1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * Papers: 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 28 * 29 * For detailed explanation of Read-Copy Update mechanism see - 30 * http://lse.sourceforge.net/locking/rcupdate.html 31 * 32 */ 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/interrupt.h> 39 #include <linux/sched.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/percpu.h> 43 #include <linux/notifier.h> 44 #include <linux/cpu.h> 45 #include <linux/mutex.h> 46 #include <linux/export.h> 47 #include <linux/hardirq.h> 48 #include <linux/delay.h> 49 #include <linux/module.h> 50 #include <linux/kthread.h> 51 #include <linux/tick.h> 52 53 #define CREATE_TRACE_POINTS 54 55 #include "rcu.h" 56 57 MODULE_ALIAS("rcupdate"); 58 #ifdef MODULE_PARAM_PREFIX 59 #undef MODULE_PARAM_PREFIX 60 #endif 61 #define MODULE_PARAM_PREFIX "rcupdate." 62 63 #ifndef CONFIG_TINY_RCU 64 module_param(rcu_expedited, int, 0); 65 module_param(rcu_normal, int, 0); 66 static int rcu_normal_after_boot; 67 module_param(rcu_normal_after_boot, int, 0); 68 #endif /* #ifndef CONFIG_TINY_RCU */ 69 70 #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT) 71 /** 72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 73 * 74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 75 * RCU-sched read-side critical section. In absence of 76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 77 * critical section unless it can prove otherwise. Note that disabling 78 * of preemption (including disabling irqs) counts as an RCU-sched 79 * read-side critical section. This is useful for debug checks in functions 80 * that required that they be called within an RCU-sched read-side 81 * critical section. 82 * 83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 84 * and while lockdep is disabled. 85 * 86 * Note that if the CPU is in the idle loop from an RCU point of 87 * view (ie: that we are in the section between rcu_idle_enter() and 88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 89 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 90 * that are in such a section, considering these as in extended quiescent 91 * state, so such a CPU is effectively never in an RCU read-side critical 92 * section regardless of what RCU primitives it invokes. This state of 93 * affairs is required --- we need to keep an RCU-free window in idle 94 * where the CPU may possibly enter into low power mode. This way we can 95 * notice an extended quiescent state to other CPUs that started a grace 96 * period. Otherwise we would delay any grace period as long as we run in 97 * the idle task. 98 * 99 * Similarly, we avoid claiming an SRCU read lock held if the current 100 * CPU is offline. 101 */ 102 int rcu_read_lock_sched_held(void) 103 { 104 int lockdep_opinion = 0; 105 106 if (!debug_lockdep_rcu_enabled()) 107 return 1; 108 if (!rcu_is_watching()) 109 return 0; 110 if (!rcu_lockdep_current_cpu_online()) 111 return 0; 112 if (debug_locks) 113 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 114 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 115 } 116 EXPORT_SYMBOL(rcu_read_lock_sched_held); 117 #endif 118 119 #ifndef CONFIG_TINY_RCU 120 121 /* 122 * Should expedited grace-period primitives always fall back to their 123 * non-expedited counterparts? Intended for use within RCU. Note 124 * that if the user specifies both rcu_expedited and rcu_normal, then 125 * rcu_normal wins. 126 */ 127 bool rcu_gp_is_normal(void) 128 { 129 return READ_ONCE(rcu_normal); 130 } 131 132 static atomic_t rcu_expedited_nesting = 133 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0); 134 135 /* 136 * Should normal grace-period primitives be expedited? Intended for 137 * use within RCU. Note that this function takes the rcu_expedited 138 * sysfs/boot variable into account as well as the rcu_expedite_gp() 139 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited() 140 * returns false is a -really- bad idea. 141 */ 142 bool rcu_gp_is_expedited(void) 143 { 144 return rcu_expedited || atomic_read(&rcu_expedited_nesting); 145 } 146 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 147 148 /** 149 * rcu_expedite_gp - Expedite future RCU grace periods 150 * 151 * After a call to this function, future calls to synchronize_rcu() and 152 * friends act as the corresponding synchronize_rcu_expedited() function 153 * had instead been called. 154 */ 155 void rcu_expedite_gp(void) 156 { 157 atomic_inc(&rcu_expedited_nesting); 158 } 159 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 160 161 /** 162 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 163 * 164 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 165 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 166 * and if the rcu_expedited sysfs/boot parameter is not set, then all 167 * subsequent calls to synchronize_rcu() and friends will return to 168 * their normal non-expedited behavior. 169 */ 170 void rcu_unexpedite_gp(void) 171 { 172 atomic_dec(&rcu_expedited_nesting); 173 } 174 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 175 176 /* 177 * Inform RCU of the end of the in-kernel boot sequence. 178 */ 179 void rcu_end_inkernel_boot(void) 180 { 181 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT)) 182 rcu_unexpedite_gp(); 183 if (rcu_normal_after_boot) 184 WRITE_ONCE(rcu_normal, 1); 185 } 186 187 #endif /* #ifndef CONFIG_TINY_RCU */ 188 189 #ifdef CONFIG_PREEMPT_RCU 190 191 /* 192 * Preemptible RCU implementation for rcu_read_lock(). 193 * Just increment ->rcu_read_lock_nesting, shared state will be updated 194 * if we block. 195 */ 196 void __rcu_read_lock(void) 197 { 198 current->rcu_read_lock_nesting++; 199 barrier(); /* critical section after entry code. */ 200 } 201 EXPORT_SYMBOL_GPL(__rcu_read_lock); 202 203 /* 204 * Preemptible RCU implementation for rcu_read_unlock(). 205 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 206 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 207 * invoke rcu_read_unlock_special() to clean up after a context switch 208 * in an RCU read-side critical section and other special cases. 209 */ 210 void __rcu_read_unlock(void) 211 { 212 struct task_struct *t = current; 213 214 if (t->rcu_read_lock_nesting != 1) { 215 --t->rcu_read_lock_nesting; 216 } else { 217 barrier(); /* critical section before exit code. */ 218 t->rcu_read_lock_nesting = INT_MIN; 219 barrier(); /* assign before ->rcu_read_unlock_special load */ 220 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 221 rcu_read_unlock_special(t); 222 barrier(); /* ->rcu_read_unlock_special load before assign */ 223 t->rcu_read_lock_nesting = 0; 224 } 225 #ifdef CONFIG_PROVE_LOCKING 226 { 227 int rrln = READ_ONCE(t->rcu_read_lock_nesting); 228 229 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); 230 } 231 #endif /* #ifdef CONFIG_PROVE_LOCKING */ 232 } 233 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 234 235 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 236 237 #ifdef CONFIG_DEBUG_LOCK_ALLOC 238 static struct lock_class_key rcu_lock_key; 239 struct lockdep_map rcu_lock_map = 240 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 241 EXPORT_SYMBOL_GPL(rcu_lock_map); 242 243 static struct lock_class_key rcu_bh_lock_key; 244 struct lockdep_map rcu_bh_lock_map = 245 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 246 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 247 248 static struct lock_class_key rcu_sched_lock_key; 249 struct lockdep_map rcu_sched_lock_map = 250 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 251 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 252 253 static struct lock_class_key rcu_callback_key; 254 struct lockdep_map rcu_callback_map = 255 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 256 EXPORT_SYMBOL_GPL(rcu_callback_map); 257 258 int notrace debug_lockdep_rcu_enabled(void) 259 { 260 return rcu_scheduler_active && debug_locks && 261 current->lockdep_recursion == 0; 262 } 263 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 264 265 /** 266 * rcu_read_lock_held() - might we be in RCU read-side critical section? 267 * 268 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 269 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 270 * this assumes we are in an RCU read-side critical section unless it can 271 * prove otherwise. This is useful for debug checks in functions that 272 * require that they be called within an RCU read-side critical section. 273 * 274 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 275 * and while lockdep is disabled. 276 * 277 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 278 * occur in the same context, for example, it is illegal to invoke 279 * rcu_read_unlock() in process context if the matching rcu_read_lock() 280 * was invoked from within an irq handler. 281 * 282 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 283 * offline from an RCU perspective, so check for those as well. 284 */ 285 int rcu_read_lock_held(void) 286 { 287 if (!debug_lockdep_rcu_enabled()) 288 return 1; 289 if (!rcu_is_watching()) 290 return 0; 291 if (!rcu_lockdep_current_cpu_online()) 292 return 0; 293 return lock_is_held(&rcu_lock_map); 294 } 295 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 296 297 /** 298 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 299 * 300 * Check for bottom half being disabled, which covers both the 301 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 302 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 303 * will show the situation. This is useful for debug checks in functions 304 * that require that they be called within an RCU read-side critical 305 * section. 306 * 307 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 308 * 309 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 310 * offline from an RCU perspective, so check for those as well. 311 */ 312 int rcu_read_lock_bh_held(void) 313 { 314 if (!debug_lockdep_rcu_enabled()) 315 return 1; 316 if (!rcu_is_watching()) 317 return 0; 318 if (!rcu_lockdep_current_cpu_online()) 319 return 0; 320 return in_softirq() || irqs_disabled(); 321 } 322 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 323 324 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 325 326 /** 327 * wakeme_after_rcu() - Callback function to awaken a task after grace period 328 * @head: Pointer to rcu_head member within rcu_synchronize structure 329 * 330 * Awaken the corresponding task now that a grace period has elapsed. 331 */ 332 void wakeme_after_rcu(struct rcu_head *head) 333 { 334 struct rcu_synchronize *rcu; 335 336 rcu = container_of(head, struct rcu_synchronize, head); 337 complete(&rcu->completion); 338 } 339 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 340 341 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 342 struct rcu_synchronize *rs_array) 343 { 344 int i; 345 346 /* Initialize and register callbacks for each flavor specified. */ 347 for (i = 0; i < n; i++) { 348 if (checktiny && 349 (crcu_array[i] == call_rcu || 350 crcu_array[i] == call_rcu_bh)) { 351 might_sleep(); 352 continue; 353 } 354 init_rcu_head_on_stack(&rs_array[i].head); 355 init_completion(&rs_array[i].completion); 356 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 357 } 358 359 /* Wait for all callbacks to be invoked. */ 360 for (i = 0; i < n; i++) { 361 if (checktiny && 362 (crcu_array[i] == call_rcu || 363 crcu_array[i] == call_rcu_bh)) 364 continue; 365 wait_for_completion(&rs_array[i].completion); 366 destroy_rcu_head_on_stack(&rs_array[i].head); 367 } 368 } 369 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 370 371 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 372 void init_rcu_head(struct rcu_head *head) 373 { 374 debug_object_init(head, &rcuhead_debug_descr); 375 } 376 377 void destroy_rcu_head(struct rcu_head *head) 378 { 379 debug_object_free(head, &rcuhead_debug_descr); 380 } 381 382 /* 383 * fixup_activate is called when: 384 * - an active object is activated 385 * - an unknown object is activated (might be a statically initialized object) 386 * Activation is performed internally by call_rcu(). 387 */ 388 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state) 389 { 390 struct rcu_head *head = addr; 391 392 switch (state) { 393 394 case ODEBUG_STATE_NOTAVAILABLE: 395 /* 396 * This is not really a fixup. We just make sure that it is 397 * tracked in the object tracker. 398 */ 399 debug_object_init(head, &rcuhead_debug_descr); 400 debug_object_activate(head, &rcuhead_debug_descr); 401 return 0; 402 default: 403 return 1; 404 } 405 } 406 407 /** 408 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 409 * @head: pointer to rcu_head structure to be initialized 410 * 411 * This function informs debugobjects of a new rcu_head structure that 412 * has been allocated as an auto variable on the stack. This function 413 * is not required for rcu_head structures that are statically defined or 414 * that are dynamically allocated on the heap. This function has no 415 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 416 */ 417 void init_rcu_head_on_stack(struct rcu_head *head) 418 { 419 debug_object_init_on_stack(head, &rcuhead_debug_descr); 420 } 421 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 422 423 /** 424 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 425 * @head: pointer to rcu_head structure to be initialized 426 * 427 * This function informs debugobjects that an on-stack rcu_head structure 428 * is about to go out of scope. As with init_rcu_head_on_stack(), this 429 * function is not required for rcu_head structures that are statically 430 * defined or that are dynamically allocated on the heap. Also as with 431 * init_rcu_head_on_stack(), this function has no effect for 432 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 433 */ 434 void destroy_rcu_head_on_stack(struct rcu_head *head) 435 { 436 debug_object_free(head, &rcuhead_debug_descr); 437 } 438 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 439 440 struct debug_obj_descr rcuhead_debug_descr = { 441 .name = "rcu_head", 442 .fixup_activate = rcuhead_fixup_activate, 443 }; 444 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 445 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 446 447 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 448 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 449 unsigned long secs, 450 unsigned long c_old, unsigned long c) 451 { 452 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 453 } 454 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 455 #else 456 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 457 do { } while (0) 458 #endif 459 460 #ifdef CONFIG_RCU_STALL_COMMON 461 462 #ifdef CONFIG_PROVE_RCU 463 #define RCU_STALL_DELAY_DELTA (5 * HZ) 464 #else 465 #define RCU_STALL_DELAY_DELTA 0 466 #endif 467 468 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 469 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 470 471 module_param(rcu_cpu_stall_suppress, int, 0644); 472 module_param(rcu_cpu_stall_timeout, int, 0644); 473 474 int rcu_jiffies_till_stall_check(void) 475 { 476 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 477 478 /* 479 * Limit check must be consistent with the Kconfig limits 480 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 481 */ 482 if (till_stall_check < 3) { 483 WRITE_ONCE(rcu_cpu_stall_timeout, 3); 484 till_stall_check = 3; 485 } else if (till_stall_check > 300) { 486 WRITE_ONCE(rcu_cpu_stall_timeout, 300); 487 till_stall_check = 300; 488 } 489 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 490 } 491 492 void rcu_sysrq_start(void) 493 { 494 if (!rcu_cpu_stall_suppress) 495 rcu_cpu_stall_suppress = 2; 496 } 497 498 void rcu_sysrq_end(void) 499 { 500 if (rcu_cpu_stall_suppress == 2) 501 rcu_cpu_stall_suppress = 0; 502 } 503 504 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 505 { 506 rcu_cpu_stall_suppress = 1; 507 return NOTIFY_DONE; 508 } 509 510 static struct notifier_block rcu_panic_block = { 511 .notifier_call = rcu_panic, 512 }; 513 514 static int __init check_cpu_stall_init(void) 515 { 516 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 517 return 0; 518 } 519 early_initcall(check_cpu_stall_init); 520 521 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 522 523 #ifdef CONFIG_TASKS_RCU 524 525 /* 526 * Simple variant of RCU whose quiescent states are voluntary context switch, 527 * user-space execution, and idle. As such, grace periods can take one good 528 * long time. There are no read-side primitives similar to rcu_read_lock() 529 * and rcu_read_unlock() because this implementation is intended to get 530 * the system into a safe state for some of the manipulations involved in 531 * tracing and the like. Finally, this implementation does not support 532 * high call_rcu_tasks() rates from multiple CPUs. If this is required, 533 * per-CPU callback lists will be needed. 534 */ 535 536 /* Global list of callbacks and associated lock. */ 537 static struct rcu_head *rcu_tasks_cbs_head; 538 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 539 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 540 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 541 542 /* Track exiting tasks in order to allow them to be waited for. */ 543 DEFINE_SRCU(tasks_rcu_exit_srcu); 544 545 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 546 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; 547 module_param(rcu_task_stall_timeout, int, 0644); 548 549 static void rcu_spawn_tasks_kthread(void); 550 551 /* 552 * Post an RCU-tasks callback. First call must be from process context 553 * after the scheduler if fully operational. 554 */ 555 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 556 { 557 unsigned long flags; 558 bool needwake; 559 560 rhp->next = NULL; 561 rhp->func = func; 562 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 563 needwake = !rcu_tasks_cbs_head; 564 *rcu_tasks_cbs_tail = rhp; 565 rcu_tasks_cbs_tail = &rhp->next; 566 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 567 if (needwake) { 568 rcu_spawn_tasks_kthread(); 569 wake_up(&rcu_tasks_cbs_wq); 570 } 571 } 572 EXPORT_SYMBOL_GPL(call_rcu_tasks); 573 574 /** 575 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 576 * 577 * Control will return to the caller some time after a full rcu-tasks 578 * grace period has elapsed, in other words after all currently 579 * executing rcu-tasks read-side critical sections have elapsed. These 580 * read-side critical sections are delimited by calls to schedule(), 581 * cond_resched_rcu_qs(), idle execution, userspace execution, calls 582 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 583 * 584 * This is a very specialized primitive, intended only for a few uses in 585 * tracing and other situations requiring manipulation of function 586 * preambles and profiling hooks. The synchronize_rcu_tasks() function 587 * is not (yet) intended for heavy use from multiple CPUs. 588 * 589 * Note that this guarantee implies further memory-ordering guarantees. 590 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 591 * each CPU is guaranteed to have executed a full memory barrier since the 592 * end of its last RCU-tasks read-side critical section whose beginning 593 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 594 * having an RCU-tasks read-side critical section that extends beyond 595 * the return from synchronize_rcu_tasks() is guaranteed to have executed 596 * a full memory barrier after the beginning of synchronize_rcu_tasks() 597 * and before the beginning of that RCU-tasks read-side critical section. 598 * Note that these guarantees include CPUs that are offline, idle, or 599 * executing in user mode, as well as CPUs that are executing in the kernel. 600 * 601 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 602 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 603 * to have executed a full memory barrier during the execution of 604 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 605 * (but again only if the system has more than one CPU). 606 */ 607 void synchronize_rcu_tasks(void) 608 { 609 /* Complain if the scheduler has not started. */ 610 RCU_LOCKDEP_WARN(!rcu_scheduler_active, 611 "synchronize_rcu_tasks called too soon"); 612 613 /* Wait for the grace period. */ 614 wait_rcu_gp(call_rcu_tasks); 615 } 616 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 617 618 /** 619 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 620 * 621 * Although the current implementation is guaranteed to wait, it is not 622 * obligated to, for example, if there are no pending callbacks. 623 */ 624 void rcu_barrier_tasks(void) 625 { 626 /* There is only one callback queue, so this is easy. ;-) */ 627 synchronize_rcu_tasks(); 628 } 629 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 630 631 /* See if tasks are still holding out, complain if so. */ 632 static void check_holdout_task(struct task_struct *t, 633 bool needreport, bool *firstreport) 634 { 635 int cpu; 636 637 if (!READ_ONCE(t->rcu_tasks_holdout) || 638 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 639 !READ_ONCE(t->on_rq) || 640 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 641 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 642 WRITE_ONCE(t->rcu_tasks_holdout, false); 643 list_del_init(&t->rcu_tasks_holdout_list); 644 put_task_struct(t); 645 return; 646 } 647 if (!needreport) 648 return; 649 if (*firstreport) { 650 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 651 *firstreport = false; 652 } 653 cpu = task_cpu(t); 654 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 655 t, ".I"[is_idle_task(t)], 656 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 657 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 658 t->rcu_tasks_idle_cpu, cpu); 659 sched_show_task(t); 660 } 661 662 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 663 static int __noreturn rcu_tasks_kthread(void *arg) 664 { 665 unsigned long flags; 666 struct task_struct *g, *t; 667 unsigned long lastreport; 668 struct rcu_head *list; 669 struct rcu_head *next; 670 LIST_HEAD(rcu_tasks_holdouts); 671 672 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 673 housekeeping_affine(current); 674 675 /* 676 * Each pass through the following loop makes one check for 677 * newly arrived callbacks, and, if there are some, waits for 678 * one RCU-tasks grace period and then invokes the callbacks. 679 * This loop is terminated by the system going down. ;-) 680 */ 681 for (;;) { 682 683 /* Pick up any new callbacks. */ 684 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 685 list = rcu_tasks_cbs_head; 686 rcu_tasks_cbs_head = NULL; 687 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 688 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 689 690 /* If there were none, wait a bit and start over. */ 691 if (!list) { 692 wait_event_interruptible(rcu_tasks_cbs_wq, 693 rcu_tasks_cbs_head); 694 if (!rcu_tasks_cbs_head) { 695 WARN_ON(signal_pending(current)); 696 schedule_timeout_interruptible(HZ/10); 697 } 698 continue; 699 } 700 701 /* 702 * Wait for all pre-existing t->on_rq and t->nvcsw 703 * transitions to complete. Invoking synchronize_sched() 704 * suffices because all these transitions occur with 705 * interrupts disabled. Without this synchronize_sched(), 706 * a read-side critical section that started before the 707 * grace period might be incorrectly seen as having started 708 * after the grace period. 709 * 710 * This synchronize_sched() also dispenses with the 711 * need for a memory barrier on the first store to 712 * ->rcu_tasks_holdout, as it forces the store to happen 713 * after the beginning of the grace period. 714 */ 715 synchronize_sched(); 716 717 /* 718 * There were callbacks, so we need to wait for an 719 * RCU-tasks grace period. Start off by scanning 720 * the task list for tasks that are not already 721 * voluntarily blocked. Mark these tasks and make 722 * a list of them in rcu_tasks_holdouts. 723 */ 724 rcu_read_lock(); 725 for_each_process_thread(g, t) { 726 if (t != current && READ_ONCE(t->on_rq) && 727 !is_idle_task(t)) { 728 get_task_struct(t); 729 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 730 WRITE_ONCE(t->rcu_tasks_holdout, true); 731 list_add(&t->rcu_tasks_holdout_list, 732 &rcu_tasks_holdouts); 733 } 734 } 735 rcu_read_unlock(); 736 737 /* 738 * Wait for tasks that are in the process of exiting. 739 * This does only part of the job, ensuring that all 740 * tasks that were previously exiting reach the point 741 * where they have disabled preemption, allowing the 742 * later synchronize_sched() to finish the job. 743 */ 744 synchronize_srcu(&tasks_rcu_exit_srcu); 745 746 /* 747 * Each pass through the following loop scans the list 748 * of holdout tasks, removing any that are no longer 749 * holdouts. When the list is empty, we are done. 750 */ 751 lastreport = jiffies; 752 while (!list_empty(&rcu_tasks_holdouts)) { 753 bool firstreport; 754 bool needreport; 755 int rtst; 756 struct task_struct *t1; 757 758 schedule_timeout_interruptible(HZ); 759 rtst = READ_ONCE(rcu_task_stall_timeout); 760 needreport = rtst > 0 && 761 time_after(jiffies, lastreport + rtst); 762 if (needreport) 763 lastreport = jiffies; 764 firstreport = true; 765 WARN_ON(signal_pending(current)); 766 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 767 rcu_tasks_holdout_list) { 768 check_holdout_task(t, needreport, &firstreport); 769 cond_resched(); 770 } 771 } 772 773 /* 774 * Because ->on_rq and ->nvcsw are not guaranteed 775 * to have a full memory barriers prior to them in the 776 * schedule() path, memory reordering on other CPUs could 777 * cause their RCU-tasks read-side critical sections to 778 * extend past the end of the grace period. However, 779 * because these ->nvcsw updates are carried out with 780 * interrupts disabled, we can use synchronize_sched() 781 * to force the needed ordering on all such CPUs. 782 * 783 * This synchronize_sched() also confines all 784 * ->rcu_tasks_holdout accesses to be within the grace 785 * period, avoiding the need for memory barriers for 786 * ->rcu_tasks_holdout accesses. 787 * 788 * In addition, this synchronize_sched() waits for exiting 789 * tasks to complete their final preempt_disable() region 790 * of execution, cleaning up after the synchronize_srcu() 791 * above. 792 */ 793 synchronize_sched(); 794 795 /* Invoke the callbacks. */ 796 while (list) { 797 next = list->next; 798 local_bh_disable(); 799 list->func(list); 800 local_bh_enable(); 801 list = next; 802 cond_resched(); 803 } 804 schedule_timeout_uninterruptible(HZ/10); 805 } 806 } 807 808 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ 809 static void rcu_spawn_tasks_kthread(void) 810 { 811 static DEFINE_MUTEX(rcu_tasks_kthread_mutex); 812 static struct task_struct *rcu_tasks_kthread_ptr; 813 struct task_struct *t; 814 815 if (READ_ONCE(rcu_tasks_kthread_ptr)) { 816 smp_mb(); /* Ensure caller sees full kthread. */ 817 return; 818 } 819 mutex_lock(&rcu_tasks_kthread_mutex); 820 if (rcu_tasks_kthread_ptr) { 821 mutex_unlock(&rcu_tasks_kthread_mutex); 822 return; 823 } 824 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 825 BUG_ON(IS_ERR(t)); 826 smp_mb(); /* Ensure others see full kthread. */ 827 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 828 mutex_unlock(&rcu_tasks_kthread_mutex); 829 } 830 831 #endif /* #ifdef CONFIG_TASKS_RCU */ 832 833 #ifdef CONFIG_PROVE_RCU 834 835 /* 836 * Early boot self test parameters, one for each flavor 837 */ 838 static bool rcu_self_test; 839 static bool rcu_self_test_bh; 840 static bool rcu_self_test_sched; 841 842 module_param(rcu_self_test, bool, 0444); 843 module_param(rcu_self_test_bh, bool, 0444); 844 module_param(rcu_self_test_sched, bool, 0444); 845 846 static int rcu_self_test_counter; 847 848 static void test_callback(struct rcu_head *r) 849 { 850 rcu_self_test_counter++; 851 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 852 } 853 854 static void early_boot_test_call_rcu(void) 855 { 856 static struct rcu_head head; 857 858 call_rcu(&head, test_callback); 859 } 860 861 static void early_boot_test_call_rcu_bh(void) 862 { 863 static struct rcu_head head; 864 865 call_rcu_bh(&head, test_callback); 866 } 867 868 static void early_boot_test_call_rcu_sched(void) 869 { 870 static struct rcu_head head; 871 872 call_rcu_sched(&head, test_callback); 873 } 874 875 void rcu_early_boot_tests(void) 876 { 877 pr_info("Running RCU self tests\n"); 878 879 if (rcu_self_test) 880 early_boot_test_call_rcu(); 881 if (rcu_self_test_bh) 882 early_boot_test_call_rcu_bh(); 883 if (rcu_self_test_sched) 884 early_boot_test_call_rcu_sched(); 885 } 886 887 static int rcu_verify_early_boot_tests(void) 888 { 889 int ret = 0; 890 int early_boot_test_counter = 0; 891 892 if (rcu_self_test) { 893 early_boot_test_counter++; 894 rcu_barrier(); 895 } 896 if (rcu_self_test_bh) { 897 early_boot_test_counter++; 898 rcu_barrier_bh(); 899 } 900 if (rcu_self_test_sched) { 901 early_boot_test_counter++; 902 rcu_barrier_sched(); 903 } 904 905 if (rcu_self_test_counter != early_boot_test_counter) { 906 WARN_ON(1); 907 ret = -1; 908 } 909 910 return ret; 911 } 912 late_initcall(rcu_verify_early_boot_tests); 913 #else 914 void rcu_early_boot_tests(void) {} 915 #endif /* CONFIG_PROVE_RCU */ 916