1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * Papers: 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 28 * 29 * For detailed explanation of Read-Copy Update mechanism see - 30 * http://lse.sourceforge.net/locking/rcupdate.html 31 * 32 */ 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/interrupt.h> 39 #include <linux/sched.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/percpu.h> 43 #include <linux/notifier.h> 44 #include <linux/cpu.h> 45 #include <linux/mutex.h> 46 #include <linux/export.h> 47 #include <linux/hardirq.h> 48 #include <linux/delay.h> 49 #include <linux/module.h> 50 #include <linux/kthread.h> 51 #include <linux/tick.h> 52 53 #define CREATE_TRACE_POINTS 54 55 #include "rcu.h" 56 57 MODULE_ALIAS("rcupdate"); 58 #ifdef MODULE_PARAM_PREFIX 59 #undef MODULE_PARAM_PREFIX 60 #endif 61 #define MODULE_PARAM_PREFIX "rcupdate." 62 63 #ifndef CONFIG_TINY_RCU 64 module_param(rcu_expedited, int, 0); 65 module_param(rcu_normal, int, 0); 66 static int rcu_normal_after_boot; 67 module_param(rcu_normal_after_boot, int, 0); 68 #endif /* #ifndef CONFIG_TINY_RCU */ 69 70 #ifdef CONFIG_DEBUG_LOCK_ALLOC 71 /** 72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 73 * 74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 75 * RCU-sched read-side critical section. In absence of 76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 77 * critical section unless it can prove otherwise. Note that disabling 78 * of preemption (including disabling irqs) counts as an RCU-sched 79 * read-side critical section. This is useful for debug checks in functions 80 * that required that they be called within an RCU-sched read-side 81 * critical section. 82 * 83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 84 * and while lockdep is disabled. 85 * 86 * Note that if the CPU is in the idle loop from an RCU point of 87 * view (ie: that we are in the section between rcu_idle_enter() and 88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 89 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 90 * that are in such a section, considering these as in extended quiescent 91 * state, so such a CPU is effectively never in an RCU read-side critical 92 * section regardless of what RCU primitives it invokes. This state of 93 * affairs is required --- we need to keep an RCU-free window in idle 94 * where the CPU may possibly enter into low power mode. This way we can 95 * notice an extended quiescent state to other CPUs that started a grace 96 * period. Otherwise we would delay any grace period as long as we run in 97 * the idle task. 98 * 99 * Similarly, we avoid claiming an SRCU read lock held if the current 100 * CPU is offline. 101 */ 102 int rcu_read_lock_sched_held(void) 103 { 104 int lockdep_opinion = 0; 105 106 if (!debug_lockdep_rcu_enabled()) 107 return 1; 108 if (!rcu_is_watching()) 109 return 0; 110 if (!rcu_lockdep_current_cpu_online()) 111 return 0; 112 if (debug_locks) 113 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 114 return lockdep_opinion || !preemptible(); 115 } 116 EXPORT_SYMBOL(rcu_read_lock_sched_held); 117 #endif 118 119 #ifndef CONFIG_TINY_RCU 120 121 /* 122 * Should expedited grace-period primitives always fall back to their 123 * non-expedited counterparts? Intended for use within RCU. Note 124 * that if the user specifies both rcu_expedited and rcu_normal, then 125 * rcu_normal wins. 126 */ 127 bool rcu_gp_is_normal(void) 128 { 129 return READ_ONCE(rcu_normal); 130 } 131 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 132 133 static atomic_t rcu_expedited_nesting = 134 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0); 135 136 /* 137 * Should normal grace-period primitives be expedited? Intended for 138 * use within RCU. Note that this function takes the rcu_expedited 139 * sysfs/boot variable into account as well as the rcu_expedite_gp() 140 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited() 141 * returns false is a -really- bad idea. 142 */ 143 bool rcu_gp_is_expedited(void) 144 { 145 return rcu_expedited || atomic_read(&rcu_expedited_nesting); 146 } 147 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 148 149 /** 150 * rcu_expedite_gp - Expedite future RCU grace periods 151 * 152 * After a call to this function, future calls to synchronize_rcu() and 153 * friends act as the corresponding synchronize_rcu_expedited() function 154 * had instead been called. 155 */ 156 void rcu_expedite_gp(void) 157 { 158 atomic_inc(&rcu_expedited_nesting); 159 } 160 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 161 162 /** 163 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 164 * 165 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 166 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 167 * and if the rcu_expedited sysfs/boot parameter is not set, then all 168 * subsequent calls to synchronize_rcu() and friends will return to 169 * their normal non-expedited behavior. 170 */ 171 void rcu_unexpedite_gp(void) 172 { 173 atomic_dec(&rcu_expedited_nesting); 174 } 175 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 176 177 /* 178 * Inform RCU of the end of the in-kernel boot sequence. 179 */ 180 void rcu_end_inkernel_boot(void) 181 { 182 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT)) 183 rcu_unexpedite_gp(); 184 if (rcu_normal_after_boot) 185 WRITE_ONCE(rcu_normal, 1); 186 } 187 188 #endif /* #ifndef CONFIG_TINY_RCU */ 189 190 #ifdef CONFIG_PREEMPT_RCU 191 192 /* 193 * Preemptible RCU implementation for rcu_read_lock(). 194 * Just increment ->rcu_read_lock_nesting, shared state will be updated 195 * if we block. 196 */ 197 void __rcu_read_lock(void) 198 { 199 current->rcu_read_lock_nesting++; 200 barrier(); /* critical section after entry code. */ 201 } 202 EXPORT_SYMBOL_GPL(__rcu_read_lock); 203 204 /* 205 * Preemptible RCU implementation for rcu_read_unlock(). 206 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 207 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 208 * invoke rcu_read_unlock_special() to clean up after a context switch 209 * in an RCU read-side critical section and other special cases. 210 */ 211 void __rcu_read_unlock(void) 212 { 213 struct task_struct *t = current; 214 215 if (t->rcu_read_lock_nesting != 1) { 216 --t->rcu_read_lock_nesting; 217 } else { 218 barrier(); /* critical section before exit code. */ 219 t->rcu_read_lock_nesting = INT_MIN; 220 barrier(); /* assign before ->rcu_read_unlock_special load */ 221 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 222 rcu_read_unlock_special(t); 223 barrier(); /* ->rcu_read_unlock_special load before assign */ 224 t->rcu_read_lock_nesting = 0; 225 } 226 #ifdef CONFIG_PROVE_LOCKING 227 { 228 int rrln = READ_ONCE(t->rcu_read_lock_nesting); 229 230 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); 231 } 232 #endif /* #ifdef CONFIG_PROVE_LOCKING */ 233 } 234 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 235 236 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 static struct lock_class_key rcu_lock_key; 240 struct lockdep_map rcu_lock_map = 241 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 242 EXPORT_SYMBOL_GPL(rcu_lock_map); 243 244 static struct lock_class_key rcu_bh_lock_key; 245 struct lockdep_map rcu_bh_lock_map = 246 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 247 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 248 249 static struct lock_class_key rcu_sched_lock_key; 250 struct lockdep_map rcu_sched_lock_map = 251 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 252 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 253 254 static struct lock_class_key rcu_callback_key; 255 struct lockdep_map rcu_callback_map = 256 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 257 EXPORT_SYMBOL_GPL(rcu_callback_map); 258 259 int notrace debug_lockdep_rcu_enabled(void) 260 { 261 return rcu_scheduler_active && debug_locks && 262 current->lockdep_recursion == 0; 263 } 264 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 265 266 /** 267 * rcu_read_lock_held() - might we be in RCU read-side critical section? 268 * 269 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 270 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 271 * this assumes we are in an RCU read-side critical section unless it can 272 * prove otherwise. This is useful for debug checks in functions that 273 * require that they be called within an RCU read-side critical section. 274 * 275 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 276 * and while lockdep is disabled. 277 * 278 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 279 * occur in the same context, for example, it is illegal to invoke 280 * rcu_read_unlock() in process context if the matching rcu_read_lock() 281 * was invoked from within an irq handler. 282 * 283 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 284 * offline from an RCU perspective, so check for those as well. 285 */ 286 int rcu_read_lock_held(void) 287 { 288 if (!debug_lockdep_rcu_enabled()) 289 return 1; 290 if (!rcu_is_watching()) 291 return 0; 292 if (!rcu_lockdep_current_cpu_online()) 293 return 0; 294 return lock_is_held(&rcu_lock_map); 295 } 296 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 297 298 /** 299 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 300 * 301 * Check for bottom half being disabled, which covers both the 302 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 303 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 304 * will show the situation. This is useful for debug checks in functions 305 * that require that they be called within an RCU read-side critical 306 * section. 307 * 308 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 309 * 310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 311 * offline from an RCU perspective, so check for those as well. 312 */ 313 int rcu_read_lock_bh_held(void) 314 { 315 if (!debug_lockdep_rcu_enabled()) 316 return 1; 317 if (!rcu_is_watching()) 318 return 0; 319 if (!rcu_lockdep_current_cpu_online()) 320 return 0; 321 return in_softirq() || irqs_disabled(); 322 } 323 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 324 325 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 326 327 /** 328 * wakeme_after_rcu() - Callback function to awaken a task after grace period 329 * @head: Pointer to rcu_head member within rcu_synchronize structure 330 * 331 * Awaken the corresponding task now that a grace period has elapsed. 332 */ 333 void wakeme_after_rcu(struct rcu_head *head) 334 { 335 struct rcu_synchronize *rcu; 336 337 rcu = container_of(head, struct rcu_synchronize, head); 338 complete(&rcu->completion); 339 } 340 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 341 342 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 343 struct rcu_synchronize *rs_array) 344 { 345 int i; 346 347 /* Initialize and register callbacks for each flavor specified. */ 348 for (i = 0; i < n; i++) { 349 if (checktiny && 350 (crcu_array[i] == call_rcu || 351 crcu_array[i] == call_rcu_bh)) { 352 might_sleep(); 353 continue; 354 } 355 init_rcu_head_on_stack(&rs_array[i].head); 356 init_completion(&rs_array[i].completion); 357 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 358 } 359 360 /* Wait for all callbacks to be invoked. */ 361 for (i = 0; i < n; i++) { 362 if (checktiny && 363 (crcu_array[i] == call_rcu || 364 crcu_array[i] == call_rcu_bh)) 365 continue; 366 wait_for_completion(&rs_array[i].completion); 367 destroy_rcu_head_on_stack(&rs_array[i].head); 368 } 369 } 370 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 371 372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 373 void init_rcu_head(struct rcu_head *head) 374 { 375 debug_object_init(head, &rcuhead_debug_descr); 376 } 377 378 void destroy_rcu_head(struct rcu_head *head) 379 { 380 debug_object_free(head, &rcuhead_debug_descr); 381 } 382 383 static bool rcuhead_is_static_object(void *addr) 384 { 385 return true; 386 } 387 388 /** 389 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 390 * @head: pointer to rcu_head structure to be initialized 391 * 392 * This function informs debugobjects of a new rcu_head structure that 393 * has been allocated as an auto variable on the stack. This function 394 * is not required for rcu_head structures that are statically defined or 395 * that are dynamically allocated on the heap. This function has no 396 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 397 */ 398 void init_rcu_head_on_stack(struct rcu_head *head) 399 { 400 debug_object_init_on_stack(head, &rcuhead_debug_descr); 401 } 402 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 403 404 /** 405 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 406 * @head: pointer to rcu_head structure to be initialized 407 * 408 * This function informs debugobjects that an on-stack rcu_head structure 409 * is about to go out of scope. As with init_rcu_head_on_stack(), this 410 * function is not required for rcu_head structures that are statically 411 * defined or that are dynamically allocated on the heap. Also as with 412 * init_rcu_head_on_stack(), this function has no effect for 413 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 414 */ 415 void destroy_rcu_head_on_stack(struct rcu_head *head) 416 { 417 debug_object_free(head, &rcuhead_debug_descr); 418 } 419 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 420 421 struct debug_obj_descr rcuhead_debug_descr = { 422 .name = "rcu_head", 423 .is_static_object = rcuhead_is_static_object, 424 }; 425 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 426 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 427 428 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 429 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 430 unsigned long secs, 431 unsigned long c_old, unsigned long c) 432 { 433 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 434 } 435 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 436 #else 437 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 438 do { } while (0) 439 #endif 440 441 #ifdef CONFIG_RCU_STALL_COMMON 442 443 #ifdef CONFIG_PROVE_RCU 444 #define RCU_STALL_DELAY_DELTA (5 * HZ) 445 #else 446 #define RCU_STALL_DELAY_DELTA 0 447 #endif 448 449 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 450 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 451 452 module_param(rcu_cpu_stall_suppress, int, 0644); 453 module_param(rcu_cpu_stall_timeout, int, 0644); 454 455 int rcu_jiffies_till_stall_check(void) 456 { 457 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 458 459 /* 460 * Limit check must be consistent with the Kconfig limits 461 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 462 */ 463 if (till_stall_check < 3) { 464 WRITE_ONCE(rcu_cpu_stall_timeout, 3); 465 till_stall_check = 3; 466 } else if (till_stall_check > 300) { 467 WRITE_ONCE(rcu_cpu_stall_timeout, 300); 468 till_stall_check = 300; 469 } 470 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 471 } 472 473 void rcu_sysrq_start(void) 474 { 475 if (!rcu_cpu_stall_suppress) 476 rcu_cpu_stall_suppress = 2; 477 } 478 479 void rcu_sysrq_end(void) 480 { 481 if (rcu_cpu_stall_suppress == 2) 482 rcu_cpu_stall_suppress = 0; 483 } 484 485 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 486 { 487 rcu_cpu_stall_suppress = 1; 488 return NOTIFY_DONE; 489 } 490 491 static struct notifier_block rcu_panic_block = { 492 .notifier_call = rcu_panic, 493 }; 494 495 static int __init check_cpu_stall_init(void) 496 { 497 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 498 return 0; 499 } 500 early_initcall(check_cpu_stall_init); 501 502 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 503 504 #ifdef CONFIG_TASKS_RCU 505 506 /* 507 * Simple variant of RCU whose quiescent states are voluntary context switch, 508 * user-space execution, and idle. As such, grace periods can take one good 509 * long time. There are no read-side primitives similar to rcu_read_lock() 510 * and rcu_read_unlock() because this implementation is intended to get 511 * the system into a safe state for some of the manipulations involved in 512 * tracing and the like. Finally, this implementation does not support 513 * high call_rcu_tasks() rates from multiple CPUs. If this is required, 514 * per-CPU callback lists will be needed. 515 */ 516 517 /* Global list of callbacks and associated lock. */ 518 static struct rcu_head *rcu_tasks_cbs_head; 519 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 520 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 521 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 522 523 /* Track exiting tasks in order to allow them to be waited for. */ 524 DEFINE_SRCU(tasks_rcu_exit_srcu); 525 526 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 527 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; 528 module_param(rcu_task_stall_timeout, int, 0644); 529 530 static void rcu_spawn_tasks_kthread(void); 531 532 /* 533 * Post an RCU-tasks callback. First call must be from process context 534 * after the scheduler if fully operational. 535 */ 536 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 537 { 538 unsigned long flags; 539 bool needwake; 540 541 rhp->next = NULL; 542 rhp->func = func; 543 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 544 needwake = !rcu_tasks_cbs_head; 545 *rcu_tasks_cbs_tail = rhp; 546 rcu_tasks_cbs_tail = &rhp->next; 547 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 548 if (needwake) { 549 rcu_spawn_tasks_kthread(); 550 wake_up(&rcu_tasks_cbs_wq); 551 } 552 } 553 EXPORT_SYMBOL_GPL(call_rcu_tasks); 554 555 /** 556 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 557 * 558 * Control will return to the caller some time after a full rcu-tasks 559 * grace period has elapsed, in other words after all currently 560 * executing rcu-tasks read-side critical sections have elapsed. These 561 * read-side critical sections are delimited by calls to schedule(), 562 * cond_resched_rcu_qs(), idle execution, userspace execution, calls 563 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 564 * 565 * This is a very specialized primitive, intended only for a few uses in 566 * tracing and other situations requiring manipulation of function 567 * preambles and profiling hooks. The synchronize_rcu_tasks() function 568 * is not (yet) intended for heavy use from multiple CPUs. 569 * 570 * Note that this guarantee implies further memory-ordering guarantees. 571 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 572 * each CPU is guaranteed to have executed a full memory barrier since the 573 * end of its last RCU-tasks read-side critical section whose beginning 574 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 575 * having an RCU-tasks read-side critical section that extends beyond 576 * the return from synchronize_rcu_tasks() is guaranteed to have executed 577 * a full memory barrier after the beginning of synchronize_rcu_tasks() 578 * and before the beginning of that RCU-tasks read-side critical section. 579 * Note that these guarantees include CPUs that are offline, idle, or 580 * executing in user mode, as well as CPUs that are executing in the kernel. 581 * 582 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 583 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 584 * to have executed a full memory barrier during the execution of 585 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 586 * (but again only if the system has more than one CPU). 587 */ 588 void synchronize_rcu_tasks(void) 589 { 590 /* Complain if the scheduler has not started. */ 591 RCU_LOCKDEP_WARN(!rcu_scheduler_active, 592 "synchronize_rcu_tasks called too soon"); 593 594 /* Wait for the grace period. */ 595 wait_rcu_gp(call_rcu_tasks); 596 } 597 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 598 599 /** 600 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 601 * 602 * Although the current implementation is guaranteed to wait, it is not 603 * obligated to, for example, if there are no pending callbacks. 604 */ 605 void rcu_barrier_tasks(void) 606 { 607 /* There is only one callback queue, so this is easy. ;-) */ 608 synchronize_rcu_tasks(); 609 } 610 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 611 612 /* See if tasks are still holding out, complain if so. */ 613 static void check_holdout_task(struct task_struct *t, 614 bool needreport, bool *firstreport) 615 { 616 int cpu; 617 618 if (!READ_ONCE(t->rcu_tasks_holdout) || 619 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 620 !READ_ONCE(t->on_rq) || 621 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 622 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 623 WRITE_ONCE(t->rcu_tasks_holdout, false); 624 list_del_init(&t->rcu_tasks_holdout_list); 625 put_task_struct(t); 626 return; 627 } 628 if (!needreport) 629 return; 630 if (*firstreport) { 631 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 632 *firstreport = false; 633 } 634 cpu = task_cpu(t); 635 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 636 t, ".I"[is_idle_task(t)], 637 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 638 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 639 t->rcu_tasks_idle_cpu, cpu); 640 sched_show_task(t); 641 } 642 643 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 644 static int __noreturn rcu_tasks_kthread(void *arg) 645 { 646 unsigned long flags; 647 struct task_struct *g, *t; 648 unsigned long lastreport; 649 struct rcu_head *list; 650 struct rcu_head *next; 651 LIST_HEAD(rcu_tasks_holdouts); 652 653 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 654 housekeeping_affine(current); 655 656 /* 657 * Each pass through the following loop makes one check for 658 * newly arrived callbacks, and, if there are some, waits for 659 * one RCU-tasks grace period and then invokes the callbacks. 660 * This loop is terminated by the system going down. ;-) 661 */ 662 for (;;) { 663 664 /* Pick up any new callbacks. */ 665 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 666 list = rcu_tasks_cbs_head; 667 rcu_tasks_cbs_head = NULL; 668 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 669 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 670 671 /* If there were none, wait a bit and start over. */ 672 if (!list) { 673 wait_event_interruptible(rcu_tasks_cbs_wq, 674 rcu_tasks_cbs_head); 675 if (!rcu_tasks_cbs_head) { 676 WARN_ON(signal_pending(current)); 677 schedule_timeout_interruptible(HZ/10); 678 } 679 continue; 680 } 681 682 /* 683 * Wait for all pre-existing t->on_rq and t->nvcsw 684 * transitions to complete. Invoking synchronize_sched() 685 * suffices because all these transitions occur with 686 * interrupts disabled. Without this synchronize_sched(), 687 * a read-side critical section that started before the 688 * grace period might be incorrectly seen as having started 689 * after the grace period. 690 * 691 * This synchronize_sched() also dispenses with the 692 * need for a memory barrier on the first store to 693 * ->rcu_tasks_holdout, as it forces the store to happen 694 * after the beginning of the grace period. 695 */ 696 synchronize_sched(); 697 698 /* 699 * There were callbacks, so we need to wait for an 700 * RCU-tasks grace period. Start off by scanning 701 * the task list for tasks that are not already 702 * voluntarily blocked. Mark these tasks and make 703 * a list of them in rcu_tasks_holdouts. 704 */ 705 rcu_read_lock(); 706 for_each_process_thread(g, t) { 707 if (t != current && READ_ONCE(t->on_rq) && 708 !is_idle_task(t)) { 709 get_task_struct(t); 710 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 711 WRITE_ONCE(t->rcu_tasks_holdout, true); 712 list_add(&t->rcu_tasks_holdout_list, 713 &rcu_tasks_holdouts); 714 } 715 } 716 rcu_read_unlock(); 717 718 /* 719 * Wait for tasks that are in the process of exiting. 720 * This does only part of the job, ensuring that all 721 * tasks that were previously exiting reach the point 722 * where they have disabled preemption, allowing the 723 * later synchronize_sched() to finish the job. 724 */ 725 synchronize_srcu(&tasks_rcu_exit_srcu); 726 727 /* 728 * Each pass through the following loop scans the list 729 * of holdout tasks, removing any that are no longer 730 * holdouts. When the list is empty, we are done. 731 */ 732 lastreport = jiffies; 733 while (!list_empty(&rcu_tasks_holdouts)) { 734 bool firstreport; 735 bool needreport; 736 int rtst; 737 struct task_struct *t1; 738 739 schedule_timeout_interruptible(HZ); 740 rtst = READ_ONCE(rcu_task_stall_timeout); 741 needreport = rtst > 0 && 742 time_after(jiffies, lastreport + rtst); 743 if (needreport) 744 lastreport = jiffies; 745 firstreport = true; 746 WARN_ON(signal_pending(current)); 747 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 748 rcu_tasks_holdout_list) { 749 check_holdout_task(t, needreport, &firstreport); 750 cond_resched(); 751 } 752 } 753 754 /* 755 * Because ->on_rq and ->nvcsw are not guaranteed 756 * to have a full memory barriers prior to them in the 757 * schedule() path, memory reordering on other CPUs could 758 * cause their RCU-tasks read-side critical sections to 759 * extend past the end of the grace period. However, 760 * because these ->nvcsw updates are carried out with 761 * interrupts disabled, we can use synchronize_sched() 762 * to force the needed ordering on all such CPUs. 763 * 764 * This synchronize_sched() also confines all 765 * ->rcu_tasks_holdout accesses to be within the grace 766 * period, avoiding the need for memory barriers for 767 * ->rcu_tasks_holdout accesses. 768 * 769 * In addition, this synchronize_sched() waits for exiting 770 * tasks to complete their final preempt_disable() region 771 * of execution, cleaning up after the synchronize_srcu() 772 * above. 773 */ 774 synchronize_sched(); 775 776 /* Invoke the callbacks. */ 777 while (list) { 778 next = list->next; 779 local_bh_disable(); 780 list->func(list); 781 local_bh_enable(); 782 list = next; 783 cond_resched(); 784 } 785 schedule_timeout_uninterruptible(HZ/10); 786 } 787 } 788 789 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ 790 static void rcu_spawn_tasks_kthread(void) 791 { 792 static DEFINE_MUTEX(rcu_tasks_kthread_mutex); 793 static struct task_struct *rcu_tasks_kthread_ptr; 794 struct task_struct *t; 795 796 if (READ_ONCE(rcu_tasks_kthread_ptr)) { 797 smp_mb(); /* Ensure caller sees full kthread. */ 798 return; 799 } 800 mutex_lock(&rcu_tasks_kthread_mutex); 801 if (rcu_tasks_kthread_ptr) { 802 mutex_unlock(&rcu_tasks_kthread_mutex); 803 return; 804 } 805 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 806 BUG_ON(IS_ERR(t)); 807 smp_mb(); /* Ensure others see full kthread. */ 808 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 809 mutex_unlock(&rcu_tasks_kthread_mutex); 810 } 811 812 #endif /* #ifdef CONFIG_TASKS_RCU */ 813 814 #ifdef CONFIG_PROVE_RCU 815 816 /* 817 * Early boot self test parameters, one for each flavor 818 */ 819 static bool rcu_self_test; 820 static bool rcu_self_test_bh; 821 static bool rcu_self_test_sched; 822 823 module_param(rcu_self_test, bool, 0444); 824 module_param(rcu_self_test_bh, bool, 0444); 825 module_param(rcu_self_test_sched, bool, 0444); 826 827 static int rcu_self_test_counter; 828 829 static void test_callback(struct rcu_head *r) 830 { 831 rcu_self_test_counter++; 832 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 833 } 834 835 static void early_boot_test_call_rcu(void) 836 { 837 static struct rcu_head head; 838 839 call_rcu(&head, test_callback); 840 } 841 842 static void early_boot_test_call_rcu_bh(void) 843 { 844 static struct rcu_head head; 845 846 call_rcu_bh(&head, test_callback); 847 } 848 849 static void early_boot_test_call_rcu_sched(void) 850 { 851 static struct rcu_head head; 852 853 call_rcu_sched(&head, test_callback); 854 } 855 856 void rcu_early_boot_tests(void) 857 { 858 pr_info("Running RCU self tests\n"); 859 860 if (rcu_self_test) 861 early_boot_test_call_rcu(); 862 if (rcu_self_test_bh) 863 early_boot_test_call_rcu_bh(); 864 if (rcu_self_test_sched) 865 early_boot_test_call_rcu_sched(); 866 } 867 868 static int rcu_verify_early_boot_tests(void) 869 { 870 int ret = 0; 871 int early_boot_test_counter = 0; 872 873 if (rcu_self_test) { 874 early_boot_test_counter++; 875 rcu_barrier(); 876 } 877 if (rcu_self_test_bh) { 878 early_boot_test_counter++; 879 rcu_barrier_bh(); 880 } 881 if (rcu_self_test_sched) { 882 early_boot_test_counter++; 883 rcu_barrier_sched(); 884 } 885 886 if (rcu_self_test_counter != early_boot_test_counter) { 887 WARN_ON(1); 888 ret = -1; 889 } 890 891 return ret; 892 } 893 late_initcall(rcu_verify_early_boot_tests); 894 #else 895 void rcu_early_boot_tests(void) {} 896 #endif /* CONFIG_PROVE_RCU */ 897