xref: /openbmc/linux/kernel/rcu/update.c (revision 6dfcd296)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/moduleparam.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52 
53 #define CREATE_TRACE_POINTS
54 
55 #include "rcu.h"
56 
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "rcupdate."
61 
62 #ifndef CONFIG_TINY_RCU
63 module_param(rcu_expedited, int, 0);
64 module_param(rcu_normal, int, 0);
65 static int rcu_normal_after_boot;
66 module_param(rcu_normal_after_boot, int, 0);
67 #endif /* #ifndef CONFIG_TINY_RCU */
68 
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
70 /**
71  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
72  *
73  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
74  * RCU-sched read-side critical section.  In absence of
75  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
76  * critical section unless it can prove otherwise.  Note that disabling
77  * of preemption (including disabling irqs) counts as an RCU-sched
78  * read-side critical section.  This is useful for debug checks in functions
79  * that required that they be called within an RCU-sched read-side
80  * critical section.
81  *
82  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
83  * and while lockdep is disabled.
84  *
85  * Note that if the CPU is in the idle loop from an RCU point of
86  * view (ie: that we are in the section between rcu_idle_enter() and
87  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
88  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
89  * that are in such a section, considering these as in extended quiescent
90  * state, so such a CPU is effectively never in an RCU read-side critical
91  * section regardless of what RCU primitives it invokes.  This state of
92  * affairs is required --- we need to keep an RCU-free window in idle
93  * where the CPU may possibly enter into low power mode. This way we can
94  * notice an extended quiescent state to other CPUs that started a grace
95  * period. Otherwise we would delay any grace period as long as we run in
96  * the idle task.
97  *
98  * Similarly, we avoid claiming an SRCU read lock held if the current
99  * CPU is offline.
100  */
101 int rcu_read_lock_sched_held(void)
102 {
103 	int lockdep_opinion = 0;
104 
105 	if (!debug_lockdep_rcu_enabled())
106 		return 1;
107 	if (!rcu_is_watching())
108 		return 0;
109 	if (!rcu_lockdep_current_cpu_online())
110 		return 0;
111 	if (debug_locks)
112 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
113 	return lockdep_opinion || !preemptible();
114 }
115 EXPORT_SYMBOL(rcu_read_lock_sched_held);
116 #endif
117 
118 #ifndef CONFIG_TINY_RCU
119 
120 /*
121  * Should expedited grace-period primitives always fall back to their
122  * non-expedited counterparts?  Intended for use within RCU.  Note
123  * that if the user specifies both rcu_expedited and rcu_normal, then
124  * rcu_normal wins.
125  */
126 bool rcu_gp_is_normal(void)
127 {
128 	return READ_ONCE(rcu_normal);
129 }
130 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
131 
132 static atomic_t rcu_expedited_nesting =
133 	ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
134 
135 /*
136  * Should normal grace-period primitives be expedited?  Intended for
137  * use within RCU.  Note that this function takes the rcu_expedited
138  * sysfs/boot variable into account as well as the rcu_expedite_gp()
139  * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
140  * returns false is a -really- bad idea.
141  */
142 bool rcu_gp_is_expedited(void)
143 {
144 	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
145 }
146 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
147 
148 /**
149  * rcu_expedite_gp - Expedite future RCU grace periods
150  *
151  * After a call to this function, future calls to synchronize_rcu() and
152  * friends act as the corresponding synchronize_rcu_expedited() function
153  * had instead been called.
154  */
155 void rcu_expedite_gp(void)
156 {
157 	atomic_inc(&rcu_expedited_nesting);
158 }
159 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
160 
161 /**
162  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
163  *
164  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
165  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
166  * and if the rcu_expedited sysfs/boot parameter is not set, then all
167  * subsequent calls to synchronize_rcu() and friends will return to
168  * their normal non-expedited behavior.
169  */
170 void rcu_unexpedite_gp(void)
171 {
172 	atomic_dec(&rcu_expedited_nesting);
173 }
174 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
175 
176 /*
177  * Inform RCU of the end of the in-kernel boot sequence.
178  */
179 void rcu_end_inkernel_boot(void)
180 {
181 	if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
182 		rcu_unexpedite_gp();
183 	if (rcu_normal_after_boot)
184 		WRITE_ONCE(rcu_normal, 1);
185 }
186 
187 #endif /* #ifndef CONFIG_TINY_RCU */
188 
189 #ifdef CONFIG_PREEMPT_RCU
190 
191 /*
192  * Preemptible RCU implementation for rcu_read_lock().
193  * Just increment ->rcu_read_lock_nesting, shared state will be updated
194  * if we block.
195  */
196 void __rcu_read_lock(void)
197 {
198 	current->rcu_read_lock_nesting++;
199 	barrier();  /* critical section after entry code. */
200 }
201 EXPORT_SYMBOL_GPL(__rcu_read_lock);
202 
203 /*
204  * Preemptible RCU implementation for rcu_read_unlock().
205  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
206  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
207  * invoke rcu_read_unlock_special() to clean up after a context switch
208  * in an RCU read-side critical section and other special cases.
209  */
210 void __rcu_read_unlock(void)
211 {
212 	struct task_struct *t = current;
213 
214 	if (t->rcu_read_lock_nesting != 1) {
215 		--t->rcu_read_lock_nesting;
216 	} else {
217 		barrier();  /* critical section before exit code. */
218 		t->rcu_read_lock_nesting = INT_MIN;
219 		barrier();  /* assign before ->rcu_read_unlock_special load */
220 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
221 			rcu_read_unlock_special(t);
222 		barrier();  /* ->rcu_read_unlock_special load before assign */
223 		t->rcu_read_lock_nesting = 0;
224 	}
225 #ifdef CONFIG_PROVE_LOCKING
226 	{
227 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
228 
229 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
230 	}
231 #endif /* #ifdef CONFIG_PROVE_LOCKING */
232 }
233 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
234 
235 #endif /* #ifdef CONFIG_PREEMPT_RCU */
236 
237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
238 static struct lock_class_key rcu_lock_key;
239 struct lockdep_map rcu_lock_map =
240 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
241 EXPORT_SYMBOL_GPL(rcu_lock_map);
242 
243 static struct lock_class_key rcu_bh_lock_key;
244 struct lockdep_map rcu_bh_lock_map =
245 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
246 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
247 
248 static struct lock_class_key rcu_sched_lock_key;
249 struct lockdep_map rcu_sched_lock_map =
250 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
251 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
252 
253 static struct lock_class_key rcu_callback_key;
254 struct lockdep_map rcu_callback_map =
255 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
256 EXPORT_SYMBOL_GPL(rcu_callback_map);
257 
258 int notrace debug_lockdep_rcu_enabled(void)
259 {
260 	return rcu_scheduler_active && debug_locks &&
261 	       current->lockdep_recursion == 0;
262 }
263 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
264 
265 /**
266  * rcu_read_lock_held() - might we be in RCU read-side critical section?
267  *
268  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
269  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
270  * this assumes we are in an RCU read-side critical section unless it can
271  * prove otherwise.  This is useful for debug checks in functions that
272  * require that they be called within an RCU read-side critical section.
273  *
274  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
275  * and while lockdep is disabled.
276  *
277  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
278  * occur in the same context, for example, it is illegal to invoke
279  * rcu_read_unlock() in process context if the matching rcu_read_lock()
280  * was invoked from within an irq handler.
281  *
282  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
283  * offline from an RCU perspective, so check for those as well.
284  */
285 int rcu_read_lock_held(void)
286 {
287 	if (!debug_lockdep_rcu_enabled())
288 		return 1;
289 	if (!rcu_is_watching())
290 		return 0;
291 	if (!rcu_lockdep_current_cpu_online())
292 		return 0;
293 	return lock_is_held(&rcu_lock_map);
294 }
295 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
296 
297 /**
298  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
299  *
300  * Check for bottom half being disabled, which covers both the
301  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
302  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
303  * will show the situation.  This is useful for debug checks in functions
304  * that require that they be called within an RCU read-side critical
305  * section.
306  *
307  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
308  *
309  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
310  * offline from an RCU perspective, so check for those as well.
311  */
312 int rcu_read_lock_bh_held(void)
313 {
314 	if (!debug_lockdep_rcu_enabled())
315 		return 1;
316 	if (!rcu_is_watching())
317 		return 0;
318 	if (!rcu_lockdep_current_cpu_online())
319 		return 0;
320 	return in_softirq() || irqs_disabled();
321 }
322 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
323 
324 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
325 
326 /**
327  * wakeme_after_rcu() - Callback function to awaken a task after grace period
328  * @head: Pointer to rcu_head member within rcu_synchronize structure
329  *
330  * Awaken the corresponding task now that a grace period has elapsed.
331  */
332 void wakeme_after_rcu(struct rcu_head *head)
333 {
334 	struct rcu_synchronize *rcu;
335 
336 	rcu = container_of(head, struct rcu_synchronize, head);
337 	complete(&rcu->completion);
338 }
339 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
340 
341 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
342 		   struct rcu_synchronize *rs_array)
343 {
344 	int i;
345 
346 	/* Initialize and register callbacks for each flavor specified. */
347 	for (i = 0; i < n; i++) {
348 		if (checktiny &&
349 		    (crcu_array[i] == call_rcu ||
350 		     crcu_array[i] == call_rcu_bh)) {
351 			might_sleep();
352 			continue;
353 		}
354 		init_rcu_head_on_stack(&rs_array[i].head);
355 		init_completion(&rs_array[i].completion);
356 		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
357 	}
358 
359 	/* Wait for all callbacks to be invoked. */
360 	for (i = 0; i < n; i++) {
361 		if (checktiny &&
362 		    (crcu_array[i] == call_rcu ||
363 		     crcu_array[i] == call_rcu_bh))
364 			continue;
365 		wait_for_completion(&rs_array[i].completion);
366 		destroy_rcu_head_on_stack(&rs_array[i].head);
367 	}
368 }
369 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
370 
371 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
372 void init_rcu_head(struct rcu_head *head)
373 {
374 	debug_object_init(head, &rcuhead_debug_descr);
375 }
376 
377 void destroy_rcu_head(struct rcu_head *head)
378 {
379 	debug_object_free(head, &rcuhead_debug_descr);
380 }
381 
382 static bool rcuhead_is_static_object(void *addr)
383 {
384 	return true;
385 }
386 
387 /**
388  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
389  * @head: pointer to rcu_head structure to be initialized
390  *
391  * This function informs debugobjects of a new rcu_head structure that
392  * has been allocated as an auto variable on the stack.  This function
393  * is not required for rcu_head structures that are statically defined or
394  * that are dynamically allocated on the heap.  This function has no
395  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
396  */
397 void init_rcu_head_on_stack(struct rcu_head *head)
398 {
399 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
400 }
401 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
402 
403 /**
404  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
405  * @head: pointer to rcu_head structure to be initialized
406  *
407  * This function informs debugobjects that an on-stack rcu_head structure
408  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
409  * function is not required for rcu_head structures that are statically
410  * defined or that are dynamically allocated on the heap.  Also as with
411  * init_rcu_head_on_stack(), this function has no effect for
412  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
413  */
414 void destroy_rcu_head_on_stack(struct rcu_head *head)
415 {
416 	debug_object_free(head, &rcuhead_debug_descr);
417 }
418 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
419 
420 struct debug_obj_descr rcuhead_debug_descr = {
421 	.name = "rcu_head",
422 	.is_static_object = rcuhead_is_static_object,
423 };
424 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
425 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
426 
427 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
428 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
429 			       unsigned long secs,
430 			       unsigned long c_old, unsigned long c)
431 {
432 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
433 }
434 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
435 #else
436 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
437 	do { } while (0)
438 #endif
439 
440 #ifdef CONFIG_RCU_STALL_COMMON
441 
442 #ifdef CONFIG_PROVE_RCU
443 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
444 #else
445 #define RCU_STALL_DELAY_DELTA	       0
446 #endif
447 
448 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
449 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
450 
451 module_param(rcu_cpu_stall_suppress, int, 0644);
452 module_param(rcu_cpu_stall_timeout, int, 0644);
453 
454 int rcu_jiffies_till_stall_check(void)
455 {
456 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
457 
458 	/*
459 	 * Limit check must be consistent with the Kconfig limits
460 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
461 	 */
462 	if (till_stall_check < 3) {
463 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
464 		till_stall_check = 3;
465 	} else if (till_stall_check > 300) {
466 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
467 		till_stall_check = 300;
468 	}
469 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
470 }
471 
472 void rcu_sysrq_start(void)
473 {
474 	if (!rcu_cpu_stall_suppress)
475 		rcu_cpu_stall_suppress = 2;
476 }
477 
478 void rcu_sysrq_end(void)
479 {
480 	if (rcu_cpu_stall_suppress == 2)
481 		rcu_cpu_stall_suppress = 0;
482 }
483 
484 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
485 {
486 	rcu_cpu_stall_suppress = 1;
487 	return NOTIFY_DONE;
488 }
489 
490 static struct notifier_block rcu_panic_block = {
491 	.notifier_call = rcu_panic,
492 };
493 
494 static int __init check_cpu_stall_init(void)
495 {
496 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
497 	return 0;
498 }
499 early_initcall(check_cpu_stall_init);
500 
501 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
502 
503 #ifdef CONFIG_TASKS_RCU
504 
505 /*
506  * Simple variant of RCU whose quiescent states are voluntary context switch,
507  * user-space execution, and idle.  As such, grace periods can take one good
508  * long time.  There are no read-side primitives similar to rcu_read_lock()
509  * and rcu_read_unlock() because this implementation is intended to get
510  * the system into a safe state for some of the manipulations involved in
511  * tracing and the like.  Finally, this implementation does not support
512  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
513  * per-CPU callback lists will be needed.
514  */
515 
516 /* Global list of callbacks and associated lock. */
517 static struct rcu_head *rcu_tasks_cbs_head;
518 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
519 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
520 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
521 
522 /* Track exiting tasks in order to allow them to be waited for. */
523 DEFINE_SRCU(tasks_rcu_exit_srcu);
524 
525 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
526 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
527 module_param(rcu_task_stall_timeout, int, 0644);
528 
529 static void rcu_spawn_tasks_kthread(void);
530 static struct task_struct *rcu_tasks_kthread_ptr;
531 
532 /*
533  * Post an RCU-tasks callback.  First call must be from process context
534  * after the scheduler if fully operational.
535  */
536 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
537 {
538 	unsigned long flags;
539 	bool needwake;
540 	bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
541 
542 	rhp->next = NULL;
543 	rhp->func = func;
544 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
545 	needwake = !rcu_tasks_cbs_head;
546 	*rcu_tasks_cbs_tail = rhp;
547 	rcu_tasks_cbs_tail = &rhp->next;
548 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
549 	/* We can't create the thread unless interrupts are enabled. */
550 	if ((needwake && havetask) ||
551 	    (!havetask && !irqs_disabled_flags(flags))) {
552 		rcu_spawn_tasks_kthread();
553 		wake_up(&rcu_tasks_cbs_wq);
554 	}
555 }
556 EXPORT_SYMBOL_GPL(call_rcu_tasks);
557 
558 /**
559  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
560  *
561  * Control will return to the caller some time after a full rcu-tasks
562  * grace period has elapsed, in other words after all currently
563  * executing rcu-tasks read-side critical sections have elapsed.  These
564  * read-side critical sections are delimited by calls to schedule(),
565  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
566  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
567  *
568  * This is a very specialized primitive, intended only for a few uses in
569  * tracing and other situations requiring manipulation of function
570  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
571  * is not (yet) intended for heavy use from multiple CPUs.
572  *
573  * Note that this guarantee implies further memory-ordering guarantees.
574  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
575  * each CPU is guaranteed to have executed a full memory barrier since the
576  * end of its last RCU-tasks read-side critical section whose beginning
577  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
578  * having an RCU-tasks read-side critical section that extends beyond
579  * the return from synchronize_rcu_tasks() is guaranteed to have executed
580  * a full memory barrier after the beginning of synchronize_rcu_tasks()
581  * and before the beginning of that RCU-tasks read-side critical section.
582  * Note that these guarantees include CPUs that are offline, idle, or
583  * executing in user mode, as well as CPUs that are executing in the kernel.
584  *
585  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
586  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
587  * to have executed a full memory barrier during the execution of
588  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
589  * (but again only if the system has more than one CPU).
590  */
591 void synchronize_rcu_tasks(void)
592 {
593 	/* Complain if the scheduler has not started.  */
594 	RCU_LOCKDEP_WARN(!rcu_scheduler_active,
595 			 "synchronize_rcu_tasks called too soon");
596 
597 	/* Wait for the grace period. */
598 	wait_rcu_gp(call_rcu_tasks);
599 }
600 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
601 
602 /**
603  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
604  *
605  * Although the current implementation is guaranteed to wait, it is not
606  * obligated to, for example, if there are no pending callbacks.
607  */
608 void rcu_barrier_tasks(void)
609 {
610 	/* There is only one callback queue, so this is easy.  ;-) */
611 	synchronize_rcu_tasks();
612 }
613 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
614 
615 /* See if tasks are still holding out, complain if so. */
616 static void check_holdout_task(struct task_struct *t,
617 			       bool needreport, bool *firstreport)
618 {
619 	int cpu;
620 
621 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
622 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
623 	    !READ_ONCE(t->on_rq) ||
624 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
625 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
626 		WRITE_ONCE(t->rcu_tasks_holdout, false);
627 		list_del_init(&t->rcu_tasks_holdout_list);
628 		put_task_struct(t);
629 		return;
630 	}
631 	if (!needreport)
632 		return;
633 	if (*firstreport) {
634 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
635 		*firstreport = false;
636 	}
637 	cpu = task_cpu(t);
638 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
639 		 t, ".I"[is_idle_task(t)],
640 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
641 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
642 		 t->rcu_tasks_idle_cpu, cpu);
643 	sched_show_task(t);
644 }
645 
646 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
647 static int __noreturn rcu_tasks_kthread(void *arg)
648 {
649 	unsigned long flags;
650 	struct task_struct *g, *t;
651 	unsigned long lastreport;
652 	struct rcu_head *list;
653 	struct rcu_head *next;
654 	LIST_HEAD(rcu_tasks_holdouts);
655 
656 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
657 	housekeeping_affine(current);
658 
659 	/*
660 	 * Each pass through the following loop makes one check for
661 	 * newly arrived callbacks, and, if there are some, waits for
662 	 * one RCU-tasks grace period and then invokes the callbacks.
663 	 * This loop is terminated by the system going down.  ;-)
664 	 */
665 	for (;;) {
666 
667 		/* Pick up any new callbacks. */
668 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
669 		list = rcu_tasks_cbs_head;
670 		rcu_tasks_cbs_head = NULL;
671 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
672 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
673 
674 		/* If there were none, wait a bit and start over. */
675 		if (!list) {
676 			wait_event_interruptible(rcu_tasks_cbs_wq,
677 						 rcu_tasks_cbs_head);
678 			if (!rcu_tasks_cbs_head) {
679 				WARN_ON(signal_pending(current));
680 				schedule_timeout_interruptible(HZ/10);
681 			}
682 			continue;
683 		}
684 
685 		/*
686 		 * Wait for all pre-existing t->on_rq and t->nvcsw
687 		 * transitions to complete.  Invoking synchronize_sched()
688 		 * suffices because all these transitions occur with
689 		 * interrupts disabled.  Without this synchronize_sched(),
690 		 * a read-side critical section that started before the
691 		 * grace period might be incorrectly seen as having started
692 		 * after the grace period.
693 		 *
694 		 * This synchronize_sched() also dispenses with the
695 		 * need for a memory barrier on the first store to
696 		 * ->rcu_tasks_holdout, as it forces the store to happen
697 		 * after the beginning of the grace period.
698 		 */
699 		synchronize_sched();
700 
701 		/*
702 		 * There were callbacks, so we need to wait for an
703 		 * RCU-tasks grace period.  Start off by scanning
704 		 * the task list for tasks that are not already
705 		 * voluntarily blocked.  Mark these tasks and make
706 		 * a list of them in rcu_tasks_holdouts.
707 		 */
708 		rcu_read_lock();
709 		for_each_process_thread(g, t) {
710 			if (t != current && READ_ONCE(t->on_rq) &&
711 			    !is_idle_task(t)) {
712 				get_task_struct(t);
713 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
714 				WRITE_ONCE(t->rcu_tasks_holdout, true);
715 				list_add(&t->rcu_tasks_holdout_list,
716 					 &rcu_tasks_holdouts);
717 			}
718 		}
719 		rcu_read_unlock();
720 
721 		/*
722 		 * Wait for tasks that are in the process of exiting.
723 		 * This does only part of the job, ensuring that all
724 		 * tasks that were previously exiting reach the point
725 		 * where they have disabled preemption, allowing the
726 		 * later synchronize_sched() to finish the job.
727 		 */
728 		synchronize_srcu(&tasks_rcu_exit_srcu);
729 
730 		/*
731 		 * Each pass through the following loop scans the list
732 		 * of holdout tasks, removing any that are no longer
733 		 * holdouts.  When the list is empty, we are done.
734 		 */
735 		lastreport = jiffies;
736 		while (!list_empty(&rcu_tasks_holdouts)) {
737 			bool firstreport;
738 			bool needreport;
739 			int rtst;
740 			struct task_struct *t1;
741 
742 			schedule_timeout_interruptible(HZ);
743 			rtst = READ_ONCE(rcu_task_stall_timeout);
744 			needreport = rtst > 0 &&
745 				     time_after(jiffies, lastreport + rtst);
746 			if (needreport)
747 				lastreport = jiffies;
748 			firstreport = true;
749 			WARN_ON(signal_pending(current));
750 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
751 						rcu_tasks_holdout_list) {
752 				check_holdout_task(t, needreport, &firstreport);
753 				cond_resched();
754 			}
755 		}
756 
757 		/*
758 		 * Because ->on_rq and ->nvcsw are not guaranteed
759 		 * to have a full memory barriers prior to them in the
760 		 * schedule() path, memory reordering on other CPUs could
761 		 * cause their RCU-tasks read-side critical sections to
762 		 * extend past the end of the grace period.  However,
763 		 * because these ->nvcsw updates are carried out with
764 		 * interrupts disabled, we can use synchronize_sched()
765 		 * to force the needed ordering on all such CPUs.
766 		 *
767 		 * This synchronize_sched() also confines all
768 		 * ->rcu_tasks_holdout accesses to be within the grace
769 		 * period, avoiding the need for memory barriers for
770 		 * ->rcu_tasks_holdout accesses.
771 		 *
772 		 * In addition, this synchronize_sched() waits for exiting
773 		 * tasks to complete their final preempt_disable() region
774 		 * of execution, cleaning up after the synchronize_srcu()
775 		 * above.
776 		 */
777 		synchronize_sched();
778 
779 		/* Invoke the callbacks. */
780 		while (list) {
781 			next = list->next;
782 			local_bh_disable();
783 			list->func(list);
784 			local_bh_enable();
785 			list = next;
786 			cond_resched();
787 		}
788 		schedule_timeout_uninterruptible(HZ/10);
789 	}
790 }
791 
792 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
793 static void rcu_spawn_tasks_kthread(void)
794 {
795 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
796 	struct task_struct *t;
797 
798 	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
799 		smp_mb(); /* Ensure caller sees full kthread. */
800 		return;
801 	}
802 	mutex_lock(&rcu_tasks_kthread_mutex);
803 	if (rcu_tasks_kthread_ptr) {
804 		mutex_unlock(&rcu_tasks_kthread_mutex);
805 		return;
806 	}
807 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
808 	BUG_ON(IS_ERR(t));
809 	smp_mb(); /* Ensure others see full kthread. */
810 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
811 	mutex_unlock(&rcu_tasks_kthread_mutex);
812 }
813 
814 #endif /* #ifdef CONFIG_TASKS_RCU */
815 
816 #ifdef CONFIG_PROVE_RCU
817 
818 /*
819  * Early boot self test parameters, one for each flavor
820  */
821 static bool rcu_self_test;
822 static bool rcu_self_test_bh;
823 static bool rcu_self_test_sched;
824 
825 module_param(rcu_self_test, bool, 0444);
826 module_param(rcu_self_test_bh, bool, 0444);
827 module_param(rcu_self_test_sched, bool, 0444);
828 
829 static int rcu_self_test_counter;
830 
831 static void test_callback(struct rcu_head *r)
832 {
833 	rcu_self_test_counter++;
834 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
835 }
836 
837 static void early_boot_test_call_rcu(void)
838 {
839 	static struct rcu_head head;
840 
841 	call_rcu(&head, test_callback);
842 }
843 
844 static void early_boot_test_call_rcu_bh(void)
845 {
846 	static struct rcu_head head;
847 
848 	call_rcu_bh(&head, test_callback);
849 }
850 
851 static void early_boot_test_call_rcu_sched(void)
852 {
853 	static struct rcu_head head;
854 
855 	call_rcu_sched(&head, test_callback);
856 }
857 
858 void rcu_early_boot_tests(void)
859 {
860 	pr_info("Running RCU self tests\n");
861 
862 	if (rcu_self_test)
863 		early_boot_test_call_rcu();
864 	if (rcu_self_test_bh)
865 		early_boot_test_call_rcu_bh();
866 	if (rcu_self_test_sched)
867 		early_boot_test_call_rcu_sched();
868 }
869 
870 static int rcu_verify_early_boot_tests(void)
871 {
872 	int ret = 0;
873 	int early_boot_test_counter = 0;
874 
875 	if (rcu_self_test) {
876 		early_boot_test_counter++;
877 		rcu_barrier();
878 	}
879 	if (rcu_self_test_bh) {
880 		early_boot_test_counter++;
881 		rcu_barrier_bh();
882 	}
883 	if (rcu_self_test_sched) {
884 		early_boot_test_counter++;
885 		rcu_barrier_sched();
886 	}
887 
888 	if (rcu_self_test_counter != early_boot_test_counter) {
889 		WARN_ON(1);
890 		ret = -1;
891 	}
892 
893 	return ret;
894 }
895 late_initcall(rcu_verify_early_boot_tests);
896 #else
897 void rcu_early_boot_tests(void) {}
898 #endif /* CONFIG_PROVE_RCU */
899