xref: /openbmc/linux/kernel/rcu/update.c (revision e55dea8e)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54 
55 #define CREATE_TRACE_POINTS
56 
57 #include "rcu.h"
58 
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "rcupdate."
63 
64 #ifndef CONFIG_TINY_RCU
65 module_param(rcu_expedited, int, 0);
66 module_param(rcu_normal, int, 0);
67 static int rcu_normal_after_boot;
68 module_param(rcu_normal_after_boot, int, 0);
69 #endif /* #ifndef CONFIG_TINY_RCU */
70 
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 /**
73  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
74  *
75  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
76  * RCU-sched read-side critical section.  In absence of
77  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
78  * critical section unless it can prove otherwise.  Note that disabling
79  * of preemption (including disabling irqs) counts as an RCU-sched
80  * read-side critical section.  This is useful for debug checks in functions
81  * that required that they be called within an RCU-sched read-side
82  * critical section.
83  *
84  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
85  * and while lockdep is disabled.
86  *
87  * Note that if the CPU is in the idle loop from an RCU point of
88  * view (ie: that we are in the section between rcu_idle_enter() and
89  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
90  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
91  * that are in such a section, considering these as in extended quiescent
92  * state, so such a CPU is effectively never in an RCU read-side critical
93  * section regardless of what RCU primitives it invokes.  This state of
94  * affairs is required --- we need to keep an RCU-free window in idle
95  * where the CPU may possibly enter into low power mode. This way we can
96  * notice an extended quiescent state to other CPUs that started a grace
97  * period. Otherwise we would delay any grace period as long as we run in
98  * the idle task.
99  *
100  * Similarly, we avoid claiming an SRCU read lock held if the current
101  * CPU is offline.
102  */
103 int rcu_read_lock_sched_held(void)
104 {
105 	int lockdep_opinion = 0;
106 
107 	if (!debug_lockdep_rcu_enabled())
108 		return 1;
109 	if (!rcu_is_watching())
110 		return 0;
111 	if (!rcu_lockdep_current_cpu_online())
112 		return 0;
113 	if (debug_locks)
114 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
115 	return lockdep_opinion || !preemptible();
116 }
117 EXPORT_SYMBOL(rcu_read_lock_sched_held);
118 #endif
119 
120 #ifndef CONFIG_TINY_RCU
121 
122 /*
123  * Should expedited grace-period primitives always fall back to their
124  * non-expedited counterparts?  Intended for use within RCU.  Note
125  * that if the user specifies both rcu_expedited and rcu_normal, then
126  * rcu_normal wins.  (Except during the time period during boot from
127  * when the first task is spawned until the rcu_set_runtime_mode()
128  * core_initcall() is invoked, at which point everything is expedited.)
129  */
130 bool rcu_gp_is_normal(void)
131 {
132 	return READ_ONCE(rcu_normal) &&
133 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
134 }
135 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
136 
137 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
138 
139 /*
140  * Should normal grace-period primitives be expedited?  Intended for
141  * use within RCU.  Note that this function takes the rcu_expedited
142  * sysfs/boot variable and rcu_scheduler_active into account as well
143  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
144  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
145  */
146 bool rcu_gp_is_expedited(void)
147 {
148 	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
149 	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
150 }
151 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
152 
153 /**
154  * rcu_expedite_gp - Expedite future RCU grace periods
155  *
156  * After a call to this function, future calls to synchronize_rcu() and
157  * friends act as the corresponding synchronize_rcu_expedited() function
158  * had instead been called.
159  */
160 void rcu_expedite_gp(void)
161 {
162 	atomic_inc(&rcu_expedited_nesting);
163 }
164 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
165 
166 /**
167  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
168  *
169  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
170  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
171  * and if the rcu_expedited sysfs/boot parameter is not set, then all
172  * subsequent calls to synchronize_rcu() and friends will return to
173  * their normal non-expedited behavior.
174  */
175 void rcu_unexpedite_gp(void)
176 {
177 	atomic_dec(&rcu_expedited_nesting);
178 }
179 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
180 
181 /*
182  * Inform RCU of the end of the in-kernel boot sequence.
183  */
184 void rcu_end_inkernel_boot(void)
185 {
186 	rcu_unexpedite_gp();
187 	if (rcu_normal_after_boot)
188 		WRITE_ONCE(rcu_normal, 1);
189 }
190 
191 #endif /* #ifndef CONFIG_TINY_RCU */
192 
193 /*
194  * Test each non-SRCU synchronous grace-period wait API.  This is
195  * useful just after a change in mode for these primitives, and
196  * during early boot.
197  */
198 void rcu_test_sync_prims(void)
199 {
200 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
201 		return;
202 	synchronize_rcu();
203 	synchronize_rcu_bh();
204 	synchronize_sched();
205 	synchronize_rcu_expedited();
206 	synchronize_rcu_bh_expedited();
207 	synchronize_sched_expedited();
208 }
209 
210 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
211 
212 /*
213  * Switch to run-time mode once RCU has fully initialized.
214  */
215 static int __init rcu_set_runtime_mode(void)
216 {
217 	rcu_test_sync_prims();
218 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
219 	rcu_test_sync_prims();
220 	return 0;
221 }
222 core_initcall(rcu_set_runtime_mode);
223 
224 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
225 
226 #ifdef CONFIG_PREEMPT_RCU
227 
228 /*
229  * Preemptible RCU implementation for rcu_read_lock().
230  * Just increment ->rcu_read_lock_nesting, shared state will be updated
231  * if we block.
232  */
233 void __rcu_read_lock(void)
234 {
235 	current->rcu_read_lock_nesting++;
236 	barrier();  /* critical section after entry code. */
237 }
238 EXPORT_SYMBOL_GPL(__rcu_read_lock);
239 
240 /*
241  * Preemptible RCU implementation for rcu_read_unlock().
242  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
243  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
244  * invoke rcu_read_unlock_special() to clean up after a context switch
245  * in an RCU read-side critical section and other special cases.
246  */
247 void __rcu_read_unlock(void)
248 {
249 	struct task_struct *t = current;
250 
251 	if (t->rcu_read_lock_nesting != 1) {
252 		--t->rcu_read_lock_nesting;
253 	} else {
254 		barrier();  /* critical section before exit code. */
255 		t->rcu_read_lock_nesting = INT_MIN;
256 		barrier();  /* assign before ->rcu_read_unlock_special load */
257 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
258 			rcu_read_unlock_special(t);
259 		barrier();  /* ->rcu_read_unlock_special load before assign */
260 		t->rcu_read_lock_nesting = 0;
261 	}
262 #ifdef CONFIG_PROVE_LOCKING
263 	{
264 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
265 
266 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
267 	}
268 #endif /* #ifdef CONFIG_PROVE_LOCKING */
269 }
270 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
271 
272 #endif /* #ifdef CONFIG_PREEMPT_RCU */
273 
274 #ifdef CONFIG_DEBUG_LOCK_ALLOC
275 static struct lock_class_key rcu_lock_key;
276 struct lockdep_map rcu_lock_map =
277 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
278 EXPORT_SYMBOL_GPL(rcu_lock_map);
279 
280 static struct lock_class_key rcu_bh_lock_key;
281 struct lockdep_map rcu_bh_lock_map =
282 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
283 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
284 
285 static struct lock_class_key rcu_sched_lock_key;
286 struct lockdep_map rcu_sched_lock_map =
287 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
288 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
289 
290 static struct lock_class_key rcu_callback_key;
291 struct lockdep_map rcu_callback_map =
292 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
293 EXPORT_SYMBOL_GPL(rcu_callback_map);
294 
295 int notrace debug_lockdep_rcu_enabled(void)
296 {
297 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
298 	       current->lockdep_recursion == 0;
299 }
300 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
301 
302 /**
303  * rcu_read_lock_held() - might we be in RCU read-side critical section?
304  *
305  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
306  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
307  * this assumes we are in an RCU read-side critical section unless it can
308  * prove otherwise.  This is useful for debug checks in functions that
309  * require that they be called within an RCU read-side critical section.
310  *
311  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
312  * and while lockdep is disabled.
313  *
314  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
315  * occur in the same context, for example, it is illegal to invoke
316  * rcu_read_unlock() in process context if the matching rcu_read_lock()
317  * was invoked from within an irq handler.
318  *
319  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
320  * offline from an RCU perspective, so check for those as well.
321  */
322 int rcu_read_lock_held(void)
323 {
324 	if (!debug_lockdep_rcu_enabled())
325 		return 1;
326 	if (!rcu_is_watching())
327 		return 0;
328 	if (!rcu_lockdep_current_cpu_online())
329 		return 0;
330 	return lock_is_held(&rcu_lock_map);
331 }
332 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
333 
334 /**
335  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
336  *
337  * Check for bottom half being disabled, which covers both the
338  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
339  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
340  * will show the situation.  This is useful for debug checks in functions
341  * that require that they be called within an RCU read-side critical
342  * section.
343  *
344  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
345  *
346  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
347  * offline from an RCU perspective, so check for those as well.
348  */
349 int rcu_read_lock_bh_held(void)
350 {
351 	if (!debug_lockdep_rcu_enabled())
352 		return 1;
353 	if (!rcu_is_watching())
354 		return 0;
355 	if (!rcu_lockdep_current_cpu_online())
356 		return 0;
357 	return in_softirq() || irqs_disabled();
358 }
359 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
360 
361 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
362 
363 /**
364  * wakeme_after_rcu() - Callback function to awaken a task after grace period
365  * @head: Pointer to rcu_head member within rcu_synchronize structure
366  *
367  * Awaken the corresponding task now that a grace period has elapsed.
368  */
369 void wakeme_after_rcu(struct rcu_head *head)
370 {
371 	struct rcu_synchronize *rcu;
372 
373 	rcu = container_of(head, struct rcu_synchronize, head);
374 	complete(&rcu->completion);
375 }
376 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
377 
378 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
379 		   struct rcu_synchronize *rs_array)
380 {
381 	int i;
382 
383 	/* Initialize and register callbacks for each flavor specified. */
384 	for (i = 0; i < n; i++) {
385 		if (checktiny &&
386 		    (crcu_array[i] == call_rcu ||
387 		     crcu_array[i] == call_rcu_bh)) {
388 			might_sleep();
389 			continue;
390 		}
391 		init_rcu_head_on_stack(&rs_array[i].head);
392 		init_completion(&rs_array[i].completion);
393 		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
394 	}
395 
396 	/* Wait for all callbacks to be invoked. */
397 	for (i = 0; i < n; i++) {
398 		if (checktiny &&
399 		    (crcu_array[i] == call_rcu ||
400 		     crcu_array[i] == call_rcu_bh))
401 			continue;
402 		wait_for_completion(&rs_array[i].completion);
403 		destroy_rcu_head_on_stack(&rs_array[i].head);
404 	}
405 }
406 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
407 
408 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
409 void init_rcu_head(struct rcu_head *head)
410 {
411 	debug_object_init(head, &rcuhead_debug_descr);
412 }
413 
414 void destroy_rcu_head(struct rcu_head *head)
415 {
416 	debug_object_free(head, &rcuhead_debug_descr);
417 }
418 
419 static bool rcuhead_is_static_object(void *addr)
420 {
421 	return true;
422 }
423 
424 /**
425  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
426  * @head: pointer to rcu_head structure to be initialized
427  *
428  * This function informs debugobjects of a new rcu_head structure that
429  * has been allocated as an auto variable on the stack.  This function
430  * is not required for rcu_head structures that are statically defined or
431  * that are dynamically allocated on the heap.  This function has no
432  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
433  */
434 void init_rcu_head_on_stack(struct rcu_head *head)
435 {
436 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
437 }
438 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
439 
440 /**
441  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
442  * @head: pointer to rcu_head structure to be initialized
443  *
444  * This function informs debugobjects that an on-stack rcu_head structure
445  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
446  * function is not required for rcu_head structures that are statically
447  * defined or that are dynamically allocated on the heap.  Also as with
448  * init_rcu_head_on_stack(), this function has no effect for
449  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
450  */
451 void destroy_rcu_head_on_stack(struct rcu_head *head)
452 {
453 	debug_object_free(head, &rcuhead_debug_descr);
454 }
455 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
456 
457 struct debug_obj_descr rcuhead_debug_descr = {
458 	.name = "rcu_head",
459 	.is_static_object = rcuhead_is_static_object,
460 };
461 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
462 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
463 
464 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
465 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
466 			       unsigned long secs,
467 			       unsigned long c_old, unsigned long c)
468 {
469 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
470 }
471 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
472 #else
473 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
474 	do { } while (0)
475 #endif
476 
477 #ifdef CONFIG_RCU_STALL_COMMON
478 
479 #ifdef CONFIG_PROVE_RCU
480 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
481 #else
482 #define RCU_STALL_DELAY_DELTA	       0
483 #endif
484 
485 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
486 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
487 
488 module_param(rcu_cpu_stall_suppress, int, 0644);
489 module_param(rcu_cpu_stall_timeout, int, 0644);
490 
491 int rcu_jiffies_till_stall_check(void)
492 {
493 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
494 
495 	/*
496 	 * Limit check must be consistent with the Kconfig limits
497 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
498 	 */
499 	if (till_stall_check < 3) {
500 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
501 		till_stall_check = 3;
502 	} else if (till_stall_check > 300) {
503 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
504 		till_stall_check = 300;
505 	}
506 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
507 }
508 
509 void rcu_sysrq_start(void)
510 {
511 	if (!rcu_cpu_stall_suppress)
512 		rcu_cpu_stall_suppress = 2;
513 }
514 
515 void rcu_sysrq_end(void)
516 {
517 	if (rcu_cpu_stall_suppress == 2)
518 		rcu_cpu_stall_suppress = 0;
519 }
520 
521 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
522 {
523 	rcu_cpu_stall_suppress = 1;
524 	return NOTIFY_DONE;
525 }
526 
527 static struct notifier_block rcu_panic_block = {
528 	.notifier_call = rcu_panic,
529 };
530 
531 static int __init check_cpu_stall_init(void)
532 {
533 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
534 	return 0;
535 }
536 early_initcall(check_cpu_stall_init);
537 
538 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
539 
540 #ifdef CONFIG_TASKS_RCU
541 
542 /*
543  * Simple variant of RCU whose quiescent states are voluntary context switch,
544  * user-space execution, and idle.  As such, grace periods can take one good
545  * long time.  There are no read-side primitives similar to rcu_read_lock()
546  * and rcu_read_unlock() because this implementation is intended to get
547  * the system into a safe state for some of the manipulations involved in
548  * tracing and the like.  Finally, this implementation does not support
549  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
550  * per-CPU callback lists will be needed.
551  */
552 
553 /* Global list of callbacks and associated lock. */
554 static struct rcu_head *rcu_tasks_cbs_head;
555 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
556 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
557 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
558 
559 /* Track exiting tasks in order to allow them to be waited for. */
560 DEFINE_SRCU(tasks_rcu_exit_srcu);
561 
562 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
563 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
564 module_param(rcu_task_stall_timeout, int, 0644);
565 
566 static void rcu_spawn_tasks_kthread(void);
567 static struct task_struct *rcu_tasks_kthread_ptr;
568 
569 /*
570  * Post an RCU-tasks callback.  First call must be from process context
571  * after the scheduler if fully operational.
572  */
573 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
574 {
575 	unsigned long flags;
576 	bool needwake;
577 	bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
578 
579 	rhp->next = NULL;
580 	rhp->func = func;
581 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
582 	needwake = !rcu_tasks_cbs_head;
583 	*rcu_tasks_cbs_tail = rhp;
584 	rcu_tasks_cbs_tail = &rhp->next;
585 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
586 	/* We can't create the thread unless interrupts are enabled. */
587 	if ((needwake && havetask) ||
588 	    (!havetask && !irqs_disabled_flags(flags))) {
589 		rcu_spawn_tasks_kthread();
590 		wake_up(&rcu_tasks_cbs_wq);
591 	}
592 }
593 EXPORT_SYMBOL_GPL(call_rcu_tasks);
594 
595 /**
596  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
597  *
598  * Control will return to the caller some time after a full rcu-tasks
599  * grace period has elapsed, in other words after all currently
600  * executing rcu-tasks read-side critical sections have elapsed.  These
601  * read-side critical sections are delimited by calls to schedule(),
602  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
603  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
604  *
605  * This is a very specialized primitive, intended only for a few uses in
606  * tracing and other situations requiring manipulation of function
607  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
608  * is not (yet) intended for heavy use from multiple CPUs.
609  *
610  * Note that this guarantee implies further memory-ordering guarantees.
611  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
612  * each CPU is guaranteed to have executed a full memory barrier since the
613  * end of its last RCU-tasks read-side critical section whose beginning
614  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
615  * having an RCU-tasks read-side critical section that extends beyond
616  * the return from synchronize_rcu_tasks() is guaranteed to have executed
617  * a full memory barrier after the beginning of synchronize_rcu_tasks()
618  * and before the beginning of that RCU-tasks read-side critical section.
619  * Note that these guarantees include CPUs that are offline, idle, or
620  * executing in user mode, as well as CPUs that are executing in the kernel.
621  *
622  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
623  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
624  * to have executed a full memory barrier during the execution of
625  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
626  * (but again only if the system has more than one CPU).
627  */
628 void synchronize_rcu_tasks(void)
629 {
630 	/* Complain if the scheduler has not started.  */
631 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
632 			 "synchronize_rcu_tasks called too soon");
633 
634 	/* Wait for the grace period. */
635 	wait_rcu_gp(call_rcu_tasks);
636 }
637 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
638 
639 /**
640  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
641  *
642  * Although the current implementation is guaranteed to wait, it is not
643  * obligated to, for example, if there are no pending callbacks.
644  */
645 void rcu_barrier_tasks(void)
646 {
647 	/* There is only one callback queue, so this is easy.  ;-) */
648 	synchronize_rcu_tasks();
649 }
650 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
651 
652 /* See if tasks are still holding out, complain if so. */
653 static void check_holdout_task(struct task_struct *t,
654 			       bool needreport, bool *firstreport)
655 {
656 	int cpu;
657 
658 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
659 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
660 	    !READ_ONCE(t->on_rq) ||
661 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
662 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
663 		WRITE_ONCE(t->rcu_tasks_holdout, false);
664 		list_del_init(&t->rcu_tasks_holdout_list);
665 		put_task_struct(t);
666 		return;
667 	}
668 	rcu_request_urgent_qs_task(t);
669 	if (!needreport)
670 		return;
671 	if (*firstreport) {
672 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
673 		*firstreport = false;
674 	}
675 	cpu = task_cpu(t);
676 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
677 		 t, ".I"[is_idle_task(t)],
678 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
679 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
680 		 t->rcu_tasks_idle_cpu, cpu);
681 	sched_show_task(t);
682 }
683 
684 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
685 static int __noreturn rcu_tasks_kthread(void *arg)
686 {
687 	unsigned long flags;
688 	struct task_struct *g, *t;
689 	unsigned long lastreport;
690 	struct rcu_head *list;
691 	struct rcu_head *next;
692 	LIST_HEAD(rcu_tasks_holdouts);
693 
694 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
695 	housekeeping_affine(current);
696 
697 	/*
698 	 * Each pass through the following loop makes one check for
699 	 * newly arrived callbacks, and, if there are some, waits for
700 	 * one RCU-tasks grace period and then invokes the callbacks.
701 	 * This loop is terminated by the system going down.  ;-)
702 	 */
703 	for (;;) {
704 
705 		/* Pick up any new callbacks. */
706 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
707 		list = rcu_tasks_cbs_head;
708 		rcu_tasks_cbs_head = NULL;
709 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
710 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
711 
712 		/* If there were none, wait a bit and start over. */
713 		if (!list) {
714 			wait_event_interruptible(rcu_tasks_cbs_wq,
715 						 rcu_tasks_cbs_head);
716 			if (!rcu_tasks_cbs_head) {
717 				WARN_ON(signal_pending(current));
718 				schedule_timeout_interruptible(HZ/10);
719 			}
720 			continue;
721 		}
722 
723 		/*
724 		 * Wait for all pre-existing t->on_rq and t->nvcsw
725 		 * transitions to complete.  Invoking synchronize_sched()
726 		 * suffices because all these transitions occur with
727 		 * interrupts disabled.  Without this synchronize_sched(),
728 		 * a read-side critical section that started before the
729 		 * grace period might be incorrectly seen as having started
730 		 * after the grace period.
731 		 *
732 		 * This synchronize_sched() also dispenses with the
733 		 * need for a memory barrier on the first store to
734 		 * ->rcu_tasks_holdout, as it forces the store to happen
735 		 * after the beginning of the grace period.
736 		 */
737 		synchronize_sched();
738 
739 		/*
740 		 * There were callbacks, so we need to wait for an
741 		 * RCU-tasks grace period.  Start off by scanning
742 		 * the task list for tasks that are not already
743 		 * voluntarily blocked.  Mark these tasks and make
744 		 * a list of them in rcu_tasks_holdouts.
745 		 */
746 		rcu_read_lock();
747 		for_each_process_thread(g, t) {
748 			if (t != current && READ_ONCE(t->on_rq) &&
749 			    !is_idle_task(t)) {
750 				get_task_struct(t);
751 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
752 				WRITE_ONCE(t->rcu_tasks_holdout, true);
753 				list_add(&t->rcu_tasks_holdout_list,
754 					 &rcu_tasks_holdouts);
755 			}
756 		}
757 		rcu_read_unlock();
758 
759 		/*
760 		 * Wait for tasks that are in the process of exiting.
761 		 * This does only part of the job, ensuring that all
762 		 * tasks that were previously exiting reach the point
763 		 * where they have disabled preemption, allowing the
764 		 * later synchronize_sched() to finish the job.
765 		 */
766 		synchronize_srcu(&tasks_rcu_exit_srcu);
767 
768 		/*
769 		 * Each pass through the following loop scans the list
770 		 * of holdout tasks, removing any that are no longer
771 		 * holdouts.  When the list is empty, we are done.
772 		 */
773 		lastreport = jiffies;
774 		while (!list_empty(&rcu_tasks_holdouts)) {
775 			bool firstreport;
776 			bool needreport;
777 			int rtst;
778 			struct task_struct *t1;
779 
780 			schedule_timeout_interruptible(HZ);
781 			rtst = READ_ONCE(rcu_task_stall_timeout);
782 			needreport = rtst > 0 &&
783 				     time_after(jiffies, lastreport + rtst);
784 			if (needreport)
785 				lastreport = jiffies;
786 			firstreport = true;
787 			WARN_ON(signal_pending(current));
788 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
789 						rcu_tasks_holdout_list) {
790 				check_holdout_task(t, needreport, &firstreport);
791 				cond_resched();
792 			}
793 		}
794 
795 		/*
796 		 * Because ->on_rq and ->nvcsw are not guaranteed
797 		 * to have a full memory barriers prior to them in the
798 		 * schedule() path, memory reordering on other CPUs could
799 		 * cause their RCU-tasks read-side critical sections to
800 		 * extend past the end of the grace period.  However,
801 		 * because these ->nvcsw updates are carried out with
802 		 * interrupts disabled, we can use synchronize_sched()
803 		 * to force the needed ordering on all such CPUs.
804 		 *
805 		 * This synchronize_sched() also confines all
806 		 * ->rcu_tasks_holdout accesses to be within the grace
807 		 * period, avoiding the need for memory barriers for
808 		 * ->rcu_tasks_holdout accesses.
809 		 *
810 		 * In addition, this synchronize_sched() waits for exiting
811 		 * tasks to complete their final preempt_disable() region
812 		 * of execution, cleaning up after the synchronize_srcu()
813 		 * above.
814 		 */
815 		synchronize_sched();
816 
817 		/* Invoke the callbacks. */
818 		while (list) {
819 			next = list->next;
820 			local_bh_disable();
821 			list->func(list);
822 			local_bh_enable();
823 			list = next;
824 			cond_resched();
825 		}
826 		schedule_timeout_uninterruptible(HZ/10);
827 	}
828 }
829 
830 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
831 static void rcu_spawn_tasks_kthread(void)
832 {
833 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
834 	struct task_struct *t;
835 
836 	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
837 		smp_mb(); /* Ensure caller sees full kthread. */
838 		return;
839 	}
840 	mutex_lock(&rcu_tasks_kthread_mutex);
841 	if (rcu_tasks_kthread_ptr) {
842 		mutex_unlock(&rcu_tasks_kthread_mutex);
843 		return;
844 	}
845 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
846 	BUG_ON(IS_ERR(t));
847 	smp_mb(); /* Ensure others see full kthread. */
848 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
849 	mutex_unlock(&rcu_tasks_kthread_mutex);
850 }
851 
852 #endif /* #ifdef CONFIG_TASKS_RCU */
853 
854 #ifdef CONFIG_PROVE_RCU
855 
856 /*
857  * Early boot self test parameters, one for each flavor
858  */
859 static bool rcu_self_test;
860 static bool rcu_self_test_bh;
861 static bool rcu_self_test_sched;
862 
863 module_param(rcu_self_test, bool, 0444);
864 module_param(rcu_self_test_bh, bool, 0444);
865 module_param(rcu_self_test_sched, bool, 0444);
866 
867 static int rcu_self_test_counter;
868 
869 static void test_callback(struct rcu_head *r)
870 {
871 	rcu_self_test_counter++;
872 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
873 }
874 
875 static void early_boot_test_call_rcu(void)
876 {
877 	static struct rcu_head head;
878 
879 	call_rcu(&head, test_callback);
880 }
881 
882 static void early_boot_test_call_rcu_bh(void)
883 {
884 	static struct rcu_head head;
885 
886 	call_rcu_bh(&head, test_callback);
887 }
888 
889 static void early_boot_test_call_rcu_sched(void)
890 {
891 	static struct rcu_head head;
892 
893 	call_rcu_sched(&head, test_callback);
894 }
895 
896 void rcu_early_boot_tests(void)
897 {
898 	pr_info("Running RCU self tests\n");
899 
900 	if (rcu_self_test)
901 		early_boot_test_call_rcu();
902 	if (rcu_self_test_bh)
903 		early_boot_test_call_rcu_bh();
904 	if (rcu_self_test_sched)
905 		early_boot_test_call_rcu_sched();
906 	rcu_test_sync_prims();
907 }
908 
909 static int rcu_verify_early_boot_tests(void)
910 {
911 	int ret = 0;
912 	int early_boot_test_counter = 0;
913 
914 	if (rcu_self_test) {
915 		early_boot_test_counter++;
916 		rcu_barrier();
917 	}
918 	if (rcu_self_test_bh) {
919 		early_boot_test_counter++;
920 		rcu_barrier_bh();
921 	}
922 	if (rcu_self_test_sched) {
923 		early_boot_test_counter++;
924 		rcu_barrier_sched();
925 	}
926 
927 	if (rcu_self_test_counter != early_boot_test_counter) {
928 		WARN_ON(1);
929 		ret = -1;
930 	}
931 
932 	return ret;
933 }
934 late_initcall(rcu_verify_early_boot_tests);
935 #else
936 void rcu_early_boot_tests(void) {}
937 #endif /* CONFIG_PROVE_RCU */
938