xref: /openbmc/linux/kernel/rcu/update.c (revision 9bacbced)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54 #include <linux/sched/isolation.h>
55 
56 #define CREATE_TRACE_POINTS
57 
58 #include "rcu.h"
59 
60 #ifdef MODULE_PARAM_PREFIX
61 #undef MODULE_PARAM_PREFIX
62 #endif
63 #define MODULE_PARAM_PREFIX "rcupdate."
64 
65 #ifndef CONFIG_TINY_RCU
66 extern int rcu_expedited; /* from sysctl */
67 module_param(rcu_expedited, int, 0);
68 extern int rcu_normal; /* from sysctl */
69 module_param(rcu_normal, int, 0);
70 static int rcu_normal_after_boot;
71 module_param(rcu_normal_after_boot, int, 0);
72 #endif /* #ifndef CONFIG_TINY_RCU */
73 
74 #ifdef CONFIG_DEBUG_LOCK_ALLOC
75 /**
76  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
77  *
78  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
79  * RCU-sched read-side critical section.  In absence of
80  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
81  * critical section unless it can prove otherwise.  Note that disabling
82  * of preemption (including disabling irqs) counts as an RCU-sched
83  * read-side critical section.  This is useful for debug checks in functions
84  * that required that they be called within an RCU-sched read-side
85  * critical section.
86  *
87  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
88  * and while lockdep is disabled.
89  *
90  * Note that if the CPU is in the idle loop from an RCU point of
91  * view (ie: that we are in the section between rcu_idle_enter() and
92  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
93  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
94  * that are in such a section, considering these as in extended quiescent
95  * state, so such a CPU is effectively never in an RCU read-side critical
96  * section regardless of what RCU primitives it invokes.  This state of
97  * affairs is required --- we need to keep an RCU-free window in idle
98  * where the CPU may possibly enter into low power mode. This way we can
99  * notice an extended quiescent state to other CPUs that started a grace
100  * period. Otherwise we would delay any grace period as long as we run in
101  * the idle task.
102  *
103  * Similarly, we avoid claiming an SRCU read lock held if the current
104  * CPU is offline.
105  */
106 int rcu_read_lock_sched_held(void)
107 {
108 	int lockdep_opinion = 0;
109 
110 	if (!debug_lockdep_rcu_enabled())
111 		return 1;
112 	if (!rcu_is_watching())
113 		return 0;
114 	if (!rcu_lockdep_current_cpu_online())
115 		return 0;
116 	if (debug_locks)
117 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
118 	return lockdep_opinion || !preemptible();
119 }
120 EXPORT_SYMBOL(rcu_read_lock_sched_held);
121 #endif
122 
123 #ifndef CONFIG_TINY_RCU
124 
125 /*
126  * Should expedited grace-period primitives always fall back to their
127  * non-expedited counterparts?  Intended for use within RCU.  Note
128  * that if the user specifies both rcu_expedited and rcu_normal, then
129  * rcu_normal wins.  (Except during the time period during boot from
130  * when the first task is spawned until the rcu_set_runtime_mode()
131  * core_initcall() is invoked, at which point everything is expedited.)
132  */
133 bool rcu_gp_is_normal(void)
134 {
135 	return READ_ONCE(rcu_normal) &&
136 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
137 }
138 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
139 
140 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
141 
142 /*
143  * Should normal grace-period primitives be expedited?  Intended for
144  * use within RCU.  Note that this function takes the rcu_expedited
145  * sysfs/boot variable and rcu_scheduler_active into account as well
146  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
147  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
148  */
149 bool rcu_gp_is_expedited(void)
150 {
151 	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
152 	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
153 }
154 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
155 
156 /**
157  * rcu_expedite_gp - Expedite future RCU grace periods
158  *
159  * After a call to this function, future calls to synchronize_rcu() and
160  * friends act as the corresponding synchronize_rcu_expedited() function
161  * had instead been called.
162  */
163 void rcu_expedite_gp(void)
164 {
165 	atomic_inc(&rcu_expedited_nesting);
166 }
167 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
168 
169 /**
170  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
171  *
172  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
173  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
174  * and if the rcu_expedited sysfs/boot parameter is not set, then all
175  * subsequent calls to synchronize_rcu() and friends will return to
176  * their normal non-expedited behavior.
177  */
178 void rcu_unexpedite_gp(void)
179 {
180 	atomic_dec(&rcu_expedited_nesting);
181 }
182 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
183 
184 /*
185  * Inform RCU of the end of the in-kernel boot sequence.
186  */
187 void rcu_end_inkernel_boot(void)
188 {
189 	rcu_unexpedite_gp();
190 	if (rcu_normal_after_boot)
191 		WRITE_ONCE(rcu_normal, 1);
192 }
193 
194 #endif /* #ifndef CONFIG_TINY_RCU */
195 
196 /*
197  * Test each non-SRCU synchronous grace-period wait API.  This is
198  * useful just after a change in mode for these primitives, and
199  * during early boot.
200  */
201 void rcu_test_sync_prims(void)
202 {
203 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
204 		return;
205 	synchronize_rcu();
206 	synchronize_rcu_bh();
207 	synchronize_sched();
208 	synchronize_rcu_expedited();
209 	synchronize_rcu_bh_expedited();
210 	synchronize_sched_expedited();
211 }
212 
213 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
214 
215 /*
216  * Switch to run-time mode once RCU has fully initialized.
217  */
218 static int __init rcu_set_runtime_mode(void)
219 {
220 	rcu_test_sync_prims();
221 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
222 	rcu_test_sync_prims();
223 	return 0;
224 }
225 core_initcall(rcu_set_runtime_mode);
226 
227 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
228 
229 #ifdef CONFIG_DEBUG_LOCK_ALLOC
230 static struct lock_class_key rcu_lock_key;
231 struct lockdep_map rcu_lock_map =
232 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
233 EXPORT_SYMBOL_GPL(rcu_lock_map);
234 
235 static struct lock_class_key rcu_bh_lock_key;
236 struct lockdep_map rcu_bh_lock_map =
237 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
238 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
239 
240 static struct lock_class_key rcu_sched_lock_key;
241 struct lockdep_map rcu_sched_lock_map =
242 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
243 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
244 
245 static struct lock_class_key rcu_callback_key;
246 struct lockdep_map rcu_callback_map =
247 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
248 EXPORT_SYMBOL_GPL(rcu_callback_map);
249 
250 int notrace debug_lockdep_rcu_enabled(void)
251 {
252 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
253 	       current->lockdep_recursion == 0;
254 }
255 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
256 
257 /**
258  * rcu_read_lock_held() - might we be in RCU read-side critical section?
259  *
260  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
261  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
262  * this assumes we are in an RCU read-side critical section unless it can
263  * prove otherwise.  This is useful for debug checks in functions that
264  * require that they be called within an RCU read-side critical section.
265  *
266  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
267  * and while lockdep is disabled.
268  *
269  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
270  * occur in the same context, for example, it is illegal to invoke
271  * rcu_read_unlock() in process context if the matching rcu_read_lock()
272  * was invoked from within an irq handler.
273  *
274  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
275  * offline from an RCU perspective, so check for those as well.
276  */
277 int rcu_read_lock_held(void)
278 {
279 	if (!debug_lockdep_rcu_enabled())
280 		return 1;
281 	if (!rcu_is_watching())
282 		return 0;
283 	if (!rcu_lockdep_current_cpu_online())
284 		return 0;
285 	return lock_is_held(&rcu_lock_map);
286 }
287 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
288 
289 /**
290  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
291  *
292  * Check for bottom half being disabled, which covers both the
293  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
294  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
295  * will show the situation.  This is useful for debug checks in functions
296  * that require that they be called within an RCU read-side critical
297  * section.
298  *
299  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
300  *
301  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
302  * offline from an RCU perspective, so check for those as well.
303  */
304 int rcu_read_lock_bh_held(void)
305 {
306 	if (!debug_lockdep_rcu_enabled())
307 		return 1;
308 	if (!rcu_is_watching())
309 		return 0;
310 	if (!rcu_lockdep_current_cpu_online())
311 		return 0;
312 	return in_softirq() || irqs_disabled();
313 }
314 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
315 
316 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
317 
318 /**
319  * wakeme_after_rcu() - Callback function to awaken a task after grace period
320  * @head: Pointer to rcu_head member within rcu_synchronize structure
321  *
322  * Awaken the corresponding task now that a grace period has elapsed.
323  */
324 void wakeme_after_rcu(struct rcu_head *head)
325 {
326 	struct rcu_synchronize *rcu;
327 
328 	rcu = container_of(head, struct rcu_synchronize, head);
329 	complete(&rcu->completion);
330 }
331 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
332 
333 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
334 		   struct rcu_synchronize *rs_array)
335 {
336 	int i;
337 	int j;
338 
339 	/* Initialize and register callbacks for each flavor specified. */
340 	for (i = 0; i < n; i++) {
341 		if (checktiny &&
342 		    (crcu_array[i] == call_rcu ||
343 		     crcu_array[i] == call_rcu_bh)) {
344 			might_sleep();
345 			continue;
346 		}
347 		init_rcu_head_on_stack(&rs_array[i].head);
348 		init_completion(&rs_array[i].completion);
349 		for (j = 0; j < i; j++)
350 			if (crcu_array[j] == crcu_array[i])
351 				break;
352 		if (j == i)
353 			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
354 	}
355 
356 	/* Wait for all callbacks to be invoked. */
357 	for (i = 0; i < n; i++) {
358 		if (checktiny &&
359 		    (crcu_array[i] == call_rcu ||
360 		     crcu_array[i] == call_rcu_bh))
361 			continue;
362 		for (j = 0; j < i; j++)
363 			if (crcu_array[j] == crcu_array[i])
364 				break;
365 		if (j == i)
366 			wait_for_completion(&rs_array[i].completion);
367 		destroy_rcu_head_on_stack(&rs_array[i].head);
368 	}
369 }
370 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
371 
372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
373 void init_rcu_head(struct rcu_head *head)
374 {
375 	debug_object_init(head, &rcuhead_debug_descr);
376 }
377 EXPORT_SYMBOL_GPL(init_rcu_head);
378 
379 void destroy_rcu_head(struct rcu_head *head)
380 {
381 	debug_object_free(head, &rcuhead_debug_descr);
382 }
383 EXPORT_SYMBOL_GPL(destroy_rcu_head);
384 
385 static bool rcuhead_is_static_object(void *addr)
386 {
387 	return true;
388 }
389 
390 /**
391  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
392  * @head: pointer to rcu_head structure to be initialized
393  *
394  * This function informs debugobjects of a new rcu_head structure that
395  * has been allocated as an auto variable on the stack.  This function
396  * is not required for rcu_head structures that are statically defined or
397  * that are dynamically allocated on the heap.  This function has no
398  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
399  */
400 void init_rcu_head_on_stack(struct rcu_head *head)
401 {
402 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
403 }
404 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
405 
406 /**
407  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
408  * @head: pointer to rcu_head structure to be initialized
409  *
410  * This function informs debugobjects that an on-stack rcu_head structure
411  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
412  * function is not required for rcu_head structures that are statically
413  * defined or that are dynamically allocated on the heap.  Also as with
414  * init_rcu_head_on_stack(), this function has no effect for
415  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
416  */
417 void destroy_rcu_head_on_stack(struct rcu_head *head)
418 {
419 	debug_object_free(head, &rcuhead_debug_descr);
420 }
421 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
422 
423 struct debug_obj_descr rcuhead_debug_descr = {
424 	.name = "rcu_head",
425 	.is_static_object = rcuhead_is_static_object,
426 };
427 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
428 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
429 
430 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
431 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
432 			       unsigned long secs,
433 			       unsigned long c_old, unsigned long c)
434 {
435 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
436 }
437 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
438 #else
439 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
440 	do { } while (0)
441 #endif
442 
443 #ifdef CONFIG_RCU_STALL_COMMON
444 
445 #ifdef CONFIG_PROVE_RCU
446 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
447 #else
448 #define RCU_STALL_DELAY_DELTA	       0
449 #endif
450 
451 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
452 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
453 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
454 
455 module_param(rcu_cpu_stall_suppress, int, 0644);
456 module_param(rcu_cpu_stall_timeout, int, 0644);
457 
458 int rcu_jiffies_till_stall_check(void)
459 {
460 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
461 
462 	/*
463 	 * Limit check must be consistent with the Kconfig limits
464 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
465 	 */
466 	if (till_stall_check < 3) {
467 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
468 		till_stall_check = 3;
469 	} else if (till_stall_check > 300) {
470 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
471 		till_stall_check = 300;
472 	}
473 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
474 }
475 
476 void rcu_sysrq_start(void)
477 {
478 	if (!rcu_cpu_stall_suppress)
479 		rcu_cpu_stall_suppress = 2;
480 }
481 
482 void rcu_sysrq_end(void)
483 {
484 	if (rcu_cpu_stall_suppress == 2)
485 		rcu_cpu_stall_suppress = 0;
486 }
487 
488 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
489 {
490 	rcu_cpu_stall_suppress = 1;
491 	return NOTIFY_DONE;
492 }
493 
494 static struct notifier_block rcu_panic_block = {
495 	.notifier_call = rcu_panic,
496 };
497 
498 static int __init check_cpu_stall_init(void)
499 {
500 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
501 	return 0;
502 }
503 early_initcall(check_cpu_stall_init);
504 
505 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
506 
507 #ifdef CONFIG_TASKS_RCU
508 
509 /*
510  * Simple variant of RCU whose quiescent states are voluntary context switch,
511  * user-space execution, and idle.  As such, grace periods can take one good
512  * long time.  There are no read-side primitives similar to rcu_read_lock()
513  * and rcu_read_unlock() because this implementation is intended to get
514  * the system into a safe state for some of the manipulations involved in
515  * tracing and the like.  Finally, this implementation does not support
516  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
517  * per-CPU callback lists will be needed.
518  */
519 
520 /* Global list of callbacks and associated lock. */
521 static struct rcu_head *rcu_tasks_cbs_head;
522 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
523 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
524 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
525 
526 /* Track exiting tasks in order to allow them to be waited for. */
527 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
528 
529 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
530 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
531 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
532 module_param(rcu_task_stall_timeout, int, 0644);
533 
534 static struct task_struct *rcu_tasks_kthread_ptr;
535 
536 /**
537  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
538  * @rhp: structure to be used for queueing the RCU updates.
539  * @func: actual callback function to be invoked after the grace period
540  *
541  * The callback function will be invoked some time after a full grace
542  * period elapses, in other words after all currently executing RCU
543  * read-side critical sections have completed. call_rcu_tasks() assumes
544  * that the read-side critical sections end at a voluntary context
545  * switch (not a preemption!), entry into idle, or transition to usermode
546  * execution.  As such, there are no read-side primitives analogous to
547  * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
548  * to determine that all tasks have passed through a safe state, not so
549  * much for data-strcuture synchronization.
550  *
551  * See the description of call_rcu() for more detailed information on
552  * memory ordering guarantees.
553  */
554 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
555 {
556 	unsigned long flags;
557 	bool needwake;
558 
559 	rhp->next = NULL;
560 	rhp->func = func;
561 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
562 	needwake = !rcu_tasks_cbs_head;
563 	*rcu_tasks_cbs_tail = rhp;
564 	rcu_tasks_cbs_tail = &rhp->next;
565 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
566 	/* We can't create the thread unless interrupts are enabled. */
567 	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
568 		wake_up(&rcu_tasks_cbs_wq);
569 }
570 EXPORT_SYMBOL_GPL(call_rcu_tasks);
571 
572 /**
573  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
574  *
575  * Control will return to the caller some time after a full rcu-tasks
576  * grace period has elapsed, in other words after all currently
577  * executing rcu-tasks read-side critical sections have elapsed.  These
578  * read-side critical sections are delimited by calls to schedule(),
579  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
580  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
581  *
582  * This is a very specialized primitive, intended only for a few uses in
583  * tracing and other situations requiring manipulation of function
584  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
585  * is not (yet) intended for heavy use from multiple CPUs.
586  *
587  * Note that this guarantee implies further memory-ordering guarantees.
588  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
589  * each CPU is guaranteed to have executed a full memory barrier since the
590  * end of its last RCU-tasks read-side critical section whose beginning
591  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
592  * having an RCU-tasks read-side critical section that extends beyond
593  * the return from synchronize_rcu_tasks() is guaranteed to have executed
594  * a full memory barrier after the beginning of synchronize_rcu_tasks()
595  * and before the beginning of that RCU-tasks read-side critical section.
596  * Note that these guarantees include CPUs that are offline, idle, or
597  * executing in user mode, as well as CPUs that are executing in the kernel.
598  *
599  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
600  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
601  * to have executed a full memory barrier during the execution of
602  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
603  * (but again only if the system has more than one CPU).
604  */
605 void synchronize_rcu_tasks(void)
606 {
607 	/* Complain if the scheduler has not started.  */
608 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
609 			 "synchronize_rcu_tasks called too soon");
610 
611 	/* Wait for the grace period. */
612 	wait_rcu_gp(call_rcu_tasks);
613 }
614 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
615 
616 /**
617  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
618  *
619  * Although the current implementation is guaranteed to wait, it is not
620  * obligated to, for example, if there are no pending callbacks.
621  */
622 void rcu_barrier_tasks(void)
623 {
624 	/* There is only one callback queue, so this is easy.  ;-) */
625 	synchronize_rcu_tasks();
626 }
627 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
628 
629 /* See if tasks are still holding out, complain if so. */
630 static void check_holdout_task(struct task_struct *t,
631 			       bool needreport, bool *firstreport)
632 {
633 	int cpu;
634 
635 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
636 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
637 	    !READ_ONCE(t->on_rq) ||
638 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
639 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
640 		WRITE_ONCE(t->rcu_tasks_holdout, false);
641 		list_del_init(&t->rcu_tasks_holdout_list);
642 		put_task_struct(t);
643 		return;
644 	}
645 	rcu_request_urgent_qs_task(t);
646 	if (!needreport)
647 		return;
648 	if (*firstreport) {
649 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
650 		*firstreport = false;
651 	}
652 	cpu = task_cpu(t);
653 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
654 		 t, ".I"[is_idle_task(t)],
655 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
656 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
657 		 t->rcu_tasks_idle_cpu, cpu);
658 	sched_show_task(t);
659 }
660 
661 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
662 static int __noreturn rcu_tasks_kthread(void *arg)
663 {
664 	unsigned long flags;
665 	struct task_struct *g, *t;
666 	unsigned long lastreport;
667 	struct rcu_head *list;
668 	struct rcu_head *next;
669 	LIST_HEAD(rcu_tasks_holdouts);
670 
671 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
672 	housekeeping_affine(current, HK_FLAG_RCU);
673 
674 	/*
675 	 * Each pass through the following loop makes one check for
676 	 * newly arrived callbacks, and, if there are some, waits for
677 	 * one RCU-tasks grace period and then invokes the callbacks.
678 	 * This loop is terminated by the system going down.  ;-)
679 	 */
680 	for (;;) {
681 
682 		/* Pick up any new callbacks. */
683 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
684 		list = rcu_tasks_cbs_head;
685 		rcu_tasks_cbs_head = NULL;
686 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
687 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
688 
689 		/* If there were none, wait a bit and start over. */
690 		if (!list) {
691 			wait_event_interruptible(rcu_tasks_cbs_wq,
692 						 rcu_tasks_cbs_head);
693 			if (!rcu_tasks_cbs_head) {
694 				WARN_ON(signal_pending(current));
695 				schedule_timeout_interruptible(HZ/10);
696 			}
697 			continue;
698 		}
699 
700 		/*
701 		 * Wait for all pre-existing t->on_rq and t->nvcsw
702 		 * transitions to complete.  Invoking synchronize_sched()
703 		 * suffices because all these transitions occur with
704 		 * interrupts disabled.  Without this synchronize_sched(),
705 		 * a read-side critical section that started before the
706 		 * grace period might be incorrectly seen as having started
707 		 * after the grace period.
708 		 *
709 		 * This synchronize_sched() also dispenses with the
710 		 * need for a memory barrier on the first store to
711 		 * ->rcu_tasks_holdout, as it forces the store to happen
712 		 * after the beginning of the grace period.
713 		 */
714 		synchronize_sched();
715 
716 		/*
717 		 * There were callbacks, so we need to wait for an
718 		 * RCU-tasks grace period.  Start off by scanning
719 		 * the task list for tasks that are not already
720 		 * voluntarily blocked.  Mark these tasks and make
721 		 * a list of them in rcu_tasks_holdouts.
722 		 */
723 		rcu_read_lock();
724 		for_each_process_thread(g, t) {
725 			if (t != current && READ_ONCE(t->on_rq) &&
726 			    !is_idle_task(t)) {
727 				get_task_struct(t);
728 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
729 				WRITE_ONCE(t->rcu_tasks_holdout, true);
730 				list_add(&t->rcu_tasks_holdout_list,
731 					 &rcu_tasks_holdouts);
732 			}
733 		}
734 		rcu_read_unlock();
735 
736 		/*
737 		 * Wait for tasks that are in the process of exiting.
738 		 * This does only part of the job, ensuring that all
739 		 * tasks that were previously exiting reach the point
740 		 * where they have disabled preemption, allowing the
741 		 * later synchronize_sched() to finish the job.
742 		 */
743 		synchronize_srcu(&tasks_rcu_exit_srcu);
744 
745 		/*
746 		 * Each pass through the following loop scans the list
747 		 * of holdout tasks, removing any that are no longer
748 		 * holdouts.  When the list is empty, we are done.
749 		 */
750 		lastreport = jiffies;
751 		while (!list_empty(&rcu_tasks_holdouts)) {
752 			bool firstreport;
753 			bool needreport;
754 			int rtst;
755 			struct task_struct *t1;
756 
757 			schedule_timeout_interruptible(HZ);
758 			rtst = READ_ONCE(rcu_task_stall_timeout);
759 			needreport = rtst > 0 &&
760 				     time_after(jiffies, lastreport + rtst);
761 			if (needreport)
762 				lastreport = jiffies;
763 			firstreport = true;
764 			WARN_ON(signal_pending(current));
765 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
766 						rcu_tasks_holdout_list) {
767 				check_holdout_task(t, needreport, &firstreport);
768 				cond_resched();
769 			}
770 		}
771 
772 		/*
773 		 * Because ->on_rq and ->nvcsw are not guaranteed
774 		 * to have a full memory barriers prior to them in the
775 		 * schedule() path, memory reordering on other CPUs could
776 		 * cause their RCU-tasks read-side critical sections to
777 		 * extend past the end of the grace period.  However,
778 		 * because these ->nvcsw updates are carried out with
779 		 * interrupts disabled, we can use synchronize_sched()
780 		 * to force the needed ordering on all such CPUs.
781 		 *
782 		 * This synchronize_sched() also confines all
783 		 * ->rcu_tasks_holdout accesses to be within the grace
784 		 * period, avoiding the need for memory barriers for
785 		 * ->rcu_tasks_holdout accesses.
786 		 *
787 		 * In addition, this synchronize_sched() waits for exiting
788 		 * tasks to complete their final preempt_disable() region
789 		 * of execution, cleaning up after the synchronize_srcu()
790 		 * above.
791 		 */
792 		synchronize_sched();
793 
794 		/* Invoke the callbacks. */
795 		while (list) {
796 			next = list->next;
797 			local_bh_disable();
798 			list->func(list);
799 			local_bh_enable();
800 			list = next;
801 			cond_resched();
802 		}
803 		schedule_timeout_uninterruptible(HZ/10);
804 	}
805 }
806 
807 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
808 static int __init rcu_spawn_tasks_kthread(void)
809 {
810 	struct task_struct *t;
811 
812 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
813 	BUG_ON(IS_ERR(t));
814 	smp_mb(); /* Ensure others see full kthread. */
815 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
816 	return 0;
817 }
818 core_initcall(rcu_spawn_tasks_kthread);
819 
820 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
821 void exit_tasks_rcu_start(void)
822 {
823 	preempt_disable();
824 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
825 	preempt_enable();
826 }
827 
828 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
829 void exit_tasks_rcu_finish(void)
830 {
831 	preempt_disable();
832 	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
833 	preempt_enable();
834 }
835 
836 #endif /* #ifdef CONFIG_TASKS_RCU */
837 
838 #ifndef CONFIG_TINY_RCU
839 
840 /*
841  * Print any non-default Tasks RCU settings.
842  */
843 static void __init rcu_tasks_bootup_oddness(void)
844 {
845 #ifdef CONFIG_TASKS_RCU
846 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
847 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
848 	else
849 		pr_info("\tTasks RCU enabled.\n");
850 #endif /* #ifdef CONFIG_TASKS_RCU */
851 }
852 
853 #endif /* #ifndef CONFIG_TINY_RCU */
854 
855 #ifdef CONFIG_PROVE_RCU
856 
857 /*
858  * Early boot self test parameters, one for each flavor
859  */
860 static bool rcu_self_test;
861 static bool rcu_self_test_bh;
862 static bool rcu_self_test_sched;
863 
864 module_param(rcu_self_test, bool, 0444);
865 module_param(rcu_self_test_bh, bool, 0444);
866 module_param(rcu_self_test_sched, bool, 0444);
867 
868 static int rcu_self_test_counter;
869 
870 static void test_callback(struct rcu_head *r)
871 {
872 	rcu_self_test_counter++;
873 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
874 }
875 
876 static void early_boot_test_call_rcu(void)
877 {
878 	static struct rcu_head head;
879 
880 	call_rcu(&head, test_callback);
881 }
882 
883 static void early_boot_test_call_rcu_bh(void)
884 {
885 	static struct rcu_head head;
886 
887 	call_rcu_bh(&head, test_callback);
888 }
889 
890 static void early_boot_test_call_rcu_sched(void)
891 {
892 	static struct rcu_head head;
893 
894 	call_rcu_sched(&head, test_callback);
895 }
896 
897 void rcu_early_boot_tests(void)
898 {
899 	pr_info("Running RCU self tests\n");
900 
901 	if (rcu_self_test)
902 		early_boot_test_call_rcu();
903 	if (rcu_self_test_bh)
904 		early_boot_test_call_rcu_bh();
905 	if (rcu_self_test_sched)
906 		early_boot_test_call_rcu_sched();
907 	rcu_test_sync_prims();
908 }
909 
910 static int rcu_verify_early_boot_tests(void)
911 {
912 	int ret = 0;
913 	int early_boot_test_counter = 0;
914 
915 	if (rcu_self_test) {
916 		early_boot_test_counter++;
917 		rcu_barrier();
918 	}
919 	if (rcu_self_test_bh) {
920 		early_boot_test_counter++;
921 		rcu_barrier_bh();
922 	}
923 	if (rcu_self_test_sched) {
924 		early_boot_test_counter++;
925 		rcu_barrier_sched();
926 	}
927 
928 	if (rcu_self_test_counter != early_boot_test_counter) {
929 		WARN_ON(1);
930 		ret = -1;
931 	}
932 
933 	return ret;
934 }
935 late_initcall(rcu_verify_early_boot_tests);
936 #else
937 void rcu_early_boot_tests(void) {}
938 #endif /* CONFIG_PROVE_RCU */
939 
940 #ifndef CONFIG_TINY_RCU
941 
942 /*
943  * Print any significant non-default boot-time settings.
944  */
945 void __init rcupdate_announce_bootup_oddness(void)
946 {
947 	if (rcu_normal)
948 		pr_info("\tNo expedited grace period (rcu_normal).\n");
949 	else if (rcu_normal_after_boot)
950 		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
951 	else if (rcu_expedited)
952 		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
953 	if (rcu_cpu_stall_suppress)
954 		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
955 	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
956 		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
957 	rcu_tasks_bootup_oddness();
958 }
959 
960 #endif /* #ifndef CONFIG_TINY_RCU */
961