1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * Papers: 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 28 * 29 * For detailed explanation of Read-Copy Update mechanism see - 30 * http://lse.sourceforge.net/locking/rcupdate.html 31 * 32 */ 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/interrupt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/debug.h> 41 #include <linux/atomic.h> 42 #include <linux/bitops.h> 43 #include <linux/percpu.h> 44 #include <linux/notifier.h> 45 #include <linux/cpu.h> 46 #include <linux/mutex.h> 47 #include <linux/export.h> 48 #include <linux/hardirq.h> 49 #include <linux/delay.h> 50 #include <linux/moduleparam.h> 51 #include <linux/kthread.h> 52 #include <linux/tick.h> 53 #include <linux/rcupdate_wait.h> 54 #include <linux/sched/isolation.h> 55 56 #define CREATE_TRACE_POINTS 57 58 #include "rcu.h" 59 60 #ifdef MODULE_PARAM_PREFIX 61 #undef MODULE_PARAM_PREFIX 62 #endif 63 #define MODULE_PARAM_PREFIX "rcupdate." 64 65 #ifndef CONFIG_TINY_RCU 66 extern int rcu_expedited; /* from sysctl */ 67 module_param(rcu_expedited, int, 0); 68 extern int rcu_normal; /* from sysctl */ 69 module_param(rcu_normal, int, 0); 70 static int rcu_normal_after_boot; 71 module_param(rcu_normal_after_boot, int, 0); 72 #endif /* #ifndef CONFIG_TINY_RCU */ 73 74 #ifdef CONFIG_DEBUG_LOCK_ALLOC 75 /** 76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 77 * 78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 79 * RCU-sched read-side critical section. In absence of 80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 81 * critical section unless it can prove otherwise. Note that disabling 82 * of preemption (including disabling irqs) counts as an RCU-sched 83 * read-side critical section. This is useful for debug checks in functions 84 * that required that they be called within an RCU-sched read-side 85 * critical section. 86 * 87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 88 * and while lockdep is disabled. 89 * 90 * Note that if the CPU is in the idle loop from an RCU point of 91 * view (ie: that we are in the section between rcu_idle_enter() and 92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 93 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 94 * that are in such a section, considering these as in extended quiescent 95 * state, so such a CPU is effectively never in an RCU read-side critical 96 * section regardless of what RCU primitives it invokes. This state of 97 * affairs is required --- we need to keep an RCU-free window in idle 98 * where the CPU may possibly enter into low power mode. This way we can 99 * notice an extended quiescent state to other CPUs that started a grace 100 * period. Otherwise we would delay any grace period as long as we run in 101 * the idle task. 102 * 103 * Similarly, we avoid claiming an SRCU read lock held if the current 104 * CPU is offline. 105 */ 106 int rcu_read_lock_sched_held(void) 107 { 108 int lockdep_opinion = 0; 109 110 if (!debug_lockdep_rcu_enabled()) 111 return 1; 112 if (!rcu_is_watching()) 113 return 0; 114 if (!rcu_lockdep_current_cpu_online()) 115 return 0; 116 if (debug_locks) 117 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 118 return lockdep_opinion || !preemptible(); 119 } 120 EXPORT_SYMBOL(rcu_read_lock_sched_held); 121 #endif 122 123 #ifndef CONFIG_TINY_RCU 124 125 /* 126 * Should expedited grace-period primitives always fall back to their 127 * non-expedited counterparts? Intended for use within RCU. Note 128 * that if the user specifies both rcu_expedited and rcu_normal, then 129 * rcu_normal wins. (Except during the time period during boot from 130 * when the first task is spawned until the rcu_set_runtime_mode() 131 * core_initcall() is invoked, at which point everything is expedited.) 132 */ 133 bool rcu_gp_is_normal(void) 134 { 135 return READ_ONCE(rcu_normal) && 136 rcu_scheduler_active != RCU_SCHEDULER_INIT; 137 } 138 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 139 140 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); 141 142 /* 143 * Should normal grace-period primitives be expedited? Intended for 144 * use within RCU. Note that this function takes the rcu_expedited 145 * sysfs/boot variable and rcu_scheduler_active into account as well 146 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp() 147 * until rcu_gp_is_expedited() returns false is a -really- bad idea. 148 */ 149 bool rcu_gp_is_expedited(void) 150 { 151 return rcu_expedited || atomic_read(&rcu_expedited_nesting) || 152 rcu_scheduler_active == RCU_SCHEDULER_INIT; 153 } 154 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 155 156 /** 157 * rcu_expedite_gp - Expedite future RCU grace periods 158 * 159 * After a call to this function, future calls to synchronize_rcu() and 160 * friends act as the corresponding synchronize_rcu_expedited() function 161 * had instead been called. 162 */ 163 void rcu_expedite_gp(void) 164 { 165 atomic_inc(&rcu_expedited_nesting); 166 } 167 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 168 169 /** 170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 171 * 172 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 174 * and if the rcu_expedited sysfs/boot parameter is not set, then all 175 * subsequent calls to synchronize_rcu() and friends will return to 176 * their normal non-expedited behavior. 177 */ 178 void rcu_unexpedite_gp(void) 179 { 180 atomic_dec(&rcu_expedited_nesting); 181 } 182 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 183 184 /* 185 * Inform RCU of the end of the in-kernel boot sequence. 186 */ 187 void rcu_end_inkernel_boot(void) 188 { 189 rcu_unexpedite_gp(); 190 if (rcu_normal_after_boot) 191 WRITE_ONCE(rcu_normal, 1); 192 } 193 194 #endif /* #ifndef CONFIG_TINY_RCU */ 195 196 /* 197 * Test each non-SRCU synchronous grace-period wait API. This is 198 * useful just after a change in mode for these primitives, and 199 * during early boot. 200 */ 201 void rcu_test_sync_prims(void) 202 { 203 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 204 return; 205 synchronize_rcu(); 206 synchronize_rcu_expedited(); 207 } 208 209 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) 210 211 /* 212 * Switch to run-time mode once RCU has fully initialized. 213 */ 214 static int __init rcu_set_runtime_mode(void) 215 { 216 rcu_test_sync_prims(); 217 rcu_scheduler_active = RCU_SCHEDULER_RUNNING; 218 rcu_test_sync_prims(); 219 return 0; 220 } 221 core_initcall(rcu_set_runtime_mode); 222 223 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 static struct lock_class_key rcu_lock_key; 227 struct lockdep_map rcu_lock_map = 228 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 229 EXPORT_SYMBOL_GPL(rcu_lock_map); 230 231 static struct lock_class_key rcu_bh_lock_key; 232 struct lockdep_map rcu_bh_lock_map = 233 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 234 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 235 236 static struct lock_class_key rcu_sched_lock_key; 237 struct lockdep_map rcu_sched_lock_map = 238 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 239 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 240 241 static struct lock_class_key rcu_callback_key; 242 struct lockdep_map rcu_callback_map = 243 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 244 EXPORT_SYMBOL_GPL(rcu_callback_map); 245 246 int notrace debug_lockdep_rcu_enabled(void) 247 { 248 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && 249 current->lockdep_recursion == 0; 250 } 251 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 252 253 /** 254 * rcu_read_lock_held() - might we be in RCU read-side critical section? 255 * 256 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 257 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 258 * this assumes we are in an RCU read-side critical section unless it can 259 * prove otherwise. This is useful for debug checks in functions that 260 * require that they be called within an RCU read-side critical section. 261 * 262 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 263 * and while lockdep is disabled. 264 * 265 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 266 * occur in the same context, for example, it is illegal to invoke 267 * rcu_read_unlock() in process context if the matching rcu_read_lock() 268 * was invoked from within an irq handler. 269 * 270 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 271 * offline from an RCU perspective, so check for those as well. 272 */ 273 int rcu_read_lock_held(void) 274 { 275 if (!debug_lockdep_rcu_enabled()) 276 return 1; 277 if (!rcu_is_watching()) 278 return 0; 279 if (!rcu_lockdep_current_cpu_online()) 280 return 0; 281 return lock_is_held(&rcu_lock_map); 282 } 283 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 284 285 /** 286 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 287 * 288 * Check for bottom half being disabled, which covers both the 289 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 290 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 291 * will show the situation. This is useful for debug checks in functions 292 * that require that they be called within an RCU read-side critical 293 * section. 294 * 295 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 296 * 297 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or 298 * offline from an RCU perspective, so check for those as well. 299 */ 300 int rcu_read_lock_bh_held(void) 301 { 302 if (!debug_lockdep_rcu_enabled()) 303 return 1; 304 if (!rcu_is_watching()) 305 return 0; 306 if (!rcu_lockdep_current_cpu_online()) 307 return 0; 308 return in_softirq() || irqs_disabled(); 309 } 310 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 311 312 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 313 314 /** 315 * wakeme_after_rcu() - Callback function to awaken a task after grace period 316 * @head: Pointer to rcu_head member within rcu_synchronize structure 317 * 318 * Awaken the corresponding task now that a grace period has elapsed. 319 */ 320 void wakeme_after_rcu(struct rcu_head *head) 321 { 322 struct rcu_synchronize *rcu; 323 324 rcu = container_of(head, struct rcu_synchronize, head); 325 complete(&rcu->completion); 326 } 327 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 328 329 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 330 struct rcu_synchronize *rs_array) 331 { 332 int i; 333 int j; 334 335 /* Initialize and register callbacks for each crcu_array element. */ 336 for (i = 0; i < n; i++) { 337 if (checktiny && 338 (crcu_array[i] == call_rcu)) { 339 might_sleep(); 340 continue; 341 } 342 init_rcu_head_on_stack(&rs_array[i].head); 343 init_completion(&rs_array[i].completion); 344 for (j = 0; j < i; j++) 345 if (crcu_array[j] == crcu_array[i]) 346 break; 347 if (j == i) 348 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 349 } 350 351 /* Wait for all callbacks to be invoked. */ 352 for (i = 0; i < n; i++) { 353 if (checktiny && 354 (crcu_array[i] == call_rcu)) 355 continue; 356 for (j = 0; j < i; j++) 357 if (crcu_array[j] == crcu_array[i]) 358 break; 359 if (j == i) 360 wait_for_completion(&rs_array[i].completion); 361 destroy_rcu_head_on_stack(&rs_array[i].head); 362 } 363 } 364 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 365 366 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 367 void init_rcu_head(struct rcu_head *head) 368 { 369 debug_object_init(head, &rcuhead_debug_descr); 370 } 371 EXPORT_SYMBOL_GPL(init_rcu_head); 372 373 void destroy_rcu_head(struct rcu_head *head) 374 { 375 debug_object_free(head, &rcuhead_debug_descr); 376 } 377 EXPORT_SYMBOL_GPL(destroy_rcu_head); 378 379 static bool rcuhead_is_static_object(void *addr) 380 { 381 return true; 382 } 383 384 /** 385 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 386 * @head: pointer to rcu_head structure to be initialized 387 * 388 * This function informs debugobjects of a new rcu_head structure that 389 * has been allocated as an auto variable on the stack. This function 390 * is not required for rcu_head structures that are statically defined or 391 * that are dynamically allocated on the heap. This function has no 392 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 393 */ 394 void init_rcu_head_on_stack(struct rcu_head *head) 395 { 396 debug_object_init_on_stack(head, &rcuhead_debug_descr); 397 } 398 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 399 400 /** 401 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 402 * @head: pointer to rcu_head structure to be initialized 403 * 404 * This function informs debugobjects that an on-stack rcu_head structure 405 * is about to go out of scope. As with init_rcu_head_on_stack(), this 406 * function is not required for rcu_head structures that are statically 407 * defined or that are dynamically allocated on the heap. Also as with 408 * init_rcu_head_on_stack(), this function has no effect for 409 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 410 */ 411 void destroy_rcu_head_on_stack(struct rcu_head *head) 412 { 413 debug_object_free(head, &rcuhead_debug_descr); 414 } 415 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 416 417 struct debug_obj_descr rcuhead_debug_descr = { 418 .name = "rcu_head", 419 .is_static_object = rcuhead_is_static_object, 420 }; 421 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 422 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 423 424 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 425 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 426 unsigned long secs, 427 unsigned long c_old, unsigned long c) 428 { 429 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 430 } 431 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 432 #else 433 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 434 do { } while (0) 435 #endif 436 437 #ifdef CONFIG_RCU_STALL_COMMON 438 439 #ifdef CONFIG_PROVE_RCU 440 #define RCU_STALL_DELAY_DELTA (5 * HZ) 441 #else 442 #define RCU_STALL_DELAY_DELTA 0 443 #endif 444 445 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 446 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 447 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 448 449 module_param(rcu_cpu_stall_suppress, int, 0644); 450 module_param(rcu_cpu_stall_timeout, int, 0644); 451 452 int rcu_jiffies_till_stall_check(void) 453 { 454 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 455 456 /* 457 * Limit check must be consistent with the Kconfig limits 458 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 459 */ 460 if (till_stall_check < 3) { 461 WRITE_ONCE(rcu_cpu_stall_timeout, 3); 462 till_stall_check = 3; 463 } else if (till_stall_check > 300) { 464 WRITE_ONCE(rcu_cpu_stall_timeout, 300); 465 till_stall_check = 300; 466 } 467 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 468 } 469 EXPORT_SYMBOL_GPL(rcu_jiffies_till_stall_check); 470 471 void rcu_sysrq_start(void) 472 { 473 if (!rcu_cpu_stall_suppress) 474 rcu_cpu_stall_suppress = 2; 475 } 476 477 void rcu_sysrq_end(void) 478 { 479 if (rcu_cpu_stall_suppress == 2) 480 rcu_cpu_stall_suppress = 0; 481 } 482 483 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 484 { 485 rcu_cpu_stall_suppress = 1; 486 return NOTIFY_DONE; 487 } 488 489 static struct notifier_block rcu_panic_block = { 490 .notifier_call = rcu_panic, 491 }; 492 493 static int __init check_cpu_stall_init(void) 494 { 495 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 496 return 0; 497 } 498 early_initcall(check_cpu_stall_init); 499 500 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 501 502 #ifdef CONFIG_TASKS_RCU 503 504 /* 505 * Simple variant of RCU whose quiescent states are voluntary context 506 * switch, cond_resched_rcu_qs(), user-space execution, and idle. 507 * As such, grace periods can take one good long time. There are no 508 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 509 * because this implementation is intended to get the system into a safe 510 * state for some of the manipulations involved in tracing and the like. 511 * Finally, this implementation does not support high call_rcu_tasks() 512 * rates from multiple CPUs. If this is required, per-CPU callback lists 513 * will be needed. 514 */ 515 516 /* Global list of callbacks and associated lock. */ 517 static struct rcu_head *rcu_tasks_cbs_head; 518 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 519 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 520 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 521 522 /* Track exiting tasks in order to allow them to be waited for. */ 523 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 524 525 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 526 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 527 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 528 module_param(rcu_task_stall_timeout, int, 0644); 529 530 static struct task_struct *rcu_tasks_kthread_ptr; 531 532 /** 533 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 534 * @rhp: structure to be used for queueing the RCU updates. 535 * @func: actual callback function to be invoked after the grace period 536 * 537 * The callback function will be invoked some time after a full grace 538 * period elapses, in other words after all currently executing RCU 539 * read-side critical sections have completed. call_rcu_tasks() assumes 540 * that the read-side critical sections end at a voluntary context 541 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 542 * or transition to usermode execution. As such, there are no read-side 543 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 544 * this primitive is intended to determine that all tasks have passed 545 * through a safe state, not so much for data-strcuture synchronization. 546 * 547 * See the description of call_rcu() for more detailed information on 548 * memory ordering guarantees. 549 */ 550 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 551 { 552 unsigned long flags; 553 bool needwake; 554 555 rhp->next = NULL; 556 rhp->func = func; 557 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 558 needwake = !rcu_tasks_cbs_head; 559 *rcu_tasks_cbs_tail = rhp; 560 rcu_tasks_cbs_tail = &rhp->next; 561 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 562 /* We can't create the thread unless interrupts are enabled. */ 563 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) 564 wake_up(&rcu_tasks_cbs_wq); 565 } 566 EXPORT_SYMBOL_GPL(call_rcu_tasks); 567 568 /** 569 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 570 * 571 * Control will return to the caller some time after a full rcu-tasks 572 * grace period has elapsed, in other words after all currently 573 * executing rcu-tasks read-side critical sections have elapsed. These 574 * read-side critical sections are delimited by calls to schedule(), 575 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 576 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 577 * 578 * This is a very specialized primitive, intended only for a few uses in 579 * tracing and other situations requiring manipulation of function 580 * preambles and profiling hooks. The synchronize_rcu_tasks() function 581 * is not (yet) intended for heavy use from multiple CPUs. 582 * 583 * Note that this guarantee implies further memory-ordering guarantees. 584 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 585 * each CPU is guaranteed to have executed a full memory barrier since the 586 * end of its last RCU-tasks read-side critical section whose beginning 587 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 588 * having an RCU-tasks read-side critical section that extends beyond 589 * the return from synchronize_rcu_tasks() is guaranteed to have executed 590 * a full memory barrier after the beginning of synchronize_rcu_tasks() 591 * and before the beginning of that RCU-tasks read-side critical section. 592 * Note that these guarantees include CPUs that are offline, idle, or 593 * executing in user mode, as well as CPUs that are executing in the kernel. 594 * 595 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 596 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 597 * to have executed a full memory barrier during the execution of 598 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 599 * (but again only if the system has more than one CPU). 600 */ 601 void synchronize_rcu_tasks(void) 602 { 603 /* Complain if the scheduler has not started. */ 604 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 605 "synchronize_rcu_tasks called too soon"); 606 607 /* Wait for the grace period. */ 608 wait_rcu_gp(call_rcu_tasks); 609 } 610 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 611 612 /** 613 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 614 * 615 * Although the current implementation is guaranteed to wait, it is not 616 * obligated to, for example, if there are no pending callbacks. 617 */ 618 void rcu_barrier_tasks(void) 619 { 620 /* There is only one callback queue, so this is easy. ;-) */ 621 synchronize_rcu_tasks(); 622 } 623 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 624 625 /* See if tasks are still holding out, complain if so. */ 626 static void check_holdout_task(struct task_struct *t, 627 bool needreport, bool *firstreport) 628 { 629 int cpu; 630 631 if (!READ_ONCE(t->rcu_tasks_holdout) || 632 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 633 !READ_ONCE(t->on_rq) || 634 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 635 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 636 WRITE_ONCE(t->rcu_tasks_holdout, false); 637 list_del_init(&t->rcu_tasks_holdout_list); 638 put_task_struct(t); 639 return; 640 } 641 rcu_request_urgent_qs_task(t); 642 if (!needreport) 643 return; 644 if (*firstreport) { 645 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 646 *firstreport = false; 647 } 648 cpu = task_cpu(t); 649 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 650 t, ".I"[is_idle_task(t)], 651 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 652 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 653 t->rcu_tasks_idle_cpu, cpu); 654 sched_show_task(t); 655 } 656 657 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 658 static int __noreturn rcu_tasks_kthread(void *arg) 659 { 660 unsigned long flags; 661 struct task_struct *g, *t; 662 unsigned long lastreport; 663 struct rcu_head *list; 664 struct rcu_head *next; 665 LIST_HEAD(rcu_tasks_holdouts); 666 int fract; 667 668 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 669 housekeeping_affine(current, HK_FLAG_RCU); 670 671 /* 672 * Each pass through the following loop makes one check for 673 * newly arrived callbacks, and, if there are some, waits for 674 * one RCU-tasks grace period and then invokes the callbacks. 675 * This loop is terminated by the system going down. ;-) 676 */ 677 for (;;) { 678 679 /* Pick up any new callbacks. */ 680 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 681 list = rcu_tasks_cbs_head; 682 rcu_tasks_cbs_head = NULL; 683 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 684 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 685 686 /* If there were none, wait a bit and start over. */ 687 if (!list) { 688 wait_event_interruptible(rcu_tasks_cbs_wq, 689 rcu_tasks_cbs_head); 690 if (!rcu_tasks_cbs_head) { 691 WARN_ON(signal_pending(current)); 692 schedule_timeout_interruptible(HZ/10); 693 } 694 continue; 695 } 696 697 /* 698 * Wait for all pre-existing t->on_rq and t->nvcsw 699 * transitions to complete. Invoking synchronize_rcu() 700 * suffices because all these transitions occur with 701 * interrupts disabled. Without this synchronize_rcu(), 702 * a read-side critical section that started before the 703 * grace period might be incorrectly seen as having started 704 * after the grace period. 705 * 706 * This synchronize_rcu() also dispenses with the 707 * need for a memory barrier on the first store to 708 * ->rcu_tasks_holdout, as it forces the store to happen 709 * after the beginning of the grace period. 710 */ 711 synchronize_rcu(); 712 713 /* 714 * There were callbacks, so we need to wait for an 715 * RCU-tasks grace period. Start off by scanning 716 * the task list for tasks that are not already 717 * voluntarily blocked. Mark these tasks and make 718 * a list of them in rcu_tasks_holdouts. 719 */ 720 rcu_read_lock(); 721 for_each_process_thread(g, t) { 722 if (t != current && READ_ONCE(t->on_rq) && 723 !is_idle_task(t)) { 724 get_task_struct(t); 725 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 726 WRITE_ONCE(t->rcu_tasks_holdout, true); 727 list_add(&t->rcu_tasks_holdout_list, 728 &rcu_tasks_holdouts); 729 } 730 } 731 rcu_read_unlock(); 732 733 /* 734 * Wait for tasks that are in the process of exiting. 735 * This does only part of the job, ensuring that all 736 * tasks that were previously exiting reach the point 737 * where they have disabled preemption, allowing the 738 * later synchronize_rcu() to finish the job. 739 */ 740 synchronize_srcu(&tasks_rcu_exit_srcu); 741 742 /* 743 * Each pass through the following loop scans the list 744 * of holdout tasks, removing any that are no longer 745 * holdouts. When the list is empty, we are done. 746 */ 747 lastreport = jiffies; 748 749 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ 750 fract = 10; 751 752 for (;;) { 753 bool firstreport; 754 bool needreport; 755 int rtst; 756 struct task_struct *t1; 757 758 if (list_empty(&rcu_tasks_holdouts)) 759 break; 760 761 /* Slowly back off waiting for holdouts */ 762 schedule_timeout_interruptible(HZ/fract); 763 764 if (fract > 1) 765 fract--; 766 767 rtst = READ_ONCE(rcu_task_stall_timeout); 768 needreport = rtst > 0 && 769 time_after(jiffies, lastreport + rtst); 770 if (needreport) 771 lastreport = jiffies; 772 firstreport = true; 773 WARN_ON(signal_pending(current)); 774 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 775 rcu_tasks_holdout_list) { 776 check_holdout_task(t, needreport, &firstreport); 777 cond_resched(); 778 } 779 } 780 781 /* 782 * Because ->on_rq and ->nvcsw are not guaranteed 783 * to have a full memory barriers prior to them in the 784 * schedule() path, memory reordering on other CPUs could 785 * cause their RCU-tasks read-side critical sections to 786 * extend past the end of the grace period. However, 787 * because these ->nvcsw updates are carried out with 788 * interrupts disabled, we can use synchronize_rcu() 789 * to force the needed ordering on all such CPUs. 790 * 791 * This synchronize_rcu() also confines all 792 * ->rcu_tasks_holdout accesses to be within the grace 793 * period, avoiding the need for memory barriers for 794 * ->rcu_tasks_holdout accesses. 795 * 796 * In addition, this synchronize_rcu() waits for exiting 797 * tasks to complete their final preempt_disable() region 798 * of execution, cleaning up after the synchronize_srcu() 799 * above. 800 */ 801 synchronize_rcu(); 802 803 /* Invoke the callbacks. */ 804 while (list) { 805 next = list->next; 806 local_bh_disable(); 807 list->func(list); 808 local_bh_enable(); 809 list = next; 810 cond_resched(); 811 } 812 /* Paranoid sleep to keep this from entering a tight loop */ 813 schedule_timeout_uninterruptible(HZ/10); 814 } 815 } 816 817 /* Spawn rcu_tasks_kthread() at core_initcall() time. */ 818 static int __init rcu_spawn_tasks_kthread(void) 819 { 820 struct task_struct *t; 821 822 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 823 if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) 824 return 0; 825 smp_mb(); /* Ensure others see full kthread. */ 826 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 827 return 0; 828 } 829 core_initcall(rcu_spawn_tasks_kthread); 830 831 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 832 void exit_tasks_rcu_start(void) 833 { 834 preempt_disable(); 835 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 836 preempt_enable(); 837 } 838 839 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 840 void exit_tasks_rcu_finish(void) 841 { 842 preempt_disable(); 843 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); 844 preempt_enable(); 845 } 846 847 #endif /* #ifdef CONFIG_TASKS_RCU */ 848 849 #ifndef CONFIG_TINY_RCU 850 851 /* 852 * Print any non-default Tasks RCU settings. 853 */ 854 static void __init rcu_tasks_bootup_oddness(void) 855 { 856 #ifdef CONFIG_TASKS_RCU 857 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 858 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 859 else 860 pr_info("\tTasks RCU enabled.\n"); 861 #endif /* #ifdef CONFIG_TASKS_RCU */ 862 } 863 864 #endif /* #ifndef CONFIG_TINY_RCU */ 865 866 #ifdef CONFIG_PROVE_RCU 867 868 /* 869 * Early boot self test parameters. 870 */ 871 static bool rcu_self_test; 872 module_param(rcu_self_test, bool, 0444); 873 874 static int rcu_self_test_counter; 875 876 static void test_callback(struct rcu_head *r) 877 { 878 rcu_self_test_counter++; 879 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 880 } 881 882 DEFINE_STATIC_SRCU(early_srcu); 883 884 static void early_boot_test_call_rcu(void) 885 { 886 static struct rcu_head head; 887 static struct rcu_head shead; 888 889 call_rcu(&head, test_callback); 890 if (IS_ENABLED(CONFIG_SRCU)) 891 call_srcu(&early_srcu, &shead, test_callback); 892 } 893 894 void rcu_early_boot_tests(void) 895 { 896 pr_info("Running RCU self tests\n"); 897 898 if (rcu_self_test) 899 early_boot_test_call_rcu(); 900 rcu_test_sync_prims(); 901 } 902 903 static int rcu_verify_early_boot_tests(void) 904 { 905 int ret = 0; 906 int early_boot_test_counter = 0; 907 908 if (rcu_self_test) { 909 early_boot_test_counter++; 910 rcu_barrier(); 911 if (IS_ENABLED(CONFIG_SRCU)) { 912 early_boot_test_counter++; 913 srcu_barrier(&early_srcu); 914 } 915 } 916 if (rcu_self_test_counter != early_boot_test_counter) { 917 WARN_ON(1); 918 ret = -1; 919 } 920 921 return ret; 922 } 923 late_initcall(rcu_verify_early_boot_tests); 924 #else 925 void rcu_early_boot_tests(void) {} 926 #endif /* CONFIG_PROVE_RCU */ 927 928 #ifndef CONFIG_TINY_RCU 929 930 /* 931 * Print any significant non-default boot-time settings. 932 */ 933 void __init rcupdate_announce_bootup_oddness(void) 934 { 935 if (rcu_normal) 936 pr_info("\tNo expedited grace period (rcu_normal).\n"); 937 else if (rcu_normal_after_boot) 938 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); 939 else if (rcu_expedited) 940 pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); 941 if (rcu_cpu_stall_suppress) 942 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); 943 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) 944 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); 945 rcu_tasks_bootup_oddness(); 946 } 947 948 #endif /* #ifndef CONFIG_TINY_RCU */ 949