1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.rst for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vmf->vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 kvfree(array); 85 } 86 87 /** 88 * relay_mmap_buf: - mmap channel buffer to process address space 89 * @buf: relay channel buffer 90 * @vma: vm_area_struct describing memory to be mapped 91 * 92 * Returns 0 if ok, negative on error 93 * 94 * Caller should already have grabbed mmap_lock. 95 */ 96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 97 { 98 unsigned long length = vma->vm_end - vma->vm_start; 99 struct file *filp = vma->vm_file; 100 101 if (!buf) 102 return -EBADF; 103 104 if (length != (unsigned long)buf->chan->alloc_size) 105 return -EINVAL; 106 107 vma->vm_ops = &relay_file_mmap_ops; 108 vma->vm_flags |= VM_DONTEXPAND; 109 vma->vm_private_data = buf; 110 buf->chan->cb->buf_mapped(buf, filp); 111 112 return 0; 113 } 114 115 /** 116 * relay_alloc_buf - allocate a channel buffer 117 * @buf: the buffer struct 118 * @size: total size of the buffer 119 * 120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 121 * passed in size will get page aligned, if it isn't already. 122 */ 123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 124 { 125 void *mem; 126 unsigned int i, j, n_pages; 127 128 *size = PAGE_ALIGN(*size); 129 n_pages = *size >> PAGE_SHIFT; 130 131 buf->page_array = relay_alloc_page_array(n_pages); 132 if (!buf->page_array) 133 return NULL; 134 135 for (i = 0; i < n_pages; i++) { 136 buf->page_array[i] = alloc_page(GFP_KERNEL); 137 if (unlikely(!buf->page_array[i])) 138 goto depopulate; 139 set_page_private(buf->page_array[i], (unsigned long)buf); 140 } 141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 142 if (!mem) 143 goto depopulate; 144 145 memset(mem, 0, *size); 146 buf->page_count = n_pages; 147 return mem; 148 149 depopulate: 150 for (j = 0; j < i; j++) 151 __free_page(buf->page_array[j]); 152 relay_free_page_array(buf->page_array); 153 return NULL; 154 } 155 156 /** 157 * relay_create_buf - allocate and initialize a channel buffer 158 * @chan: the relay channel 159 * 160 * Returns channel buffer if successful, %NULL otherwise. 161 */ 162 static struct rchan_buf *relay_create_buf(struct rchan *chan) 163 { 164 struct rchan_buf *buf; 165 166 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *)) 167 return NULL; 168 169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *), 173 GFP_KERNEL); 174 if (!buf->padding) 175 goto free_buf; 176 177 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 178 if (!buf->start) 179 goto free_buf; 180 181 buf->chan = chan; 182 kref_get(&buf->chan->kref); 183 return buf; 184 185 free_buf: 186 kfree(buf->padding); 187 kfree(buf); 188 return NULL; 189 } 190 191 /** 192 * relay_destroy_channel - free the channel struct 193 * @kref: target kernel reference that contains the relay channel 194 * 195 * Should only be called from kref_put(). 196 */ 197 static void relay_destroy_channel(struct kref *kref) 198 { 199 struct rchan *chan = container_of(kref, struct rchan, kref); 200 kfree(chan); 201 } 202 203 /** 204 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 205 * @buf: the buffer struct 206 */ 207 static void relay_destroy_buf(struct rchan_buf *buf) 208 { 209 struct rchan *chan = buf->chan; 210 unsigned int i; 211 212 if (likely(buf->start)) { 213 vunmap(buf->start); 214 for (i = 0; i < buf->page_count; i++) 215 __free_page(buf->page_array[i]); 216 relay_free_page_array(buf->page_array); 217 } 218 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 219 kfree(buf->padding); 220 kfree(buf); 221 kref_put(&chan->kref, relay_destroy_channel); 222 } 223 224 /** 225 * relay_remove_buf - remove a channel buffer 226 * @kref: target kernel reference that contains the relay buffer 227 * 228 * Removes the file from the filesystem, which also frees the 229 * rchan_buf_struct and the channel buffer. Should only be called from 230 * kref_put(). 231 */ 232 static void relay_remove_buf(struct kref *kref) 233 { 234 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 235 relay_destroy_buf(buf); 236 } 237 238 /** 239 * relay_buf_empty - boolean, is the channel buffer empty? 240 * @buf: channel buffer 241 * 242 * Returns 1 if the buffer is empty, 0 otherwise. 243 */ 244 static int relay_buf_empty(struct rchan_buf *buf) 245 { 246 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 247 } 248 249 /** 250 * relay_buf_full - boolean, is the channel buffer full? 251 * @buf: channel buffer 252 * 253 * Returns 1 if the buffer is full, 0 otherwise. 254 */ 255 int relay_buf_full(struct rchan_buf *buf) 256 { 257 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 258 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 259 } 260 EXPORT_SYMBOL_GPL(relay_buf_full); 261 262 /* 263 * High-level relay kernel API and associated functions. 264 */ 265 266 /* 267 * rchan_callback implementations defining default channel behavior. Used 268 * in place of corresponding NULL values in client callback struct. 269 */ 270 271 /* 272 * subbuf_start() default callback. Does nothing. 273 */ 274 static int subbuf_start_default_callback (struct rchan_buf *buf, 275 void *subbuf, 276 void *prev_subbuf, 277 size_t prev_padding) 278 { 279 if (relay_buf_full(buf)) 280 return 0; 281 282 return 1; 283 } 284 285 /* 286 * buf_mapped() default callback. Does nothing. 287 */ 288 static void buf_mapped_default_callback(struct rchan_buf *buf, 289 struct file *filp) 290 { 291 } 292 293 /* 294 * buf_unmapped() default callback. Does nothing. 295 */ 296 static void buf_unmapped_default_callback(struct rchan_buf *buf, 297 struct file *filp) 298 { 299 } 300 301 /* 302 * create_buf_file_create() default callback. Does nothing. 303 */ 304 static struct dentry *create_buf_file_default_callback(const char *filename, 305 struct dentry *parent, 306 umode_t mode, 307 struct rchan_buf *buf, 308 int *is_global) 309 { 310 return NULL; 311 } 312 313 /* 314 * remove_buf_file() default callback. Does nothing. 315 */ 316 static int remove_buf_file_default_callback(struct dentry *dentry) 317 { 318 return -EINVAL; 319 } 320 321 /* relay channel default callbacks */ 322 static struct rchan_callbacks default_channel_callbacks = { 323 .subbuf_start = subbuf_start_default_callback, 324 .buf_mapped = buf_mapped_default_callback, 325 .buf_unmapped = buf_unmapped_default_callback, 326 .create_buf_file = create_buf_file_default_callback, 327 .remove_buf_file = remove_buf_file_default_callback, 328 }; 329 330 /** 331 * wakeup_readers - wake up readers waiting on a channel 332 * @work: contains the channel buffer 333 * 334 * This is the function used to defer reader waking 335 */ 336 static void wakeup_readers(struct irq_work *work) 337 { 338 struct rchan_buf *buf; 339 340 buf = container_of(work, struct rchan_buf, wakeup_work); 341 wake_up_interruptible(&buf->read_wait); 342 } 343 344 /** 345 * __relay_reset - reset a channel buffer 346 * @buf: the channel buffer 347 * @init: 1 if this is a first-time initialization 348 * 349 * See relay_reset() for description of effect. 350 */ 351 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 352 { 353 size_t i; 354 355 if (init) { 356 init_waitqueue_head(&buf->read_wait); 357 kref_init(&buf->kref); 358 init_irq_work(&buf->wakeup_work, wakeup_readers); 359 } else { 360 irq_work_sync(&buf->wakeup_work); 361 } 362 363 buf->subbufs_produced = 0; 364 buf->subbufs_consumed = 0; 365 buf->bytes_consumed = 0; 366 buf->finalized = 0; 367 buf->data = buf->start; 368 buf->offset = 0; 369 370 for (i = 0; i < buf->chan->n_subbufs; i++) 371 buf->padding[i] = 0; 372 373 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 374 } 375 376 /** 377 * relay_reset - reset the channel 378 * @chan: the channel 379 * 380 * This has the effect of erasing all data from all channel buffers 381 * and restarting the channel in its initial state. The buffers 382 * are not freed, so any mappings are still in effect. 383 * 384 * NOTE. Care should be taken that the channel isn't actually 385 * being used by anything when this call is made. 386 */ 387 void relay_reset(struct rchan *chan) 388 { 389 struct rchan_buf *buf; 390 unsigned int i; 391 392 if (!chan) 393 return; 394 395 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 396 __relay_reset(buf, 0); 397 return; 398 } 399 400 mutex_lock(&relay_channels_mutex); 401 for_each_possible_cpu(i) 402 if ((buf = *per_cpu_ptr(chan->buf, i))) 403 __relay_reset(buf, 0); 404 mutex_unlock(&relay_channels_mutex); 405 } 406 EXPORT_SYMBOL_GPL(relay_reset); 407 408 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 409 struct dentry *dentry) 410 { 411 buf->dentry = dentry; 412 d_inode(buf->dentry)->i_size = buf->early_bytes; 413 } 414 415 static struct dentry *relay_create_buf_file(struct rchan *chan, 416 struct rchan_buf *buf, 417 unsigned int cpu) 418 { 419 struct dentry *dentry; 420 char *tmpname; 421 422 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 423 if (!tmpname) 424 return NULL; 425 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 426 427 /* Create file in fs */ 428 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 429 S_IRUSR, buf, 430 &chan->is_global); 431 if (IS_ERR(dentry)) 432 dentry = NULL; 433 434 kfree(tmpname); 435 436 return dentry; 437 } 438 439 /* 440 * relay_open_buf - create a new relay channel buffer 441 * 442 * used by relay_open() and CPU hotplug. 443 */ 444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 445 { 446 struct rchan_buf *buf = NULL; 447 struct dentry *dentry; 448 449 if (chan->is_global) 450 return *per_cpu_ptr(chan->buf, 0); 451 452 buf = relay_create_buf(chan); 453 if (!buf) 454 return NULL; 455 456 if (chan->has_base_filename) { 457 dentry = relay_create_buf_file(chan, buf, cpu); 458 if (!dentry) 459 goto free_buf; 460 relay_set_buf_dentry(buf, dentry); 461 } else { 462 /* Only retrieve global info, nothing more, nothing less */ 463 dentry = chan->cb->create_buf_file(NULL, NULL, 464 S_IRUSR, buf, 465 &chan->is_global); 466 if (IS_ERR_OR_NULL(dentry)) 467 goto free_buf; 468 } 469 470 buf->cpu = cpu; 471 __relay_reset(buf, 1); 472 473 if(chan->is_global) { 474 *per_cpu_ptr(chan->buf, 0) = buf; 475 buf->cpu = 0; 476 } 477 478 return buf; 479 480 free_buf: 481 relay_destroy_buf(buf); 482 return NULL; 483 } 484 485 /** 486 * relay_close_buf - close a channel buffer 487 * @buf: channel buffer 488 * 489 * Marks the buffer finalized and restores the default callbacks. 490 * The channel buffer and channel buffer data structure are then freed 491 * automatically when the last reference is given up. 492 */ 493 static void relay_close_buf(struct rchan_buf *buf) 494 { 495 buf->finalized = 1; 496 irq_work_sync(&buf->wakeup_work); 497 buf->chan->cb->remove_buf_file(buf->dentry); 498 kref_put(&buf->kref, relay_remove_buf); 499 } 500 501 static void setup_callbacks(struct rchan *chan, 502 struct rchan_callbacks *cb) 503 { 504 if (!cb) { 505 chan->cb = &default_channel_callbacks; 506 return; 507 } 508 509 if (!cb->subbuf_start) 510 cb->subbuf_start = subbuf_start_default_callback; 511 if (!cb->buf_mapped) 512 cb->buf_mapped = buf_mapped_default_callback; 513 if (!cb->buf_unmapped) 514 cb->buf_unmapped = buf_unmapped_default_callback; 515 if (!cb->create_buf_file) 516 cb->create_buf_file = create_buf_file_default_callback; 517 if (!cb->remove_buf_file) 518 cb->remove_buf_file = remove_buf_file_default_callback; 519 chan->cb = cb; 520 } 521 522 int relay_prepare_cpu(unsigned int cpu) 523 { 524 struct rchan *chan; 525 struct rchan_buf *buf; 526 527 mutex_lock(&relay_channels_mutex); 528 list_for_each_entry(chan, &relay_channels, list) { 529 if ((buf = *per_cpu_ptr(chan->buf, cpu))) 530 continue; 531 buf = relay_open_buf(chan, cpu); 532 if (!buf) { 533 pr_err("relay: cpu %d buffer creation failed\n", cpu); 534 mutex_unlock(&relay_channels_mutex); 535 return -ENOMEM; 536 } 537 *per_cpu_ptr(chan->buf, cpu) = buf; 538 } 539 mutex_unlock(&relay_channels_mutex); 540 return 0; 541 } 542 543 /** 544 * relay_open - create a new relay channel 545 * @base_filename: base name of files to create, %NULL for buffering only 546 * @parent: dentry of parent directory, %NULL for root directory or buffer 547 * @subbuf_size: size of sub-buffers 548 * @n_subbufs: number of sub-buffers 549 * @cb: client callback functions 550 * @private_data: user-defined data 551 * 552 * Returns channel pointer if successful, %NULL otherwise. 553 * 554 * Creates a channel buffer for each cpu using the sizes and 555 * attributes specified. The created channel buffer files 556 * will be named base_filename0...base_filenameN-1. File 557 * permissions will be %S_IRUSR. 558 * 559 * If opening a buffer (@parent = NULL) that you later wish to register 560 * in a filesystem, call relay_late_setup_files() once the @parent dentry 561 * is available. 562 */ 563 struct rchan *relay_open(const char *base_filename, 564 struct dentry *parent, 565 size_t subbuf_size, 566 size_t n_subbufs, 567 struct rchan_callbacks *cb, 568 void *private_data) 569 { 570 unsigned int i; 571 struct rchan *chan; 572 struct rchan_buf *buf; 573 574 if (!(subbuf_size && n_subbufs)) 575 return NULL; 576 if (subbuf_size > UINT_MAX / n_subbufs) 577 return NULL; 578 579 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 580 if (!chan) 581 return NULL; 582 583 chan->buf = alloc_percpu(struct rchan_buf *); 584 if (!chan->buf) { 585 kfree(chan); 586 return NULL; 587 } 588 589 chan->version = RELAYFS_CHANNEL_VERSION; 590 chan->n_subbufs = n_subbufs; 591 chan->subbuf_size = subbuf_size; 592 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 593 chan->parent = parent; 594 chan->private_data = private_data; 595 if (base_filename) { 596 chan->has_base_filename = 1; 597 strlcpy(chan->base_filename, base_filename, NAME_MAX); 598 } 599 setup_callbacks(chan, cb); 600 kref_init(&chan->kref); 601 602 mutex_lock(&relay_channels_mutex); 603 for_each_online_cpu(i) { 604 buf = relay_open_buf(chan, i); 605 if (!buf) 606 goto free_bufs; 607 *per_cpu_ptr(chan->buf, i) = buf; 608 } 609 list_add(&chan->list, &relay_channels); 610 mutex_unlock(&relay_channels_mutex); 611 612 return chan; 613 614 free_bufs: 615 for_each_possible_cpu(i) { 616 if ((buf = *per_cpu_ptr(chan->buf, i))) 617 relay_close_buf(buf); 618 } 619 620 kref_put(&chan->kref, relay_destroy_channel); 621 mutex_unlock(&relay_channels_mutex); 622 return NULL; 623 } 624 EXPORT_SYMBOL_GPL(relay_open); 625 626 struct rchan_percpu_buf_dispatcher { 627 struct rchan_buf *buf; 628 struct dentry *dentry; 629 }; 630 631 /* Called in atomic context. */ 632 static void __relay_set_buf_dentry(void *info) 633 { 634 struct rchan_percpu_buf_dispatcher *p = info; 635 636 relay_set_buf_dentry(p->buf, p->dentry); 637 } 638 639 /** 640 * relay_late_setup_files - triggers file creation 641 * @chan: channel to operate on 642 * @base_filename: base name of files to create 643 * @parent: dentry of parent directory, %NULL for root directory 644 * 645 * Returns 0 if successful, non-zero otherwise. 646 * 647 * Use to setup files for a previously buffer-only channel created 648 * by relay_open() with a NULL parent dentry. 649 * 650 * For example, this is useful for perfomring early tracing in kernel, 651 * before VFS is up and then exposing the early results once the dentry 652 * is available. 653 */ 654 int relay_late_setup_files(struct rchan *chan, 655 const char *base_filename, 656 struct dentry *parent) 657 { 658 int err = 0; 659 unsigned int i, curr_cpu; 660 unsigned long flags; 661 struct dentry *dentry; 662 struct rchan_buf *buf; 663 struct rchan_percpu_buf_dispatcher disp; 664 665 if (!chan || !base_filename) 666 return -EINVAL; 667 668 strlcpy(chan->base_filename, base_filename, NAME_MAX); 669 670 mutex_lock(&relay_channels_mutex); 671 /* Is chan already set up? */ 672 if (unlikely(chan->has_base_filename)) { 673 mutex_unlock(&relay_channels_mutex); 674 return -EEXIST; 675 } 676 chan->has_base_filename = 1; 677 chan->parent = parent; 678 679 if (chan->is_global) { 680 err = -EINVAL; 681 buf = *per_cpu_ptr(chan->buf, 0); 682 if (!WARN_ON_ONCE(!buf)) { 683 dentry = relay_create_buf_file(chan, buf, 0); 684 if (dentry && !WARN_ON_ONCE(!chan->is_global)) { 685 relay_set_buf_dentry(buf, dentry); 686 err = 0; 687 } 688 } 689 mutex_unlock(&relay_channels_mutex); 690 return err; 691 } 692 693 curr_cpu = get_cpu(); 694 /* 695 * The CPU hotplug notifier ran before us and created buffers with 696 * no files associated. So it's safe to call relay_setup_buf_file() 697 * on all currently online CPUs. 698 */ 699 for_each_online_cpu(i) { 700 buf = *per_cpu_ptr(chan->buf, i); 701 if (unlikely(!buf)) { 702 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 703 err = -EINVAL; 704 break; 705 } 706 707 dentry = relay_create_buf_file(chan, buf, i); 708 if (unlikely(!dentry)) { 709 err = -EINVAL; 710 break; 711 } 712 713 if (curr_cpu == i) { 714 local_irq_save(flags); 715 relay_set_buf_dentry(buf, dentry); 716 local_irq_restore(flags); 717 } else { 718 disp.buf = buf; 719 disp.dentry = dentry; 720 smp_mb(); 721 /* relay_channels_mutex must be held, so wait. */ 722 err = smp_call_function_single(i, 723 __relay_set_buf_dentry, 724 &disp, 1); 725 } 726 if (unlikely(err)) 727 break; 728 } 729 put_cpu(); 730 mutex_unlock(&relay_channels_mutex); 731 732 return err; 733 } 734 EXPORT_SYMBOL_GPL(relay_late_setup_files); 735 736 /** 737 * relay_switch_subbuf - switch to a new sub-buffer 738 * @buf: channel buffer 739 * @length: size of current event 740 * 741 * Returns either the length passed in or 0 if full. 742 * 743 * Performs sub-buffer-switch tasks such as invoking callbacks, 744 * updating padding counts, waking up readers, etc. 745 */ 746 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 747 { 748 void *old, *new; 749 size_t old_subbuf, new_subbuf; 750 751 if (unlikely(length > buf->chan->subbuf_size)) 752 goto toobig; 753 754 if (buf->offset != buf->chan->subbuf_size + 1) { 755 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 756 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 757 buf->padding[old_subbuf] = buf->prev_padding; 758 buf->subbufs_produced++; 759 if (buf->dentry) 760 d_inode(buf->dentry)->i_size += 761 buf->chan->subbuf_size - 762 buf->padding[old_subbuf]; 763 else 764 buf->early_bytes += buf->chan->subbuf_size - 765 buf->padding[old_subbuf]; 766 smp_mb(); 767 if (waitqueue_active(&buf->read_wait)) { 768 /* 769 * Calling wake_up_interruptible() from here 770 * will deadlock if we happen to be logging 771 * from the scheduler (trying to re-grab 772 * rq->lock), so defer it. 773 */ 774 irq_work_queue(&buf->wakeup_work); 775 } 776 } 777 778 old = buf->data; 779 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 780 new = buf->start + new_subbuf * buf->chan->subbuf_size; 781 buf->offset = 0; 782 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 783 buf->offset = buf->chan->subbuf_size + 1; 784 return 0; 785 } 786 buf->data = new; 787 buf->padding[new_subbuf] = 0; 788 789 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 790 goto toobig; 791 792 return length; 793 794 toobig: 795 buf->chan->last_toobig = length; 796 return 0; 797 } 798 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 799 800 /** 801 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 802 * @chan: the channel 803 * @cpu: the cpu associated with the channel buffer to update 804 * @subbufs_consumed: number of sub-buffers to add to current buf's count 805 * 806 * Adds to the channel buffer's consumed sub-buffer count. 807 * subbufs_consumed should be the number of sub-buffers newly consumed, 808 * not the total consumed. 809 * 810 * NOTE. Kernel clients don't need to call this function if the channel 811 * mode is 'overwrite'. 812 */ 813 void relay_subbufs_consumed(struct rchan *chan, 814 unsigned int cpu, 815 size_t subbufs_consumed) 816 { 817 struct rchan_buf *buf; 818 819 if (!chan || cpu >= NR_CPUS) 820 return; 821 822 buf = *per_cpu_ptr(chan->buf, cpu); 823 if (!buf || subbufs_consumed > chan->n_subbufs) 824 return; 825 826 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 827 buf->subbufs_consumed = buf->subbufs_produced; 828 else 829 buf->subbufs_consumed += subbufs_consumed; 830 } 831 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 832 833 /** 834 * relay_close - close the channel 835 * @chan: the channel 836 * 837 * Closes all channel buffers and frees the channel. 838 */ 839 void relay_close(struct rchan *chan) 840 { 841 struct rchan_buf *buf; 842 unsigned int i; 843 844 if (!chan) 845 return; 846 847 mutex_lock(&relay_channels_mutex); 848 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 849 relay_close_buf(buf); 850 else 851 for_each_possible_cpu(i) 852 if ((buf = *per_cpu_ptr(chan->buf, i))) 853 relay_close_buf(buf); 854 855 if (chan->last_toobig) 856 printk(KERN_WARNING "relay: one or more items not logged " 857 "[item size (%zd) > sub-buffer size (%zd)]\n", 858 chan->last_toobig, chan->subbuf_size); 859 860 list_del(&chan->list); 861 kref_put(&chan->kref, relay_destroy_channel); 862 mutex_unlock(&relay_channels_mutex); 863 } 864 EXPORT_SYMBOL_GPL(relay_close); 865 866 /** 867 * relay_flush - close the channel 868 * @chan: the channel 869 * 870 * Flushes all channel buffers, i.e. forces buffer switch. 871 */ 872 void relay_flush(struct rchan *chan) 873 { 874 struct rchan_buf *buf; 875 unsigned int i; 876 877 if (!chan) 878 return; 879 880 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 881 relay_switch_subbuf(buf, 0); 882 return; 883 } 884 885 mutex_lock(&relay_channels_mutex); 886 for_each_possible_cpu(i) 887 if ((buf = *per_cpu_ptr(chan->buf, i))) 888 relay_switch_subbuf(buf, 0); 889 mutex_unlock(&relay_channels_mutex); 890 } 891 EXPORT_SYMBOL_GPL(relay_flush); 892 893 /** 894 * relay_file_open - open file op for relay files 895 * @inode: the inode 896 * @filp: the file 897 * 898 * Increments the channel buffer refcount. 899 */ 900 static int relay_file_open(struct inode *inode, struct file *filp) 901 { 902 struct rchan_buf *buf = inode->i_private; 903 kref_get(&buf->kref); 904 filp->private_data = buf; 905 906 return nonseekable_open(inode, filp); 907 } 908 909 /** 910 * relay_file_mmap - mmap file op for relay files 911 * @filp: the file 912 * @vma: the vma describing what to map 913 * 914 * Calls upon relay_mmap_buf() to map the file into user space. 915 */ 916 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 917 { 918 struct rchan_buf *buf = filp->private_data; 919 return relay_mmap_buf(buf, vma); 920 } 921 922 /** 923 * relay_file_poll - poll file op for relay files 924 * @filp: the file 925 * @wait: poll table 926 * 927 * Poll implemention. 928 */ 929 static __poll_t relay_file_poll(struct file *filp, poll_table *wait) 930 { 931 __poll_t mask = 0; 932 struct rchan_buf *buf = filp->private_data; 933 934 if (buf->finalized) 935 return EPOLLERR; 936 937 if (filp->f_mode & FMODE_READ) { 938 poll_wait(filp, &buf->read_wait, wait); 939 if (!relay_buf_empty(buf)) 940 mask |= EPOLLIN | EPOLLRDNORM; 941 } 942 943 return mask; 944 } 945 946 /** 947 * relay_file_release - release file op for relay files 948 * @inode: the inode 949 * @filp: the file 950 * 951 * Decrements the channel refcount, as the filesystem is 952 * no longer using it. 953 */ 954 static int relay_file_release(struct inode *inode, struct file *filp) 955 { 956 struct rchan_buf *buf = filp->private_data; 957 kref_put(&buf->kref, relay_remove_buf); 958 959 return 0; 960 } 961 962 /* 963 * relay_file_read_consume - update the consumed count for the buffer 964 */ 965 static void relay_file_read_consume(struct rchan_buf *buf, 966 size_t read_pos, 967 size_t bytes_consumed) 968 { 969 size_t subbuf_size = buf->chan->subbuf_size; 970 size_t n_subbufs = buf->chan->n_subbufs; 971 size_t read_subbuf; 972 973 if (buf->subbufs_produced == buf->subbufs_consumed && 974 buf->offset == buf->bytes_consumed) 975 return; 976 977 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 978 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 979 buf->bytes_consumed = 0; 980 } 981 982 buf->bytes_consumed += bytes_consumed; 983 if (!read_pos) 984 read_subbuf = buf->subbufs_consumed % n_subbufs; 985 else 986 read_subbuf = read_pos / buf->chan->subbuf_size; 987 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 988 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 989 (buf->offset == subbuf_size)) 990 return; 991 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 992 buf->bytes_consumed = 0; 993 } 994 } 995 996 /* 997 * relay_file_read_avail - boolean, are there unconsumed bytes available? 998 */ 999 static int relay_file_read_avail(struct rchan_buf *buf) 1000 { 1001 size_t subbuf_size = buf->chan->subbuf_size; 1002 size_t n_subbufs = buf->chan->n_subbufs; 1003 size_t produced = buf->subbufs_produced; 1004 size_t consumed = buf->subbufs_consumed; 1005 1006 relay_file_read_consume(buf, 0, 0); 1007 1008 consumed = buf->subbufs_consumed; 1009 1010 if (unlikely(buf->offset > subbuf_size)) { 1011 if (produced == consumed) 1012 return 0; 1013 return 1; 1014 } 1015 1016 if (unlikely(produced - consumed >= n_subbufs)) { 1017 consumed = produced - n_subbufs + 1; 1018 buf->subbufs_consumed = consumed; 1019 buf->bytes_consumed = 0; 1020 } 1021 1022 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 1023 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 1024 1025 if (consumed > produced) 1026 produced += n_subbufs * subbuf_size; 1027 1028 if (consumed == produced) { 1029 if (buf->offset == subbuf_size && 1030 buf->subbufs_produced > buf->subbufs_consumed) 1031 return 1; 1032 return 0; 1033 } 1034 1035 return 1; 1036 } 1037 1038 /** 1039 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1040 * @read_pos: file read position 1041 * @buf: relay channel buffer 1042 */ 1043 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1044 struct rchan_buf *buf) 1045 { 1046 size_t padding, avail = 0; 1047 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1048 size_t subbuf_size = buf->chan->subbuf_size; 1049 1050 write_subbuf = (buf->data - buf->start) / subbuf_size; 1051 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1052 read_subbuf = read_pos / subbuf_size; 1053 read_offset = read_pos % subbuf_size; 1054 padding = buf->padding[read_subbuf]; 1055 1056 if (read_subbuf == write_subbuf) { 1057 if (read_offset + padding < write_offset) 1058 avail = write_offset - (read_offset + padding); 1059 } else 1060 avail = (subbuf_size - padding) - read_offset; 1061 1062 return avail; 1063 } 1064 1065 /** 1066 * relay_file_read_start_pos - find the first available byte to read 1067 * @buf: relay channel buffer 1068 * 1069 * If the read_pos is in the middle of padding, return the 1070 * position of the first actually available byte, otherwise 1071 * return the original value. 1072 */ 1073 static size_t relay_file_read_start_pos(struct rchan_buf *buf) 1074 { 1075 size_t read_subbuf, padding, padding_start, padding_end; 1076 size_t subbuf_size = buf->chan->subbuf_size; 1077 size_t n_subbufs = buf->chan->n_subbufs; 1078 size_t consumed = buf->subbufs_consumed % n_subbufs; 1079 size_t read_pos = consumed * subbuf_size + buf->bytes_consumed; 1080 1081 read_subbuf = read_pos / subbuf_size; 1082 padding = buf->padding[read_subbuf]; 1083 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1084 padding_end = (read_subbuf + 1) * subbuf_size; 1085 if (read_pos >= padding_start && read_pos < padding_end) { 1086 read_subbuf = (read_subbuf + 1) % n_subbufs; 1087 read_pos = read_subbuf * subbuf_size; 1088 } 1089 1090 return read_pos; 1091 } 1092 1093 /** 1094 * relay_file_read_end_pos - return the new read position 1095 * @read_pos: file read position 1096 * @buf: relay channel buffer 1097 * @count: number of bytes to be read 1098 */ 1099 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1100 size_t read_pos, 1101 size_t count) 1102 { 1103 size_t read_subbuf, padding, end_pos; 1104 size_t subbuf_size = buf->chan->subbuf_size; 1105 size_t n_subbufs = buf->chan->n_subbufs; 1106 1107 read_subbuf = read_pos / subbuf_size; 1108 padding = buf->padding[read_subbuf]; 1109 if (read_pos % subbuf_size + count + padding == subbuf_size) 1110 end_pos = (read_subbuf + 1) * subbuf_size; 1111 else 1112 end_pos = read_pos + count; 1113 if (end_pos >= subbuf_size * n_subbufs) 1114 end_pos = 0; 1115 1116 return end_pos; 1117 } 1118 1119 static ssize_t relay_file_read(struct file *filp, 1120 char __user *buffer, 1121 size_t count, 1122 loff_t *ppos) 1123 { 1124 struct rchan_buf *buf = filp->private_data; 1125 size_t read_start, avail; 1126 size_t written = 0; 1127 int ret; 1128 1129 if (!count) 1130 return 0; 1131 1132 inode_lock(file_inode(filp)); 1133 do { 1134 void *from; 1135 1136 if (!relay_file_read_avail(buf)) 1137 break; 1138 1139 read_start = relay_file_read_start_pos(buf); 1140 avail = relay_file_read_subbuf_avail(read_start, buf); 1141 if (!avail) 1142 break; 1143 1144 avail = min(count, avail); 1145 from = buf->start + read_start; 1146 ret = avail; 1147 if (copy_to_user(buffer, from, avail)) 1148 break; 1149 1150 buffer += ret; 1151 written += ret; 1152 count -= ret; 1153 1154 relay_file_read_consume(buf, read_start, ret); 1155 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1156 } while (count); 1157 inode_unlock(file_inode(filp)); 1158 1159 return written; 1160 } 1161 1162 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1163 { 1164 rbuf->bytes_consumed += bytes_consumed; 1165 1166 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1167 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1168 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1169 } 1170 } 1171 1172 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1173 struct pipe_buffer *buf) 1174 { 1175 struct rchan_buf *rbuf; 1176 1177 rbuf = (struct rchan_buf *)page_private(buf->page); 1178 relay_consume_bytes(rbuf, buf->private); 1179 } 1180 1181 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1182 .release = relay_pipe_buf_release, 1183 .try_steal = generic_pipe_buf_try_steal, 1184 .get = generic_pipe_buf_get, 1185 }; 1186 1187 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1188 { 1189 } 1190 1191 /* 1192 * subbuf_splice_actor - splice up to one subbuf's worth of data 1193 */ 1194 static ssize_t subbuf_splice_actor(struct file *in, 1195 loff_t *ppos, 1196 struct pipe_inode_info *pipe, 1197 size_t len, 1198 unsigned int flags, 1199 int *nonpad_ret) 1200 { 1201 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1202 struct rchan_buf *rbuf = in->private_data; 1203 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1204 uint64_t pos = (uint64_t) *ppos; 1205 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1206 size_t read_start = (size_t) do_div(pos, alloc_size); 1207 size_t read_subbuf = read_start / subbuf_size; 1208 size_t padding = rbuf->padding[read_subbuf]; 1209 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1210 struct page *pages[PIPE_DEF_BUFFERS]; 1211 struct partial_page partial[PIPE_DEF_BUFFERS]; 1212 struct splice_pipe_desc spd = { 1213 .pages = pages, 1214 .nr_pages = 0, 1215 .nr_pages_max = PIPE_DEF_BUFFERS, 1216 .partial = partial, 1217 .ops = &relay_pipe_buf_ops, 1218 .spd_release = relay_page_release, 1219 }; 1220 ssize_t ret; 1221 1222 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1223 return 0; 1224 if (splice_grow_spd(pipe, &spd)) 1225 return -ENOMEM; 1226 1227 /* 1228 * Adjust read len, if longer than what is available 1229 */ 1230 if (len > (subbuf_size - read_start % subbuf_size)) 1231 len = subbuf_size - read_start % subbuf_size; 1232 1233 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1234 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1235 poff = read_start & ~PAGE_MASK; 1236 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1237 1238 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1239 unsigned int this_len, this_end, private; 1240 unsigned int cur_pos = read_start + total_len; 1241 1242 if (!len) 1243 break; 1244 1245 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1246 private = this_len; 1247 1248 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1249 spd.partial[spd.nr_pages].offset = poff; 1250 1251 this_end = cur_pos + this_len; 1252 if (this_end >= nonpad_end) { 1253 this_len = nonpad_end - cur_pos; 1254 private = this_len + padding; 1255 } 1256 spd.partial[spd.nr_pages].len = this_len; 1257 spd.partial[spd.nr_pages].private = private; 1258 1259 len -= this_len; 1260 total_len += this_len; 1261 poff = 0; 1262 pidx = (pidx + 1) % subbuf_pages; 1263 1264 if (this_end >= nonpad_end) { 1265 spd.nr_pages++; 1266 break; 1267 } 1268 } 1269 1270 ret = 0; 1271 if (!spd.nr_pages) 1272 goto out; 1273 1274 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1275 if (ret < 0 || ret < total_len) 1276 goto out; 1277 1278 if (read_start + ret == nonpad_end) 1279 ret += padding; 1280 1281 out: 1282 splice_shrink_spd(&spd); 1283 return ret; 1284 } 1285 1286 static ssize_t relay_file_splice_read(struct file *in, 1287 loff_t *ppos, 1288 struct pipe_inode_info *pipe, 1289 size_t len, 1290 unsigned int flags) 1291 { 1292 ssize_t spliced; 1293 int ret; 1294 int nonpad_ret = 0; 1295 1296 ret = 0; 1297 spliced = 0; 1298 1299 while (len && !spliced) { 1300 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1301 if (ret < 0) 1302 break; 1303 else if (!ret) { 1304 if (flags & SPLICE_F_NONBLOCK) 1305 ret = -EAGAIN; 1306 break; 1307 } 1308 1309 *ppos += ret; 1310 if (ret > len) 1311 len = 0; 1312 else 1313 len -= ret; 1314 spliced += nonpad_ret; 1315 nonpad_ret = 0; 1316 } 1317 1318 if (spliced) 1319 return spliced; 1320 1321 return ret; 1322 } 1323 1324 const struct file_operations relay_file_operations = { 1325 .open = relay_file_open, 1326 .poll = relay_file_poll, 1327 .mmap = relay_file_mmap, 1328 .read = relay_file_read, 1329 .llseek = no_llseek, 1330 .release = relay_file_release, 1331 .splice_read = relay_file_splice_read, 1332 }; 1333 EXPORT_SYMBOL_GPL(relay_file_operations); 1334