1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * Papers: 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 28 * 29 * For detailed explanation of Read-Copy Update mechanism see - 30 * http://lse.sourceforge.net/locking/rcupdate.html 31 * 32 */ 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/interrupt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/debug.h> 41 #include <linux/atomic.h> 42 #include <linux/bitops.h> 43 #include <linux/percpu.h> 44 #include <linux/notifier.h> 45 #include <linux/cpu.h> 46 #include <linux/mutex.h> 47 #include <linux/export.h> 48 #include <linux/hardirq.h> 49 #include <linux/delay.h> 50 #include <linux/moduleparam.h> 51 #include <linux/kthread.h> 52 #include <linux/tick.h> 53 #include <linux/rcupdate_wait.h> 54 #include <linux/sched/isolation.h> 55 56 #define CREATE_TRACE_POINTS 57 58 #include "rcu.h" 59 60 #ifdef MODULE_PARAM_PREFIX 61 #undef MODULE_PARAM_PREFIX 62 #endif 63 #define MODULE_PARAM_PREFIX "rcupdate." 64 65 #ifndef CONFIG_TINY_RCU 66 extern int rcu_expedited; /* from sysctl */ 67 module_param(rcu_expedited, int, 0); 68 extern int rcu_normal; /* from sysctl */ 69 module_param(rcu_normal, int, 0); 70 static int rcu_normal_after_boot; 71 module_param(rcu_normal_after_boot, int, 0); 72 #endif /* #ifndef CONFIG_TINY_RCU */ 73 74 #ifdef CONFIG_DEBUG_LOCK_ALLOC 75 /** 76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 77 * 78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 79 * RCU-sched read-side critical section. In absence of 80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 81 * critical section unless it can prove otherwise. Note that disabling 82 * of preemption (including disabling irqs) counts as an RCU-sched 83 * read-side critical section. This is useful for debug checks in functions 84 * that required that they be called within an RCU-sched read-side 85 * critical section. 86 * 87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 88 * and while lockdep is disabled. 89 * 90 * Note that if the CPU is in the idle loop from an RCU point of 91 * view (ie: that we are in the section between rcu_idle_enter() and 92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 93 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 94 * that are in such a section, considering these as in extended quiescent 95 * state, so such a CPU is effectively never in an RCU read-side critical 96 * section regardless of what RCU primitives it invokes. This state of 97 * affairs is required --- we need to keep an RCU-free window in idle 98 * where the CPU may possibly enter into low power mode. This way we can 99 * notice an extended quiescent state to other CPUs that started a grace 100 * period. Otherwise we would delay any grace period as long as we run in 101 * the idle task. 102 * 103 * Similarly, we avoid claiming an SRCU read lock held if the current 104 * CPU is offline. 105 */ 106 int rcu_read_lock_sched_held(void) 107 { 108 int lockdep_opinion = 0; 109 110 if (!debug_lockdep_rcu_enabled()) 111 return 1; 112 if (!rcu_is_watching()) 113 return 0; 114 if (!rcu_lockdep_current_cpu_online()) 115 return 0; 116 if (debug_locks) 117 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 118 return lockdep_opinion || !preemptible(); 119 } 120 EXPORT_SYMBOL(rcu_read_lock_sched_held); 121 #endif 122 123 #ifndef CONFIG_TINY_RCU 124 125 /* 126 * Should expedited grace-period primitives always fall back to their 127 * non-expedited counterparts? Intended for use within RCU. Note 128 * that if the user specifies both rcu_expedited and rcu_normal, then 129 * rcu_normal wins. (Except during the time period during boot from 130 * when the first task is spawned until the rcu_set_runtime_mode() 131 * core_initcall() is invoked, at which point everything is expedited.) 132 */ 133 bool rcu_gp_is_normal(void) 134 { 135 return READ_ONCE(rcu_normal) && 136 rcu_scheduler_active != RCU_SCHEDULER_INIT; 137 } 138 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 139 140 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); 141 142 /* 143 * Should normal grace-period primitives be expedited? Intended for 144 * use within RCU. Note that this function takes the rcu_expedited 145 * sysfs/boot variable and rcu_scheduler_active into account as well 146 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp() 147 * until rcu_gp_is_expedited() returns false is a -really- bad idea. 148 */ 149 bool rcu_gp_is_expedited(void) 150 { 151 return rcu_expedited || atomic_read(&rcu_expedited_nesting) || 152 rcu_scheduler_active == RCU_SCHEDULER_INIT; 153 } 154 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 155 156 /** 157 * rcu_expedite_gp - Expedite future RCU grace periods 158 * 159 * After a call to this function, future calls to synchronize_rcu() and 160 * friends act as the corresponding synchronize_rcu_expedited() function 161 * had instead been called. 162 */ 163 void rcu_expedite_gp(void) 164 { 165 atomic_inc(&rcu_expedited_nesting); 166 } 167 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 168 169 /** 170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 171 * 172 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 174 * and if the rcu_expedited sysfs/boot parameter is not set, then all 175 * subsequent calls to synchronize_rcu() and friends will return to 176 * their normal non-expedited behavior. 177 */ 178 void rcu_unexpedite_gp(void) 179 { 180 atomic_dec(&rcu_expedited_nesting); 181 } 182 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 183 184 /* 185 * Inform RCU of the end of the in-kernel boot sequence. 186 */ 187 void rcu_end_inkernel_boot(void) 188 { 189 rcu_unexpedite_gp(); 190 if (rcu_normal_after_boot) 191 WRITE_ONCE(rcu_normal, 1); 192 } 193 194 #endif /* #ifndef CONFIG_TINY_RCU */ 195 196 /* 197 * Test each non-SRCU synchronous grace-period wait API. This is 198 * useful just after a change in mode for these primitives, and 199 * during early boot. 200 */ 201 void rcu_test_sync_prims(void) 202 { 203 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 204 return; 205 synchronize_rcu(); 206 synchronize_rcu_bh(); 207 synchronize_sched(); 208 synchronize_rcu_expedited(); 209 synchronize_rcu_bh_expedited(); 210 synchronize_sched_expedited(); 211 } 212 213 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) 214 215 /* 216 * Switch to run-time mode once RCU has fully initialized. 217 */ 218 static int __init rcu_set_runtime_mode(void) 219 { 220 rcu_test_sync_prims(); 221 rcu_scheduler_active = RCU_SCHEDULER_RUNNING; 222 rcu_test_sync_prims(); 223 return 0; 224 } 225 core_initcall(rcu_set_runtime_mode); 226 227 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ 228 229 #ifdef CONFIG_DEBUG_LOCK_ALLOC 230 static struct lock_class_key rcu_lock_key; 231 struct lockdep_map rcu_lock_map = 232 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 233 EXPORT_SYMBOL_GPL(rcu_lock_map); 234 235 static struct lock_class_key rcu_bh_lock_key; 236 struct lockdep_map rcu_bh_lock_map = 237 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 238 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 239 240 static struct lock_class_key rcu_sched_lock_key; 241 struct lockdep_map rcu_sched_lock_map = 242 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 243 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 244 245 static struct lock_class_key rcu_callback_key; 246 struct lockdep_map rcu_callback_map = 247 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 248 EXPORT_SYMBOL_GPL(rcu_callback_map); 249 250 int notrace debug_lockdep_rcu_enabled(void) 251 { 252 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && 253 current->lockdep_recursion == 0; 254 } 255 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 256 257 /** 258 * rcu_read_lock_held() - might we be in RCU read-side critical section? 259 * 260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 261 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 262 * this assumes we are in an RCU read-side critical section unless it can 263 * prove otherwise. This is useful for debug checks in functions that 264 * require that they be called within an RCU read-side critical section. 265 * 266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 267 * and while lockdep is disabled. 268 * 269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 270 * occur in the same context, for example, it is illegal to invoke 271 * rcu_read_unlock() in process context if the matching rcu_read_lock() 272 * was invoked from within an irq handler. 273 * 274 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 275 * offline from an RCU perspective, so check for those as well. 276 */ 277 int rcu_read_lock_held(void) 278 { 279 if (!debug_lockdep_rcu_enabled()) 280 return 1; 281 if (!rcu_is_watching()) 282 return 0; 283 if (!rcu_lockdep_current_cpu_online()) 284 return 0; 285 return lock_is_held(&rcu_lock_map); 286 } 287 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 288 289 /** 290 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 291 * 292 * Check for bottom half being disabled, which covers both the 293 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 294 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 295 * will show the situation. This is useful for debug checks in functions 296 * that require that they be called within an RCU read-side critical 297 * section. 298 * 299 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 300 * 301 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 302 * offline from an RCU perspective, so check for those as well. 303 */ 304 int rcu_read_lock_bh_held(void) 305 { 306 if (!debug_lockdep_rcu_enabled()) 307 return 1; 308 if (!rcu_is_watching()) 309 return 0; 310 if (!rcu_lockdep_current_cpu_online()) 311 return 0; 312 return in_softirq() || irqs_disabled(); 313 } 314 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 315 316 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 317 318 /** 319 * wakeme_after_rcu() - Callback function to awaken a task after grace period 320 * @head: Pointer to rcu_head member within rcu_synchronize structure 321 * 322 * Awaken the corresponding task now that a grace period has elapsed. 323 */ 324 void wakeme_after_rcu(struct rcu_head *head) 325 { 326 struct rcu_synchronize *rcu; 327 328 rcu = container_of(head, struct rcu_synchronize, head); 329 complete(&rcu->completion); 330 } 331 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 332 333 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 334 struct rcu_synchronize *rs_array) 335 { 336 int i; 337 int j; 338 339 /* Initialize and register callbacks for each flavor specified. */ 340 for (i = 0; i < n; i++) { 341 if (checktiny && 342 (crcu_array[i] == call_rcu || 343 crcu_array[i] == call_rcu_bh)) { 344 might_sleep(); 345 continue; 346 } 347 init_rcu_head_on_stack(&rs_array[i].head); 348 init_completion(&rs_array[i].completion); 349 for (j = 0; j < i; j++) 350 if (crcu_array[j] == crcu_array[i]) 351 break; 352 if (j == i) 353 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 354 } 355 356 /* Wait for all callbacks to be invoked. */ 357 for (i = 0; i < n; i++) { 358 if (checktiny && 359 (crcu_array[i] == call_rcu || 360 crcu_array[i] == call_rcu_bh)) 361 continue; 362 for (j = 0; j < i; j++) 363 if (crcu_array[j] == crcu_array[i]) 364 break; 365 if (j == i) 366 wait_for_completion(&rs_array[i].completion); 367 destroy_rcu_head_on_stack(&rs_array[i].head); 368 } 369 } 370 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 371 372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 373 void init_rcu_head(struct rcu_head *head) 374 { 375 debug_object_init(head, &rcuhead_debug_descr); 376 } 377 EXPORT_SYMBOL_GPL(init_rcu_head); 378 379 void destroy_rcu_head(struct rcu_head *head) 380 { 381 debug_object_free(head, &rcuhead_debug_descr); 382 } 383 EXPORT_SYMBOL_GPL(destroy_rcu_head); 384 385 static bool rcuhead_is_static_object(void *addr) 386 { 387 return true; 388 } 389 390 /** 391 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 392 * @head: pointer to rcu_head structure to be initialized 393 * 394 * This function informs debugobjects of a new rcu_head structure that 395 * has been allocated as an auto variable on the stack. This function 396 * is not required for rcu_head structures that are statically defined or 397 * that are dynamically allocated on the heap. This function has no 398 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 399 */ 400 void init_rcu_head_on_stack(struct rcu_head *head) 401 { 402 debug_object_init_on_stack(head, &rcuhead_debug_descr); 403 } 404 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 405 406 /** 407 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 408 * @head: pointer to rcu_head structure to be initialized 409 * 410 * This function informs debugobjects that an on-stack rcu_head structure 411 * is about to go out of scope. As with init_rcu_head_on_stack(), this 412 * function is not required for rcu_head structures that are statically 413 * defined or that are dynamically allocated on the heap. Also as with 414 * init_rcu_head_on_stack(), this function has no effect for 415 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 416 */ 417 void destroy_rcu_head_on_stack(struct rcu_head *head) 418 { 419 debug_object_free(head, &rcuhead_debug_descr); 420 } 421 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 422 423 struct debug_obj_descr rcuhead_debug_descr = { 424 .name = "rcu_head", 425 .is_static_object = rcuhead_is_static_object, 426 }; 427 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 428 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 429 430 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 431 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 432 unsigned long secs, 433 unsigned long c_old, unsigned long c) 434 { 435 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 436 } 437 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 438 #else 439 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 440 do { } while (0) 441 #endif 442 443 #ifdef CONFIG_RCU_STALL_COMMON 444 445 #ifdef CONFIG_PROVE_RCU 446 #define RCU_STALL_DELAY_DELTA (5 * HZ) 447 #else 448 #define RCU_STALL_DELAY_DELTA 0 449 #endif 450 451 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 452 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 453 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 454 455 module_param(rcu_cpu_stall_suppress, int, 0644); 456 module_param(rcu_cpu_stall_timeout, int, 0644); 457 458 int rcu_jiffies_till_stall_check(void) 459 { 460 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 461 462 /* 463 * Limit check must be consistent with the Kconfig limits 464 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 465 */ 466 if (till_stall_check < 3) { 467 WRITE_ONCE(rcu_cpu_stall_timeout, 3); 468 till_stall_check = 3; 469 } else if (till_stall_check > 300) { 470 WRITE_ONCE(rcu_cpu_stall_timeout, 300); 471 till_stall_check = 300; 472 } 473 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 474 } 475 476 void rcu_sysrq_start(void) 477 { 478 if (!rcu_cpu_stall_suppress) 479 rcu_cpu_stall_suppress = 2; 480 } 481 482 void rcu_sysrq_end(void) 483 { 484 if (rcu_cpu_stall_suppress == 2) 485 rcu_cpu_stall_suppress = 0; 486 } 487 488 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 489 { 490 rcu_cpu_stall_suppress = 1; 491 return NOTIFY_DONE; 492 } 493 494 static struct notifier_block rcu_panic_block = { 495 .notifier_call = rcu_panic, 496 }; 497 498 static int __init check_cpu_stall_init(void) 499 { 500 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 501 return 0; 502 } 503 early_initcall(check_cpu_stall_init); 504 505 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 506 507 #ifdef CONFIG_TASKS_RCU 508 509 /* 510 * Simple variant of RCU whose quiescent states are voluntary context 511 * switch, cond_resched_rcu_qs(), user-space execution, and idle. 512 * As such, grace periods can take one good long time. There are no 513 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 514 * because this implementation is intended to get the system into a safe 515 * state for some of the manipulations involved in tracing and the like. 516 * Finally, this implementation does not support high call_rcu_tasks() 517 * rates from multiple CPUs. If this is required, per-CPU callback lists 518 * will be needed. 519 */ 520 521 /* Global list of callbacks and associated lock. */ 522 static struct rcu_head *rcu_tasks_cbs_head; 523 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 524 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 525 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 526 527 /* Track exiting tasks in order to allow them to be waited for. */ 528 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 529 530 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 531 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 532 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 533 module_param(rcu_task_stall_timeout, int, 0644); 534 535 static struct task_struct *rcu_tasks_kthread_ptr; 536 537 /** 538 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 539 * @rhp: structure to be used for queueing the RCU updates. 540 * @func: actual callback function to be invoked after the grace period 541 * 542 * The callback function will be invoked some time after a full grace 543 * period elapses, in other words after all currently executing RCU 544 * read-side critical sections have completed. call_rcu_tasks() assumes 545 * that the read-side critical sections end at a voluntary context 546 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 547 * or transition to usermode execution. As such, there are no read-side 548 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 549 * this primitive is intended to determine that all tasks have passed 550 * through a safe state, not so much for data-strcuture synchronization. 551 * 552 * See the description of call_rcu() for more detailed information on 553 * memory ordering guarantees. 554 */ 555 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 556 { 557 unsigned long flags; 558 bool needwake; 559 560 rhp->next = NULL; 561 rhp->func = func; 562 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 563 needwake = !rcu_tasks_cbs_head; 564 *rcu_tasks_cbs_tail = rhp; 565 rcu_tasks_cbs_tail = &rhp->next; 566 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 567 /* We can't create the thread unless interrupts are enabled. */ 568 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) 569 wake_up(&rcu_tasks_cbs_wq); 570 } 571 EXPORT_SYMBOL_GPL(call_rcu_tasks); 572 573 /** 574 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 575 * 576 * Control will return to the caller some time after a full rcu-tasks 577 * grace period has elapsed, in other words after all currently 578 * executing rcu-tasks read-side critical sections have elapsed. These 579 * read-side critical sections are delimited by calls to schedule(), 580 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 581 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 582 * 583 * This is a very specialized primitive, intended only for a few uses in 584 * tracing and other situations requiring manipulation of function 585 * preambles and profiling hooks. The synchronize_rcu_tasks() function 586 * is not (yet) intended for heavy use from multiple CPUs. 587 * 588 * Note that this guarantee implies further memory-ordering guarantees. 589 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 590 * each CPU is guaranteed to have executed a full memory barrier since the 591 * end of its last RCU-tasks read-side critical section whose beginning 592 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 593 * having an RCU-tasks read-side critical section that extends beyond 594 * the return from synchronize_rcu_tasks() is guaranteed to have executed 595 * a full memory barrier after the beginning of synchronize_rcu_tasks() 596 * and before the beginning of that RCU-tasks read-side critical section. 597 * Note that these guarantees include CPUs that are offline, idle, or 598 * executing in user mode, as well as CPUs that are executing in the kernel. 599 * 600 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 601 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 602 * to have executed a full memory barrier during the execution of 603 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 604 * (but again only if the system has more than one CPU). 605 */ 606 void synchronize_rcu_tasks(void) 607 { 608 /* Complain if the scheduler has not started. */ 609 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 610 "synchronize_rcu_tasks called too soon"); 611 612 /* Wait for the grace period. */ 613 wait_rcu_gp(call_rcu_tasks); 614 } 615 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 616 617 /** 618 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 619 * 620 * Although the current implementation is guaranteed to wait, it is not 621 * obligated to, for example, if there are no pending callbacks. 622 */ 623 void rcu_barrier_tasks(void) 624 { 625 /* There is only one callback queue, so this is easy. ;-) */ 626 synchronize_rcu_tasks(); 627 } 628 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 629 630 /* See if tasks are still holding out, complain if so. */ 631 static void check_holdout_task(struct task_struct *t, 632 bool needreport, bool *firstreport) 633 { 634 int cpu; 635 636 if (!READ_ONCE(t->rcu_tasks_holdout) || 637 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 638 !READ_ONCE(t->on_rq) || 639 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 640 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 641 WRITE_ONCE(t->rcu_tasks_holdout, false); 642 list_del_init(&t->rcu_tasks_holdout_list); 643 put_task_struct(t); 644 return; 645 } 646 rcu_request_urgent_qs_task(t); 647 if (!needreport) 648 return; 649 if (*firstreport) { 650 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 651 *firstreport = false; 652 } 653 cpu = task_cpu(t); 654 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 655 t, ".I"[is_idle_task(t)], 656 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 657 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 658 t->rcu_tasks_idle_cpu, cpu); 659 sched_show_task(t); 660 } 661 662 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 663 static int __noreturn rcu_tasks_kthread(void *arg) 664 { 665 unsigned long flags; 666 struct task_struct *g, *t; 667 unsigned long lastreport; 668 struct rcu_head *list; 669 struct rcu_head *next; 670 LIST_HEAD(rcu_tasks_holdouts); 671 int fract; 672 673 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 674 housekeeping_affine(current, HK_FLAG_RCU); 675 676 /* 677 * Each pass through the following loop makes one check for 678 * newly arrived callbacks, and, if there are some, waits for 679 * one RCU-tasks grace period and then invokes the callbacks. 680 * This loop is terminated by the system going down. ;-) 681 */ 682 for (;;) { 683 684 /* Pick up any new callbacks. */ 685 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 686 list = rcu_tasks_cbs_head; 687 rcu_tasks_cbs_head = NULL; 688 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 689 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 690 691 /* If there were none, wait a bit and start over. */ 692 if (!list) { 693 wait_event_interruptible(rcu_tasks_cbs_wq, 694 rcu_tasks_cbs_head); 695 if (!rcu_tasks_cbs_head) { 696 WARN_ON(signal_pending(current)); 697 schedule_timeout_interruptible(HZ/10); 698 } 699 continue; 700 } 701 702 /* 703 * Wait for all pre-existing t->on_rq and t->nvcsw 704 * transitions to complete. Invoking synchronize_sched() 705 * suffices because all these transitions occur with 706 * interrupts disabled. Without this synchronize_sched(), 707 * a read-side critical section that started before the 708 * grace period might be incorrectly seen as having started 709 * after the grace period. 710 * 711 * This synchronize_sched() also dispenses with the 712 * need for a memory barrier on the first store to 713 * ->rcu_tasks_holdout, as it forces the store to happen 714 * after the beginning of the grace period. 715 */ 716 synchronize_sched(); 717 718 /* 719 * There were callbacks, so we need to wait for an 720 * RCU-tasks grace period. Start off by scanning 721 * the task list for tasks that are not already 722 * voluntarily blocked. Mark these tasks and make 723 * a list of them in rcu_tasks_holdouts. 724 */ 725 rcu_read_lock(); 726 for_each_process_thread(g, t) { 727 if (t != current && READ_ONCE(t->on_rq) && 728 !is_idle_task(t)) { 729 get_task_struct(t); 730 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 731 WRITE_ONCE(t->rcu_tasks_holdout, true); 732 list_add(&t->rcu_tasks_holdout_list, 733 &rcu_tasks_holdouts); 734 } 735 } 736 rcu_read_unlock(); 737 738 /* 739 * Wait for tasks that are in the process of exiting. 740 * This does only part of the job, ensuring that all 741 * tasks that were previously exiting reach the point 742 * where they have disabled preemption, allowing the 743 * later synchronize_sched() to finish the job. 744 */ 745 synchronize_srcu(&tasks_rcu_exit_srcu); 746 747 /* 748 * Each pass through the following loop scans the list 749 * of holdout tasks, removing any that are no longer 750 * holdouts. When the list is empty, we are done. 751 */ 752 lastreport = jiffies; 753 754 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ 755 fract = 10; 756 757 for (;;) { 758 bool firstreport; 759 bool needreport; 760 int rtst; 761 struct task_struct *t1; 762 763 if (list_empty(&rcu_tasks_holdouts)) 764 break; 765 766 /* Slowly back off waiting for holdouts */ 767 schedule_timeout_interruptible(HZ/fract); 768 769 if (fract > 1) 770 fract--; 771 772 rtst = READ_ONCE(rcu_task_stall_timeout); 773 needreport = rtst > 0 && 774 time_after(jiffies, lastreport + rtst); 775 if (needreport) 776 lastreport = jiffies; 777 firstreport = true; 778 WARN_ON(signal_pending(current)); 779 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 780 rcu_tasks_holdout_list) { 781 check_holdout_task(t, needreport, &firstreport); 782 cond_resched(); 783 } 784 } 785 786 /* 787 * Because ->on_rq and ->nvcsw are not guaranteed 788 * to have a full memory barriers prior to them in the 789 * schedule() path, memory reordering on other CPUs could 790 * cause their RCU-tasks read-side critical sections to 791 * extend past the end of the grace period. However, 792 * because these ->nvcsw updates are carried out with 793 * interrupts disabled, we can use synchronize_sched() 794 * to force the needed ordering on all such CPUs. 795 * 796 * This synchronize_sched() also confines all 797 * ->rcu_tasks_holdout accesses to be within the grace 798 * period, avoiding the need for memory barriers for 799 * ->rcu_tasks_holdout accesses. 800 * 801 * In addition, this synchronize_sched() waits for exiting 802 * tasks to complete their final preempt_disable() region 803 * of execution, cleaning up after the synchronize_srcu() 804 * above. 805 */ 806 synchronize_sched(); 807 808 /* Invoke the callbacks. */ 809 while (list) { 810 next = list->next; 811 local_bh_disable(); 812 list->func(list); 813 local_bh_enable(); 814 list = next; 815 cond_resched(); 816 } 817 /* Paranoid sleep to keep this from entering a tight loop */ 818 schedule_timeout_uninterruptible(HZ/10); 819 } 820 } 821 822 /* Spawn rcu_tasks_kthread() at core_initcall() time. */ 823 static int __init rcu_spawn_tasks_kthread(void) 824 { 825 struct task_struct *t; 826 827 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 828 BUG_ON(IS_ERR(t)); 829 smp_mb(); /* Ensure others see full kthread. */ 830 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 831 return 0; 832 } 833 core_initcall(rcu_spawn_tasks_kthread); 834 835 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 836 void exit_tasks_rcu_start(void) 837 { 838 preempt_disable(); 839 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 840 preempt_enable(); 841 } 842 843 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 844 void exit_tasks_rcu_finish(void) 845 { 846 preempt_disable(); 847 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); 848 preempt_enable(); 849 } 850 851 #endif /* #ifdef CONFIG_TASKS_RCU */ 852 853 #ifndef CONFIG_TINY_RCU 854 855 /* 856 * Print any non-default Tasks RCU settings. 857 */ 858 static void __init rcu_tasks_bootup_oddness(void) 859 { 860 #ifdef CONFIG_TASKS_RCU 861 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 862 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 863 else 864 pr_info("\tTasks RCU enabled.\n"); 865 #endif /* #ifdef CONFIG_TASKS_RCU */ 866 } 867 868 #endif /* #ifndef CONFIG_TINY_RCU */ 869 870 #ifdef CONFIG_PROVE_RCU 871 872 /* 873 * Early boot self test parameters, one for each flavor 874 */ 875 static bool rcu_self_test; 876 static bool rcu_self_test_bh; 877 static bool rcu_self_test_sched; 878 879 module_param(rcu_self_test, bool, 0444); 880 module_param(rcu_self_test_bh, bool, 0444); 881 module_param(rcu_self_test_sched, bool, 0444); 882 883 static int rcu_self_test_counter; 884 885 static void test_callback(struct rcu_head *r) 886 { 887 rcu_self_test_counter++; 888 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 889 } 890 891 static void early_boot_test_call_rcu(void) 892 { 893 static struct rcu_head head; 894 895 call_rcu(&head, test_callback); 896 } 897 898 static void early_boot_test_call_rcu_bh(void) 899 { 900 static struct rcu_head head; 901 902 call_rcu_bh(&head, test_callback); 903 } 904 905 static void early_boot_test_call_rcu_sched(void) 906 { 907 static struct rcu_head head; 908 909 call_rcu_sched(&head, test_callback); 910 } 911 912 void rcu_early_boot_tests(void) 913 { 914 pr_info("Running RCU self tests\n"); 915 916 if (rcu_self_test) 917 early_boot_test_call_rcu(); 918 if (rcu_self_test_bh) 919 early_boot_test_call_rcu_bh(); 920 if (rcu_self_test_sched) 921 early_boot_test_call_rcu_sched(); 922 rcu_test_sync_prims(); 923 } 924 925 static int rcu_verify_early_boot_tests(void) 926 { 927 int ret = 0; 928 int early_boot_test_counter = 0; 929 930 if (rcu_self_test) { 931 early_boot_test_counter++; 932 rcu_barrier(); 933 } 934 if (rcu_self_test_bh) { 935 early_boot_test_counter++; 936 rcu_barrier_bh(); 937 } 938 if (rcu_self_test_sched) { 939 early_boot_test_counter++; 940 rcu_barrier_sched(); 941 } 942 943 if (rcu_self_test_counter != early_boot_test_counter) { 944 WARN_ON(1); 945 ret = -1; 946 } 947 948 return ret; 949 } 950 late_initcall(rcu_verify_early_boot_tests); 951 #else 952 void rcu_early_boot_tests(void) {} 953 #endif /* CONFIG_PROVE_RCU */ 954 955 #ifndef CONFIG_TINY_RCU 956 957 /* 958 * Print any significant non-default boot-time settings. 959 */ 960 void __init rcupdate_announce_bootup_oddness(void) 961 { 962 if (rcu_normal) 963 pr_info("\tNo expedited grace period (rcu_normal).\n"); 964 else if (rcu_normal_after_boot) 965 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); 966 else if (rcu_expedited) 967 pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); 968 if (rcu_cpu_stall_suppress) 969 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); 970 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) 971 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); 972 rcu_tasks_bootup_oddness(); 973 } 974 975 #endif /* #ifndef CONFIG_TINY_RCU */ 976