061 
1062 	return avail;
1063 }
1064 
1065 /**
1066  *	relay_file_read_start_pos - find the first available byte to read
1067  *	@buf: relay channel buffer
1068  *
1069  *	If the read_pos is in the middle of padding, return the
1070  *	position of the first actually available byte, otherwise
1071  *	return the original value.
1072  */
1073 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
1074 {
1075 	size_t read_subbuf, padding, padding_start, padding_end;
1076 	size_t subbuf_size = buf->chan->subbuf_size;
1077 	size_t n_subbufs = buf->chan->n_subbufs;
1078 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1079 	size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
1080 
1081 	read_subbuf = read_pos / subbuf_size;
1082 	padding = buf->padding[read_subbuf];
1083 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1084 	padding_end = (read_subbuf + 1) * subbuf_size;
1085 	if (read_pos >= padding_start && read_pos < padding_end) {
1086 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1087 		read_pos = read_subbuf * subbuf_size;
1088 	}
1089 
1090 	return read_pos;
1091 }
1092 
1093 /**
1094  *	relay_file_read_end_pos - return the new read position
1095  *	@read_pos: file read position
1096  *	@buf: relay channel buffer
1097  *	@count: number of bytes to be read
1098  */
1099 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1100 				      size_t read_pos,
1101 				      size_t count)
1102 {
1103 	size_t read_subbuf, padding, end_pos;
1104 	size_t subbuf_size = buf->chan->subbuf_size;
1105 	size_t n_subbufs = buf->chan->n_subbufs;
1106 
1107 	read_subbuf = read_pos / subbuf_size;
1108 	padding = buf->padding[read_subbuf];
1109 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1110 		end_pos = (read_subbuf + 1) * subbuf_size;
1111 	else
1112 		end_pos = read_pos + count;
1113 	if (end_pos >= subbuf_size * n_subbufs)
1114 		end_pos = 0;
1115 
1116 	return end_pos;
1117 }
1118 
1119 static ssize_t relay_file_read(struct file *filp,
1120 			       char __user *buffer,
1121 			       size_t count,
1122 			       loff_t *ppos)
1123 {
1124 	struct rchan_buf *buf = filp->private_data;
1125 	size_t read_start, avail;
1126 	size_t written = 0;
1127 	int ret;
1128 
1129 	if (!count)
1130 		return 0;
1131 
1132 	inode_lock(file_inode(filp));
1133 	do {
1134 		void *from;
1135 
1136 		if (!relay_file_read_avail(buf))
1137 			break;
1138 
1139 		read_start = relay_file_read_start_pos(buf);
1140 		avail = relay_file_read_subbuf_avail(read_start, buf);
1141 		if (!avail)
1142 			break;
1143 
1144 		avail = min(count, avail);
1145 		from = buf->start + read_start;
1146 		ret = avail;
1147 		if (copy_to_user(buffer, from, avail))
1148 			break;
1149 
1150 		buffer += ret;
1151 		written += ret;
1152 		count -= ret;
1153 
1154 		relay_file_read_consume(buf, read_start, ret);
1155 		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1156 	} while (count);
1157 	inode_unlock(file_inode(filp));
1158 
1159 	return written;
1160 }
1161 
1162 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1163 {
1164 	rbuf->bytes_consumed += bytes_consumed;
1165 
1166 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1167 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1168 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1169 	}
1170 }
1171 
1172 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1173 				   struct pipe_buffer *buf)
1174 {
1175 	struct rchan_buf *rbuf;
1176 
1177 	rbuf = (struct rchan_buf *)page_private(buf->page);
1178 	relay_consume_bytes(rbuf, buf->private);
1179 }
1180 
1181 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1182 	.release	= relay_pipe_buf_release,
1183 	.try_steal	= generic_pipe_buf_try_steal,
1184 	.get		= generic_pipe_buf_get,
1185 };
1186 
1187 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1188 {
1189 }
1190 
1191 /*
1192  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1193  */
1194 static ssize_t subbuf_splice_actor(struct file *in,
1195 			       loff_t *ppos,
1196 			       struct pipe_inode_info *pipe,
1197 			       size_t len,
1198 			       unsigned int flags,
1199 			       int *nonpad_ret)
1200 {
1201 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1202 	struct rchan_buf *rbuf = in->private_data;
1203 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1204 	uint64_t pos = (uint64_t) *ppos;
1205 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1206 	size_t read_start = (size_t) do_div(pos, alloc_size);
1207 	size_t read_subbuf = read_start / subbuf_size;
1208 	size_t padding = rbuf->padding[read_subbuf];
1209 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1210 	struct page *pages[PIPE_DEF_BUFFERS];
1211 	struct partial_page partial[PIPE_DEF_BUFFERS];
1212 	struct splice_pipe_desc spd = {
1213 		.pages = pages,
1214 		.nr_pages = 0,
1215 		.nr_pages_max = PIPE_DEF_BUFFERS,
1216 		.partial = partial,
1217 		.ops = &relay_pipe_buf_ops,
1218 		.spd_release = relay_page_release,
1219 	};
1220 	ssize_t ret;
1221 
1222 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1223 		return 0;
1224 	if (splice_grow_spd(pipe, &spd))
1225 		return -ENOMEM;
1226 
1227 	/*
1228 	 * Adjust read len, if longer than what is available
1229 	 */
1230 	if (len > (subbuf_size - read_start % subbuf_size))
1231 		len = subbuf_size - read_start % subbuf_size;
1232 
1233 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1234 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1235 	poff = read_start & ~PAGE_MASK;
1236 	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1237 
1238 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1239 		unsigned int this_len, this_end, private;
1240 		unsigned int cur_pos = read_start + total_len;
1241 
1242 		if (!len)
1243 			break;
1244 
1245 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1246 		private = this_len;
1247 
1248 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1249 		spd.partial[spd.nr_pages].offset = poff;
1250 
1251 		this_end = cur_pos + this_len;
1252 		if (this_end >= nonpad_end) {
1253 			this_len = nonpad_end - cur_pos;
1254 			private = this_len + padding;
1255 		}
1256 		spd.partial[spd.nr_pages].len = this_len;
1257 		spd.partial[spd.nr_pages].private = private;
1258 
1259 		len -= this_len;
1260 		total_len += this_len;
1261 		poff = 0;
1262 		pidx = (pidx + 1) % subbuf_pages;
1263 
1264 		if (this_end >= nonpad_end) {
1265 			spd.nr_pages++;
1266 			break;
1267 		}
1268 	}
1269 
1270 	ret = 0;
1271 	if (!spd.nr_pages)
1272 		goto out;
1273 
1274 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1275 	if (ret < 0 || ret < total_len)
1276 		goto out;
1277 
1278         if (read_start + ret == nonpad_end)
1279                 ret += padding;
1280 
1281 out:
1282 	splice_shrink_spd(&spd);
1283 	return ret;
1284 }
1285 
1286 static ssize_t relay_file_splice_read(struct file *in,
1287 				      loff_t *ppos,
1288 				      struct pipe_inode_info *pipe,
1289 				      size_t len,
1290 				      unsigned int flags)
1291 {
1292 	ssize_t spliced;
1293 	int ret;
1294 	int nonpad_ret = 0;
1295 
1296 	ret = 0;
1297 	spliced = 0;
1298 
1299 	while (len && !spliced) {
1300 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1301 		if (ret < 0)
1302 			break;
1303 		else if (!ret) {
1304 			if (flags & SPLICE_F_NONBLOCK)
1305 				ret = -EAGAIN;
1306 			break;
1307 		}
1308 
1309 		*ppos += ret;
1310 		if (ret > len)
1311 			len = 0;
1312 		else
1313 			len -= ret;
1314 		spliced += nonpad_ret;
1315 		nonpad_ret = 0;
1316 	}
1317 
1318 	if (spliced)
1319 		return spliced;
1320 
1321 	return ret;
1322 }
1323 
1324 const struct file_operations relay_file_operations = {
1325 	.open		= relay_file_open,
1326 	.poll		= relay_file_poll,
1327 	.mmap		= relay_file_mmap,
1328 	.read		= relay_file_read,
1329 	.llseek		= no_llseek,
1330 	.release	= relay_file_release,
1331 	.splice_read	= relay_file_splice_read,
1332 };
1333 EXPORT_SYMBOL_GPL(relay_file_operations);
1334