xref: /openbmc/linux/kernel/rcu/update.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *
10  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
11  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12  * Papers:
13  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
14  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
15  *
16  * For detailed explanation of Read-Copy Update mechanism see -
17  *		http://lse.sourceforge.net/locking/rcupdate.html
18  *
19  */
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/debug.h>
28 #include <linux/atomic.h>
29 #include <linux/bitops.h>
30 #include <linux/percpu.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/mutex.h>
34 #include <linux/export.h>
35 #include <linux/hardirq.h>
36 #include <linux/delay.h>
37 #include <linux/moduleparam.h>
38 #include <linux/kthread.h>
39 #include <linux/tick.h>
40 #include <linux/rcupdate_wait.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/kprobes.h>
43 #include <linux/slab.h>
44 
45 #define CREATE_TRACE_POINTS
46 
47 #include "rcu.h"
48 
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "rcupdate."
53 
54 #ifndef CONFIG_TINY_RCU
55 module_param(rcu_expedited, int, 0);
56 module_param(rcu_normal, int, 0);
57 static int rcu_normal_after_boot;
58 module_param(rcu_normal_after_boot, int, 0);
59 #endif /* #ifndef CONFIG_TINY_RCU */
60 
61 #ifdef CONFIG_DEBUG_LOCK_ALLOC
62 /**
63  * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
64  * @ret:	Best guess answer if lockdep cannot be relied on
65  *
66  * Returns true if lockdep must be ignored, in which case *ret contains
67  * the best guess described below.  Otherwise returns false, in which
68  * case *ret tells the caller nothing and the caller should instead
69  * consult lockdep.
70  *
71  * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
72  * RCU-sched read-side critical section.  In absence of
73  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
74  * critical section unless it can prove otherwise.  Note that disabling
75  * of preemption (including disabling irqs) counts as an RCU-sched
76  * read-side critical section.  This is useful for debug checks in functions
77  * that required that they be called within an RCU-sched read-side
78  * critical section.
79  *
80  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
81  * and while lockdep is disabled.
82  *
83  * Note that if the CPU is in the idle loop from an RCU point of view (ie:
84  * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
85  * then rcu_read_lock_held() sets *ret to false even if the CPU did an
86  * rcu_read_lock().  The reason for this is that RCU ignores CPUs that are
87  * in such a section, considering these as in extended quiescent state,
88  * so such a CPU is effectively never in an RCU read-side critical section
89  * regardless of what RCU primitives it invokes.  This state of affairs is
90  * required --- we need to keep an RCU-free window in idle where the CPU may
91  * possibly enter into low power mode. This way we can notice an extended
92  * quiescent state to other CPUs that started a grace period. Otherwise
93  * we would delay any grace period as long as we run in the idle task.
94  *
95  * Similarly, we avoid claiming an RCU read lock held if the current
96  * CPU is offline.
97  */
98 static bool rcu_read_lock_held_common(bool *ret)
99 {
100 	if (!debug_lockdep_rcu_enabled()) {
101 		*ret = 1;
102 		return true;
103 	}
104 	if (!rcu_is_watching()) {
105 		*ret = 0;
106 		return true;
107 	}
108 	if (!rcu_lockdep_current_cpu_online()) {
109 		*ret = 0;
110 		return true;
111 	}
112 	return false;
113 }
114 
115 int rcu_read_lock_sched_held(void)
116 {
117 	bool ret;
118 
119 	if (rcu_read_lock_held_common(&ret))
120 		return ret;
121 	return lock_is_held(&rcu_sched_lock_map) || !preemptible();
122 }
123 EXPORT_SYMBOL(rcu_read_lock_sched_held);
124 #endif
125 
126 #ifndef CONFIG_TINY_RCU
127 
128 /*
129  * Should expedited grace-period primitives always fall back to their
130  * non-expedited counterparts?  Intended for use within RCU.  Note
131  * that if the user specifies both rcu_expedited and rcu_normal, then
132  * rcu_normal wins.  (Except during the time period during boot from
133  * when the first task is spawned until the rcu_set_runtime_mode()
134  * core_initcall() is invoked, at which point everything is expedited.)
135  */
136 bool rcu_gp_is_normal(void)
137 {
138 	return READ_ONCE(rcu_normal) &&
139 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
140 }
141 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
142 
143 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
144 
145 /*
146  * Should normal grace-period primitives be expedited?  Intended for
147  * use within RCU.  Note that this function takes the rcu_expedited
148  * sysfs/boot variable and rcu_scheduler_active into account as well
149  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
150  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
151  */
152 bool rcu_gp_is_expedited(void)
153 {
154 	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
155 }
156 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
157 
158 /**
159  * rcu_expedite_gp - Expedite future RCU grace periods
160  *
161  * After a call to this function, future calls to synchronize_rcu() and
162  * friends act as the corresponding synchronize_rcu_expedited() function
163  * had instead been called.
164  */
165 void rcu_expedite_gp(void)
166 {
167 	atomic_inc(&rcu_expedited_nesting);
168 }
169 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
170 
171 /**
172  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
173  *
174  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
175  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
176  * and if the rcu_expedited sysfs/boot parameter is not set, then all
177  * subsequent calls to synchronize_rcu() and friends will return to
178  * their normal non-expedited behavior.
179  */
180 void rcu_unexpedite_gp(void)
181 {
182 	atomic_dec(&rcu_expedited_nesting);
183 }
184 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
185 
186 static bool rcu_boot_ended __read_mostly;
187 
188 /*
189  * Inform RCU of the end of the in-kernel boot sequence.
190  */
191 void rcu_end_inkernel_boot(void)
192 {
193 	rcu_unexpedite_gp();
194 	if (rcu_normal_after_boot)
195 		WRITE_ONCE(rcu_normal, 1);
196 	rcu_boot_ended = 1;
197 }
198 
199 /*
200  * Let rcutorture know when it is OK to turn it up to eleven.
201  */
202 bool rcu_inkernel_boot_has_ended(void)
203 {
204 	return rcu_boot_ended;
205 }
206 EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended);
207 
208 #endif /* #ifndef CONFIG_TINY_RCU */
209 
210 /*
211  * Test each non-SRCU synchronous grace-period wait API.  This is
212  * useful just after a change in mode for these primitives, and
213  * during early boot.
214  */
215 void rcu_test_sync_prims(void)
216 {
217 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
218 		return;
219 	synchronize_rcu();
220 	synchronize_rcu_expedited();
221 }
222 
223 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
224 
225 /*
226  * Switch to run-time mode once RCU has fully initialized.
227  */
228 static int __init rcu_set_runtime_mode(void)
229 {
230 	rcu_test_sync_prims();
231 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
232 	kfree_rcu_scheduler_running();
233 	rcu_test_sync_prims();
234 	return 0;
235 }
236 core_initcall(rcu_set_runtime_mode);
237 
238 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
239 
240 #ifdef CONFIG_DEBUG_LOCK_ALLOC
241 static struct lock_class_key rcu_lock_key;
242 struct lockdep_map rcu_lock_map = {
243 	.name = "rcu_read_lock",
244 	.key = &rcu_lock_key,
245 	.wait_type_outer = LD_WAIT_FREE,
246 	.wait_type_inner = LD_WAIT_CONFIG, /* XXX PREEMPT_RCU ? */
247 };
248 EXPORT_SYMBOL_GPL(rcu_lock_map);
249 
250 static struct lock_class_key rcu_bh_lock_key;
251 struct lockdep_map rcu_bh_lock_map = {
252 	.name = "rcu_read_lock_bh",
253 	.key = &rcu_bh_lock_key,
254 	.wait_type_outer = LD_WAIT_FREE,
255 	.wait_type_inner = LD_WAIT_CONFIG, /* PREEMPT_LOCK also makes BH preemptible */
256 };
257 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
258 
259 static struct lock_class_key rcu_sched_lock_key;
260 struct lockdep_map rcu_sched_lock_map = {
261 	.name = "rcu_read_lock_sched",
262 	.key = &rcu_sched_lock_key,
263 	.wait_type_outer = LD_WAIT_FREE,
264 	.wait_type_inner = LD_WAIT_SPIN,
265 };
266 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
267 
268 static struct lock_class_key rcu_callback_key;
269 struct lockdep_map rcu_callback_map =
270 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
271 EXPORT_SYMBOL_GPL(rcu_callback_map);
272 
273 int notrace debug_lockdep_rcu_enabled(void)
274 {
275 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
276 	       current->lockdep_recursion == 0;
277 }
278 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
279 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
280 
281 /**
282  * rcu_read_lock_held() - might we be in RCU read-side critical section?
283  *
284  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
285  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
286  * this assumes we are in an RCU read-side critical section unless it can
287  * prove otherwise.  This is useful for debug checks in functions that
288  * require that they be called within an RCU read-side critical section.
289  *
290  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
291  * and while lockdep is disabled.
292  *
293  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
294  * occur in the same context, for example, it is illegal to invoke
295  * rcu_read_unlock() in process context if the matching rcu_read_lock()
296  * was invoked from within an irq handler.
297  *
298  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
299  * offline from an RCU perspective, so check for those as well.
300  */
301 int rcu_read_lock_held(void)
302 {
303 	bool ret;
304 
305 	if (rcu_read_lock_held_common(&ret))
306 		return ret;
307 	return lock_is_held(&rcu_lock_map);
308 }
309 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
310 
311 /**
312  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
313  *
314  * Check for bottom half being disabled, which covers both the
315  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
316  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
317  * will show the situation.  This is useful for debug checks in functions
318  * that require that they be called within an RCU read-side critical
319  * section.
320  *
321  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
322  *
323  * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
324  * offline from an RCU perspective, so check for those as well.
325  */
326 int rcu_read_lock_bh_held(void)
327 {
328 	bool ret;
329 
330 	if (rcu_read_lock_held_common(&ret))
331 		return ret;
332 	return in_softirq() || irqs_disabled();
333 }
334 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
335 
336 int rcu_read_lock_any_held(void)
337 {
338 	bool ret;
339 
340 	if (rcu_read_lock_held_common(&ret))
341 		return ret;
342 	if (lock_is_held(&rcu_lock_map) ||
343 	    lock_is_held(&rcu_bh_lock_map) ||
344 	    lock_is_held(&rcu_sched_lock_map))
345 		return 1;
346 	return !preemptible();
347 }
348 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held);
349 
350 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
351 
352 /**
353  * wakeme_after_rcu() - Callback function to awaken a task after grace period
354  * @head: Pointer to rcu_head member within rcu_synchronize structure
355  *
356  * Awaken the corresponding task now that a grace period has elapsed.
357  */
358 void wakeme_after_rcu(struct rcu_head *head)
359 {
360 	struct rcu_synchronize *rcu;
361 
362 	rcu = container_of(head, struct rcu_synchronize, head);
363 	complete(&rcu->completion);
364 }
365 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
366 
367 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
368 		   struct rcu_synchronize *rs_array)
369 {
370 	int i;
371 	int j;
372 
373 	/* Initialize and register callbacks for each crcu_array element. */
374 	for (i = 0; i < n; i++) {
375 		if (checktiny &&
376 		    (crcu_array[i] == call_rcu)) {
377 			might_sleep();
378 			continue;
379 		}
380 		init_rcu_head_on_stack(&rs_array[i].head);
381 		init_completion(&rs_array[i].completion);
382 		for (j = 0; j < i; j++)
383 			if (crcu_array[j] == crcu_array[i])
384 				break;
385 		if (j == i)
386 			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
387 	}
388 
389 	/* Wait for all callbacks to be invoked. */
390 	for (i = 0; i < n; i++) {
391 		if (checktiny &&
392 		    (crcu_array[i] == call_rcu))
393 			continue;
394 		for (j = 0; j < i; j++)
395 			if (crcu_array[j] == crcu_array[i])
396 				break;
397 		if (j == i)
398 			wait_for_completion(&rs_array[i].completion);
399 		destroy_rcu_head_on_stack(&rs_array[i].head);
400 	}
401 }
402 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
403 
404 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
405 void init_rcu_head(struct rcu_head *head)
406 {
407 	debug_object_init(head, &rcuhead_debug_descr);
408 }
409 EXPORT_SYMBOL_GPL(init_rcu_head);
410 
411 void destroy_rcu_head(struct rcu_head *head)
412 {
413 	debug_object_free(head, &rcuhead_debug_descr);
414 }
415 EXPORT_SYMBOL_GPL(destroy_rcu_head);
416 
417 static bool rcuhead_is_static_object(void *addr)
418 {
419 	return true;
420 }
421 
422 /**
423  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
424  * @head: pointer to rcu_head structure to be initialized
425  *
426  * This function informs debugobjects of a new rcu_head structure that
427  * has been allocated as an auto variable on the stack.  This function
428  * is not required for rcu_head structures that are statically defined or
429  * that are dynamically allocated on the heap.  This function has no
430  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
431  */
432 void init_rcu_head_on_stack(struct rcu_head *head)
433 {
434 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
435 }
436 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
437 
438 /**
439  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
440  * @head: pointer to rcu_head structure to be initialized
441  *
442  * This function informs debugobjects that an on-stack rcu_head structure
443  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
444  * function is not required for rcu_head structures that are statically
445  * defined or that are dynamically allocated on the heap.  Also as with
446  * init_rcu_head_on_stack(), this function has no effect for
447  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
448  */
449 void destroy_rcu_head_on_stack(struct rcu_head *head)
450 {
451 	debug_object_free(head, &rcuhead_debug_descr);
452 }
453 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
454 
455 struct debug_obj_descr rcuhead_debug_descr = {
456 	.name = "rcu_head",
457 	.is_static_object = rcuhead_is_static_object,
458 };
459 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
460 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
461 
462 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE)
463 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
464 			       unsigned long secs,
465 			       unsigned long c_old, unsigned long c)
466 {
467 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
468 }
469 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
470 #else
471 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
472 	do { } while (0)
473 #endif
474 
475 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
476 /* Get rcutorture access to sched_setaffinity(). */
477 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
478 {
479 	int ret;
480 
481 	ret = sched_setaffinity(pid, in_mask);
482 	WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
483 	return ret;
484 }
485 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
486 #endif
487 
488 #ifdef CONFIG_RCU_STALL_COMMON
489 int rcu_cpu_stall_ftrace_dump __read_mostly;
490 module_param(rcu_cpu_stall_ftrace_dump, int, 0644);
491 int rcu_cpu_stall_suppress __read_mostly; // !0 = suppress stall warnings.
492 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
493 module_param(rcu_cpu_stall_suppress, int, 0644);
494 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
495 module_param(rcu_cpu_stall_timeout, int, 0644);
496 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
497 
498 // Suppress boot-time RCU CPU stall warnings and rcutorture writer stall
499 // warnings.  Also used by rcutorture even if stall warnings are excluded.
500 int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls.
501 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot);
502 module_param(rcu_cpu_stall_suppress_at_boot, int, 0444);
503 
504 #ifdef CONFIG_TASKS_RCU
505 
506 /*
507  * Simple variant of RCU whose quiescent states are voluntary context
508  * switch, cond_resched_rcu_qs(), user-space execution, and idle.
509  * As such, grace periods can take one good long time.  There are no
510  * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
511  * because this implementation is intended to get the system into a safe
512  * state for some of the manipulations involved in tracing and the like.
513  * Finally, this implementation does not support high call_rcu_tasks()
514  * rates from multiple CPUs.  If this is required, per-CPU callback lists
515  * will be needed.
516  */
517 
518 /* Global list of callbacks and associated lock. */
519 static struct rcu_head *rcu_tasks_cbs_head;
520 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
523 
524 /* Track exiting tasks in order to allow them to be waited for. */
525 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
526 
527 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
528 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
529 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
530 module_param(rcu_task_stall_timeout, int, 0644);
531 
532 static struct task_struct *rcu_tasks_kthread_ptr;
533 
534 /**
535  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
536  * @rhp: structure to be used for queueing the RCU updates.
537  * @func: actual callback function to be invoked after the grace period
538  *
539  * The callback function will be invoked some time after a full grace
540  * period elapses, in other words after all currently executing RCU
541  * read-side critical sections have completed. call_rcu_tasks() assumes
542  * that the read-side critical sections end at a voluntary context
543  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
544  * or transition to usermode execution.  As such, there are no read-side
545  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
546  * this primitive is intended to determine that all tasks have passed
547  * through a safe state, not so much for data-strcuture synchronization.
548  *
549  * See the description of call_rcu() for more detailed information on
550  * memory ordering guarantees.
551  */
552 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
553 {
554 	unsigned long flags;
555 	bool needwake;
556 
557 	rhp->next = NULL;
558 	rhp->func = func;
559 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
560 	needwake = !rcu_tasks_cbs_head;
561 	WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
562 	rcu_tasks_cbs_tail = &rhp->next;
563 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
564 	/* We can't create the thread unless interrupts are enabled. */
565 	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
566 		wake_up(&rcu_tasks_cbs_wq);
567 }
568 EXPORT_SYMBOL_GPL(call_rcu_tasks);
569 
570 /**
571  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
572  *
573  * Control will return to the caller some time after a full rcu-tasks
574  * grace period has elapsed, in other words after all currently
575  * executing rcu-tasks read-side critical sections have elapsed.  These
576  * read-side critical sections are delimited by calls to schedule(),
577  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
578  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
579  *
580  * This is a very specialized primitive, intended only for a few uses in
581  * tracing and other situations requiring manipulation of function
582  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
583  * is not (yet) intended for heavy use from multiple CPUs.
584  *
585  * Note that this guarantee implies further memory-ordering guarantees.
586  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
587  * each CPU is guaranteed to have executed a full memory barrier since the
588  * end of its last RCU-tasks read-side critical section whose beginning
589  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
590  * having an RCU-tasks read-side critical section that extends beyond
591  * the return from synchronize_rcu_tasks() is guaranteed to have executed
592  * a full memory barrier after the beginning of synchronize_rcu_tasks()
593  * and before the beginning of that RCU-tasks read-side critical section.
594  * Note that these guarantees include CPUs that are offline, idle, or
595  * executing in user mode, as well as CPUs that are executing in the kernel.
596  *
597  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
598  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
599  * to have executed a full memory barrier during the execution of
600  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
601  * (but again only if the system has more than one CPU).
602  */
603 void synchronize_rcu_tasks(void)
604 {
605 	/* Complain if the scheduler has not started.  */
606 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
607 			 "synchronize_rcu_tasks called too soon");
608 
609 	/* Wait for the grace period. */
610 	wait_rcu_gp(call_rcu_tasks);
611 }
612 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
613 
614 /**
615  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
616  *
617  * Although the current implementation is guaranteed to wait, it is not
618  * obligated to, for example, if there are no pending callbacks.
619  */
620 void rcu_barrier_tasks(void)
621 {
622 	/* There is only one callback queue, so this is easy.  ;-) */
623 	synchronize_rcu_tasks();
624 }
625 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
626 
627 /* See if tasks are still holding out, complain if so. */
628 static void check_holdout_task(struct task_struct *t,
629 			       bool needreport, bool *firstreport)
630 {
631 	int cpu;
632 
633 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
634 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
635 	    !READ_ONCE(t->on_rq) ||
636 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
637 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
638 		WRITE_ONCE(t->rcu_tasks_holdout, false);
639 		list_del_init(&t->rcu_tasks_holdout_list);
640 		put_task_struct(t);
641 		return;
642 	}
643 	rcu_request_urgent_qs_task(t);
644 	if (!needreport)
645 		return;
646 	if (*firstreport) {
647 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
648 		*firstreport = false;
649 	}
650 	cpu = task_cpu(t);
651 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
652 		 t, ".I"[is_idle_task(t)],
653 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
654 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
655 		 t->rcu_tasks_idle_cpu, cpu);
656 	sched_show_task(t);
657 }
658 
659 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
660 static int __noreturn rcu_tasks_kthread(void *arg)
661 {
662 	unsigned long flags;
663 	struct task_struct *g, *t;
664 	unsigned long lastreport;
665 	struct rcu_head *list;
666 	struct rcu_head *next;
667 	LIST_HEAD(rcu_tasks_holdouts);
668 	int fract;
669 
670 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
671 	housekeeping_affine(current, HK_FLAG_RCU);
672 
673 	/*
674 	 * Each pass through the following loop makes one check for
675 	 * newly arrived callbacks, and, if there are some, waits for
676 	 * one RCU-tasks grace period and then invokes the callbacks.
677 	 * This loop is terminated by the system going down.  ;-)
678 	 */
679 	for (;;) {
680 
681 		/* Pick up any new callbacks. */
682 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
683 		list = rcu_tasks_cbs_head;
684 		rcu_tasks_cbs_head = NULL;
685 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
686 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
687 
688 		/* If there were none, wait a bit and start over. */
689 		if (!list) {
690 			wait_event_interruptible(rcu_tasks_cbs_wq,
691 						 READ_ONCE(rcu_tasks_cbs_head));
692 			if (!rcu_tasks_cbs_head) {
693 				WARN_ON(signal_pending(current));
694 				schedule_timeout_interruptible(HZ/10);
695 			}
696 			continue;
697 		}
698 
699 		/*
700 		 * Wait for all pre-existing t->on_rq and t->nvcsw
701 		 * transitions to complete.  Invoking synchronize_rcu()
702 		 * suffices because all these transitions occur with
703 		 * interrupts disabled.  Without this synchronize_rcu(),
704 		 * a read-side critical section that started before the
705 		 * grace period might be incorrectly seen as having started
706 		 * after the grace period.
707 		 *
708 		 * This synchronize_rcu() also dispenses with the
709 		 * need for a memory barrier on the first store to
710 		 * ->rcu_tasks_holdout, as it forces the store to happen
711 		 * after the beginning of the grace period.
712 		 */
713 		synchronize_rcu();
714 
715 		/*
716 		 * There were callbacks, so we need to wait for an
717 		 * RCU-tasks grace period.  Start off by scanning
718 		 * the task list for tasks that are not already
719 		 * voluntarily blocked.  Mark these tasks and make
720 		 * a list of them in rcu_tasks_holdouts.
721 		 */
722 		rcu_read_lock();
723 		for_each_process_thread(g, t) {
724 			if (t != current && READ_ONCE(t->on_rq) &&
725 			    !is_idle_task(t)) {
726 				get_task_struct(t);
727 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
728 				WRITE_ONCE(t->rcu_tasks_holdout, true);
729 				list_add(&t->rcu_tasks_holdout_list,
730 					 &rcu_tasks_holdouts);
731 			}
732 		}
733 		rcu_read_unlock();
734 
735 		/*
736 		 * Wait for tasks that are in the process of exiting.
737 		 * This does only part of the job, ensuring that all
738 		 * tasks that were previously exiting reach the point
739 		 * where they have disabled preemption, allowing the
740 		 * later synchronize_rcu() to finish the job.
741 		 */
742 		synchronize_srcu(&tasks_rcu_exit_srcu);
743 
744 		/*
745 		 * Each pass through the following loop scans the list
746 		 * of holdout tasks, removing any that are no longer
747 		 * holdouts.  When the list is empty, we are done.
748 		 */
749 		lastreport = jiffies;
750 
751 		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
752 		fract = 10;
753 
754 		for (;;) {
755 			bool firstreport;
756 			bool needreport;
757 			int rtst;
758 			struct task_struct *t1;
759 
760 			if (list_empty(&rcu_tasks_holdouts))
761 				break;
762 
763 			/* Slowly back off waiting for holdouts */
764 			schedule_timeout_interruptible(HZ/fract);
765 
766 			if (fract > 1)
767 				fract--;
768 
769 			rtst = READ_ONCE(rcu_task_stall_timeout);
770 			needreport = rtst > 0 &&
771 				     time_after(jiffies, lastreport + rtst);
772 			if (needreport)
773 				lastreport = jiffies;
774 			firstreport = true;
775 			WARN_ON(signal_pending(current));
776 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
777 						rcu_tasks_holdout_list) {
778 				check_holdout_task(t, needreport, &firstreport);
779 				cond_resched();
780 			}
781 		}
782 
783 		/*
784 		 * Because ->on_rq and ->nvcsw are not guaranteed
785 		 * to have a full memory barriers prior to them in the
786 		 * schedule() path, memory reordering on other CPUs could
787 		 * cause their RCU-tasks read-side critical sections to
788 		 * extend past the end of the grace period.  However,
789 		 * because these ->nvcsw updates are carried out with
790 		 * interrupts disabled, we can use synchronize_rcu()
791 		 * to force the needed ordering on all such CPUs.
792 		 *
793 		 * This synchronize_rcu() also confines all
794 		 * ->rcu_tasks_holdout accesses to be within the grace
795 		 * period, avoiding the need for memory barriers for
796 		 * ->rcu_tasks_holdout accesses.
797 		 *
798 		 * In addition, this synchronize_rcu() waits for exiting
799 		 * tasks to complete their final preempt_disable() region
800 		 * of execution, cleaning up after the synchronize_srcu()
801 		 * above.
802 		 */
803 		synchronize_rcu();
804 
805 		/* Invoke the callbacks. */
806 		while (list) {
807 			next = list->next;
808 			local_bh_disable();
809 			list->func(list);
810 			local_bh_enable();
811 			list = next;
812 			cond_resched();
813 		}
814 		/* Paranoid sleep to keep this from entering a tight loop */
815 		schedule_timeout_uninterruptible(HZ/10);
816 	}
817 }
818 
819 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
820 static int __init rcu_spawn_tasks_kthread(void)
821 {
822 	struct task_struct *t;
823 
824 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
825 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
826 		return 0;
827 	smp_mb(); /* Ensure others see full kthread. */
828 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
829 	return 0;
830 }
831 core_initcall(rcu_spawn_tasks_kthread);
832 
833 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
834 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
835 {
836 	preempt_disable();
837 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
838 	preempt_enable();
839 }
840 
841 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
842 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
843 {
844 	preempt_disable();
845 	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
846 	preempt_enable();
847 }
848 
849 #endif /* #ifdef CONFIG_TASKS_RCU */
850 
851 #ifndef CONFIG_TINY_RCU
852 
853 /*
854  * Print any non-default Tasks RCU settings.
855  */
856 static void __init rcu_tasks_bootup_oddness(void)
857 {
858 #ifdef CONFIG_TASKS_RCU
859 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
860 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
861 	else
862 		pr_info("\tTasks RCU enabled.\n");
863 #endif /* #ifdef CONFIG_TASKS_RCU */
864 }
865 
866 #endif /* #ifndef CONFIG_TINY_RCU */
867 
868 #ifdef CONFIG_PROVE_RCU
869 
870 /*
871  * Early boot self test parameters.
872  */
873 static bool rcu_self_test;
874 module_param(rcu_self_test, bool, 0444);
875 
876 static int rcu_self_test_counter;
877 
878 static void test_callback(struct rcu_head *r)
879 {
880 	rcu_self_test_counter++;
881 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
882 }
883 
884 DEFINE_STATIC_SRCU(early_srcu);
885 
886 struct early_boot_kfree_rcu {
887 	struct rcu_head rh;
888 };
889 
890 static void early_boot_test_call_rcu(void)
891 {
892 	static struct rcu_head head;
893 	static struct rcu_head shead;
894 	struct early_boot_kfree_rcu *rhp;
895 
896 	call_rcu(&head, test_callback);
897 	if (IS_ENABLED(CONFIG_SRCU))
898 		call_srcu(&early_srcu, &shead, test_callback);
899 	rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
900 	if (!WARN_ON_ONCE(!rhp))
901 		kfree_rcu(rhp, rh);
902 }
903 
904 void rcu_early_boot_tests(void)
905 {
906 	pr_info("Running RCU self tests\n");
907 
908 	if (rcu_self_test)
909 		early_boot_test_call_rcu();
910 	rcu_test_sync_prims();
911 }
912 
913 static int rcu_verify_early_boot_tests(void)
914 {
915 	int ret = 0;
916 	int early_boot_test_counter = 0;
917 
918 	if (rcu_self_test) {
919 		early_boot_test_counter++;
920 		rcu_barrier();
921 		if (IS_ENABLED(CONFIG_SRCU)) {
922 			early_boot_test_counter++;
923 			srcu_barrier(&early_srcu);
924 		}
925 	}
926 	if (rcu_self_test_counter != early_boot_test_counter) {
927 		WARN_ON(1);
928 		ret = -1;
929 	}
930 
931 	return ret;
932 }
933 late_initcall(rcu_verify_early_boot_tests);
934 #else
935 void rcu_early_boot_tests(void) {}
936 #endif /* CONFIG_PROVE_RCU */
937 
938 #ifndef CONFIG_TINY_RCU
939 
940 /*
941  * Print any significant non-default boot-time settings.
942  */
943 void __init rcupdate_announce_bootup_oddness(void)
944 {
945 	if (rcu_normal)
946 		pr_info("\tNo expedited grace period (rcu_normal).\n");
947 	else if (rcu_normal_after_boot)
948 		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
949 	else if (rcu_expedited)
950 		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
951 	if (rcu_cpu_stall_suppress)
952 		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
953 	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
954 		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
955 	rcu_tasks_bootup_oddness();
956 }
957 
958 #endif /* #ifndef CONFIG_TINY_RCU */
959