xref: /openbmc/linux/kernel/rcu/update.c (revision 7c6094db)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/moduleparam.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52 
53 #define CREATE_TRACE_POINTS
54 
55 #include "rcu.h"
56 
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "rcupdate."
61 
62 #ifndef CONFIG_TINY_RCU
63 module_param(rcu_expedited, int, 0);
64 module_param(rcu_normal, int, 0);
65 static int rcu_normal_after_boot;
66 module_param(rcu_normal_after_boot, int, 0);
67 #endif /* #ifndef CONFIG_TINY_RCU */
68 
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
70 /**
71  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
72  *
73  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
74  * RCU-sched read-side critical section.  In absence of
75  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
76  * critical section unless it can prove otherwise.  Note that disabling
77  * of preemption (including disabling irqs) counts as an RCU-sched
78  * read-side critical section.  This is useful for debug checks in functions
79  * that required that they be called within an RCU-sched read-side
80  * critical section.
81  *
82  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
83  * and while lockdep is disabled.
84  *
85  * Note that if the CPU is in the idle loop from an RCU point of
86  * view (ie: that we are in the section between rcu_idle_enter() and
87  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
88  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
89  * that are in such a section, considering these as in extended quiescent
90  * state, so such a CPU is effectively never in an RCU read-side critical
91  * section regardless of what RCU primitives it invokes.  This state of
92  * affairs is required --- we need to keep an RCU-free window in idle
93  * where the CPU may possibly enter into low power mode. This way we can
94  * notice an extended quiescent state to other CPUs that started a grace
95  * period. Otherwise we would delay any grace period as long as we run in
96  * the idle task.
97  *
98  * Similarly, we avoid claiming an SRCU read lock held if the current
99  * CPU is offline.
100  */
101 int rcu_read_lock_sched_held(void)
102 {
103 	int lockdep_opinion = 0;
104 
105 	if (!debug_lockdep_rcu_enabled())
106 		return 1;
107 	if (!rcu_is_watching())
108 		return 0;
109 	if (!rcu_lockdep_current_cpu_online())
110 		return 0;
111 	if (debug_locks)
112 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
113 	return lockdep_opinion || !preemptible();
114 }
115 EXPORT_SYMBOL(rcu_read_lock_sched_held);
116 #endif
117 
118 #ifndef CONFIG_TINY_RCU
119 
120 /*
121  * Should expedited grace-period primitives always fall back to their
122  * non-expedited counterparts?  Intended for use within RCU.  Note
123  * that if the user specifies both rcu_expedited and rcu_normal, then
124  * rcu_normal wins.  (Except during the time period during boot from
125  * when the first task is spawned until the rcu_exp_runtime_mode()
126  * core_initcall() is invoked, at which point everything is expedited.)
127  */
128 bool rcu_gp_is_normal(void)
129 {
130 	return READ_ONCE(rcu_normal) &&
131 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
132 }
133 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
134 
135 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
136 
137 /*
138  * Should normal grace-period primitives be expedited?  Intended for
139  * use within RCU.  Note that this function takes the rcu_expedited
140  * sysfs/boot variable and rcu_scheduler_active into account as well
141  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
142  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
143  */
144 bool rcu_gp_is_expedited(void)
145 {
146 	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
147 	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
148 }
149 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
150 
151 /**
152  * rcu_expedite_gp - Expedite future RCU grace periods
153  *
154  * After a call to this function, future calls to synchronize_rcu() and
155  * friends act as the corresponding synchronize_rcu_expedited() function
156  * had instead been called.
157  */
158 void rcu_expedite_gp(void)
159 {
160 	atomic_inc(&rcu_expedited_nesting);
161 }
162 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
163 
164 /**
165  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
166  *
167  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
168  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
169  * and if the rcu_expedited sysfs/boot parameter is not set, then all
170  * subsequent calls to synchronize_rcu() and friends will return to
171  * their normal non-expedited behavior.
172  */
173 void rcu_unexpedite_gp(void)
174 {
175 	atomic_dec(&rcu_expedited_nesting);
176 }
177 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
178 
179 /*
180  * Inform RCU of the end of the in-kernel boot sequence.
181  */
182 void rcu_end_inkernel_boot(void)
183 {
184 	rcu_unexpedite_gp();
185 	if (rcu_normal_after_boot)
186 		WRITE_ONCE(rcu_normal, 1);
187 }
188 
189 #endif /* #ifndef CONFIG_TINY_RCU */
190 
191 #ifdef CONFIG_PREEMPT_RCU
192 
193 /*
194  * Preemptible RCU implementation for rcu_read_lock().
195  * Just increment ->rcu_read_lock_nesting, shared state will be updated
196  * if we block.
197  */
198 void __rcu_read_lock(void)
199 {
200 	current->rcu_read_lock_nesting++;
201 	barrier();  /* critical section after entry code. */
202 }
203 EXPORT_SYMBOL_GPL(__rcu_read_lock);
204 
205 /*
206  * Preemptible RCU implementation for rcu_read_unlock().
207  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
208  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
209  * invoke rcu_read_unlock_special() to clean up after a context switch
210  * in an RCU read-side critical section and other special cases.
211  */
212 void __rcu_read_unlock(void)
213 {
214 	struct task_struct *t = current;
215 
216 	if (t->rcu_read_lock_nesting != 1) {
217 		--t->rcu_read_lock_nesting;
218 	} else {
219 		barrier();  /* critical section before exit code. */
220 		t->rcu_read_lock_nesting = INT_MIN;
221 		barrier();  /* assign before ->rcu_read_unlock_special load */
222 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
223 			rcu_read_unlock_special(t);
224 		barrier();  /* ->rcu_read_unlock_special load before assign */
225 		t->rcu_read_lock_nesting = 0;
226 	}
227 #ifdef CONFIG_PROVE_LOCKING
228 	{
229 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
230 
231 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
232 	}
233 #endif /* #ifdef CONFIG_PROVE_LOCKING */
234 }
235 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
236 
237 #endif /* #ifdef CONFIG_PREEMPT_RCU */
238 
239 #ifdef CONFIG_DEBUG_LOCK_ALLOC
240 static struct lock_class_key rcu_lock_key;
241 struct lockdep_map rcu_lock_map =
242 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
243 EXPORT_SYMBOL_GPL(rcu_lock_map);
244 
245 static struct lock_class_key rcu_bh_lock_key;
246 struct lockdep_map rcu_bh_lock_map =
247 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
248 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
249 
250 static struct lock_class_key rcu_sched_lock_key;
251 struct lockdep_map rcu_sched_lock_map =
252 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
253 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
254 
255 static struct lock_class_key rcu_callback_key;
256 struct lockdep_map rcu_callback_map =
257 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
258 EXPORT_SYMBOL_GPL(rcu_callback_map);
259 
260 int notrace debug_lockdep_rcu_enabled(void)
261 {
262 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
263 	       current->lockdep_recursion == 0;
264 }
265 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
266 
267 /**
268  * rcu_read_lock_held() - might we be in RCU read-side critical section?
269  *
270  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
271  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
272  * this assumes we are in an RCU read-side critical section unless it can
273  * prove otherwise.  This is useful for debug checks in functions that
274  * require that they be called within an RCU read-side critical section.
275  *
276  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
277  * and while lockdep is disabled.
278  *
279  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
280  * occur in the same context, for example, it is illegal to invoke
281  * rcu_read_unlock() in process context if the matching rcu_read_lock()
282  * was invoked from within an irq handler.
283  *
284  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
285  * offline from an RCU perspective, so check for those as well.
286  */
287 int rcu_read_lock_held(void)
288 {
289 	if (!debug_lockdep_rcu_enabled())
290 		return 1;
291 	if (!rcu_is_watching())
292 		return 0;
293 	if (!rcu_lockdep_current_cpu_online())
294 		return 0;
295 	return lock_is_held(&rcu_lock_map);
296 }
297 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
298 
299 /**
300  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
301  *
302  * Check for bottom half being disabled, which covers both the
303  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
304  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
305  * will show the situation.  This is useful for debug checks in functions
306  * that require that they be called within an RCU read-side critical
307  * section.
308  *
309  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
310  *
311  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
312  * offline from an RCU perspective, so check for those as well.
313  */
314 int rcu_read_lock_bh_held(void)
315 {
316 	if (!debug_lockdep_rcu_enabled())
317 		return 1;
318 	if (!rcu_is_watching())
319 		return 0;
320 	if (!rcu_lockdep_current_cpu_online())
321 		return 0;
322 	return in_softirq() || irqs_disabled();
323 }
324 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
325 
326 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
327 
328 /**
329  * wakeme_after_rcu() - Callback function to awaken a task after grace period
330  * @head: Pointer to rcu_head member within rcu_synchronize structure
331  *
332  * Awaken the corresponding task now that a grace period has elapsed.
333  */
334 void wakeme_after_rcu(struct rcu_head *head)
335 {
336 	struct rcu_synchronize *rcu;
337 
338 	rcu = container_of(head, struct rcu_synchronize, head);
339 	complete(&rcu->completion);
340 }
341 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
342 
343 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
344 		   struct rcu_synchronize *rs_array)
345 {
346 	int i;
347 
348 	/* Initialize and register callbacks for each flavor specified. */
349 	for (i = 0; i < n; i++) {
350 		if (checktiny &&
351 		    (crcu_array[i] == call_rcu ||
352 		     crcu_array[i] == call_rcu_bh)) {
353 			might_sleep();
354 			continue;
355 		}
356 		init_rcu_head_on_stack(&rs_array[i].head);
357 		init_completion(&rs_array[i].completion);
358 		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
359 	}
360 
361 	/* Wait for all callbacks to be invoked. */
362 	for (i = 0; i < n; i++) {
363 		if (checktiny &&
364 		    (crcu_array[i] == call_rcu ||
365 		     crcu_array[i] == call_rcu_bh))
366 			continue;
367 		wait_for_completion(&rs_array[i].completion);
368 		destroy_rcu_head_on_stack(&rs_array[i].head);
369 	}
370 }
371 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
372 
373 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
374 void init_rcu_head(struct rcu_head *head)
375 {
376 	debug_object_init(head, &rcuhead_debug_descr);
377 }
378 
379 void destroy_rcu_head(struct rcu_head *head)
380 {
381 	debug_object_free(head, &rcuhead_debug_descr);
382 }
383 
384 static bool rcuhead_is_static_object(void *addr)
385 {
386 	return true;
387 }
388 
389 /**
390  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
391  * @head: pointer to rcu_head structure to be initialized
392  *
393  * This function informs debugobjects of a new rcu_head structure that
394  * has been allocated as an auto variable on the stack.  This function
395  * is not required for rcu_head structures that are statically defined or
396  * that are dynamically allocated on the heap.  This function has no
397  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
398  */
399 void init_rcu_head_on_stack(struct rcu_head *head)
400 {
401 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
402 }
403 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
404 
405 /**
406  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
407  * @head: pointer to rcu_head structure to be initialized
408  *
409  * This function informs debugobjects that an on-stack rcu_head structure
410  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
411  * function is not required for rcu_head structures that are statically
412  * defined or that are dynamically allocated on the heap.  Also as with
413  * init_rcu_head_on_stack(), this function has no effect for
414  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
415  */
416 void destroy_rcu_head_on_stack(struct rcu_head *head)
417 {
418 	debug_object_free(head, &rcuhead_debug_descr);
419 }
420 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
421 
422 struct debug_obj_descr rcuhead_debug_descr = {
423 	.name = "rcu_head",
424 	.is_static_object = rcuhead_is_static_object,
425 };
426 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
427 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
428 
429 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
430 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
431 			       unsigned long secs,
432 			       unsigned long c_old, unsigned long c)
433 {
434 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
435 }
436 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
437 #else
438 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
439 	do { } while (0)
440 #endif
441 
442 #ifdef CONFIG_RCU_STALL_COMMON
443 
444 #ifdef CONFIG_PROVE_RCU
445 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
446 #else
447 #define RCU_STALL_DELAY_DELTA	       0
448 #endif
449 
450 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
451 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
452 
453 module_param(rcu_cpu_stall_suppress, int, 0644);
454 module_param(rcu_cpu_stall_timeout, int, 0644);
455 
456 int rcu_jiffies_till_stall_check(void)
457 {
458 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
459 
460 	/*
461 	 * Limit check must be consistent with the Kconfig limits
462 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
463 	 */
464 	if (till_stall_check < 3) {
465 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
466 		till_stall_check = 3;
467 	} else if (till_stall_check > 300) {
468 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
469 		till_stall_check = 300;
470 	}
471 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
472 }
473 
474 void rcu_sysrq_start(void)
475 {
476 	if (!rcu_cpu_stall_suppress)
477 		rcu_cpu_stall_suppress = 2;
478 }
479 
480 void rcu_sysrq_end(void)
481 {
482 	if (rcu_cpu_stall_suppress == 2)
483 		rcu_cpu_stall_suppress = 0;
484 }
485 
486 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
487 {
488 	rcu_cpu_stall_suppress = 1;
489 	return NOTIFY_DONE;
490 }
491 
492 static struct notifier_block rcu_panic_block = {
493 	.notifier_call = rcu_panic,
494 };
495 
496 static int __init check_cpu_stall_init(void)
497 {
498 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
499 	return 0;
500 }
501 early_initcall(check_cpu_stall_init);
502 
503 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
504 
505 #ifdef CONFIG_TASKS_RCU
506 
507 /*
508  * Simple variant of RCU whose quiescent states are voluntary context switch,
509  * user-space execution, and idle.  As such, grace periods can take one good
510  * long time.  There are no read-side primitives similar to rcu_read_lock()
511  * and rcu_read_unlock() because this implementation is intended to get
512  * the system into a safe state for some of the manipulations involved in
513  * tracing and the like.  Finally, this implementation does not support
514  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
515  * per-CPU callback lists will be needed.
516  */
517 
518 /* Global list of callbacks and associated lock. */
519 static struct rcu_head *rcu_tasks_cbs_head;
520 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
523 
524 /* Track exiting tasks in order to allow them to be waited for. */
525 DEFINE_SRCU(tasks_rcu_exit_srcu);
526 
527 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
528 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
529 module_param(rcu_task_stall_timeout, int, 0644);
530 
531 static void rcu_spawn_tasks_kthread(void);
532 static struct task_struct *rcu_tasks_kthread_ptr;
533 
534 /*
535  * Post an RCU-tasks callback.  First call must be from process context
536  * after the scheduler if fully operational.
537  */
538 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
539 {
540 	unsigned long flags;
541 	bool needwake;
542 	bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
543 
544 	rhp->next = NULL;
545 	rhp->func = func;
546 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
547 	needwake = !rcu_tasks_cbs_head;
548 	*rcu_tasks_cbs_tail = rhp;
549 	rcu_tasks_cbs_tail = &rhp->next;
550 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
551 	/* We can't create the thread unless interrupts are enabled. */
552 	if ((needwake && havetask) ||
553 	    (!havetask && !irqs_disabled_flags(flags))) {
554 		rcu_spawn_tasks_kthread();
555 		wake_up(&rcu_tasks_cbs_wq);
556 	}
557 }
558 EXPORT_SYMBOL_GPL(call_rcu_tasks);
559 
560 /**
561  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
562  *
563  * Control will return to the caller some time after a full rcu-tasks
564  * grace period has elapsed, in other words after all currently
565  * executing rcu-tasks read-side critical sections have elapsed.  These
566  * read-side critical sections are delimited by calls to schedule(),
567  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
568  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
569  *
570  * This is a very specialized primitive, intended only for a few uses in
571  * tracing and other situations requiring manipulation of function
572  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
573  * is not (yet) intended for heavy use from multiple CPUs.
574  *
575  * Note that this guarantee implies further memory-ordering guarantees.
576  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
577  * each CPU is guaranteed to have executed a full memory barrier since the
578  * end of its last RCU-tasks read-side critical section whose beginning
579  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
580  * having an RCU-tasks read-side critical section that extends beyond
581  * the return from synchronize_rcu_tasks() is guaranteed to have executed
582  * a full memory barrier after the beginning of synchronize_rcu_tasks()
583  * and before the beginning of that RCU-tasks read-side critical section.
584  * Note that these guarantees include CPUs that are offline, idle, or
585  * executing in user mode, as well as CPUs that are executing in the kernel.
586  *
587  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
588  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
589  * to have executed a full memory barrier during the execution of
590  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
591  * (but again only if the system has more than one CPU).
592  */
593 void synchronize_rcu_tasks(void)
594 {
595 	/* Complain if the scheduler has not started.  */
596 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
597 			 "synchronize_rcu_tasks called too soon");
598 
599 	/* Wait for the grace period. */
600 	wait_rcu_gp(call_rcu_tasks);
601 }
602 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
603 
604 /**
605  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
606  *
607  * Although the current implementation is guaranteed to wait, it is not
608  * obligated to, for example, if there are no pending callbacks.
609  */
610 void rcu_barrier_tasks(void)
611 {
612 	/* There is only one callback queue, so this is easy.  ;-) */
613 	synchronize_rcu_tasks();
614 }
615 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
616 
617 /* See if tasks are still holding out, complain if so. */
618 static void check_holdout_task(struct task_struct *t,
619 			       bool needreport, bool *firstreport)
620 {
621 	int cpu;
622 
623 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
624 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
625 	    !READ_ONCE(t->on_rq) ||
626 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
627 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
628 		WRITE_ONCE(t->rcu_tasks_holdout, false);
629 		list_del_init(&t->rcu_tasks_holdout_list);
630 		put_task_struct(t);
631 		return;
632 	}
633 	if (!needreport)
634 		return;
635 	if (*firstreport) {
636 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
637 		*firstreport = false;
638 	}
639 	cpu = task_cpu(t);
640 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
641 		 t, ".I"[is_idle_task(t)],
642 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
643 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
644 		 t->rcu_tasks_idle_cpu, cpu);
645 	sched_show_task(t);
646 }
647 
648 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
649 static int __noreturn rcu_tasks_kthread(void *arg)
650 {
651 	unsigned long flags;
652 	struct task_struct *g, *t;
653 	unsigned long lastreport;
654 	struct rcu_head *list;
655 	struct rcu_head *next;
656 	LIST_HEAD(rcu_tasks_holdouts);
657 
658 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
659 	housekeeping_affine(current);
660 
661 	/*
662 	 * Each pass through the following loop makes one check for
663 	 * newly arrived callbacks, and, if there are some, waits for
664 	 * one RCU-tasks grace period and then invokes the callbacks.
665 	 * This loop is terminated by the system going down.  ;-)
666 	 */
667 	for (;;) {
668 
669 		/* Pick up any new callbacks. */
670 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
671 		list = rcu_tasks_cbs_head;
672 		rcu_tasks_cbs_head = NULL;
673 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
674 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
675 
676 		/* If there were none, wait a bit and start over. */
677 		if (!list) {
678 			wait_event_interruptible(rcu_tasks_cbs_wq,
679 						 rcu_tasks_cbs_head);
680 			if (!rcu_tasks_cbs_head) {
681 				WARN_ON(signal_pending(current));
682 				schedule_timeout_interruptible(HZ/10);
683 			}
684 			continue;
685 		}
686 
687 		/*
688 		 * Wait for all pre-existing t->on_rq and t->nvcsw
689 		 * transitions to complete.  Invoking synchronize_sched()
690 		 * suffices because all these transitions occur with
691 		 * interrupts disabled.  Without this synchronize_sched(),
692 		 * a read-side critical section that started before the
693 		 * grace period might be incorrectly seen as having started
694 		 * after the grace period.
695 		 *
696 		 * This synchronize_sched() also dispenses with the
697 		 * need for a memory barrier on the first store to
698 		 * ->rcu_tasks_holdout, as it forces the store to happen
699 		 * after the beginning of the grace period.
700 		 */
701 		synchronize_sched();
702 
703 		/*
704 		 * There were callbacks, so we need to wait for an
705 		 * RCU-tasks grace period.  Start off by scanning
706 		 * the task list for tasks that are not already
707 		 * voluntarily blocked.  Mark these tasks and make
708 		 * a list of them in rcu_tasks_holdouts.
709 		 */
710 		rcu_read_lock();
711 		for_each_process_thread(g, t) {
712 			if (t != current && READ_ONCE(t->on_rq) &&
713 			    !is_idle_task(t)) {
714 				get_task_struct(t);
715 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
716 				WRITE_ONCE(t->rcu_tasks_holdout, true);
717 				list_add(&t->rcu_tasks_holdout_list,
718 					 &rcu_tasks_holdouts);
719 			}
720 		}
721 		rcu_read_unlock();
722 
723 		/*
724 		 * Wait for tasks that are in the process of exiting.
725 		 * This does only part of the job, ensuring that all
726 		 * tasks that were previously exiting reach the point
727 		 * where they have disabled preemption, allowing the
728 		 * later synchronize_sched() to finish the job.
729 		 */
730 		synchronize_srcu(&tasks_rcu_exit_srcu);
731 
732 		/*
733 		 * Each pass through the following loop scans the list
734 		 * of holdout tasks, removing any that are no longer
735 		 * holdouts.  When the list is empty, we are done.
736 		 */
737 		lastreport = jiffies;
738 		while (!list_empty(&rcu_tasks_holdouts)) {
739 			bool firstreport;
740 			bool needreport;
741 			int rtst;
742 			struct task_struct *t1;
743 
744 			schedule_timeout_interruptible(HZ);
745 			rtst = READ_ONCE(rcu_task_stall_timeout);
746 			needreport = rtst > 0 &&
747 				     time_after(jiffies, lastreport + rtst);
748 			if (needreport)
749 				lastreport = jiffies;
750 			firstreport = true;
751 			WARN_ON(signal_pending(current));
752 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
753 						rcu_tasks_holdout_list) {
754 				check_holdout_task(t, needreport, &firstreport);
755 				cond_resched();
756 			}
757 		}
758 
759 		/*
760 		 * Because ->on_rq and ->nvcsw are not guaranteed
761 		 * to have a full memory barriers prior to them in the
762 		 * schedule() path, memory reordering on other CPUs could
763 		 * cause their RCU-tasks read-side critical sections to
764 		 * extend past the end of the grace period.  However,
765 		 * because these ->nvcsw updates are carried out with
766 		 * interrupts disabled, we can use synchronize_sched()
767 		 * to force the needed ordering on all such CPUs.
768 		 *
769 		 * This synchronize_sched() also confines all
770 		 * ->rcu_tasks_holdout accesses to be within the grace
771 		 * period, avoiding the need for memory barriers for
772 		 * ->rcu_tasks_holdout accesses.
773 		 *
774 		 * In addition, this synchronize_sched() waits for exiting
775 		 * tasks to complete their final preempt_disable() region
776 		 * of execution, cleaning up after the synchronize_srcu()
777 		 * above.
778 		 */
779 		synchronize_sched();
780 
781 		/* Invoke the callbacks. */
782 		while (list) {
783 			next = list->next;
784 			local_bh_disable();
785 			list->func(list);
786 			local_bh_enable();
787 			list = next;
788 			cond_resched();
789 		}
790 		schedule_timeout_uninterruptible(HZ/10);
791 	}
792 }
793 
794 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
795 static void rcu_spawn_tasks_kthread(void)
796 {
797 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
798 	struct task_struct *t;
799 
800 	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
801 		smp_mb(); /* Ensure caller sees full kthread. */
802 		return;
803 	}
804 	mutex_lock(&rcu_tasks_kthread_mutex);
805 	if (rcu_tasks_kthread_ptr) {
806 		mutex_unlock(&rcu_tasks_kthread_mutex);
807 		return;
808 	}
809 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
810 	BUG_ON(IS_ERR(t));
811 	smp_mb(); /* Ensure others see full kthread. */
812 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
813 	mutex_unlock(&rcu_tasks_kthread_mutex);
814 }
815 
816 #endif /* #ifdef CONFIG_TASKS_RCU */
817 
818 /*
819  * Test each non-SRCU synchronous grace-period wait API.  This is
820  * useful just after a change in mode for these primitives, and
821  * during early boot.
822  */
823 void rcu_test_sync_prims(void)
824 {
825 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
826 		return;
827 	synchronize_rcu();
828 	synchronize_rcu_bh();
829 	synchronize_sched();
830 	synchronize_rcu_expedited();
831 	synchronize_rcu_bh_expedited();
832 	synchronize_sched_expedited();
833 }
834 
835 #ifdef CONFIG_PROVE_RCU
836 
837 /*
838  * Early boot self test parameters, one for each flavor
839  */
840 static bool rcu_self_test;
841 static bool rcu_self_test_bh;
842 static bool rcu_self_test_sched;
843 
844 module_param(rcu_self_test, bool, 0444);
845 module_param(rcu_self_test_bh, bool, 0444);
846 module_param(rcu_self_test_sched, bool, 0444);
847 
848 static int rcu_self_test_counter;
849 
850 static void test_callback(struct rcu_head *r)
851 {
852 	rcu_self_test_counter++;
853 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
854 }
855 
856 static void early_boot_test_call_rcu(void)
857 {
858 	static struct rcu_head head;
859 
860 	call_rcu(&head, test_callback);
861 }
862 
863 static void early_boot_test_call_rcu_bh(void)
864 {
865 	static struct rcu_head head;
866 
867 	call_rcu_bh(&head, test_callback);
868 }
869 
870 static void early_boot_test_call_rcu_sched(void)
871 {
872 	static struct rcu_head head;
873 
874 	call_rcu_sched(&head, test_callback);
875 }
876 
877 void rcu_early_boot_tests(void)
878 {
879 	pr_info("Running RCU self tests\n");
880 
881 	if (rcu_self_test)
882 		early_boot_test_call_rcu();
883 	if (rcu_self_test_bh)
884 		early_boot_test_call_rcu_bh();
885 	if (rcu_self_test_sched)
886 		early_boot_test_call_rcu_sched();
887 	rcu_test_sync_prims();
888 }
889 
890 static int rcu_verify_early_boot_tests(void)
891 {
892 	int ret = 0;
893 	int early_boot_test_counter = 0;
894 
895 	if (rcu_self_test) {
896 		early_boot_test_counter++;
897 		rcu_barrier();
898 	}
899 	if (rcu_self_test_bh) {
900 		early_boot_test_counter++;
901 		rcu_barrier_bh();
902 	}
903 	if (rcu_self_test_sched) {
904 		early_boot_test_counter++;
905 		rcu_barrier_sched();
906 	}
907 
908 	if (rcu_self_test_counter != early_boot_test_counter) {
909 		WARN_ON(1);
910 		ret = -1;
911 	}
912 
913 	return ret;
914 }
915 late_initcall(rcu_verify_early_boot_tests);
916 #else
917 void rcu_early_boot_tests(void) {}
918 #endif /* CONFIG_PROVE_RCU */
919