xref: /openbmc/linux/kernel/rcu/update.c (revision cd4d09ec)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52 
53 #define CREATE_TRACE_POINTS
54 
55 #include "rcu.h"
56 
57 MODULE_ALIAS("rcupdate");
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcupdate."
62 
63 #ifndef CONFIG_TINY_RCU
64 module_param(rcu_expedited, int, 0);
65 module_param(rcu_normal, int, 0);
66 static int rcu_normal_after_boot;
67 module_param(rcu_normal_after_boot, int, 0);
68 #endif /* #ifndef CONFIG_TINY_RCU */
69 
70 #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
71 /**
72  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
73  *
74  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
75  * RCU-sched read-side critical section.  In absence of
76  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
77  * critical section unless it can prove otherwise.  Note that disabling
78  * of preemption (including disabling irqs) counts as an RCU-sched
79  * read-side critical section.  This is useful for debug checks in functions
80  * that required that they be called within an RCU-sched read-side
81  * critical section.
82  *
83  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
84  * and while lockdep is disabled.
85  *
86  * Note that if the CPU is in the idle loop from an RCU point of
87  * view (ie: that we are in the section between rcu_idle_enter() and
88  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
89  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
90  * that are in such a section, considering these as in extended quiescent
91  * state, so such a CPU is effectively never in an RCU read-side critical
92  * section regardless of what RCU primitives it invokes.  This state of
93  * affairs is required --- we need to keep an RCU-free window in idle
94  * where the CPU may possibly enter into low power mode. This way we can
95  * notice an extended quiescent state to other CPUs that started a grace
96  * period. Otherwise we would delay any grace period as long as we run in
97  * the idle task.
98  *
99  * Similarly, we avoid claiming an SRCU read lock held if the current
100  * CPU is offline.
101  */
102 int rcu_read_lock_sched_held(void)
103 {
104 	int lockdep_opinion = 0;
105 
106 	if (!debug_lockdep_rcu_enabled())
107 		return 1;
108 	if (!rcu_is_watching())
109 		return 0;
110 	if (!rcu_lockdep_current_cpu_online())
111 		return 0;
112 	if (debug_locks)
113 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
114 	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
115 }
116 EXPORT_SYMBOL(rcu_read_lock_sched_held);
117 #endif
118 
119 #ifndef CONFIG_TINY_RCU
120 
121 /*
122  * Should expedited grace-period primitives always fall back to their
123  * non-expedited counterparts?  Intended for use within RCU.  Note
124  * that if the user specifies both rcu_expedited and rcu_normal, then
125  * rcu_normal wins.
126  */
127 bool rcu_gp_is_normal(void)
128 {
129 	return READ_ONCE(rcu_normal);
130 }
131 
132 static atomic_t rcu_expedited_nesting =
133 	ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
134 
135 /*
136  * Should normal grace-period primitives be expedited?  Intended for
137  * use within RCU.  Note that this function takes the rcu_expedited
138  * sysfs/boot variable into account as well as the rcu_expedite_gp()
139  * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
140  * returns false is a -really- bad idea.
141  */
142 bool rcu_gp_is_expedited(void)
143 {
144 	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
145 }
146 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
147 
148 /**
149  * rcu_expedite_gp - Expedite future RCU grace periods
150  *
151  * After a call to this function, future calls to synchronize_rcu() and
152  * friends act as the corresponding synchronize_rcu_expedited() function
153  * had instead been called.
154  */
155 void rcu_expedite_gp(void)
156 {
157 	atomic_inc(&rcu_expedited_nesting);
158 }
159 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
160 
161 /**
162  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
163  *
164  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
165  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
166  * and if the rcu_expedited sysfs/boot parameter is not set, then all
167  * subsequent calls to synchronize_rcu() and friends will return to
168  * their normal non-expedited behavior.
169  */
170 void rcu_unexpedite_gp(void)
171 {
172 	atomic_dec(&rcu_expedited_nesting);
173 }
174 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
175 
176 /*
177  * Inform RCU of the end of the in-kernel boot sequence.
178  */
179 void rcu_end_inkernel_boot(void)
180 {
181 	if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
182 		rcu_unexpedite_gp();
183 	if (rcu_normal_after_boot)
184 		WRITE_ONCE(rcu_normal, 1);
185 }
186 
187 #endif /* #ifndef CONFIG_TINY_RCU */
188 
189 #ifdef CONFIG_PREEMPT_RCU
190 
191 /*
192  * Preemptible RCU implementation for rcu_read_lock().
193  * Just increment ->rcu_read_lock_nesting, shared state will be updated
194  * if we block.
195  */
196 void __rcu_read_lock(void)
197 {
198 	current->rcu_read_lock_nesting++;
199 	barrier();  /* critical section after entry code. */
200 }
201 EXPORT_SYMBOL_GPL(__rcu_read_lock);
202 
203 /*
204  * Preemptible RCU implementation for rcu_read_unlock().
205  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
206  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
207  * invoke rcu_read_unlock_special() to clean up after a context switch
208  * in an RCU read-side critical section and other special cases.
209  */
210 void __rcu_read_unlock(void)
211 {
212 	struct task_struct *t = current;
213 
214 	if (t->rcu_read_lock_nesting != 1) {
215 		--t->rcu_read_lock_nesting;
216 	} else {
217 		barrier();  /* critical section before exit code. */
218 		t->rcu_read_lock_nesting = INT_MIN;
219 		barrier();  /* assign before ->rcu_read_unlock_special load */
220 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
221 			rcu_read_unlock_special(t);
222 		barrier();  /* ->rcu_read_unlock_special load before assign */
223 		t->rcu_read_lock_nesting = 0;
224 	}
225 #ifdef CONFIG_PROVE_LOCKING
226 	{
227 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
228 
229 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
230 	}
231 #endif /* #ifdef CONFIG_PROVE_LOCKING */
232 }
233 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
234 
235 #endif /* #ifdef CONFIG_PREEMPT_RCU */
236 
237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
238 static struct lock_class_key rcu_lock_key;
239 struct lockdep_map rcu_lock_map =
240 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
241 EXPORT_SYMBOL_GPL(rcu_lock_map);
242 
243 static struct lock_class_key rcu_bh_lock_key;
244 struct lockdep_map rcu_bh_lock_map =
245 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
246 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
247 
248 static struct lock_class_key rcu_sched_lock_key;
249 struct lockdep_map rcu_sched_lock_map =
250 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
251 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
252 
253 static struct lock_class_key rcu_callback_key;
254 struct lockdep_map rcu_callback_map =
255 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
256 EXPORT_SYMBOL_GPL(rcu_callback_map);
257 
258 int notrace debug_lockdep_rcu_enabled(void)
259 {
260 	return rcu_scheduler_active && debug_locks &&
261 	       current->lockdep_recursion == 0;
262 }
263 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
264 
265 /**
266  * rcu_read_lock_held() - might we be in RCU read-side critical section?
267  *
268  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
269  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
270  * this assumes we are in an RCU read-side critical section unless it can
271  * prove otherwise.  This is useful for debug checks in functions that
272  * require that they be called within an RCU read-side critical section.
273  *
274  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
275  * and while lockdep is disabled.
276  *
277  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
278  * occur in the same context, for example, it is illegal to invoke
279  * rcu_read_unlock() in process context if the matching rcu_read_lock()
280  * was invoked from within an irq handler.
281  *
282  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
283  * offline from an RCU perspective, so check for those as well.
284  */
285 int rcu_read_lock_held(void)
286 {
287 	if (!debug_lockdep_rcu_enabled())
288 		return 1;
289 	if (!rcu_is_watching())
290 		return 0;
291 	if (!rcu_lockdep_current_cpu_online())
292 		return 0;
293 	return lock_is_held(&rcu_lock_map);
294 }
295 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
296 
297 /**
298  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
299  *
300  * Check for bottom half being disabled, which covers both the
301  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
302  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
303  * will show the situation.  This is useful for debug checks in functions
304  * that require that they be called within an RCU read-side critical
305  * section.
306  *
307  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
308  *
309  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
310  * offline from an RCU perspective, so check for those as well.
311  */
312 int rcu_read_lock_bh_held(void)
313 {
314 	if (!debug_lockdep_rcu_enabled())
315 		return 1;
316 	if (!rcu_is_watching())
317 		return 0;
318 	if (!rcu_lockdep_current_cpu_online())
319 		return 0;
320 	return in_softirq() || irqs_disabled();
321 }
322 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
323 
324 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
325 
326 /**
327  * wakeme_after_rcu() - Callback function to awaken a task after grace period
328  * @head: Pointer to rcu_head member within rcu_synchronize structure
329  *
330  * Awaken the corresponding task now that a grace period has elapsed.
331  */
332 void wakeme_after_rcu(struct rcu_head *head)
333 {
334 	struct rcu_synchronize *rcu;
335 
336 	rcu = container_of(head, struct rcu_synchronize, head);
337 	complete(&rcu->completion);
338 }
339 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
340 
341 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
342 		   struct rcu_synchronize *rs_array)
343 {
344 	int i;
345 
346 	/* Initialize and register callbacks for each flavor specified. */
347 	for (i = 0; i < n; i++) {
348 		if (checktiny &&
349 		    (crcu_array[i] == call_rcu ||
350 		     crcu_array[i] == call_rcu_bh)) {
351 			might_sleep();
352 			continue;
353 		}
354 		init_rcu_head_on_stack(&rs_array[i].head);
355 		init_completion(&rs_array[i].completion);
356 		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
357 	}
358 
359 	/* Wait for all callbacks to be invoked. */
360 	for (i = 0; i < n; i++) {
361 		if (checktiny &&
362 		    (crcu_array[i] == call_rcu ||
363 		     crcu_array[i] == call_rcu_bh))
364 			continue;
365 		wait_for_completion(&rs_array[i].completion);
366 		destroy_rcu_head_on_stack(&rs_array[i].head);
367 	}
368 }
369 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
370 
371 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
372 void init_rcu_head(struct rcu_head *head)
373 {
374 	debug_object_init(head, &rcuhead_debug_descr);
375 }
376 
377 void destroy_rcu_head(struct rcu_head *head)
378 {
379 	debug_object_free(head, &rcuhead_debug_descr);
380 }
381 
382 /*
383  * fixup_activate is called when:
384  * - an active object is activated
385  * - an unknown object is activated (might be a statically initialized object)
386  * Activation is performed internally by call_rcu().
387  */
388 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
389 {
390 	struct rcu_head *head = addr;
391 
392 	switch (state) {
393 
394 	case ODEBUG_STATE_NOTAVAILABLE:
395 		/*
396 		 * This is not really a fixup. We just make sure that it is
397 		 * tracked in the object tracker.
398 		 */
399 		debug_object_init(head, &rcuhead_debug_descr);
400 		debug_object_activate(head, &rcuhead_debug_descr);
401 		return 0;
402 	default:
403 		return 1;
404 	}
405 }
406 
407 /**
408  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
409  * @head: pointer to rcu_head structure to be initialized
410  *
411  * This function informs debugobjects of a new rcu_head structure that
412  * has been allocated as an auto variable on the stack.  This function
413  * is not required for rcu_head structures that are statically defined or
414  * that are dynamically allocated on the heap.  This function has no
415  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
416  */
417 void init_rcu_head_on_stack(struct rcu_head *head)
418 {
419 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
420 }
421 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
422 
423 /**
424  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
425  * @head: pointer to rcu_head structure to be initialized
426  *
427  * This function informs debugobjects that an on-stack rcu_head structure
428  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
429  * function is not required for rcu_head structures that are statically
430  * defined or that are dynamically allocated on the heap.  Also as with
431  * init_rcu_head_on_stack(), this function has no effect for
432  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
433  */
434 void destroy_rcu_head_on_stack(struct rcu_head *head)
435 {
436 	debug_object_free(head, &rcuhead_debug_descr);
437 }
438 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
439 
440 struct debug_obj_descr rcuhead_debug_descr = {
441 	.name = "rcu_head",
442 	.fixup_activate = rcuhead_fixup_activate,
443 };
444 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
445 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
446 
447 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
448 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
449 			       unsigned long secs,
450 			       unsigned long c_old, unsigned long c)
451 {
452 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
453 }
454 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
455 #else
456 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
457 	do { } while (0)
458 #endif
459 
460 #ifdef CONFIG_RCU_STALL_COMMON
461 
462 #ifdef CONFIG_PROVE_RCU
463 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
464 #else
465 #define RCU_STALL_DELAY_DELTA	       0
466 #endif
467 
468 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
469 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
470 
471 module_param(rcu_cpu_stall_suppress, int, 0644);
472 module_param(rcu_cpu_stall_timeout, int, 0644);
473 
474 int rcu_jiffies_till_stall_check(void)
475 {
476 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
477 
478 	/*
479 	 * Limit check must be consistent with the Kconfig limits
480 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
481 	 */
482 	if (till_stall_check < 3) {
483 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
484 		till_stall_check = 3;
485 	} else if (till_stall_check > 300) {
486 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
487 		till_stall_check = 300;
488 	}
489 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
490 }
491 
492 void rcu_sysrq_start(void)
493 {
494 	if (!rcu_cpu_stall_suppress)
495 		rcu_cpu_stall_suppress = 2;
496 }
497 
498 void rcu_sysrq_end(void)
499 {
500 	if (rcu_cpu_stall_suppress == 2)
501 		rcu_cpu_stall_suppress = 0;
502 }
503 
504 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
505 {
506 	rcu_cpu_stall_suppress = 1;
507 	return NOTIFY_DONE;
508 }
509 
510 static struct notifier_block rcu_panic_block = {
511 	.notifier_call = rcu_panic,
512 };
513 
514 static int __init check_cpu_stall_init(void)
515 {
516 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
517 	return 0;
518 }
519 early_initcall(check_cpu_stall_init);
520 
521 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
522 
523 #ifdef CONFIG_TASKS_RCU
524 
525 /*
526  * Simple variant of RCU whose quiescent states are voluntary context switch,
527  * user-space execution, and idle.  As such, grace periods can take one good
528  * long time.  There are no read-side primitives similar to rcu_read_lock()
529  * and rcu_read_unlock() because this implementation is intended to get
530  * the system into a safe state for some of the manipulations involved in
531  * tracing and the like.  Finally, this implementation does not support
532  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
533  * per-CPU callback lists will be needed.
534  */
535 
536 /* Global list of callbacks and associated lock. */
537 static struct rcu_head *rcu_tasks_cbs_head;
538 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
539 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
540 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
541 
542 /* Track exiting tasks in order to allow them to be waited for. */
543 DEFINE_SRCU(tasks_rcu_exit_srcu);
544 
545 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
546 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
547 module_param(rcu_task_stall_timeout, int, 0644);
548 
549 static void rcu_spawn_tasks_kthread(void);
550 
551 /*
552  * Post an RCU-tasks callback.  First call must be from process context
553  * after the scheduler if fully operational.
554  */
555 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
556 {
557 	unsigned long flags;
558 	bool needwake;
559 
560 	rhp->next = NULL;
561 	rhp->func = func;
562 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
563 	needwake = !rcu_tasks_cbs_head;
564 	*rcu_tasks_cbs_tail = rhp;
565 	rcu_tasks_cbs_tail = &rhp->next;
566 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
567 	if (needwake) {
568 		rcu_spawn_tasks_kthread();
569 		wake_up(&rcu_tasks_cbs_wq);
570 	}
571 }
572 EXPORT_SYMBOL_GPL(call_rcu_tasks);
573 
574 /**
575  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
576  *
577  * Control will return to the caller some time after a full rcu-tasks
578  * grace period has elapsed, in other words after all currently
579  * executing rcu-tasks read-side critical sections have elapsed.  These
580  * read-side critical sections are delimited by calls to schedule(),
581  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
582  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
583  *
584  * This is a very specialized primitive, intended only for a few uses in
585  * tracing and other situations requiring manipulation of function
586  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
587  * is not (yet) intended for heavy use from multiple CPUs.
588  *
589  * Note that this guarantee implies further memory-ordering guarantees.
590  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
591  * each CPU is guaranteed to have executed a full memory barrier since the
592  * end of its last RCU-tasks read-side critical section whose beginning
593  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
594  * having an RCU-tasks read-side critical section that extends beyond
595  * the return from synchronize_rcu_tasks() is guaranteed to have executed
596  * a full memory barrier after the beginning of synchronize_rcu_tasks()
597  * and before the beginning of that RCU-tasks read-side critical section.
598  * Note that these guarantees include CPUs that are offline, idle, or
599  * executing in user mode, as well as CPUs that are executing in the kernel.
600  *
601  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
602  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
603  * to have executed a full memory barrier during the execution of
604  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
605  * (but again only if the system has more than one CPU).
606  */
607 void synchronize_rcu_tasks(void)
608 {
609 	/* Complain if the scheduler has not started.  */
610 	RCU_LOCKDEP_WARN(!rcu_scheduler_active,
611 			 "synchronize_rcu_tasks called too soon");
612 
613 	/* Wait for the grace period. */
614 	wait_rcu_gp(call_rcu_tasks);
615 }
616 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
617 
618 /**
619  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
620  *
621  * Although the current implementation is guaranteed to wait, it is not
622  * obligated to, for example, if there are no pending callbacks.
623  */
624 void rcu_barrier_tasks(void)
625 {
626 	/* There is only one callback queue, so this is easy.  ;-) */
627 	synchronize_rcu_tasks();
628 }
629 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
630 
631 /* See if tasks are still holding out, complain if so. */
632 static void check_holdout_task(struct task_struct *t,
633 			       bool needreport, bool *firstreport)
634 {
635 	int cpu;
636 
637 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
638 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
639 	    !READ_ONCE(t->on_rq) ||
640 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
641 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
642 		WRITE_ONCE(t->rcu_tasks_holdout, false);
643 		list_del_init(&t->rcu_tasks_holdout_list);
644 		put_task_struct(t);
645 		return;
646 	}
647 	if (!needreport)
648 		return;
649 	if (*firstreport) {
650 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
651 		*firstreport = false;
652 	}
653 	cpu = task_cpu(t);
654 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
655 		 t, ".I"[is_idle_task(t)],
656 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
657 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
658 		 t->rcu_tasks_idle_cpu, cpu);
659 	sched_show_task(t);
660 }
661 
662 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
663 static int __noreturn rcu_tasks_kthread(void *arg)
664 {
665 	unsigned long flags;
666 	struct task_struct *g, *t;
667 	unsigned long lastreport;
668 	struct rcu_head *list;
669 	struct rcu_head *next;
670 	LIST_HEAD(rcu_tasks_holdouts);
671 
672 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
673 	housekeeping_affine(current);
674 
675 	/*
676 	 * Each pass through the following loop makes one check for
677 	 * newly arrived callbacks, and, if there are some, waits for
678 	 * one RCU-tasks grace period and then invokes the callbacks.
679 	 * This loop is terminated by the system going down.  ;-)
680 	 */
681 	for (;;) {
682 
683 		/* Pick up any new callbacks. */
684 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
685 		list = rcu_tasks_cbs_head;
686 		rcu_tasks_cbs_head = NULL;
687 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
688 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
689 
690 		/* If there were none, wait a bit and start over. */
691 		if (!list) {
692 			wait_event_interruptible(rcu_tasks_cbs_wq,
693 						 rcu_tasks_cbs_head);
694 			if (!rcu_tasks_cbs_head) {
695 				WARN_ON(signal_pending(current));
696 				schedule_timeout_interruptible(HZ/10);
697 			}
698 			continue;
699 		}
700 
701 		/*
702 		 * Wait for all pre-existing t->on_rq and t->nvcsw
703 		 * transitions to complete.  Invoking synchronize_sched()
704 		 * suffices because all these transitions occur with
705 		 * interrupts disabled.  Without this synchronize_sched(),
706 		 * a read-side critical section that started before the
707 		 * grace period might be incorrectly seen as having started
708 		 * after the grace period.
709 		 *
710 		 * This synchronize_sched() also dispenses with the
711 		 * need for a memory barrier on the first store to
712 		 * ->rcu_tasks_holdout, as it forces the store to happen
713 		 * after the beginning of the grace period.
714 		 */
715 		synchronize_sched();
716 
717 		/*
718 		 * There were callbacks, so we need to wait for an
719 		 * RCU-tasks grace period.  Start off by scanning
720 		 * the task list for tasks that are not already
721 		 * voluntarily blocked.  Mark these tasks and make
722 		 * a list of them in rcu_tasks_holdouts.
723 		 */
724 		rcu_read_lock();
725 		for_each_process_thread(g, t) {
726 			if (t != current && READ_ONCE(t->on_rq) &&
727 			    !is_idle_task(t)) {
728 				get_task_struct(t);
729 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
730 				WRITE_ONCE(t->rcu_tasks_holdout, true);
731 				list_add(&t->rcu_tasks_holdout_list,
732 					 &rcu_tasks_holdouts);
733 			}
734 		}
735 		rcu_read_unlock();
736 
737 		/*
738 		 * Wait for tasks that are in the process of exiting.
739 		 * This does only part of the job, ensuring that all
740 		 * tasks that were previously exiting reach the point
741 		 * where they have disabled preemption, allowing the
742 		 * later synchronize_sched() to finish the job.
743 		 */
744 		synchronize_srcu(&tasks_rcu_exit_srcu);
745 
746 		/*
747 		 * Each pass through the following loop scans the list
748 		 * of holdout tasks, removing any that are no longer
749 		 * holdouts.  When the list is empty, we are done.
750 		 */
751 		lastreport = jiffies;
752 		while (!list_empty(&rcu_tasks_holdouts)) {
753 			bool firstreport;
754 			bool needreport;
755 			int rtst;
756 			struct task_struct *t1;
757 
758 			schedule_timeout_interruptible(HZ);
759 			rtst = READ_ONCE(rcu_task_stall_timeout);
760 			needreport = rtst > 0 &&
761 				     time_after(jiffies, lastreport + rtst);
762 			if (needreport)
763 				lastreport = jiffies;
764 			firstreport = true;
765 			WARN_ON(signal_pending(current));
766 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
767 						rcu_tasks_holdout_list) {
768 				check_holdout_task(t, needreport, &firstreport);
769 				cond_resched();
770 			}
771 		}
772 
773 		/*
774 		 * Because ->on_rq and ->nvcsw are not guaranteed
775 		 * to have a full memory barriers prior to them in the
776 		 * schedule() path, memory reordering on other CPUs could
777 		 * cause their RCU-tasks read-side critical sections to
778 		 * extend past the end of the grace period.  However,
779 		 * because these ->nvcsw updates are carried out with
780 		 * interrupts disabled, we can use synchronize_sched()
781 		 * to force the needed ordering on all such CPUs.
782 		 *
783 		 * This synchronize_sched() also confines all
784 		 * ->rcu_tasks_holdout accesses to be within the grace
785 		 * period, avoiding the need for memory barriers for
786 		 * ->rcu_tasks_holdout accesses.
787 		 *
788 		 * In addition, this synchronize_sched() waits for exiting
789 		 * tasks to complete their final preempt_disable() region
790 		 * of execution, cleaning up after the synchronize_srcu()
791 		 * above.
792 		 */
793 		synchronize_sched();
794 
795 		/* Invoke the callbacks. */
796 		while (list) {
797 			next = list->next;
798 			local_bh_disable();
799 			list->func(list);
800 			local_bh_enable();
801 			list = next;
802 			cond_resched();
803 		}
804 		schedule_timeout_uninterruptible(HZ/10);
805 	}
806 }
807 
808 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
809 static void rcu_spawn_tasks_kthread(void)
810 {
811 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
812 	static struct task_struct *rcu_tasks_kthread_ptr;
813 	struct task_struct *t;
814 
815 	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
816 		smp_mb(); /* Ensure caller sees full kthread. */
817 		return;
818 	}
819 	mutex_lock(&rcu_tasks_kthread_mutex);
820 	if (rcu_tasks_kthread_ptr) {
821 		mutex_unlock(&rcu_tasks_kthread_mutex);
822 		return;
823 	}
824 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
825 	BUG_ON(IS_ERR(t));
826 	smp_mb(); /* Ensure others see full kthread. */
827 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
828 	mutex_unlock(&rcu_tasks_kthread_mutex);
829 }
830 
831 #endif /* #ifdef CONFIG_TASKS_RCU */
832 
833 #ifdef CONFIG_PROVE_RCU
834 
835 /*
836  * Early boot self test parameters, one for each flavor
837  */
838 static bool rcu_self_test;
839 static bool rcu_self_test_bh;
840 static bool rcu_self_test_sched;
841 
842 module_param(rcu_self_test, bool, 0444);
843 module_param(rcu_self_test_bh, bool, 0444);
844 module_param(rcu_self_test_sched, bool, 0444);
845 
846 static int rcu_self_test_counter;
847 
848 static void test_callback(struct rcu_head *r)
849 {
850 	rcu_self_test_counter++;
851 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
852 }
853 
854 static void early_boot_test_call_rcu(void)
855 {
856 	static struct rcu_head head;
857 
858 	call_rcu(&head, test_callback);
859 }
860 
861 static void early_boot_test_call_rcu_bh(void)
862 {
863 	static struct rcu_head head;
864 
865 	call_rcu_bh(&head, test_callback);
866 }
867 
868 static void early_boot_test_call_rcu_sched(void)
869 {
870 	static struct rcu_head head;
871 
872 	call_rcu_sched(&head, test_callback);
873 }
874 
875 void rcu_early_boot_tests(void)
876 {
877 	pr_info("Running RCU self tests\n");
878 
879 	if (rcu_self_test)
880 		early_boot_test_call_rcu();
881 	if (rcu_self_test_bh)
882 		early_boot_test_call_rcu_bh();
883 	if (rcu_self_test_sched)
884 		early_boot_test_call_rcu_sched();
885 }
886 
887 static int rcu_verify_early_boot_tests(void)
888 {
889 	int ret = 0;
890 	int early_boot_test_counter = 0;
891 
892 	if (rcu_self_test) {
893 		early_boot_test_counter++;
894 		rcu_barrier();
895 	}
896 	if (rcu_self_test_bh) {
897 		early_boot_test_counter++;
898 		rcu_barrier_bh();
899 	}
900 	if (rcu_self_test_sched) {
901 		early_boot_test_counter++;
902 		rcu_barrier_sched();
903 	}
904 
905 	if (rcu_self_test_counter != early_boot_test_counter) {
906 		WARN_ON(1);
907 		ret = -1;
908 	}
909 
910 	return ret;
911 }
912 late_initcall(rcu_verify_early_boot_tests);
913 #else
914 void rcu_early_boot_tests(void) {}
915 #endif /* CONFIG_PROVE_RCU */
916