xref: /openbmc/linux/kernel/rcu/update.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *
10  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
11  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12  * Papers:
13  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
14  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
15  *
16  * For detailed explanation of Read-Copy Update mechanism see -
17  *		http://lse.sourceforge.net/locking/rcupdate.html
18  *
19  */
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/debug.h>
28 #include <linux/atomic.h>
29 #include <linux/bitops.h>
30 #include <linux/percpu.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/mutex.h>
34 #include <linux/export.h>
35 #include <linux/hardirq.h>
36 #include <linux/delay.h>
37 #include <linux/moduleparam.h>
38 #include <linux/kthread.h>
39 #include <linux/tick.h>
40 #include <linux/rcupdate_wait.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/kprobes.h>
43 
44 #define CREATE_TRACE_POINTS
45 
46 #include "rcu.h"
47 
48 #ifdef MODULE_PARAM_PREFIX
49 #undef MODULE_PARAM_PREFIX
50 #endif
51 #define MODULE_PARAM_PREFIX "rcupdate."
52 
53 #ifndef CONFIG_TINY_RCU
54 extern int rcu_expedited; /* from sysctl */
55 module_param(rcu_expedited, int, 0);
56 extern int rcu_normal; /* from sysctl */
57 module_param(rcu_normal, int, 0);
58 static int rcu_normal_after_boot;
59 module_param(rcu_normal_after_boot, int, 0);
60 #endif /* #ifndef CONFIG_TINY_RCU */
61 
62 #ifdef CONFIG_DEBUG_LOCK_ALLOC
63 /**
64  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
65  *
66  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
67  * RCU-sched read-side critical section.  In absence of
68  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
69  * critical section unless it can prove otherwise.  Note that disabling
70  * of preemption (including disabling irqs) counts as an RCU-sched
71  * read-side critical section.  This is useful for debug checks in functions
72  * that required that they be called within an RCU-sched read-side
73  * critical section.
74  *
75  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
76  * and while lockdep is disabled.
77  *
78  * Note that if the CPU is in the idle loop from an RCU point of
79  * view (ie: that we are in the section between rcu_idle_enter() and
80  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
81  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
82  * that are in such a section, considering these as in extended quiescent
83  * state, so such a CPU is effectively never in an RCU read-side critical
84  * section regardless of what RCU primitives it invokes.  This state of
85  * affairs is required --- we need to keep an RCU-free window in idle
86  * where the CPU may possibly enter into low power mode. This way we can
87  * notice an extended quiescent state to other CPUs that started a grace
88  * period. Otherwise we would delay any grace period as long as we run in
89  * the idle task.
90  *
91  * Similarly, we avoid claiming an SRCU read lock held if the current
92  * CPU is offline.
93  */
94 int rcu_read_lock_sched_held(void)
95 {
96 	int lockdep_opinion = 0;
97 
98 	if (!debug_lockdep_rcu_enabled())
99 		return 1;
100 	if (!rcu_is_watching())
101 		return 0;
102 	if (!rcu_lockdep_current_cpu_online())
103 		return 0;
104 	if (debug_locks)
105 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
106 	return lockdep_opinion || !preemptible();
107 }
108 EXPORT_SYMBOL(rcu_read_lock_sched_held);
109 #endif
110 
111 #ifndef CONFIG_TINY_RCU
112 
113 /*
114  * Should expedited grace-period primitives always fall back to their
115  * non-expedited counterparts?  Intended for use within RCU.  Note
116  * that if the user specifies both rcu_expedited and rcu_normal, then
117  * rcu_normal wins.  (Except during the time period during boot from
118  * when the first task is spawned until the rcu_set_runtime_mode()
119  * core_initcall() is invoked, at which point everything is expedited.)
120  */
121 bool rcu_gp_is_normal(void)
122 {
123 	return READ_ONCE(rcu_normal) &&
124 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
125 }
126 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
127 
128 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
129 
130 /*
131  * Should normal grace-period primitives be expedited?  Intended for
132  * use within RCU.  Note that this function takes the rcu_expedited
133  * sysfs/boot variable and rcu_scheduler_active into account as well
134  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
135  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
136  */
137 bool rcu_gp_is_expedited(void)
138 {
139 	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
140 	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
141 }
142 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
143 
144 /**
145  * rcu_expedite_gp - Expedite future RCU grace periods
146  *
147  * After a call to this function, future calls to synchronize_rcu() and
148  * friends act as the corresponding synchronize_rcu_expedited() function
149  * had instead been called.
150  */
151 void rcu_expedite_gp(void)
152 {
153 	atomic_inc(&rcu_expedited_nesting);
154 }
155 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
156 
157 /**
158  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
159  *
160  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
161  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
162  * and if the rcu_expedited sysfs/boot parameter is not set, then all
163  * subsequent calls to synchronize_rcu() and friends will return to
164  * their normal non-expedited behavior.
165  */
166 void rcu_unexpedite_gp(void)
167 {
168 	atomic_dec(&rcu_expedited_nesting);
169 }
170 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
171 
172 /*
173  * Inform RCU of the end of the in-kernel boot sequence.
174  */
175 void rcu_end_inkernel_boot(void)
176 {
177 	rcu_unexpedite_gp();
178 	if (rcu_normal_after_boot)
179 		WRITE_ONCE(rcu_normal, 1);
180 }
181 
182 #endif /* #ifndef CONFIG_TINY_RCU */
183 
184 /*
185  * Test each non-SRCU synchronous grace-period wait API.  This is
186  * useful just after a change in mode for these primitives, and
187  * during early boot.
188  */
189 void rcu_test_sync_prims(void)
190 {
191 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
192 		return;
193 	synchronize_rcu();
194 	synchronize_rcu_expedited();
195 }
196 
197 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
198 
199 /*
200  * Switch to run-time mode once RCU has fully initialized.
201  */
202 static int __init rcu_set_runtime_mode(void)
203 {
204 	rcu_test_sync_prims();
205 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
206 	rcu_test_sync_prims();
207 	return 0;
208 }
209 core_initcall(rcu_set_runtime_mode);
210 
211 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
212 
213 #ifdef CONFIG_DEBUG_LOCK_ALLOC
214 static struct lock_class_key rcu_lock_key;
215 struct lockdep_map rcu_lock_map =
216 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
217 EXPORT_SYMBOL_GPL(rcu_lock_map);
218 
219 static struct lock_class_key rcu_bh_lock_key;
220 struct lockdep_map rcu_bh_lock_map =
221 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
222 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
223 
224 static struct lock_class_key rcu_sched_lock_key;
225 struct lockdep_map rcu_sched_lock_map =
226 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
227 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
228 
229 static struct lock_class_key rcu_callback_key;
230 struct lockdep_map rcu_callback_map =
231 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
232 EXPORT_SYMBOL_GPL(rcu_callback_map);
233 
234 int notrace debug_lockdep_rcu_enabled(void)
235 {
236 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
237 	       current->lockdep_recursion == 0;
238 }
239 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
240 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
241 
242 /**
243  * rcu_read_lock_held() - might we be in RCU read-side critical section?
244  *
245  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
246  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
247  * this assumes we are in an RCU read-side critical section unless it can
248  * prove otherwise.  This is useful for debug checks in functions that
249  * require that they be called within an RCU read-side critical section.
250  *
251  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
252  * and while lockdep is disabled.
253  *
254  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
255  * occur in the same context, for example, it is illegal to invoke
256  * rcu_read_unlock() in process context if the matching rcu_read_lock()
257  * was invoked from within an irq handler.
258  *
259  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
260  * offline from an RCU perspective, so check for those as well.
261  */
262 int rcu_read_lock_held(void)
263 {
264 	if (!debug_lockdep_rcu_enabled())
265 		return 1;
266 	if (!rcu_is_watching())
267 		return 0;
268 	if (!rcu_lockdep_current_cpu_online())
269 		return 0;
270 	return lock_is_held(&rcu_lock_map);
271 }
272 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
273 
274 /**
275  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
276  *
277  * Check for bottom half being disabled, which covers both the
278  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
279  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
280  * will show the situation.  This is useful for debug checks in functions
281  * that require that they be called within an RCU read-side critical
282  * section.
283  *
284  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
285  *
286  * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
287  * offline from an RCU perspective, so check for those as well.
288  */
289 int rcu_read_lock_bh_held(void)
290 {
291 	if (!debug_lockdep_rcu_enabled())
292 		return 1;
293 	if (!rcu_is_watching())
294 		return 0;
295 	if (!rcu_lockdep_current_cpu_online())
296 		return 0;
297 	return in_softirq() || irqs_disabled();
298 }
299 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
300 
301 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
302 
303 /**
304  * wakeme_after_rcu() - Callback function to awaken a task after grace period
305  * @head: Pointer to rcu_head member within rcu_synchronize structure
306  *
307  * Awaken the corresponding task now that a grace period has elapsed.
308  */
309 void wakeme_after_rcu(struct rcu_head *head)
310 {
311 	struct rcu_synchronize *rcu;
312 
313 	rcu = container_of(head, struct rcu_synchronize, head);
314 	complete(&rcu->completion);
315 }
316 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
317 
318 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
319 		   struct rcu_synchronize *rs_array)
320 {
321 	int i;
322 	int j;
323 
324 	/* Initialize and register callbacks for each crcu_array element. */
325 	for (i = 0; i < n; i++) {
326 		if (checktiny &&
327 		    (crcu_array[i] == call_rcu)) {
328 			might_sleep();
329 			continue;
330 		}
331 		init_rcu_head_on_stack(&rs_array[i].head);
332 		init_completion(&rs_array[i].completion);
333 		for (j = 0; j < i; j++)
334 			if (crcu_array[j] == crcu_array[i])
335 				break;
336 		if (j == i)
337 			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
338 	}
339 
340 	/* Wait for all callbacks to be invoked. */
341 	for (i = 0; i < n; i++) {
342 		if (checktiny &&
343 		    (crcu_array[i] == call_rcu))
344 			continue;
345 		for (j = 0; j < i; j++)
346 			if (crcu_array[j] == crcu_array[i])
347 				break;
348 		if (j == i)
349 			wait_for_completion(&rs_array[i].completion);
350 		destroy_rcu_head_on_stack(&rs_array[i].head);
351 	}
352 }
353 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
354 
355 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
356 void init_rcu_head(struct rcu_head *head)
357 {
358 	debug_object_init(head, &rcuhead_debug_descr);
359 }
360 EXPORT_SYMBOL_GPL(init_rcu_head);
361 
362 void destroy_rcu_head(struct rcu_head *head)
363 {
364 	debug_object_free(head, &rcuhead_debug_descr);
365 }
366 EXPORT_SYMBOL_GPL(destroy_rcu_head);
367 
368 static bool rcuhead_is_static_object(void *addr)
369 {
370 	return true;
371 }
372 
373 /**
374  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
375  * @head: pointer to rcu_head structure to be initialized
376  *
377  * This function informs debugobjects of a new rcu_head structure that
378  * has been allocated as an auto variable on the stack.  This function
379  * is not required for rcu_head structures that are statically defined or
380  * that are dynamically allocated on the heap.  This function has no
381  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
382  */
383 void init_rcu_head_on_stack(struct rcu_head *head)
384 {
385 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
386 }
387 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
388 
389 /**
390  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
391  * @head: pointer to rcu_head structure to be initialized
392  *
393  * This function informs debugobjects that an on-stack rcu_head structure
394  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
395  * function is not required for rcu_head structures that are statically
396  * defined or that are dynamically allocated on the heap.  Also as with
397  * init_rcu_head_on_stack(), this function has no effect for
398  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
399  */
400 void destroy_rcu_head_on_stack(struct rcu_head *head)
401 {
402 	debug_object_free(head, &rcuhead_debug_descr);
403 }
404 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
405 
406 struct debug_obj_descr rcuhead_debug_descr = {
407 	.name = "rcu_head",
408 	.is_static_object = rcuhead_is_static_object,
409 };
410 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
411 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
412 
413 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
414 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
415 			       unsigned long secs,
416 			       unsigned long c_old, unsigned long c)
417 {
418 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
419 }
420 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
421 #else
422 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
423 	do { } while (0)
424 #endif
425 
426 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
427 /* Get rcutorture access to sched_setaffinity(). */
428 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
429 {
430 	int ret;
431 
432 	ret = sched_setaffinity(pid, in_mask);
433 	WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
434 	return ret;
435 }
436 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
437 #endif
438 
439 #ifdef CONFIG_RCU_STALL_COMMON
440 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
441 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
442 module_param(rcu_cpu_stall_suppress, int, 0644);
443 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
444 module_param(rcu_cpu_stall_timeout, int, 0644);
445 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
446 
447 #ifdef CONFIG_TASKS_RCU
448 
449 /*
450  * Simple variant of RCU whose quiescent states are voluntary context
451  * switch, cond_resched_rcu_qs(), user-space execution, and idle.
452  * As such, grace periods can take one good long time.  There are no
453  * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
454  * because this implementation is intended to get the system into a safe
455  * state for some of the manipulations involved in tracing and the like.
456  * Finally, this implementation does not support high call_rcu_tasks()
457  * rates from multiple CPUs.  If this is required, per-CPU callback lists
458  * will be needed.
459  */
460 
461 /* Global list of callbacks and associated lock. */
462 static struct rcu_head *rcu_tasks_cbs_head;
463 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
464 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
465 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
466 
467 /* Track exiting tasks in order to allow them to be waited for. */
468 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
469 
470 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
471 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
472 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
473 module_param(rcu_task_stall_timeout, int, 0644);
474 
475 static struct task_struct *rcu_tasks_kthread_ptr;
476 
477 /**
478  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
479  * @rhp: structure to be used for queueing the RCU updates.
480  * @func: actual callback function to be invoked after the grace period
481  *
482  * The callback function will be invoked some time after a full grace
483  * period elapses, in other words after all currently executing RCU
484  * read-side critical sections have completed. call_rcu_tasks() assumes
485  * that the read-side critical sections end at a voluntary context
486  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
487  * or transition to usermode execution.  As such, there are no read-side
488  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
489  * this primitive is intended to determine that all tasks have passed
490  * through a safe state, not so much for data-strcuture synchronization.
491  *
492  * See the description of call_rcu() for more detailed information on
493  * memory ordering guarantees.
494  */
495 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
496 {
497 	unsigned long flags;
498 	bool needwake;
499 
500 	rhp->next = NULL;
501 	rhp->func = func;
502 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
503 	needwake = !rcu_tasks_cbs_head;
504 	*rcu_tasks_cbs_tail = rhp;
505 	rcu_tasks_cbs_tail = &rhp->next;
506 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
507 	/* We can't create the thread unless interrupts are enabled. */
508 	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
509 		wake_up(&rcu_tasks_cbs_wq);
510 }
511 EXPORT_SYMBOL_GPL(call_rcu_tasks);
512 
513 /**
514  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
515  *
516  * Control will return to the caller some time after a full rcu-tasks
517  * grace period has elapsed, in other words after all currently
518  * executing rcu-tasks read-side critical sections have elapsed.  These
519  * read-side critical sections are delimited by calls to schedule(),
520  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
521  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
522  *
523  * This is a very specialized primitive, intended only for a few uses in
524  * tracing and other situations requiring manipulation of function
525  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
526  * is not (yet) intended for heavy use from multiple CPUs.
527  *
528  * Note that this guarantee implies further memory-ordering guarantees.
529  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
530  * each CPU is guaranteed to have executed a full memory barrier since the
531  * end of its last RCU-tasks read-side critical section whose beginning
532  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
533  * having an RCU-tasks read-side critical section that extends beyond
534  * the return from synchronize_rcu_tasks() is guaranteed to have executed
535  * a full memory barrier after the beginning of synchronize_rcu_tasks()
536  * and before the beginning of that RCU-tasks read-side critical section.
537  * Note that these guarantees include CPUs that are offline, idle, or
538  * executing in user mode, as well as CPUs that are executing in the kernel.
539  *
540  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
541  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
542  * to have executed a full memory barrier during the execution of
543  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
544  * (but again only if the system has more than one CPU).
545  */
546 void synchronize_rcu_tasks(void)
547 {
548 	/* Complain if the scheduler has not started.  */
549 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
550 			 "synchronize_rcu_tasks called too soon");
551 
552 	/* Wait for the grace period. */
553 	wait_rcu_gp(call_rcu_tasks);
554 }
555 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
556 
557 /**
558  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
559  *
560  * Although the current implementation is guaranteed to wait, it is not
561  * obligated to, for example, if there are no pending callbacks.
562  */
563 void rcu_barrier_tasks(void)
564 {
565 	/* There is only one callback queue, so this is easy.  ;-) */
566 	synchronize_rcu_tasks();
567 }
568 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
569 
570 /* See if tasks are still holding out, complain if so. */
571 static void check_holdout_task(struct task_struct *t,
572 			       bool needreport, bool *firstreport)
573 {
574 	int cpu;
575 
576 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
577 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
578 	    !READ_ONCE(t->on_rq) ||
579 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
580 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
581 		WRITE_ONCE(t->rcu_tasks_holdout, false);
582 		list_del_init(&t->rcu_tasks_holdout_list);
583 		put_task_struct(t);
584 		return;
585 	}
586 	rcu_request_urgent_qs_task(t);
587 	if (!needreport)
588 		return;
589 	if (*firstreport) {
590 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
591 		*firstreport = false;
592 	}
593 	cpu = task_cpu(t);
594 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
595 		 t, ".I"[is_idle_task(t)],
596 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
597 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
598 		 t->rcu_tasks_idle_cpu, cpu);
599 	sched_show_task(t);
600 }
601 
602 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
603 static int __noreturn rcu_tasks_kthread(void *arg)
604 {
605 	unsigned long flags;
606 	struct task_struct *g, *t;
607 	unsigned long lastreport;
608 	struct rcu_head *list;
609 	struct rcu_head *next;
610 	LIST_HEAD(rcu_tasks_holdouts);
611 	int fract;
612 
613 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
614 	housekeeping_affine(current, HK_FLAG_RCU);
615 
616 	/*
617 	 * Each pass through the following loop makes one check for
618 	 * newly arrived callbacks, and, if there are some, waits for
619 	 * one RCU-tasks grace period and then invokes the callbacks.
620 	 * This loop is terminated by the system going down.  ;-)
621 	 */
622 	for (;;) {
623 
624 		/* Pick up any new callbacks. */
625 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
626 		list = rcu_tasks_cbs_head;
627 		rcu_tasks_cbs_head = NULL;
628 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
629 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
630 
631 		/* If there were none, wait a bit and start over. */
632 		if (!list) {
633 			wait_event_interruptible(rcu_tasks_cbs_wq,
634 						 rcu_tasks_cbs_head);
635 			if (!rcu_tasks_cbs_head) {
636 				WARN_ON(signal_pending(current));
637 				schedule_timeout_interruptible(HZ/10);
638 			}
639 			continue;
640 		}
641 
642 		/*
643 		 * Wait for all pre-existing t->on_rq and t->nvcsw
644 		 * transitions to complete.  Invoking synchronize_rcu()
645 		 * suffices because all these transitions occur with
646 		 * interrupts disabled.  Without this synchronize_rcu(),
647 		 * a read-side critical section that started before the
648 		 * grace period might be incorrectly seen as having started
649 		 * after the grace period.
650 		 *
651 		 * This synchronize_rcu() also dispenses with the
652 		 * need for a memory barrier on the first store to
653 		 * ->rcu_tasks_holdout, as it forces the store to happen
654 		 * after the beginning of the grace period.
655 		 */
656 		synchronize_rcu();
657 
658 		/*
659 		 * There were callbacks, so we need to wait for an
660 		 * RCU-tasks grace period.  Start off by scanning
661 		 * the task list for tasks that are not already
662 		 * voluntarily blocked.  Mark these tasks and make
663 		 * a list of them in rcu_tasks_holdouts.
664 		 */
665 		rcu_read_lock();
666 		for_each_process_thread(g, t) {
667 			if (t != current && READ_ONCE(t->on_rq) &&
668 			    !is_idle_task(t)) {
669 				get_task_struct(t);
670 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
671 				WRITE_ONCE(t->rcu_tasks_holdout, true);
672 				list_add(&t->rcu_tasks_holdout_list,
673 					 &rcu_tasks_holdouts);
674 			}
675 		}
676 		rcu_read_unlock();
677 
678 		/*
679 		 * Wait for tasks that are in the process of exiting.
680 		 * This does only part of the job, ensuring that all
681 		 * tasks that were previously exiting reach the point
682 		 * where they have disabled preemption, allowing the
683 		 * later synchronize_rcu() to finish the job.
684 		 */
685 		synchronize_srcu(&tasks_rcu_exit_srcu);
686 
687 		/*
688 		 * Each pass through the following loop scans the list
689 		 * of holdout tasks, removing any that are no longer
690 		 * holdouts.  When the list is empty, we are done.
691 		 */
692 		lastreport = jiffies;
693 
694 		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
695 		fract = 10;
696 
697 		for (;;) {
698 			bool firstreport;
699 			bool needreport;
700 			int rtst;
701 			struct task_struct *t1;
702 
703 			if (list_empty(&rcu_tasks_holdouts))
704 				break;
705 
706 			/* Slowly back off waiting for holdouts */
707 			schedule_timeout_interruptible(HZ/fract);
708 
709 			if (fract > 1)
710 				fract--;
711 
712 			rtst = READ_ONCE(rcu_task_stall_timeout);
713 			needreport = rtst > 0 &&
714 				     time_after(jiffies, lastreport + rtst);
715 			if (needreport)
716 				lastreport = jiffies;
717 			firstreport = true;
718 			WARN_ON(signal_pending(current));
719 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
720 						rcu_tasks_holdout_list) {
721 				check_holdout_task(t, needreport, &firstreport);
722 				cond_resched();
723 			}
724 		}
725 
726 		/*
727 		 * Because ->on_rq and ->nvcsw are not guaranteed
728 		 * to have a full memory barriers prior to them in the
729 		 * schedule() path, memory reordering on other CPUs could
730 		 * cause their RCU-tasks read-side critical sections to
731 		 * extend past the end of the grace period.  However,
732 		 * because these ->nvcsw updates are carried out with
733 		 * interrupts disabled, we can use synchronize_rcu()
734 		 * to force the needed ordering on all such CPUs.
735 		 *
736 		 * This synchronize_rcu() also confines all
737 		 * ->rcu_tasks_holdout accesses to be within the grace
738 		 * period, avoiding the need for memory barriers for
739 		 * ->rcu_tasks_holdout accesses.
740 		 *
741 		 * In addition, this synchronize_rcu() waits for exiting
742 		 * tasks to complete their final preempt_disable() region
743 		 * of execution, cleaning up after the synchronize_srcu()
744 		 * above.
745 		 */
746 		synchronize_rcu();
747 
748 		/* Invoke the callbacks. */
749 		while (list) {
750 			next = list->next;
751 			local_bh_disable();
752 			list->func(list);
753 			local_bh_enable();
754 			list = next;
755 			cond_resched();
756 		}
757 		/* Paranoid sleep to keep this from entering a tight loop */
758 		schedule_timeout_uninterruptible(HZ/10);
759 	}
760 }
761 
762 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
763 static int __init rcu_spawn_tasks_kthread(void)
764 {
765 	struct task_struct *t;
766 
767 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
768 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
769 		return 0;
770 	smp_mb(); /* Ensure others see full kthread. */
771 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
772 	return 0;
773 }
774 core_initcall(rcu_spawn_tasks_kthread);
775 
776 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
777 void exit_tasks_rcu_start(void)
778 {
779 	preempt_disable();
780 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
781 	preempt_enable();
782 }
783 
784 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
785 void exit_tasks_rcu_finish(void)
786 {
787 	preempt_disable();
788 	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
789 	preempt_enable();
790 }
791 
792 #endif /* #ifdef CONFIG_TASKS_RCU */
793 
794 #ifndef CONFIG_TINY_RCU
795 
796 /*
797  * Print any non-default Tasks RCU settings.
798  */
799 static void __init rcu_tasks_bootup_oddness(void)
800 {
801 #ifdef CONFIG_TASKS_RCU
802 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
803 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
804 	else
805 		pr_info("\tTasks RCU enabled.\n");
806 #endif /* #ifdef CONFIG_TASKS_RCU */
807 }
808 
809 #endif /* #ifndef CONFIG_TINY_RCU */
810 
811 #ifdef CONFIG_PROVE_RCU
812 
813 /*
814  * Early boot self test parameters.
815  */
816 static bool rcu_self_test;
817 module_param(rcu_self_test, bool, 0444);
818 
819 static int rcu_self_test_counter;
820 
821 static void test_callback(struct rcu_head *r)
822 {
823 	rcu_self_test_counter++;
824 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
825 }
826 
827 DEFINE_STATIC_SRCU(early_srcu);
828 
829 static void early_boot_test_call_rcu(void)
830 {
831 	static struct rcu_head head;
832 	static struct rcu_head shead;
833 
834 	call_rcu(&head, test_callback);
835 	if (IS_ENABLED(CONFIG_SRCU))
836 		call_srcu(&early_srcu, &shead, test_callback);
837 }
838 
839 void rcu_early_boot_tests(void)
840 {
841 	pr_info("Running RCU self tests\n");
842 
843 	if (rcu_self_test)
844 		early_boot_test_call_rcu();
845 	rcu_test_sync_prims();
846 }
847 
848 static int rcu_verify_early_boot_tests(void)
849 {
850 	int ret = 0;
851 	int early_boot_test_counter = 0;
852 
853 	if (rcu_self_test) {
854 		early_boot_test_counter++;
855 		rcu_barrier();
856 		if (IS_ENABLED(CONFIG_SRCU)) {
857 			early_boot_test_counter++;
858 			srcu_barrier(&early_srcu);
859 		}
860 	}
861 	if (rcu_self_test_counter != early_boot_test_counter) {
862 		WARN_ON(1);
863 		ret = -1;
864 	}
865 
866 	return ret;
867 }
868 late_initcall(rcu_verify_early_boot_tests);
869 #else
870 void rcu_early_boot_tests(void) {}
871 #endif /* CONFIG_PROVE_RCU */
872 
873 #ifndef CONFIG_TINY_RCU
874 
875 /*
876  * Print any significant non-default boot-time settings.
877  */
878 void __init rcupdate_announce_bootup_oddness(void)
879 {
880 	if (rcu_normal)
881 		pr_info("\tNo expedited grace period (rcu_normal).\n");
882 	else if (rcu_normal_after_boot)
883 		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
884 	else if (rcu_expedited)
885 		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
886 	if (rcu_cpu_stall_suppress)
887 		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
888 	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
889 		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
890 	rcu_tasks_bootup_oddness();
891 }
892 
893 #endif /* #ifndef CONFIG_TINY_RCU */
894