1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * Papers: 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 28 * 29 * For detailed explanation of Read-Copy Update mechanism see - 30 * http://lse.sourceforge.net/locking/rcupdate.html 31 * 32 */ 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/interrupt.h> 39 #include <linux/sched.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/percpu.h> 43 #include <linux/notifier.h> 44 #include <linux/cpu.h> 45 #include <linux/mutex.h> 46 #include <linux/export.h> 47 #include <linux/hardirq.h> 48 #include <linux/delay.h> 49 #include <linux/moduleparam.h> 50 #include <linux/kthread.h> 51 #include <linux/tick.h> 52 53 #define CREATE_TRACE_POINTS 54 55 #include "rcu.h" 56 57 #ifdef MODULE_PARAM_PREFIX 58 #undef MODULE_PARAM_PREFIX 59 #endif 60 #define MODULE_PARAM_PREFIX "rcupdate." 61 62 #ifndef CONFIG_TINY_RCU 63 module_param(rcu_expedited, int, 0); 64 module_param(rcu_normal, int, 0); 65 static int rcu_normal_after_boot; 66 module_param(rcu_normal_after_boot, int, 0); 67 #endif /* #ifndef CONFIG_TINY_RCU */ 68 69 #ifdef CONFIG_DEBUG_LOCK_ALLOC 70 /** 71 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 72 * 73 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 74 * RCU-sched read-side critical section. In absence of 75 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 76 * critical section unless it can prove otherwise. Note that disabling 77 * of preemption (including disabling irqs) counts as an RCU-sched 78 * read-side critical section. This is useful for debug checks in functions 79 * that required that they be called within an RCU-sched read-side 80 * critical section. 81 * 82 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 83 * and while lockdep is disabled. 84 * 85 * Note that if the CPU is in the idle loop from an RCU point of 86 * view (ie: that we are in the section between rcu_idle_enter() and 87 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 88 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 89 * that are in such a section, considering these as in extended quiescent 90 * state, so such a CPU is effectively never in an RCU read-side critical 91 * section regardless of what RCU primitives it invokes. This state of 92 * affairs is required --- we need to keep an RCU-free window in idle 93 * where the CPU may possibly enter into low power mode. This way we can 94 * notice an extended quiescent state to other CPUs that started a grace 95 * period. Otherwise we would delay any grace period as long as we run in 96 * the idle task. 97 * 98 * Similarly, we avoid claiming an SRCU read lock held if the current 99 * CPU is offline. 100 */ 101 int rcu_read_lock_sched_held(void) 102 { 103 int lockdep_opinion = 0; 104 105 if (!debug_lockdep_rcu_enabled()) 106 return 1; 107 if (!rcu_is_watching()) 108 return 0; 109 if (!rcu_lockdep_current_cpu_online()) 110 return 0; 111 if (debug_locks) 112 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 113 return lockdep_opinion || !preemptible(); 114 } 115 EXPORT_SYMBOL(rcu_read_lock_sched_held); 116 #endif 117 118 #ifndef CONFIG_TINY_RCU 119 120 /* 121 * Should expedited grace-period primitives always fall back to their 122 * non-expedited counterparts? Intended for use within RCU. Note 123 * that if the user specifies both rcu_expedited and rcu_normal, then 124 * rcu_normal wins. 125 */ 126 bool rcu_gp_is_normal(void) 127 { 128 return READ_ONCE(rcu_normal); 129 } 130 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 131 132 static atomic_t rcu_expedited_nesting = 133 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0); 134 135 /* 136 * Should normal grace-period primitives be expedited? Intended for 137 * use within RCU. Note that this function takes the rcu_expedited 138 * sysfs/boot variable into account as well as the rcu_expedite_gp() 139 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited() 140 * returns false is a -really- bad idea. 141 */ 142 bool rcu_gp_is_expedited(void) 143 { 144 return rcu_expedited || atomic_read(&rcu_expedited_nesting); 145 } 146 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 147 148 /** 149 * rcu_expedite_gp - Expedite future RCU grace periods 150 * 151 * After a call to this function, future calls to synchronize_rcu() and 152 * friends act as the corresponding synchronize_rcu_expedited() function 153 * had instead been called. 154 */ 155 void rcu_expedite_gp(void) 156 { 157 atomic_inc(&rcu_expedited_nesting); 158 } 159 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 160 161 /** 162 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 163 * 164 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 165 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 166 * and if the rcu_expedited sysfs/boot parameter is not set, then all 167 * subsequent calls to synchronize_rcu() and friends will return to 168 * their normal non-expedited behavior. 169 */ 170 void rcu_unexpedite_gp(void) 171 { 172 atomic_dec(&rcu_expedited_nesting); 173 } 174 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 175 176 /* 177 * Inform RCU of the end of the in-kernel boot sequence. 178 */ 179 void rcu_end_inkernel_boot(void) 180 { 181 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT)) 182 rcu_unexpedite_gp(); 183 if (rcu_normal_after_boot) 184 WRITE_ONCE(rcu_normal, 1); 185 } 186 187 #endif /* #ifndef CONFIG_TINY_RCU */ 188 189 #ifdef CONFIG_PREEMPT_RCU 190 191 /* 192 * Preemptible RCU implementation for rcu_read_lock(). 193 * Just increment ->rcu_read_lock_nesting, shared state will be updated 194 * if we block. 195 */ 196 void __rcu_read_lock(void) 197 { 198 current->rcu_read_lock_nesting++; 199 barrier(); /* critical section after entry code. */ 200 } 201 EXPORT_SYMBOL_GPL(__rcu_read_lock); 202 203 /* 204 * Preemptible RCU implementation for rcu_read_unlock(). 205 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 206 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 207 * invoke rcu_read_unlock_special() to clean up after a context switch 208 * in an RCU read-side critical section and other special cases. 209 */ 210 void __rcu_read_unlock(void) 211 { 212 struct task_struct *t = current; 213 214 if (t->rcu_read_lock_nesting != 1) { 215 --t->rcu_read_lock_nesting; 216 } else { 217 barrier(); /* critical section before exit code. */ 218 t->rcu_read_lock_nesting = INT_MIN; 219 barrier(); /* assign before ->rcu_read_unlock_special load */ 220 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 221 rcu_read_unlock_special(t); 222 barrier(); /* ->rcu_read_unlock_special load before assign */ 223 t->rcu_read_lock_nesting = 0; 224 } 225 #ifdef CONFIG_PROVE_LOCKING 226 { 227 int rrln = READ_ONCE(t->rcu_read_lock_nesting); 228 229 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); 230 } 231 #endif /* #ifdef CONFIG_PROVE_LOCKING */ 232 } 233 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 234 235 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 236 237 #ifdef CONFIG_DEBUG_LOCK_ALLOC 238 static struct lock_class_key rcu_lock_key; 239 struct lockdep_map rcu_lock_map = 240 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 241 EXPORT_SYMBOL_GPL(rcu_lock_map); 242 243 static struct lock_class_key rcu_bh_lock_key; 244 struct lockdep_map rcu_bh_lock_map = 245 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 246 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 247 248 static struct lock_class_key rcu_sched_lock_key; 249 struct lockdep_map rcu_sched_lock_map = 250 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 251 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 252 253 static struct lock_class_key rcu_callback_key; 254 struct lockdep_map rcu_callback_map = 255 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 256 EXPORT_SYMBOL_GPL(rcu_callback_map); 257 258 int notrace debug_lockdep_rcu_enabled(void) 259 { 260 return rcu_scheduler_active && debug_locks && 261 current->lockdep_recursion == 0; 262 } 263 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 264 265 /** 266 * rcu_read_lock_held() - might we be in RCU read-side critical section? 267 * 268 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 269 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 270 * this assumes we are in an RCU read-side critical section unless it can 271 * prove otherwise. This is useful for debug checks in functions that 272 * require that they be called within an RCU read-side critical section. 273 * 274 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 275 * and while lockdep is disabled. 276 * 277 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 278 * occur in the same context, for example, it is illegal to invoke 279 * rcu_read_unlock() in process context if the matching rcu_read_lock() 280 * was invoked from within an irq handler. 281 * 282 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 283 * offline from an RCU perspective, so check for those as well. 284 */ 285 int rcu_read_lock_held(void) 286 { 287 if (!debug_lockdep_rcu_enabled()) 288 return 1; 289 if (!rcu_is_watching()) 290 return 0; 291 if (!rcu_lockdep_current_cpu_online()) 292 return 0; 293 return lock_is_held(&rcu_lock_map); 294 } 295 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 296 297 /** 298 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 299 * 300 * Check for bottom half being disabled, which covers both the 301 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 302 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 303 * will show the situation. This is useful for debug checks in functions 304 * that require that they be called within an RCU read-side critical 305 * section. 306 * 307 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 308 * 309 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 310 * offline from an RCU perspective, so check for those as well. 311 */ 312 int rcu_read_lock_bh_held(void) 313 { 314 if (!debug_lockdep_rcu_enabled()) 315 return 1; 316 if (!rcu_is_watching()) 317 return 0; 318 if (!rcu_lockdep_current_cpu_online()) 319 return 0; 320 return in_softirq() || irqs_disabled(); 321 } 322 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 323 324 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 325 326 /** 327 * wakeme_after_rcu() - Callback function to awaken a task after grace period 328 * @head: Pointer to rcu_head member within rcu_synchronize structure 329 * 330 * Awaken the corresponding task now that a grace period has elapsed. 331 */ 332 void wakeme_after_rcu(struct rcu_head *head) 333 { 334 struct rcu_synchronize *rcu; 335 336 rcu = container_of(head, struct rcu_synchronize, head); 337 complete(&rcu->completion); 338 } 339 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 340 341 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 342 struct rcu_synchronize *rs_array) 343 { 344 int i; 345 346 /* Initialize and register callbacks for each flavor specified. */ 347 for (i = 0; i < n; i++) { 348 if (checktiny && 349 (crcu_array[i] == call_rcu || 350 crcu_array[i] == call_rcu_bh)) { 351 might_sleep(); 352 continue; 353 } 354 init_rcu_head_on_stack(&rs_array[i].head); 355 init_completion(&rs_array[i].completion); 356 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 357 } 358 359 /* Wait for all callbacks to be invoked. */ 360 for (i = 0; i < n; i++) { 361 if (checktiny && 362 (crcu_array[i] == call_rcu || 363 crcu_array[i] == call_rcu_bh)) 364 continue; 365 wait_for_completion(&rs_array[i].completion); 366 destroy_rcu_head_on_stack(&rs_array[i].head); 367 } 368 } 369 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 370 371 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 372 void init_rcu_head(struct rcu_head *head) 373 { 374 debug_object_init(head, &rcuhead_debug_descr); 375 } 376 377 void destroy_rcu_head(struct rcu_head *head) 378 { 379 debug_object_free(head, &rcuhead_debug_descr); 380 } 381 382 static bool rcuhead_is_static_object(void *addr) 383 { 384 return true; 385 } 386 387 /** 388 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 389 * @head: pointer to rcu_head structure to be initialized 390 * 391 * This function informs debugobjects of a new rcu_head structure that 392 * has been allocated as an auto variable on the stack. This function 393 * is not required for rcu_head structures that are statically defined or 394 * that are dynamically allocated on the heap. This function has no 395 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 396 */ 397 void init_rcu_head_on_stack(struct rcu_head *head) 398 { 399 debug_object_init_on_stack(head, &rcuhead_debug_descr); 400 } 401 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 402 403 /** 404 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 405 * @head: pointer to rcu_head structure to be initialized 406 * 407 * This function informs debugobjects that an on-stack rcu_head structure 408 * is about to go out of scope. As with init_rcu_head_on_stack(), this 409 * function is not required for rcu_head structures that are statically 410 * defined or that are dynamically allocated on the heap. Also as with 411 * init_rcu_head_on_stack(), this function has no effect for 412 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 413 */ 414 void destroy_rcu_head_on_stack(struct rcu_head *head) 415 { 416 debug_object_free(head, &rcuhead_debug_descr); 417 } 418 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 419 420 struct debug_obj_descr rcuhead_debug_descr = { 421 .name = "rcu_head", 422 .is_static_object = rcuhead_is_static_object, 423 }; 424 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 425 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 426 427 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 428 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 429 unsigned long secs, 430 unsigned long c_old, unsigned long c) 431 { 432 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 433 } 434 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 435 #else 436 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 437 do { } while (0) 438 #endif 439 440 #ifdef CONFIG_RCU_STALL_COMMON 441 442 #ifdef CONFIG_PROVE_RCU 443 #define RCU_STALL_DELAY_DELTA (5 * HZ) 444 #else 445 #define RCU_STALL_DELAY_DELTA 0 446 #endif 447 448 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 449 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 450 451 module_param(rcu_cpu_stall_suppress, int, 0644); 452 module_param(rcu_cpu_stall_timeout, int, 0644); 453 454 int rcu_jiffies_till_stall_check(void) 455 { 456 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 457 458 /* 459 * Limit check must be consistent with the Kconfig limits 460 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 461 */ 462 if (till_stall_check < 3) { 463 WRITE_ONCE(rcu_cpu_stall_timeout, 3); 464 till_stall_check = 3; 465 } else if (till_stall_check > 300) { 466 WRITE_ONCE(rcu_cpu_stall_timeout, 300); 467 till_stall_check = 300; 468 } 469 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 470 } 471 472 void rcu_sysrq_start(void) 473 { 474 if (!rcu_cpu_stall_suppress) 475 rcu_cpu_stall_suppress = 2; 476 } 477 478 void rcu_sysrq_end(void) 479 { 480 if (rcu_cpu_stall_suppress == 2) 481 rcu_cpu_stall_suppress = 0; 482 } 483 484 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 485 { 486 rcu_cpu_stall_suppress = 1; 487 return NOTIFY_DONE; 488 } 489 490 static struct notifier_block rcu_panic_block = { 491 .notifier_call = rcu_panic, 492 }; 493 494 static int __init check_cpu_stall_init(void) 495 { 496 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 497 return 0; 498 } 499 early_initcall(check_cpu_stall_init); 500 501 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 502 503 #ifdef CONFIG_TASKS_RCU 504 505 /* 506 * Simple variant of RCU whose quiescent states are voluntary context switch, 507 * user-space execution, and idle. As such, grace periods can take one good 508 * long time. There are no read-side primitives similar to rcu_read_lock() 509 * and rcu_read_unlock() because this implementation is intended to get 510 * the system into a safe state for some of the manipulations involved in 511 * tracing and the like. Finally, this implementation does not support 512 * high call_rcu_tasks() rates from multiple CPUs. If this is required, 513 * per-CPU callback lists will be needed. 514 */ 515 516 /* Global list of callbacks and associated lock. */ 517 static struct rcu_head *rcu_tasks_cbs_head; 518 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 519 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 520 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 521 522 /* Track exiting tasks in order to allow them to be waited for. */ 523 DEFINE_SRCU(tasks_rcu_exit_srcu); 524 525 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 526 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; 527 module_param(rcu_task_stall_timeout, int, 0644); 528 529 static void rcu_spawn_tasks_kthread(void); 530 static struct task_struct *rcu_tasks_kthread_ptr; 531 532 /* 533 * Post an RCU-tasks callback. First call must be from process context 534 * after the scheduler if fully operational. 535 */ 536 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 537 { 538 unsigned long flags; 539 bool needwake; 540 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr); 541 542 rhp->next = NULL; 543 rhp->func = func; 544 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 545 needwake = !rcu_tasks_cbs_head; 546 *rcu_tasks_cbs_tail = rhp; 547 rcu_tasks_cbs_tail = &rhp->next; 548 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 549 /* We can't create the thread unless interrupts are enabled. */ 550 if ((needwake && havetask) || 551 (!havetask && !irqs_disabled_flags(flags))) { 552 rcu_spawn_tasks_kthread(); 553 wake_up(&rcu_tasks_cbs_wq); 554 } 555 } 556 EXPORT_SYMBOL_GPL(call_rcu_tasks); 557 558 /** 559 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 560 * 561 * Control will return to the caller some time after a full rcu-tasks 562 * grace period has elapsed, in other words after all currently 563 * executing rcu-tasks read-side critical sections have elapsed. These 564 * read-side critical sections are delimited by calls to schedule(), 565 * cond_resched_rcu_qs(), idle execution, userspace execution, calls 566 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 567 * 568 * This is a very specialized primitive, intended only for a few uses in 569 * tracing and other situations requiring manipulation of function 570 * preambles and profiling hooks. The synchronize_rcu_tasks() function 571 * is not (yet) intended for heavy use from multiple CPUs. 572 * 573 * Note that this guarantee implies further memory-ordering guarantees. 574 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 575 * each CPU is guaranteed to have executed a full memory barrier since the 576 * end of its last RCU-tasks read-side critical section whose beginning 577 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 578 * having an RCU-tasks read-side critical section that extends beyond 579 * the return from synchronize_rcu_tasks() is guaranteed to have executed 580 * a full memory barrier after the beginning of synchronize_rcu_tasks() 581 * and before the beginning of that RCU-tasks read-side critical section. 582 * Note that these guarantees include CPUs that are offline, idle, or 583 * executing in user mode, as well as CPUs that are executing in the kernel. 584 * 585 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 586 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 587 * to have executed a full memory barrier during the execution of 588 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 589 * (but again only if the system has more than one CPU). 590 */ 591 void synchronize_rcu_tasks(void) 592 { 593 /* Complain if the scheduler has not started. */ 594 RCU_LOCKDEP_WARN(!rcu_scheduler_active, 595 "synchronize_rcu_tasks called too soon"); 596 597 /* Wait for the grace period. */ 598 wait_rcu_gp(call_rcu_tasks); 599 } 600 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 601 602 /** 603 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 604 * 605 * Although the current implementation is guaranteed to wait, it is not 606 * obligated to, for example, if there are no pending callbacks. 607 */ 608 void rcu_barrier_tasks(void) 609 { 610 /* There is only one callback queue, so this is easy. ;-) */ 611 synchronize_rcu_tasks(); 612 } 613 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 614 615 /* See if tasks are still holding out, complain if so. */ 616 static void check_holdout_task(struct task_struct *t, 617 bool needreport, bool *firstreport) 618 { 619 int cpu; 620 621 if (!READ_ONCE(t->rcu_tasks_holdout) || 622 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 623 !READ_ONCE(t->on_rq) || 624 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 625 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 626 WRITE_ONCE(t->rcu_tasks_holdout, false); 627 list_del_init(&t->rcu_tasks_holdout_list); 628 put_task_struct(t); 629 return; 630 } 631 if (!needreport) 632 return; 633 if (*firstreport) { 634 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 635 *firstreport = false; 636 } 637 cpu = task_cpu(t); 638 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 639 t, ".I"[is_idle_task(t)], 640 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 641 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 642 t->rcu_tasks_idle_cpu, cpu); 643 sched_show_task(t); 644 } 645 646 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 647 static int __noreturn rcu_tasks_kthread(void *arg) 648 { 649 unsigned long flags; 650 struct task_struct *g, *t; 651 unsigned long lastreport; 652 struct rcu_head *list; 653 struct rcu_head *next; 654 LIST_HEAD(rcu_tasks_holdouts); 655 656 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 657 housekeeping_affine(current); 658 659 /* 660 * Each pass through the following loop makes one check for 661 * newly arrived callbacks, and, if there are some, waits for 662 * one RCU-tasks grace period and then invokes the callbacks. 663 * This loop is terminated by the system going down. ;-) 664 */ 665 for (;;) { 666 667 /* Pick up any new callbacks. */ 668 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 669 list = rcu_tasks_cbs_head; 670 rcu_tasks_cbs_head = NULL; 671 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 672 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 673 674 /* If there were none, wait a bit and start over. */ 675 if (!list) { 676 wait_event_interruptible(rcu_tasks_cbs_wq, 677 rcu_tasks_cbs_head); 678 if (!rcu_tasks_cbs_head) { 679 WARN_ON(signal_pending(current)); 680 schedule_timeout_interruptible(HZ/10); 681 } 682 continue; 683 } 684 685 /* 686 * Wait for all pre-existing t->on_rq and t->nvcsw 687 * transitions to complete. Invoking synchronize_sched() 688 * suffices because all these transitions occur with 689 * interrupts disabled. Without this synchronize_sched(), 690 * a read-side critical section that started before the 691 * grace period might be incorrectly seen as having started 692 * after the grace period. 693 * 694 * This synchronize_sched() also dispenses with the 695 * need for a memory barrier on the first store to 696 * ->rcu_tasks_holdout, as it forces the store to happen 697 * after the beginning of the grace period. 698 */ 699 synchronize_sched(); 700 701 /* 702 * There were callbacks, so we need to wait for an 703 * RCU-tasks grace period. Start off by scanning 704 * the task list for tasks that are not already 705 * voluntarily blocked. Mark these tasks and make 706 * a list of them in rcu_tasks_holdouts. 707 */ 708 rcu_read_lock(); 709 for_each_process_thread(g, t) { 710 if (t != current && READ_ONCE(t->on_rq) && 711 !is_idle_task(t)) { 712 get_task_struct(t); 713 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 714 WRITE_ONCE(t->rcu_tasks_holdout, true); 715 list_add(&t->rcu_tasks_holdout_list, 716 &rcu_tasks_holdouts); 717 } 718 } 719 rcu_read_unlock(); 720 721 /* 722 * Wait for tasks that are in the process of exiting. 723 * This does only part of the job, ensuring that all 724 * tasks that were previously exiting reach the point 725 * where they have disabled preemption, allowing the 726 * later synchronize_sched() to finish the job. 727 */ 728 synchronize_srcu(&tasks_rcu_exit_srcu); 729 730 /* 731 * Each pass through the following loop scans the list 732 * of holdout tasks, removing any that are no longer 733 * holdouts. When the list is empty, we are done. 734 */ 735 lastreport = jiffies; 736 while (!list_empty(&rcu_tasks_holdouts)) { 737 bool firstreport; 738 bool needreport; 739 int rtst; 740 struct task_struct *t1; 741 742 schedule_timeout_interruptible(HZ); 743 rtst = READ_ONCE(rcu_task_stall_timeout); 744 needreport = rtst > 0 && 745 time_after(jiffies, lastreport + rtst); 746 if (needreport) 747 lastreport = jiffies; 748 firstreport = true; 749 WARN_ON(signal_pending(current)); 750 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 751 rcu_tasks_holdout_list) { 752 check_holdout_task(t, needreport, &firstreport); 753 cond_resched(); 754 } 755 } 756 757 /* 758 * Because ->on_rq and ->nvcsw are not guaranteed 759 * to have a full memory barriers prior to them in the 760 * schedule() path, memory reordering on other CPUs could 761 * cause their RCU-tasks read-side critical sections to 762 * extend past the end of the grace period. However, 763 * because these ->nvcsw updates are carried out with 764 * interrupts disabled, we can use synchronize_sched() 765 * to force the needed ordering on all such CPUs. 766 * 767 * This synchronize_sched() also confines all 768 * ->rcu_tasks_holdout accesses to be within the grace 769 * period, avoiding the need for memory barriers for 770 * ->rcu_tasks_holdout accesses. 771 * 772 * In addition, this synchronize_sched() waits for exiting 773 * tasks to complete their final preempt_disable() region 774 * of execution, cleaning up after the synchronize_srcu() 775 * above. 776 */ 777 synchronize_sched(); 778 779 /* Invoke the callbacks. */ 780 while (list) { 781 next = list->next; 782 local_bh_disable(); 783 list->func(list); 784 local_bh_enable(); 785 list = next; 786 cond_resched(); 787 } 788 schedule_timeout_uninterruptible(HZ/10); 789 } 790 } 791 792 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ 793 static void rcu_spawn_tasks_kthread(void) 794 { 795 static DEFINE_MUTEX(rcu_tasks_kthread_mutex); 796 struct task_struct *t; 797 798 if (READ_ONCE(rcu_tasks_kthread_ptr)) { 799 smp_mb(); /* Ensure caller sees full kthread. */ 800 return; 801 } 802 mutex_lock(&rcu_tasks_kthread_mutex); 803 if (rcu_tasks_kthread_ptr) { 804 mutex_unlock(&rcu_tasks_kthread_mutex); 805 return; 806 } 807 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 808 BUG_ON(IS_ERR(t)); 809 smp_mb(); /* Ensure others see full kthread. */ 810 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 811 mutex_unlock(&rcu_tasks_kthread_mutex); 812 } 813 814 #endif /* #ifdef CONFIG_TASKS_RCU */ 815 816 #ifdef CONFIG_PROVE_RCU 817 818 /* 819 * Early boot self test parameters, one for each flavor 820 */ 821 static bool rcu_self_test; 822 static bool rcu_self_test_bh; 823 static bool rcu_self_test_sched; 824 825 module_param(rcu_self_test, bool, 0444); 826 module_param(rcu_self_test_bh, bool, 0444); 827 module_param(rcu_self_test_sched, bool, 0444); 828 829 static int rcu_self_test_counter; 830 831 static void test_callback(struct rcu_head *r) 832 { 833 rcu_self_test_counter++; 834 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 835 } 836 837 static void early_boot_test_call_rcu(void) 838 { 839 static struct rcu_head head; 840 841 call_rcu(&head, test_callback); 842 } 843 844 static void early_boot_test_call_rcu_bh(void) 845 { 846 static struct rcu_head head; 847 848 call_rcu_bh(&head, test_callback); 849 } 850 851 static void early_boot_test_call_rcu_sched(void) 852 { 853 static struct rcu_head head; 854 855 call_rcu_sched(&head, test_callback); 856 } 857 858 void rcu_early_boot_tests(void) 859 { 860 pr_info("Running RCU self tests\n"); 861 862 if (rcu_self_test) 863 early_boot_test_call_rcu(); 864 if (rcu_self_test_bh) 865 early_boot_test_call_rcu_bh(); 866 if (rcu_self_test_sched) 867 early_boot_test_call_rcu_sched(); 868 } 869 870 static int rcu_verify_early_boot_tests(void) 871 { 872 int ret = 0; 873 int early_boot_test_counter = 0; 874 875 if (rcu_self_test) { 876 early_boot_test_counter++; 877 rcu_barrier(); 878 } 879 if (rcu_self_test_bh) { 880 early_boot_test_counter++; 881 rcu_barrier_bh(); 882 } 883 if (rcu_self_test_sched) { 884 early_boot_test_counter++; 885 rcu_barrier_sched(); 886 } 887 888 if (rcu_self_test_counter != early_boot_test_counter) { 889 WARN_ON(1); 890 ret = -1; 891 } 892 893 return ret; 894 } 895 late_initcall(rcu_verify_early_boot_tests); 896 #else 897 void rcu_early_boot_tests(void) {} 898 #endif /* CONFIG_PROVE_RCU */ 899