1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * 10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 12 * Papers: 13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 15 * 16 * For detailed explanation of Read-Copy Update mechanism see - 17 * http://lse.sourceforge.net/locking/rcupdate.html 18 * 19 */ 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/interrupt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/debug.h> 28 #include <linux/atomic.h> 29 #include <linux/bitops.h> 30 #include <linux/percpu.h> 31 #include <linux/notifier.h> 32 #include <linux/cpu.h> 33 #include <linux/mutex.h> 34 #include <linux/export.h> 35 #include <linux/hardirq.h> 36 #include <linux/delay.h> 37 #include <linux/moduleparam.h> 38 #include <linux/kthread.h> 39 #include <linux/tick.h> 40 #include <linux/rcupdate_wait.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/kprobes.h> 43 #include <linux/slab.h> 44 45 #define CREATE_TRACE_POINTS 46 47 #include "rcu.h" 48 49 #ifdef MODULE_PARAM_PREFIX 50 #undef MODULE_PARAM_PREFIX 51 #endif 52 #define MODULE_PARAM_PREFIX "rcupdate." 53 54 #ifndef CONFIG_TINY_RCU 55 module_param(rcu_expedited, int, 0); 56 module_param(rcu_normal, int, 0); 57 static int rcu_normal_after_boot; 58 module_param(rcu_normal_after_boot, int, 0); 59 #endif /* #ifndef CONFIG_TINY_RCU */ 60 61 #ifdef CONFIG_DEBUG_LOCK_ALLOC 62 /** 63 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section? 64 * @ret: Best guess answer if lockdep cannot be relied on 65 * 66 * Returns true if lockdep must be ignored, in which case *ret contains 67 * the best guess described below. Otherwise returns false, in which 68 * case *ret tells the caller nothing and the caller should instead 69 * consult lockdep. 70 * 71 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an 72 * RCU-sched read-side critical section. In absence of 73 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 74 * critical section unless it can prove otherwise. Note that disabling 75 * of preemption (including disabling irqs) counts as an RCU-sched 76 * read-side critical section. This is useful for debug checks in functions 77 * that required that they be called within an RCU-sched read-side 78 * critical section. 79 * 80 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 81 * and while lockdep is disabled. 82 * 83 * Note that if the CPU is in the idle loop from an RCU point of view (ie: 84 * that we are in the section between rcu_idle_enter() and rcu_idle_exit()) 85 * then rcu_read_lock_held() sets *ret to false even if the CPU did an 86 * rcu_read_lock(). The reason for this is that RCU ignores CPUs that are 87 * in such a section, considering these as in extended quiescent state, 88 * so such a CPU is effectively never in an RCU read-side critical section 89 * regardless of what RCU primitives it invokes. This state of affairs is 90 * required --- we need to keep an RCU-free window in idle where the CPU may 91 * possibly enter into low power mode. This way we can notice an extended 92 * quiescent state to other CPUs that started a grace period. Otherwise 93 * we would delay any grace period as long as we run in the idle task. 94 * 95 * Similarly, we avoid claiming an RCU read lock held if the current 96 * CPU is offline. 97 */ 98 static bool rcu_read_lock_held_common(bool *ret) 99 { 100 if (!debug_lockdep_rcu_enabled()) { 101 *ret = 1; 102 return true; 103 } 104 if (!rcu_is_watching()) { 105 *ret = 0; 106 return true; 107 } 108 if (!rcu_lockdep_current_cpu_online()) { 109 *ret = 0; 110 return true; 111 } 112 return false; 113 } 114 115 int rcu_read_lock_sched_held(void) 116 { 117 bool ret; 118 119 if (rcu_read_lock_held_common(&ret)) 120 return ret; 121 return lock_is_held(&rcu_sched_lock_map) || !preemptible(); 122 } 123 EXPORT_SYMBOL(rcu_read_lock_sched_held); 124 #endif 125 126 #ifndef CONFIG_TINY_RCU 127 128 /* 129 * Should expedited grace-period primitives always fall back to their 130 * non-expedited counterparts? Intended for use within RCU. Note 131 * that if the user specifies both rcu_expedited and rcu_normal, then 132 * rcu_normal wins. (Except during the time period during boot from 133 * when the first task is spawned until the rcu_set_runtime_mode() 134 * core_initcall() is invoked, at which point everything is expedited.) 135 */ 136 bool rcu_gp_is_normal(void) 137 { 138 return READ_ONCE(rcu_normal) && 139 rcu_scheduler_active != RCU_SCHEDULER_INIT; 140 } 141 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 142 143 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); 144 145 /* 146 * Should normal grace-period primitives be expedited? Intended for 147 * use within RCU. Note that this function takes the rcu_expedited 148 * sysfs/boot variable and rcu_scheduler_active into account as well 149 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp() 150 * until rcu_gp_is_expedited() returns false is a -really- bad idea. 151 */ 152 bool rcu_gp_is_expedited(void) 153 { 154 return rcu_expedited || atomic_read(&rcu_expedited_nesting); 155 } 156 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 157 158 /** 159 * rcu_expedite_gp - Expedite future RCU grace periods 160 * 161 * After a call to this function, future calls to synchronize_rcu() and 162 * friends act as the corresponding synchronize_rcu_expedited() function 163 * had instead been called. 164 */ 165 void rcu_expedite_gp(void) 166 { 167 atomic_inc(&rcu_expedited_nesting); 168 } 169 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 170 171 /** 172 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 173 * 174 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 175 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 176 * and if the rcu_expedited sysfs/boot parameter is not set, then all 177 * subsequent calls to synchronize_rcu() and friends will return to 178 * their normal non-expedited behavior. 179 */ 180 void rcu_unexpedite_gp(void) 181 { 182 atomic_dec(&rcu_expedited_nesting); 183 } 184 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 185 186 /* 187 * Inform RCU of the end of the in-kernel boot sequence. 188 */ 189 void rcu_end_inkernel_boot(void) 190 { 191 rcu_unexpedite_gp(); 192 if (rcu_normal_after_boot) 193 WRITE_ONCE(rcu_normal, 1); 194 } 195 196 #endif /* #ifndef CONFIG_TINY_RCU */ 197 198 /* 199 * Test each non-SRCU synchronous grace-period wait API. This is 200 * useful just after a change in mode for these primitives, and 201 * during early boot. 202 */ 203 void rcu_test_sync_prims(void) 204 { 205 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 206 return; 207 synchronize_rcu(); 208 synchronize_rcu_expedited(); 209 } 210 211 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) 212 213 /* 214 * Switch to run-time mode once RCU has fully initialized. 215 */ 216 static int __init rcu_set_runtime_mode(void) 217 { 218 rcu_test_sync_prims(); 219 rcu_scheduler_active = RCU_SCHEDULER_RUNNING; 220 kfree_rcu_scheduler_running(); 221 rcu_test_sync_prims(); 222 return 0; 223 } 224 core_initcall(rcu_set_runtime_mode); 225 226 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ 227 228 #ifdef CONFIG_DEBUG_LOCK_ALLOC 229 static struct lock_class_key rcu_lock_key; 230 struct lockdep_map rcu_lock_map = 231 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 232 EXPORT_SYMBOL_GPL(rcu_lock_map); 233 234 static struct lock_class_key rcu_bh_lock_key; 235 struct lockdep_map rcu_bh_lock_map = 236 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 237 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 238 239 static struct lock_class_key rcu_sched_lock_key; 240 struct lockdep_map rcu_sched_lock_map = 241 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 242 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 243 244 static struct lock_class_key rcu_callback_key; 245 struct lockdep_map rcu_callback_map = 246 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 247 EXPORT_SYMBOL_GPL(rcu_callback_map); 248 249 int notrace debug_lockdep_rcu_enabled(void) 250 { 251 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && 252 current->lockdep_recursion == 0; 253 } 254 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 255 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled); 256 257 /** 258 * rcu_read_lock_held() - might we be in RCU read-side critical section? 259 * 260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 261 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 262 * this assumes we are in an RCU read-side critical section unless it can 263 * prove otherwise. This is useful for debug checks in functions that 264 * require that they be called within an RCU read-side critical section. 265 * 266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 267 * and while lockdep is disabled. 268 * 269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 270 * occur in the same context, for example, it is illegal to invoke 271 * rcu_read_unlock() in process context if the matching rcu_read_lock() 272 * was invoked from within an irq handler. 273 * 274 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 275 * offline from an RCU perspective, so check for those as well. 276 */ 277 int rcu_read_lock_held(void) 278 { 279 bool ret; 280 281 if (rcu_read_lock_held_common(&ret)) 282 return ret; 283 return lock_is_held(&rcu_lock_map); 284 } 285 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 286 287 /** 288 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 289 * 290 * Check for bottom half being disabled, which covers both the 291 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 292 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 293 * will show the situation. This is useful for debug checks in functions 294 * that require that they be called within an RCU read-side critical 295 * section. 296 * 297 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 298 * 299 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or 300 * offline from an RCU perspective, so check for those as well. 301 */ 302 int rcu_read_lock_bh_held(void) 303 { 304 bool ret; 305 306 if (rcu_read_lock_held_common(&ret)) 307 return ret; 308 return in_softirq() || irqs_disabled(); 309 } 310 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 311 312 int rcu_read_lock_any_held(void) 313 { 314 bool ret; 315 316 if (rcu_read_lock_held_common(&ret)) 317 return ret; 318 if (lock_is_held(&rcu_lock_map) || 319 lock_is_held(&rcu_bh_lock_map) || 320 lock_is_held(&rcu_sched_lock_map)) 321 return 1; 322 return !preemptible(); 323 } 324 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held); 325 326 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 327 328 /** 329 * wakeme_after_rcu() - Callback function to awaken a task after grace period 330 * @head: Pointer to rcu_head member within rcu_synchronize structure 331 * 332 * Awaken the corresponding task now that a grace period has elapsed. 333 */ 334 void wakeme_after_rcu(struct rcu_head *head) 335 { 336 struct rcu_synchronize *rcu; 337 338 rcu = container_of(head, struct rcu_synchronize, head); 339 complete(&rcu->completion); 340 } 341 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 342 343 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 344 struct rcu_synchronize *rs_array) 345 { 346 int i; 347 int j; 348 349 /* Initialize and register callbacks for each crcu_array element. */ 350 for (i = 0; i < n; i++) { 351 if (checktiny && 352 (crcu_array[i] == call_rcu)) { 353 might_sleep(); 354 continue; 355 } 356 init_rcu_head_on_stack(&rs_array[i].head); 357 init_completion(&rs_array[i].completion); 358 for (j = 0; j < i; j++) 359 if (crcu_array[j] == crcu_array[i]) 360 break; 361 if (j == i) 362 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 363 } 364 365 /* Wait for all callbacks to be invoked. */ 366 for (i = 0; i < n; i++) { 367 if (checktiny && 368 (crcu_array[i] == call_rcu)) 369 continue; 370 for (j = 0; j < i; j++) 371 if (crcu_array[j] == crcu_array[i]) 372 break; 373 if (j == i) 374 wait_for_completion(&rs_array[i].completion); 375 destroy_rcu_head_on_stack(&rs_array[i].head); 376 } 377 } 378 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 379 380 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 381 void init_rcu_head(struct rcu_head *head) 382 { 383 debug_object_init(head, &rcuhead_debug_descr); 384 } 385 EXPORT_SYMBOL_GPL(init_rcu_head); 386 387 void destroy_rcu_head(struct rcu_head *head) 388 { 389 debug_object_free(head, &rcuhead_debug_descr); 390 } 391 EXPORT_SYMBOL_GPL(destroy_rcu_head); 392 393 static bool rcuhead_is_static_object(void *addr) 394 { 395 return true; 396 } 397 398 /** 399 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 400 * @head: pointer to rcu_head structure to be initialized 401 * 402 * This function informs debugobjects of a new rcu_head structure that 403 * has been allocated as an auto variable on the stack. This function 404 * is not required for rcu_head structures that are statically defined or 405 * that are dynamically allocated on the heap. This function has no 406 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 407 */ 408 void init_rcu_head_on_stack(struct rcu_head *head) 409 { 410 debug_object_init_on_stack(head, &rcuhead_debug_descr); 411 } 412 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 413 414 /** 415 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 416 * @head: pointer to rcu_head structure to be initialized 417 * 418 * This function informs debugobjects that an on-stack rcu_head structure 419 * is about to go out of scope. As with init_rcu_head_on_stack(), this 420 * function is not required for rcu_head structures that are statically 421 * defined or that are dynamically allocated on the heap. Also as with 422 * init_rcu_head_on_stack(), this function has no effect for 423 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 424 */ 425 void destroy_rcu_head_on_stack(struct rcu_head *head) 426 { 427 debug_object_free(head, &rcuhead_debug_descr); 428 } 429 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 430 431 struct debug_obj_descr rcuhead_debug_descr = { 432 .name = "rcu_head", 433 .is_static_object = rcuhead_is_static_object, 434 }; 435 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 436 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 437 438 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE) 439 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 440 unsigned long secs, 441 unsigned long c_old, unsigned long c) 442 { 443 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 444 } 445 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 446 #else 447 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 448 do { } while (0) 449 #endif 450 451 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) 452 /* Get rcutorture access to sched_setaffinity(). */ 453 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 454 { 455 int ret; 456 457 ret = sched_setaffinity(pid, in_mask); 458 WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret); 459 return ret; 460 } 461 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity); 462 #endif 463 464 #ifdef CONFIG_RCU_STALL_COMMON 465 int rcu_cpu_stall_ftrace_dump __read_mostly; 466 module_param(rcu_cpu_stall_ftrace_dump, int, 0644); 467 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 468 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 469 module_param(rcu_cpu_stall_suppress, int, 0644); 470 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 471 module_param(rcu_cpu_stall_timeout, int, 0644); 472 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 473 474 #ifdef CONFIG_TASKS_RCU 475 476 /* 477 * Simple variant of RCU whose quiescent states are voluntary context 478 * switch, cond_resched_rcu_qs(), user-space execution, and idle. 479 * As such, grace periods can take one good long time. There are no 480 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 481 * because this implementation is intended to get the system into a safe 482 * state for some of the manipulations involved in tracing and the like. 483 * Finally, this implementation does not support high call_rcu_tasks() 484 * rates from multiple CPUs. If this is required, per-CPU callback lists 485 * will be needed. 486 */ 487 488 /* Global list of callbacks and associated lock. */ 489 static struct rcu_head *rcu_tasks_cbs_head; 490 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 491 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 492 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 493 494 /* Track exiting tasks in order to allow them to be waited for. */ 495 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 496 497 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 498 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 499 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 500 module_param(rcu_task_stall_timeout, int, 0644); 501 502 static struct task_struct *rcu_tasks_kthread_ptr; 503 504 /** 505 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 506 * @rhp: structure to be used for queueing the RCU updates. 507 * @func: actual callback function to be invoked after the grace period 508 * 509 * The callback function will be invoked some time after a full grace 510 * period elapses, in other words after all currently executing RCU 511 * read-side critical sections have completed. call_rcu_tasks() assumes 512 * that the read-side critical sections end at a voluntary context 513 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 514 * or transition to usermode execution. As such, there are no read-side 515 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 516 * this primitive is intended to determine that all tasks have passed 517 * through a safe state, not so much for data-strcuture synchronization. 518 * 519 * See the description of call_rcu() for more detailed information on 520 * memory ordering guarantees. 521 */ 522 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 523 { 524 unsigned long flags; 525 bool needwake; 526 527 rhp->next = NULL; 528 rhp->func = func; 529 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 530 needwake = !rcu_tasks_cbs_head; 531 *rcu_tasks_cbs_tail = rhp; 532 rcu_tasks_cbs_tail = &rhp->next; 533 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 534 /* We can't create the thread unless interrupts are enabled. */ 535 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) 536 wake_up(&rcu_tasks_cbs_wq); 537 } 538 EXPORT_SYMBOL_GPL(call_rcu_tasks); 539 540 /** 541 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 542 * 543 * Control will return to the caller some time after a full rcu-tasks 544 * grace period has elapsed, in other words after all currently 545 * executing rcu-tasks read-side critical sections have elapsed. These 546 * read-side critical sections are delimited by calls to schedule(), 547 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 548 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 549 * 550 * This is a very specialized primitive, intended only for a few uses in 551 * tracing and other situations requiring manipulation of function 552 * preambles and profiling hooks. The synchronize_rcu_tasks() function 553 * is not (yet) intended for heavy use from multiple CPUs. 554 * 555 * Note that this guarantee implies further memory-ordering guarantees. 556 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 557 * each CPU is guaranteed to have executed a full memory barrier since the 558 * end of its last RCU-tasks read-side critical section whose beginning 559 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 560 * having an RCU-tasks read-side critical section that extends beyond 561 * the return from synchronize_rcu_tasks() is guaranteed to have executed 562 * a full memory barrier after the beginning of synchronize_rcu_tasks() 563 * and before the beginning of that RCU-tasks read-side critical section. 564 * Note that these guarantees include CPUs that are offline, idle, or 565 * executing in user mode, as well as CPUs that are executing in the kernel. 566 * 567 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 568 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 569 * to have executed a full memory barrier during the execution of 570 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 571 * (but again only if the system has more than one CPU). 572 */ 573 void synchronize_rcu_tasks(void) 574 { 575 /* Complain if the scheduler has not started. */ 576 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 577 "synchronize_rcu_tasks called too soon"); 578 579 /* Wait for the grace period. */ 580 wait_rcu_gp(call_rcu_tasks); 581 } 582 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 583 584 /** 585 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 586 * 587 * Although the current implementation is guaranteed to wait, it is not 588 * obligated to, for example, if there are no pending callbacks. 589 */ 590 void rcu_barrier_tasks(void) 591 { 592 /* There is only one callback queue, so this is easy. ;-) */ 593 synchronize_rcu_tasks(); 594 } 595 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 596 597 /* See if tasks are still holding out, complain if so. */ 598 static void check_holdout_task(struct task_struct *t, 599 bool needreport, bool *firstreport) 600 { 601 int cpu; 602 603 if (!READ_ONCE(t->rcu_tasks_holdout) || 604 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 605 !READ_ONCE(t->on_rq) || 606 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 607 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 608 WRITE_ONCE(t->rcu_tasks_holdout, false); 609 list_del_init(&t->rcu_tasks_holdout_list); 610 put_task_struct(t); 611 return; 612 } 613 rcu_request_urgent_qs_task(t); 614 if (!needreport) 615 return; 616 if (*firstreport) { 617 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 618 *firstreport = false; 619 } 620 cpu = task_cpu(t); 621 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 622 t, ".I"[is_idle_task(t)], 623 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 624 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 625 t->rcu_tasks_idle_cpu, cpu); 626 sched_show_task(t); 627 } 628 629 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 630 static int __noreturn rcu_tasks_kthread(void *arg) 631 { 632 unsigned long flags; 633 struct task_struct *g, *t; 634 unsigned long lastreport; 635 struct rcu_head *list; 636 struct rcu_head *next; 637 LIST_HEAD(rcu_tasks_holdouts); 638 int fract; 639 640 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 641 housekeeping_affine(current, HK_FLAG_RCU); 642 643 /* 644 * Each pass through the following loop makes one check for 645 * newly arrived callbacks, and, if there are some, waits for 646 * one RCU-tasks grace period and then invokes the callbacks. 647 * This loop is terminated by the system going down. ;-) 648 */ 649 for (;;) { 650 651 /* Pick up any new callbacks. */ 652 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 653 list = rcu_tasks_cbs_head; 654 rcu_tasks_cbs_head = NULL; 655 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 656 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 657 658 /* If there were none, wait a bit and start over. */ 659 if (!list) { 660 wait_event_interruptible(rcu_tasks_cbs_wq, 661 rcu_tasks_cbs_head); 662 if (!rcu_tasks_cbs_head) { 663 WARN_ON(signal_pending(current)); 664 schedule_timeout_interruptible(HZ/10); 665 } 666 continue; 667 } 668 669 /* 670 * Wait for all pre-existing t->on_rq and t->nvcsw 671 * transitions to complete. Invoking synchronize_rcu() 672 * suffices because all these transitions occur with 673 * interrupts disabled. Without this synchronize_rcu(), 674 * a read-side critical section that started before the 675 * grace period might be incorrectly seen as having started 676 * after the grace period. 677 * 678 * This synchronize_rcu() also dispenses with the 679 * need for a memory barrier on the first store to 680 * ->rcu_tasks_holdout, as it forces the store to happen 681 * after the beginning of the grace period. 682 */ 683 synchronize_rcu(); 684 685 /* 686 * There were callbacks, so we need to wait for an 687 * RCU-tasks grace period. Start off by scanning 688 * the task list for tasks that are not already 689 * voluntarily blocked. Mark these tasks and make 690 * a list of them in rcu_tasks_holdouts. 691 */ 692 rcu_read_lock(); 693 for_each_process_thread(g, t) { 694 if (t != current && READ_ONCE(t->on_rq) && 695 !is_idle_task(t)) { 696 get_task_struct(t); 697 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 698 WRITE_ONCE(t->rcu_tasks_holdout, true); 699 list_add(&t->rcu_tasks_holdout_list, 700 &rcu_tasks_holdouts); 701 } 702 } 703 rcu_read_unlock(); 704 705 /* 706 * Wait for tasks that are in the process of exiting. 707 * This does only part of the job, ensuring that all 708 * tasks that were previously exiting reach the point 709 * where they have disabled preemption, allowing the 710 * later synchronize_rcu() to finish the job. 711 */ 712 synchronize_srcu(&tasks_rcu_exit_srcu); 713 714 /* 715 * Each pass through the following loop scans the list 716 * of holdout tasks, removing any that are no longer 717 * holdouts. When the list is empty, we are done. 718 */ 719 lastreport = jiffies; 720 721 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ 722 fract = 10; 723 724 for (;;) { 725 bool firstreport; 726 bool needreport; 727 int rtst; 728 struct task_struct *t1; 729 730 if (list_empty(&rcu_tasks_holdouts)) 731 break; 732 733 /* Slowly back off waiting for holdouts */ 734 schedule_timeout_interruptible(HZ/fract); 735 736 if (fract > 1) 737 fract--; 738 739 rtst = READ_ONCE(rcu_task_stall_timeout); 740 needreport = rtst > 0 && 741 time_after(jiffies, lastreport + rtst); 742 if (needreport) 743 lastreport = jiffies; 744 firstreport = true; 745 WARN_ON(signal_pending(current)); 746 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 747 rcu_tasks_holdout_list) { 748 check_holdout_task(t, needreport, &firstreport); 749 cond_resched(); 750 } 751 } 752 753 /* 754 * Because ->on_rq and ->nvcsw are not guaranteed 755 * to have a full memory barriers prior to them in the 756 * schedule() path, memory reordering on other CPUs could 757 * cause their RCU-tasks read-side critical sections to 758 * extend past the end of the grace period. However, 759 * because these ->nvcsw updates are carried out with 760 * interrupts disabled, we can use synchronize_rcu() 761 * to force the needed ordering on all such CPUs. 762 * 763 * This synchronize_rcu() also confines all 764 * ->rcu_tasks_holdout accesses to be within the grace 765 * period, avoiding the need for memory barriers for 766 * ->rcu_tasks_holdout accesses. 767 * 768 * In addition, this synchronize_rcu() waits for exiting 769 * tasks to complete their final preempt_disable() region 770 * of execution, cleaning up after the synchronize_srcu() 771 * above. 772 */ 773 synchronize_rcu(); 774 775 /* Invoke the callbacks. */ 776 while (list) { 777 next = list->next; 778 local_bh_disable(); 779 list->func(list); 780 local_bh_enable(); 781 list = next; 782 cond_resched(); 783 } 784 /* Paranoid sleep to keep this from entering a tight loop */ 785 schedule_timeout_uninterruptible(HZ/10); 786 } 787 } 788 789 /* Spawn rcu_tasks_kthread() at core_initcall() time. */ 790 static int __init rcu_spawn_tasks_kthread(void) 791 { 792 struct task_struct *t; 793 794 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 795 if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) 796 return 0; 797 smp_mb(); /* Ensure others see full kthread. */ 798 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 799 return 0; 800 } 801 core_initcall(rcu_spawn_tasks_kthread); 802 803 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 804 void exit_tasks_rcu_start(void) 805 { 806 preempt_disable(); 807 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 808 preempt_enable(); 809 } 810 811 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 812 void exit_tasks_rcu_finish(void) 813 { 814 preempt_disable(); 815 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); 816 preempt_enable(); 817 } 818 819 #endif /* #ifdef CONFIG_TASKS_RCU */ 820 821 #ifndef CONFIG_TINY_RCU 822 823 /* 824 * Print any non-default Tasks RCU settings. 825 */ 826 static void __init rcu_tasks_bootup_oddness(void) 827 { 828 #ifdef CONFIG_TASKS_RCU 829 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 830 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 831 else 832 pr_info("\tTasks RCU enabled.\n"); 833 #endif /* #ifdef CONFIG_TASKS_RCU */ 834 } 835 836 #endif /* #ifndef CONFIG_TINY_RCU */ 837 838 #ifdef CONFIG_PROVE_RCU 839 840 /* 841 * Early boot self test parameters. 842 */ 843 static bool rcu_self_test; 844 module_param(rcu_self_test, bool, 0444); 845 846 static int rcu_self_test_counter; 847 848 static void test_callback(struct rcu_head *r) 849 { 850 rcu_self_test_counter++; 851 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 852 } 853 854 DEFINE_STATIC_SRCU(early_srcu); 855 856 struct early_boot_kfree_rcu { 857 struct rcu_head rh; 858 }; 859 860 static void early_boot_test_call_rcu(void) 861 { 862 static struct rcu_head head; 863 static struct rcu_head shead; 864 struct early_boot_kfree_rcu *rhp; 865 866 call_rcu(&head, test_callback); 867 if (IS_ENABLED(CONFIG_SRCU)) 868 call_srcu(&early_srcu, &shead, test_callback); 869 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL); 870 if (!WARN_ON_ONCE(!rhp)) 871 kfree_rcu(rhp, rh); 872 } 873 874 void rcu_early_boot_tests(void) 875 { 876 pr_info("Running RCU self tests\n"); 877 878 if (rcu_self_test) 879 early_boot_test_call_rcu(); 880 rcu_test_sync_prims(); 881 } 882 883 static int rcu_verify_early_boot_tests(void) 884 { 885 int ret = 0; 886 int early_boot_test_counter = 0; 887 888 if (rcu_self_test) { 889 early_boot_test_counter++; 890 rcu_barrier(); 891 if (IS_ENABLED(CONFIG_SRCU)) { 892 early_boot_test_counter++; 893 srcu_barrier(&early_srcu); 894 } 895 } 896 if (rcu_self_test_counter != early_boot_test_counter) { 897 WARN_ON(1); 898 ret = -1; 899 } 900 901 return ret; 902 } 903 late_initcall(rcu_verify_early_boot_tests); 904 #else 905 void rcu_early_boot_tests(void) {} 906 #endif /* CONFIG_PROVE_RCU */ 907 908 #ifndef CONFIG_TINY_RCU 909 910 /* 911 * Print any significant non-default boot-time settings. 912 */ 913 void __init rcupdate_announce_bootup_oddness(void) 914 { 915 if (rcu_normal) 916 pr_info("\tNo expedited grace period (rcu_normal).\n"); 917 else if (rcu_normal_after_boot) 918 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); 919 else if (rcu_expedited) 920 pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); 921 if (rcu_cpu_stall_suppress) 922 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); 923 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) 924 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); 925 rcu_tasks_bootup_oddness(); 926 } 927 928 #endif /* #ifndef CONFIG_TINY_RCU */ 929