xref: /openbmc/linux/kernel/reboot.c (revision d3741027)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/reboot.c
4  *
5  *  Copyright (C) 2013  Linus Torvalds
6  */
7 
8 #define pr_fmt(fmt)	"reboot: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21 
22 /*
23  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24  */
25 
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29 
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE		= REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38 
39 /*
40  * This variable is used privately to keep track of whether or not
41  * reboot_type is still set to its default value (i.e., reboot= hasn't
42  * been set on the command line).  This is needed so that we can
43  * suppress DMI scanning for reboot quirks.  Without it, it's
44  * impossible to override a faulty reboot quirk without recompiling.
45  */
46 int reboot_default = 1;
47 int reboot_cpu;
48 enum reboot_type reboot_type = BOOT_ACPI;
49 int reboot_force;
50 
51 struct sys_off_handler {
52 	struct notifier_block nb;
53 	int (*sys_off_cb)(struct sys_off_data *data);
54 	void *cb_data;
55 	enum sys_off_mode mode;
56 	bool blocking;
57 	void *list;
58 };
59 
60 /*
61  * Temporary stub that prevents linkage failure while we're in process
62  * of removing all uses of legacy pm_power_off() around the kernel.
63  */
64 void __weak (*pm_power_off)(void);
65 
66 /**
67  *	emergency_restart - reboot the system
68  *
69  *	Without shutting down any hardware or taking any locks
70  *	reboot the system.  This is called when we know we are in
71  *	trouble so this is our best effort to reboot.  This is
72  *	safe to call in interrupt context.
73  */
74 void emergency_restart(void)
75 {
76 	kmsg_dump(KMSG_DUMP_EMERG);
77 	machine_emergency_restart();
78 }
79 EXPORT_SYMBOL_GPL(emergency_restart);
80 
81 void kernel_restart_prepare(char *cmd)
82 {
83 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
84 	system_state = SYSTEM_RESTART;
85 	try_block_console_kthreads(10000);
86 	usermodehelper_disable();
87 	device_shutdown();
88 }
89 
90 /**
91  *	register_reboot_notifier - Register function to be called at reboot time
92  *	@nb: Info about notifier function to be called
93  *
94  *	Registers a function with the list of functions
95  *	to be called at reboot time.
96  *
97  *	Currently always returns zero, as blocking_notifier_chain_register()
98  *	always returns zero.
99  */
100 int register_reboot_notifier(struct notifier_block *nb)
101 {
102 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
103 }
104 EXPORT_SYMBOL(register_reboot_notifier);
105 
106 /**
107  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
108  *	@nb: Hook to be unregistered
109  *
110  *	Unregisters a previously registered reboot
111  *	notifier function.
112  *
113  *	Returns zero on success, or %-ENOENT on failure.
114  */
115 int unregister_reboot_notifier(struct notifier_block *nb)
116 {
117 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
118 }
119 EXPORT_SYMBOL(unregister_reboot_notifier);
120 
121 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
122 {
123 	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
124 }
125 
126 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
127 {
128 	struct notifier_block **rcnb;
129 	int ret;
130 
131 	rcnb = devres_alloc(devm_unregister_reboot_notifier,
132 			    sizeof(*rcnb), GFP_KERNEL);
133 	if (!rcnb)
134 		return -ENOMEM;
135 
136 	ret = register_reboot_notifier(nb);
137 	if (!ret) {
138 		*rcnb = nb;
139 		devres_add(dev, rcnb);
140 	} else {
141 		devres_free(rcnb);
142 	}
143 
144 	return ret;
145 }
146 EXPORT_SYMBOL(devm_register_reboot_notifier);
147 
148 /*
149  *	Notifier list for kernel code which wants to be called
150  *	to restart the system.
151  */
152 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
153 
154 /**
155  *	register_restart_handler - Register function to be called to reset
156  *				   the system
157  *	@nb: Info about handler function to be called
158  *	@nb->priority:	Handler priority. Handlers should follow the
159  *			following guidelines for setting priorities.
160  *			0:	Restart handler of last resort,
161  *				with limited restart capabilities
162  *			128:	Default restart handler; use if no other
163  *				restart handler is expected to be available,
164  *				and/or if restart functionality is
165  *				sufficient to restart the entire system
166  *			255:	Highest priority restart handler, will
167  *				preempt all other restart handlers
168  *
169  *	Registers a function with code to be called to restart the
170  *	system.
171  *
172  *	Registered functions will be called from machine_restart as last
173  *	step of the restart sequence (if the architecture specific
174  *	machine_restart function calls do_kernel_restart - see below
175  *	for details).
176  *	Registered functions are expected to restart the system immediately.
177  *	If more than one function is registered, the restart handler priority
178  *	selects which function will be called first.
179  *
180  *	Restart handlers are expected to be registered from non-architecture
181  *	code, typically from drivers. A typical use case would be a system
182  *	where restart functionality is provided through a watchdog. Multiple
183  *	restart handlers may exist; for example, one restart handler might
184  *	restart the entire system, while another only restarts the CPU.
185  *	In such cases, the restart handler which only restarts part of the
186  *	hardware is expected to register with low priority to ensure that
187  *	it only runs if no other means to restart the system is available.
188  *
189  *	Currently always returns zero, as atomic_notifier_chain_register()
190  *	always returns zero.
191  */
192 int register_restart_handler(struct notifier_block *nb)
193 {
194 	return atomic_notifier_chain_register(&restart_handler_list, nb);
195 }
196 EXPORT_SYMBOL(register_restart_handler);
197 
198 /**
199  *	unregister_restart_handler - Unregister previously registered
200  *				     restart handler
201  *	@nb: Hook to be unregistered
202  *
203  *	Unregisters a previously registered restart handler function.
204  *
205  *	Returns zero on success, or %-ENOENT on failure.
206  */
207 int unregister_restart_handler(struct notifier_block *nb)
208 {
209 	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
210 }
211 EXPORT_SYMBOL(unregister_restart_handler);
212 
213 /**
214  *	do_kernel_restart - Execute kernel restart handler call chain
215  *
216  *	Calls functions registered with register_restart_handler.
217  *
218  *	Expected to be called from machine_restart as last step of the restart
219  *	sequence.
220  *
221  *	Restarts the system immediately if a restart handler function has been
222  *	registered. Otherwise does nothing.
223  */
224 void do_kernel_restart(char *cmd)
225 {
226 	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
227 }
228 
229 void migrate_to_reboot_cpu(void)
230 {
231 	/* The boot cpu is always logical cpu 0 */
232 	int cpu = reboot_cpu;
233 
234 	cpu_hotplug_disable();
235 
236 	/* Make certain the cpu I'm about to reboot on is online */
237 	if (!cpu_online(cpu))
238 		cpu = cpumask_first(cpu_online_mask);
239 
240 	/* Prevent races with other tasks migrating this task */
241 	current->flags |= PF_NO_SETAFFINITY;
242 
243 	/* Make certain I only run on the appropriate processor */
244 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
245 }
246 
247 /**
248  *	kernel_restart - reboot the system
249  *	@cmd: pointer to buffer containing command to execute for restart
250  *		or %NULL
251  *
252  *	Shutdown everything and perform a clean reboot.
253  *	This is not safe to call in interrupt context.
254  */
255 void kernel_restart(char *cmd)
256 {
257 	kernel_restart_prepare(cmd);
258 	migrate_to_reboot_cpu();
259 	syscore_shutdown();
260 	if (!cmd)
261 		pr_emerg("Restarting system\n");
262 	else
263 		pr_emerg("Restarting system with command '%s'\n", cmd);
264 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
265 	machine_restart(cmd);
266 }
267 EXPORT_SYMBOL_GPL(kernel_restart);
268 
269 static void kernel_shutdown_prepare(enum system_states state)
270 {
271 	blocking_notifier_call_chain(&reboot_notifier_list,
272 		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
273 	system_state = state;
274 	try_block_console_kthreads(10000);
275 	usermodehelper_disable();
276 	device_shutdown();
277 }
278 /**
279  *	kernel_halt - halt the system
280  *
281  *	Shutdown everything and perform a clean system halt.
282  */
283 void kernel_halt(void)
284 {
285 	kernel_shutdown_prepare(SYSTEM_HALT);
286 	migrate_to_reboot_cpu();
287 	syscore_shutdown();
288 	pr_emerg("System halted\n");
289 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
290 	machine_halt();
291 }
292 EXPORT_SYMBOL_GPL(kernel_halt);
293 
294 /*
295  *	Notifier list for kernel code which wants to be called
296  *	to prepare system for power off.
297  */
298 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
299 
300 /*
301  *	Notifier list for kernel code which wants to be called
302  *	to power off system.
303  */
304 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
305 
306 static int sys_off_notify(struct notifier_block *nb,
307 			  unsigned long mode, void *cmd)
308 {
309 	struct sys_off_handler *handler;
310 	struct sys_off_data data = {};
311 
312 	handler = container_of(nb, struct sys_off_handler, nb);
313 	data.cb_data = handler->cb_data;
314 	data.mode = mode;
315 	data.cmd = cmd;
316 
317 	return handler->sys_off_cb(&data);
318 }
319 
320 static struct sys_off_handler platform_sys_off_handler;
321 
322 static struct sys_off_handler *alloc_sys_off_handler(int priority)
323 {
324 	struct sys_off_handler *handler;
325 	gfp_t flags;
326 
327 	/*
328 	 * Platforms like m68k can't allocate sys_off handler dynamically
329 	 * at the early boot time because memory allocator isn't available yet.
330 	 */
331 	if (priority == SYS_OFF_PRIO_PLATFORM) {
332 		handler = &platform_sys_off_handler;
333 		if (handler->cb_data)
334 			return ERR_PTR(-EBUSY);
335 	} else {
336 		if (system_state > SYSTEM_RUNNING)
337 			flags = GFP_ATOMIC;
338 		else
339 			flags = GFP_KERNEL;
340 
341 		handler = kzalloc(sizeof(*handler), flags);
342 		if (!handler)
343 			return ERR_PTR(-ENOMEM);
344 	}
345 
346 	return handler;
347 }
348 
349 static void free_sys_off_handler(struct sys_off_handler *handler)
350 {
351 	if (handler == &platform_sys_off_handler)
352 		memset(handler, 0, sizeof(*handler));
353 	else
354 		kfree(handler);
355 }
356 
357 /**
358  *	register_sys_off_handler - Register sys-off handler
359  *	@mode: Sys-off mode
360  *	@priority: Handler priority
361  *	@callback: Callback function
362  *	@cb_data: Callback argument
363  *
364  *	Registers system power-off or restart handler that will be invoked
365  *	at the step corresponding to the given sys-off mode. Handler's callback
366  *	should return NOTIFY_DONE to permit execution of the next handler in
367  *	the call chain or NOTIFY_STOP to break the chain (in error case for
368  *	example).
369  *
370  *	Multiple handlers can be registered at the default priority level.
371  *
372  *	Only one handler can be registered at the non-default priority level,
373  *	otherwise ERR_PTR(-EBUSY) is returned.
374  *
375  *	Returns a new instance of struct sys_off_handler on success, or
376  *	an ERR_PTR()-encoded error code otherwise.
377  */
378 struct sys_off_handler *
379 register_sys_off_handler(enum sys_off_mode mode,
380 			 int priority,
381 			 int (*callback)(struct sys_off_data *data),
382 			 void *cb_data)
383 {
384 	struct sys_off_handler *handler;
385 	int err;
386 
387 	handler = alloc_sys_off_handler(priority);
388 	if (IS_ERR(handler))
389 		return handler;
390 
391 	switch (mode) {
392 	case SYS_OFF_MODE_POWER_OFF_PREPARE:
393 		handler->list = &power_off_prep_handler_list;
394 		handler->blocking = true;
395 		break;
396 
397 	case SYS_OFF_MODE_POWER_OFF:
398 		handler->list = &power_off_handler_list;
399 		break;
400 
401 	case SYS_OFF_MODE_RESTART:
402 		handler->list = &restart_handler_list;
403 		break;
404 
405 	default:
406 		free_sys_off_handler(handler);
407 		return ERR_PTR(-EINVAL);
408 	}
409 
410 	handler->nb.notifier_call = sys_off_notify;
411 	handler->nb.priority = priority;
412 	handler->sys_off_cb = callback;
413 	handler->cb_data = cb_data;
414 	handler->mode = mode;
415 
416 	if (handler->blocking) {
417 		if (priority == SYS_OFF_PRIO_DEFAULT)
418 			err = blocking_notifier_chain_register(handler->list,
419 							       &handler->nb);
420 		else
421 			err = blocking_notifier_chain_register_unique_prio(handler->list,
422 									   &handler->nb);
423 	} else {
424 		if (priority == SYS_OFF_PRIO_DEFAULT)
425 			err = atomic_notifier_chain_register(handler->list,
426 							     &handler->nb);
427 		else
428 			err = atomic_notifier_chain_register_unique_prio(handler->list,
429 									 &handler->nb);
430 	}
431 
432 	if (err) {
433 		free_sys_off_handler(handler);
434 		return ERR_PTR(err);
435 	}
436 
437 	return handler;
438 }
439 EXPORT_SYMBOL_GPL(register_sys_off_handler);
440 
441 /**
442  *	unregister_sys_off_handler - Unregister sys-off handler
443  *	@handler: Sys-off handler
444  *
445  *	Unregisters given sys-off handler.
446  */
447 void unregister_sys_off_handler(struct sys_off_handler *handler)
448 {
449 	int err;
450 
451 	if (IS_ERR_OR_NULL(handler))
452 		return;
453 
454 	if (handler->blocking)
455 		err = blocking_notifier_chain_unregister(handler->list,
456 							 &handler->nb);
457 	else
458 		err = atomic_notifier_chain_unregister(handler->list,
459 						       &handler->nb);
460 
461 	/* sanity check, shall never happen */
462 	WARN_ON(err);
463 
464 	free_sys_off_handler(handler);
465 }
466 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
467 
468 static void devm_unregister_sys_off_handler(void *data)
469 {
470 	struct sys_off_handler *handler = data;
471 
472 	unregister_sys_off_handler(handler);
473 }
474 
475 /**
476  *	devm_register_sys_off_handler - Register sys-off handler
477  *	@dev: Device that registers handler
478  *	@mode: Sys-off mode
479  *	@priority: Handler priority
480  *	@callback: Callback function
481  *	@cb_data: Callback argument
482  *
483  *	Registers resource-managed sys-off handler.
484  *
485  *	Returns zero on success, or error code on failure.
486  */
487 int devm_register_sys_off_handler(struct device *dev,
488 				  enum sys_off_mode mode,
489 				  int priority,
490 				  int (*callback)(struct sys_off_data *data),
491 				  void *cb_data)
492 {
493 	struct sys_off_handler *handler;
494 
495 	handler = register_sys_off_handler(mode, priority, callback, cb_data);
496 	if (IS_ERR(handler))
497 		return PTR_ERR(handler);
498 
499 	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
500 					handler);
501 }
502 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
503 
504 /**
505  *	devm_register_power_off_handler - Register power-off handler
506  *	@dev: Device that registers callback
507  *	@callback: Callback function
508  *	@cb_data: Callback's argument
509  *
510  *	Registers resource-managed sys-off handler with a default priority
511  *	and using power-off mode.
512  *
513  *	Returns zero on success, or error code on failure.
514  */
515 int devm_register_power_off_handler(struct device *dev,
516 				    int (*callback)(struct sys_off_data *data),
517 				    void *cb_data)
518 {
519 	return devm_register_sys_off_handler(dev,
520 					     SYS_OFF_MODE_POWER_OFF,
521 					     SYS_OFF_PRIO_DEFAULT,
522 					     callback, cb_data);
523 }
524 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
525 
526 /**
527  *	devm_register_restart_handler - Register restart handler
528  *	@dev: Device that registers callback
529  *	@callback: Callback function
530  *	@cb_data: Callback's argument
531  *
532  *	Registers resource-managed sys-off handler with a default priority
533  *	and using restart mode.
534  *
535  *	Returns zero on success, or error code on failure.
536  */
537 int devm_register_restart_handler(struct device *dev,
538 				  int (*callback)(struct sys_off_data *data),
539 				  void *cb_data)
540 {
541 	return devm_register_sys_off_handler(dev,
542 					     SYS_OFF_MODE_RESTART,
543 					     SYS_OFF_PRIO_DEFAULT,
544 					     callback, cb_data);
545 }
546 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
547 
548 static struct sys_off_handler *platform_power_off_handler;
549 
550 static int platform_power_off_notify(struct sys_off_data *data)
551 {
552 	void (*platform_power_power_off_cb)(void) = data->cb_data;
553 
554 	platform_power_power_off_cb();
555 
556 	return NOTIFY_DONE;
557 }
558 
559 /**
560  *	register_platform_power_off - Register platform-level power-off callback
561  *	@power_off: Power-off callback
562  *
563  *	Registers power-off callback that will be called as last step
564  *	of the power-off sequence. This callback is expected to be invoked
565  *	for the last resort. Only one platform power-off callback is allowed
566  *	to be registered at a time.
567  *
568  *	Returns zero on success, or error code on failure.
569  */
570 int register_platform_power_off(void (*power_off)(void))
571 {
572 	struct sys_off_handler *handler;
573 
574 	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
575 					   SYS_OFF_PRIO_PLATFORM,
576 					   platform_power_off_notify,
577 					   power_off);
578 	if (IS_ERR(handler))
579 		return PTR_ERR(handler);
580 
581 	platform_power_off_handler = handler;
582 
583 	return 0;
584 }
585 EXPORT_SYMBOL_GPL(register_platform_power_off);
586 
587 /**
588  *	unregister_platform_power_off - Unregister platform-level power-off callback
589  *	@power_off: Power-off callback
590  *
591  *	Unregisters previously registered platform power-off callback.
592  */
593 void unregister_platform_power_off(void (*power_off)(void))
594 {
595 	if (platform_power_off_handler &&
596 	    platform_power_off_handler->cb_data == power_off) {
597 		unregister_sys_off_handler(platform_power_off_handler);
598 		platform_power_off_handler = NULL;
599 	}
600 }
601 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
602 
603 static int legacy_pm_power_off(struct sys_off_data *data)
604 {
605 	if (pm_power_off)
606 		pm_power_off();
607 
608 	return NOTIFY_DONE;
609 }
610 
611 static void do_kernel_power_off_prepare(void)
612 {
613 	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
614 }
615 
616 /**
617  *	do_kernel_power_off - Execute kernel power-off handler call chain
618  *
619  *	Expected to be called as last step of the power-off sequence.
620  *
621  *	Powers off the system immediately if a power-off handler function has
622  *	been registered. Otherwise does nothing.
623  */
624 void do_kernel_power_off(void)
625 {
626 	struct sys_off_handler *sys_off = NULL;
627 
628 	/*
629 	 * Register sys-off handlers for legacy PM callback. This allows
630 	 * legacy PM callbacks temporary co-exist with the new sys-off API.
631 	 *
632 	 * TODO: Remove legacy handlers once all legacy PM users will be
633 	 *       switched to the sys-off based APIs.
634 	 */
635 	if (pm_power_off)
636 		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
637 						   SYS_OFF_PRIO_DEFAULT,
638 						   legacy_pm_power_off, NULL);
639 
640 	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
641 
642 	unregister_sys_off_handler(sys_off);
643 }
644 
645 /**
646  *	kernel_can_power_off - check whether system can be powered off
647  *
648  *	Returns true if power-off handler is registered and system can be
649  *	powered off, false otherwise.
650  */
651 bool kernel_can_power_off(void)
652 {
653 	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
654 		pm_power_off;
655 }
656 EXPORT_SYMBOL_GPL(kernel_can_power_off);
657 
658 /**
659  *	kernel_power_off - power_off the system
660  *
661  *	Shutdown everything and perform a clean system power_off.
662  */
663 void kernel_power_off(void)
664 {
665 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
666 	do_kernel_power_off_prepare();
667 	migrate_to_reboot_cpu();
668 	syscore_shutdown();
669 	pr_emerg("Power down\n");
670 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
671 	machine_power_off();
672 }
673 EXPORT_SYMBOL_GPL(kernel_power_off);
674 
675 DEFINE_MUTEX(system_transition_mutex);
676 
677 /*
678  * Reboot system call: for obvious reasons only root may call it,
679  * and even root needs to set up some magic numbers in the registers
680  * so that some mistake won't make this reboot the whole machine.
681  * You can also set the meaning of the ctrl-alt-del-key here.
682  *
683  * reboot doesn't sync: do that yourself before calling this.
684  */
685 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
686 		void __user *, arg)
687 {
688 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
689 	char buffer[256];
690 	int ret = 0;
691 
692 	/* We only trust the superuser with rebooting the system. */
693 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
694 		return -EPERM;
695 
696 	/* For safety, we require "magic" arguments. */
697 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
698 			(magic2 != LINUX_REBOOT_MAGIC2 &&
699 			magic2 != LINUX_REBOOT_MAGIC2A &&
700 			magic2 != LINUX_REBOOT_MAGIC2B &&
701 			magic2 != LINUX_REBOOT_MAGIC2C))
702 		return -EINVAL;
703 
704 	/*
705 	 * If pid namespaces are enabled and the current task is in a child
706 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
707 	 * call do_exit().
708 	 */
709 	ret = reboot_pid_ns(pid_ns, cmd);
710 	if (ret)
711 		return ret;
712 
713 	/* Instead of trying to make the power_off code look like
714 	 * halt when pm_power_off is not set do it the easy way.
715 	 */
716 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off())
717 		cmd = LINUX_REBOOT_CMD_HALT;
718 
719 	mutex_lock(&system_transition_mutex);
720 	switch (cmd) {
721 	case LINUX_REBOOT_CMD_RESTART:
722 		kernel_restart(NULL);
723 		break;
724 
725 	case LINUX_REBOOT_CMD_CAD_ON:
726 		C_A_D = 1;
727 		break;
728 
729 	case LINUX_REBOOT_CMD_CAD_OFF:
730 		C_A_D = 0;
731 		break;
732 
733 	case LINUX_REBOOT_CMD_HALT:
734 		kernel_halt();
735 		do_exit(0);
736 
737 	case LINUX_REBOOT_CMD_POWER_OFF:
738 		kernel_power_off();
739 		do_exit(0);
740 		break;
741 
742 	case LINUX_REBOOT_CMD_RESTART2:
743 		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
744 		if (ret < 0) {
745 			ret = -EFAULT;
746 			break;
747 		}
748 		buffer[sizeof(buffer) - 1] = '\0';
749 
750 		kernel_restart(buffer);
751 		break;
752 
753 #ifdef CONFIG_KEXEC_CORE
754 	case LINUX_REBOOT_CMD_KEXEC:
755 		ret = kernel_kexec();
756 		break;
757 #endif
758 
759 #ifdef CONFIG_HIBERNATION
760 	case LINUX_REBOOT_CMD_SW_SUSPEND:
761 		ret = hibernate();
762 		break;
763 #endif
764 
765 	default:
766 		ret = -EINVAL;
767 		break;
768 	}
769 	mutex_unlock(&system_transition_mutex);
770 	return ret;
771 }
772 
773 static void deferred_cad(struct work_struct *dummy)
774 {
775 	kernel_restart(NULL);
776 }
777 
778 /*
779  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
780  * As it's called within an interrupt, it may NOT sync: the only choice
781  * is whether to reboot at once, or just ignore the ctrl-alt-del.
782  */
783 void ctrl_alt_del(void)
784 {
785 	static DECLARE_WORK(cad_work, deferred_cad);
786 
787 	if (C_A_D)
788 		schedule_work(&cad_work);
789 	else
790 		kill_cad_pid(SIGINT, 1);
791 }
792 
793 #define POWEROFF_CMD_PATH_LEN  256
794 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
795 static const char reboot_cmd[] = "/sbin/reboot";
796 
797 static int run_cmd(const char *cmd)
798 {
799 	char **argv;
800 	static char *envp[] = {
801 		"HOME=/",
802 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
803 		NULL
804 	};
805 	int ret;
806 	argv = argv_split(GFP_KERNEL, cmd, NULL);
807 	if (argv) {
808 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
809 		argv_free(argv);
810 	} else {
811 		ret = -ENOMEM;
812 	}
813 
814 	return ret;
815 }
816 
817 static int __orderly_reboot(void)
818 {
819 	int ret;
820 
821 	ret = run_cmd(reboot_cmd);
822 
823 	if (ret) {
824 		printk_prefer_direct_enter();
825 		pr_warn("Failed to start orderly reboot: forcing the issue\n");
826 		emergency_sync();
827 		kernel_restart(NULL);
828 		printk_prefer_direct_exit();
829 	}
830 
831 	return ret;
832 }
833 
834 static int __orderly_poweroff(bool force)
835 {
836 	int ret;
837 
838 	ret = run_cmd(poweroff_cmd);
839 
840 	if (ret && force) {
841 		printk_prefer_direct_enter();
842 		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
843 
844 		/*
845 		 * I guess this should try to kick off some daemon to sync and
846 		 * poweroff asap.  Or not even bother syncing if we're doing an
847 		 * emergency shutdown?
848 		 */
849 		emergency_sync();
850 		kernel_power_off();
851 		printk_prefer_direct_exit();
852 	}
853 
854 	return ret;
855 }
856 
857 static bool poweroff_force;
858 
859 static void poweroff_work_func(struct work_struct *work)
860 {
861 	__orderly_poweroff(poweroff_force);
862 }
863 
864 static DECLARE_WORK(poweroff_work, poweroff_work_func);
865 
866 /**
867  * orderly_poweroff - Trigger an orderly system poweroff
868  * @force: force poweroff if command execution fails
869  *
870  * This may be called from any context to trigger a system shutdown.
871  * If the orderly shutdown fails, it will force an immediate shutdown.
872  */
873 void orderly_poweroff(bool force)
874 {
875 	if (force) /* do not override the pending "true" */
876 		poweroff_force = true;
877 	schedule_work(&poweroff_work);
878 }
879 EXPORT_SYMBOL_GPL(orderly_poweroff);
880 
881 static void reboot_work_func(struct work_struct *work)
882 {
883 	__orderly_reboot();
884 }
885 
886 static DECLARE_WORK(reboot_work, reboot_work_func);
887 
888 /**
889  * orderly_reboot - Trigger an orderly system reboot
890  *
891  * This may be called from any context to trigger a system reboot.
892  * If the orderly reboot fails, it will force an immediate reboot.
893  */
894 void orderly_reboot(void)
895 {
896 	schedule_work(&reboot_work);
897 }
898 EXPORT_SYMBOL_GPL(orderly_reboot);
899 
900 /**
901  * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
902  * @work: work_struct associated with the emergency poweroff function
903  *
904  * This function is called in very critical situations to force
905  * a kernel poweroff after a configurable timeout value.
906  */
907 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
908 {
909 	printk_prefer_direct_enter();
910 
911 	/*
912 	 * We have reached here after the emergency shutdown waiting period has
913 	 * expired. This means orderly_poweroff has not been able to shut off
914 	 * the system for some reason.
915 	 *
916 	 * Try to shut down the system immediately using kernel_power_off
917 	 * if populated
918 	 */
919 	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
920 	kernel_power_off();
921 
922 	/*
923 	 * Worst of the worst case trigger emergency restart
924 	 */
925 	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
926 	emergency_restart();
927 
928 	printk_prefer_direct_exit();
929 }
930 
931 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
932 			    hw_failure_emergency_poweroff_func);
933 
934 /**
935  * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
936  *
937  * This may be called from any critical situation to trigger a system shutdown
938  * after a given period of time. If time is negative this is not scheduled.
939  */
940 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
941 {
942 	if (poweroff_delay_ms <= 0)
943 		return;
944 	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
945 			      msecs_to_jiffies(poweroff_delay_ms));
946 }
947 
948 /**
949  * hw_protection_shutdown - Trigger an emergency system poweroff
950  *
951  * @reason:		Reason of emergency shutdown to be printed.
952  * @ms_until_forced:	Time to wait for orderly shutdown before tiggering a
953  *			forced shudown. Negative value disables the forced
954  *			shutdown.
955  *
956  * Initiate an emergency system shutdown in order to protect hardware from
957  * further damage. Usage examples include a thermal protection or a voltage or
958  * current regulator failures.
959  * NOTE: The request is ignored if protection shutdown is already pending even
960  * if the previous request has given a large timeout for forced shutdown.
961  * Can be called from any context.
962  */
963 void hw_protection_shutdown(const char *reason, int ms_until_forced)
964 {
965 	static atomic_t allow_proceed = ATOMIC_INIT(1);
966 
967 	printk_prefer_direct_enter();
968 
969 	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
970 
971 	/* Shutdown should be initiated only once. */
972 	if (!atomic_dec_and_test(&allow_proceed))
973 		goto out;
974 
975 	/*
976 	 * Queue a backup emergency shutdown in the event of
977 	 * orderly_poweroff failure
978 	 */
979 	hw_failure_emergency_poweroff(ms_until_forced);
980 	orderly_poweroff(true);
981 out:
982 	printk_prefer_direct_exit();
983 }
984 EXPORT_SYMBOL_GPL(hw_protection_shutdown);
985 
986 static int __init reboot_setup(char *str)
987 {
988 	for (;;) {
989 		enum reboot_mode *mode;
990 
991 		/*
992 		 * Having anything passed on the command line via
993 		 * reboot= will cause us to disable DMI checking
994 		 * below.
995 		 */
996 		reboot_default = 0;
997 
998 		if (!strncmp(str, "panic_", 6)) {
999 			mode = &panic_reboot_mode;
1000 			str += 6;
1001 		} else {
1002 			mode = &reboot_mode;
1003 		}
1004 
1005 		switch (*str) {
1006 		case 'w':
1007 			*mode = REBOOT_WARM;
1008 			break;
1009 
1010 		case 'c':
1011 			*mode = REBOOT_COLD;
1012 			break;
1013 
1014 		case 'h':
1015 			*mode = REBOOT_HARD;
1016 			break;
1017 
1018 		case 's':
1019 			/*
1020 			 * reboot_cpu is s[mp]#### with #### being the processor
1021 			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1022 			 */
1023 			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1024 
1025 			if (isdigit(str[0])) {
1026 				int cpu = simple_strtoul(str, NULL, 0);
1027 
1028 				if (cpu >= num_possible_cpus()) {
1029 					pr_err("Ignoring the CPU number in reboot= option. "
1030 					"CPU %d exceeds possible cpu number %d\n",
1031 					cpu, num_possible_cpus());
1032 					break;
1033 				}
1034 				reboot_cpu = cpu;
1035 			} else
1036 				*mode = REBOOT_SOFT;
1037 			break;
1038 
1039 		case 'g':
1040 			*mode = REBOOT_GPIO;
1041 			break;
1042 
1043 		case 'b':
1044 		case 'a':
1045 		case 'k':
1046 		case 't':
1047 		case 'e':
1048 		case 'p':
1049 			reboot_type = *str;
1050 			break;
1051 
1052 		case 'f':
1053 			reboot_force = 1;
1054 			break;
1055 		}
1056 
1057 		str = strchr(str, ',');
1058 		if (str)
1059 			str++;
1060 		else
1061 			break;
1062 	}
1063 	return 1;
1064 }
1065 __setup("reboot=", reboot_setup);
1066 
1067 #ifdef CONFIG_SYSFS
1068 
1069 #define REBOOT_COLD_STR		"cold"
1070 #define REBOOT_WARM_STR		"warm"
1071 #define REBOOT_HARD_STR		"hard"
1072 #define REBOOT_SOFT_STR		"soft"
1073 #define REBOOT_GPIO_STR		"gpio"
1074 #define REBOOT_UNDEFINED_STR	"undefined"
1075 
1076 #define BOOT_TRIPLE_STR		"triple"
1077 #define BOOT_KBD_STR		"kbd"
1078 #define BOOT_BIOS_STR		"bios"
1079 #define BOOT_ACPI_STR		"acpi"
1080 #define BOOT_EFI_STR		"efi"
1081 #define BOOT_PCI_STR		"pci"
1082 
1083 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1084 {
1085 	const char *val;
1086 
1087 	switch (reboot_mode) {
1088 	case REBOOT_COLD:
1089 		val = REBOOT_COLD_STR;
1090 		break;
1091 	case REBOOT_WARM:
1092 		val = REBOOT_WARM_STR;
1093 		break;
1094 	case REBOOT_HARD:
1095 		val = REBOOT_HARD_STR;
1096 		break;
1097 	case REBOOT_SOFT:
1098 		val = REBOOT_SOFT_STR;
1099 		break;
1100 	case REBOOT_GPIO:
1101 		val = REBOOT_GPIO_STR;
1102 		break;
1103 	default:
1104 		val = REBOOT_UNDEFINED_STR;
1105 	}
1106 
1107 	return sprintf(buf, "%s\n", val);
1108 }
1109 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1110 			  const char *buf, size_t count)
1111 {
1112 	if (!capable(CAP_SYS_BOOT))
1113 		return -EPERM;
1114 
1115 	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1116 		reboot_mode = REBOOT_COLD;
1117 	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1118 		reboot_mode = REBOOT_WARM;
1119 	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1120 		reboot_mode = REBOOT_HARD;
1121 	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1122 		reboot_mode = REBOOT_SOFT;
1123 	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1124 		reboot_mode = REBOOT_GPIO;
1125 	else
1126 		return -EINVAL;
1127 
1128 	reboot_default = 0;
1129 
1130 	return count;
1131 }
1132 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1133 
1134 #ifdef CONFIG_X86
1135 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1136 {
1137 	return sprintf(buf, "%d\n", reboot_force);
1138 }
1139 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1140 			  const char *buf, size_t count)
1141 {
1142 	bool res;
1143 
1144 	if (!capable(CAP_SYS_BOOT))
1145 		return -EPERM;
1146 
1147 	if (kstrtobool(buf, &res))
1148 		return -EINVAL;
1149 
1150 	reboot_default = 0;
1151 	reboot_force = res;
1152 
1153 	return count;
1154 }
1155 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1156 
1157 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1158 {
1159 	const char *val;
1160 
1161 	switch (reboot_type) {
1162 	case BOOT_TRIPLE:
1163 		val = BOOT_TRIPLE_STR;
1164 		break;
1165 	case BOOT_KBD:
1166 		val = BOOT_KBD_STR;
1167 		break;
1168 	case BOOT_BIOS:
1169 		val = BOOT_BIOS_STR;
1170 		break;
1171 	case BOOT_ACPI:
1172 		val = BOOT_ACPI_STR;
1173 		break;
1174 	case BOOT_EFI:
1175 		val = BOOT_EFI_STR;
1176 		break;
1177 	case BOOT_CF9_FORCE:
1178 		val = BOOT_PCI_STR;
1179 		break;
1180 	default:
1181 		val = REBOOT_UNDEFINED_STR;
1182 	}
1183 
1184 	return sprintf(buf, "%s\n", val);
1185 }
1186 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1187 			  const char *buf, size_t count)
1188 {
1189 	if (!capable(CAP_SYS_BOOT))
1190 		return -EPERM;
1191 
1192 	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1193 		reboot_type = BOOT_TRIPLE;
1194 	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1195 		reboot_type = BOOT_KBD;
1196 	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1197 		reboot_type = BOOT_BIOS;
1198 	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1199 		reboot_type = BOOT_ACPI;
1200 	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1201 		reboot_type = BOOT_EFI;
1202 	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1203 		reboot_type = BOOT_CF9_FORCE;
1204 	else
1205 		return -EINVAL;
1206 
1207 	reboot_default = 0;
1208 
1209 	return count;
1210 }
1211 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1212 #endif
1213 
1214 #ifdef CONFIG_SMP
1215 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1216 {
1217 	return sprintf(buf, "%d\n", reboot_cpu);
1218 }
1219 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1220 			  const char *buf, size_t count)
1221 {
1222 	unsigned int cpunum;
1223 	int rc;
1224 
1225 	if (!capable(CAP_SYS_BOOT))
1226 		return -EPERM;
1227 
1228 	rc = kstrtouint(buf, 0, &cpunum);
1229 
1230 	if (rc)
1231 		return rc;
1232 
1233 	if (cpunum >= num_possible_cpus())
1234 		return -ERANGE;
1235 
1236 	reboot_default = 0;
1237 	reboot_cpu = cpunum;
1238 
1239 	return count;
1240 }
1241 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1242 #endif
1243 
1244 static struct attribute *reboot_attrs[] = {
1245 	&reboot_mode_attr.attr,
1246 #ifdef CONFIG_X86
1247 	&reboot_force_attr.attr,
1248 	&reboot_type_attr.attr,
1249 #endif
1250 #ifdef CONFIG_SMP
1251 	&reboot_cpu_attr.attr,
1252 #endif
1253 	NULL,
1254 };
1255 
1256 #ifdef CONFIG_SYSCTL
1257 static struct ctl_table kern_reboot_table[] = {
1258 	{
1259 		.procname       = "poweroff_cmd",
1260 		.data           = &poweroff_cmd,
1261 		.maxlen         = POWEROFF_CMD_PATH_LEN,
1262 		.mode           = 0644,
1263 		.proc_handler   = proc_dostring,
1264 	},
1265 	{
1266 		.procname       = "ctrl-alt-del",
1267 		.data           = &C_A_D,
1268 		.maxlen         = sizeof(int),
1269 		.mode           = 0644,
1270 		.proc_handler   = proc_dointvec,
1271 	},
1272 	{ }
1273 };
1274 
1275 static void __init kernel_reboot_sysctls_init(void)
1276 {
1277 	register_sysctl_init("kernel", kern_reboot_table);
1278 }
1279 #else
1280 #define kernel_reboot_sysctls_init() do { } while (0)
1281 #endif /* CONFIG_SYSCTL */
1282 
1283 static const struct attribute_group reboot_attr_group = {
1284 	.attrs = reboot_attrs,
1285 };
1286 
1287 static int __init reboot_ksysfs_init(void)
1288 {
1289 	struct kobject *reboot_kobj;
1290 	int ret;
1291 
1292 	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1293 	if (!reboot_kobj)
1294 		return -ENOMEM;
1295 
1296 	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1297 	if (ret) {
1298 		kobject_put(reboot_kobj);
1299 		return ret;
1300 	}
1301 
1302 	kernel_reboot_sysctls_init();
1303 
1304 	return 0;
1305 }
1306 late_initcall(reboot_ksysfs_init);
1307 
1308 #endif
1309