1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * Papers: 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 28 * 29 * For detailed explanation of Read-Copy Update mechanism see - 30 * http://lse.sourceforge.net/locking/rcupdate.html 31 * 32 */ 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/interrupt.h> 39 #include <linux/sched.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/percpu.h> 43 #include <linux/notifier.h> 44 #include <linux/cpu.h> 45 #include <linux/mutex.h> 46 #include <linux/export.h> 47 #include <linux/hardirq.h> 48 #include <linux/delay.h> 49 #include <linux/module.h> 50 #include <linux/kthread.h> 51 #include <linux/tick.h> 52 53 #define CREATE_TRACE_POINTS 54 55 #include "rcu.h" 56 57 MODULE_ALIAS("rcupdate"); 58 #ifdef MODULE_PARAM_PREFIX 59 #undef MODULE_PARAM_PREFIX 60 #endif 61 #define MODULE_PARAM_PREFIX "rcupdate." 62 63 #ifndef CONFIG_TINY_RCU 64 module_param(rcu_expedited, int, 0); 65 module_param(rcu_normal, int, 0); 66 static int rcu_normal_after_boot; 67 module_param(rcu_normal_after_boot, int, 0); 68 #endif /* #ifndef CONFIG_TINY_RCU */ 69 70 #ifdef CONFIG_DEBUG_LOCK_ALLOC 71 /** 72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 73 * 74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 75 * RCU-sched read-side critical section. In absence of 76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 77 * critical section unless it can prove otherwise. Note that disabling 78 * of preemption (including disabling irqs) counts as an RCU-sched 79 * read-side critical section. This is useful for debug checks in functions 80 * that required that they be called within an RCU-sched read-side 81 * critical section. 82 * 83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 84 * and while lockdep is disabled. 85 * 86 * Note that if the CPU is in the idle loop from an RCU point of 87 * view (ie: that we are in the section between rcu_idle_enter() and 88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 89 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 90 * that are in such a section, considering these as in extended quiescent 91 * state, so such a CPU is effectively never in an RCU read-side critical 92 * section regardless of what RCU primitives it invokes. This state of 93 * affairs is required --- we need to keep an RCU-free window in idle 94 * where the CPU may possibly enter into low power mode. This way we can 95 * notice an extended quiescent state to other CPUs that started a grace 96 * period. Otherwise we would delay any grace period as long as we run in 97 * the idle task. 98 * 99 * Similarly, we avoid claiming an SRCU read lock held if the current 100 * CPU is offline. 101 */ 102 int rcu_read_lock_sched_held(void) 103 { 104 int lockdep_opinion = 0; 105 106 if (!debug_lockdep_rcu_enabled()) 107 return 1; 108 if (!rcu_is_watching()) 109 return 0; 110 if (!rcu_lockdep_current_cpu_online()) 111 return 0; 112 if (debug_locks) 113 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 114 return lockdep_opinion || !preemptible(); 115 } 116 EXPORT_SYMBOL(rcu_read_lock_sched_held); 117 #endif 118 119 #ifndef CONFIG_TINY_RCU 120 121 /* 122 * Should expedited grace-period primitives always fall back to their 123 * non-expedited counterparts? Intended for use within RCU. Note 124 * that if the user specifies both rcu_expedited and rcu_normal, then 125 * rcu_normal wins. 126 */ 127 bool rcu_gp_is_normal(void) 128 { 129 return READ_ONCE(rcu_normal); 130 } 131 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 132 133 static atomic_t rcu_expedited_nesting = 134 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0); 135 136 /* 137 * Should normal grace-period primitives be expedited? Intended for 138 * use within RCU. Note that this function takes the rcu_expedited 139 * sysfs/boot variable into account as well as the rcu_expedite_gp() 140 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited() 141 * returns false is a -really- bad idea. 142 */ 143 bool rcu_gp_is_expedited(void) 144 { 145 return rcu_expedited || atomic_read(&rcu_expedited_nesting); 146 } 147 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 148 149 /** 150 * rcu_expedite_gp - Expedite future RCU grace periods 151 * 152 * After a call to this function, future calls to synchronize_rcu() and 153 * friends act as the corresponding synchronize_rcu_expedited() function 154 * had instead been called. 155 */ 156 void rcu_expedite_gp(void) 157 { 158 atomic_inc(&rcu_expedited_nesting); 159 } 160 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 161 162 /** 163 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 164 * 165 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 166 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 167 * and if the rcu_expedited sysfs/boot parameter is not set, then all 168 * subsequent calls to synchronize_rcu() and friends will return to 169 * their normal non-expedited behavior. 170 */ 171 void rcu_unexpedite_gp(void) 172 { 173 atomic_dec(&rcu_expedited_nesting); 174 } 175 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 176 177 /* 178 * Inform RCU of the end of the in-kernel boot sequence. 179 */ 180 void rcu_end_inkernel_boot(void) 181 { 182 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT)) 183 rcu_unexpedite_gp(); 184 if (rcu_normal_after_boot) 185 WRITE_ONCE(rcu_normal, 1); 186 } 187 188 #endif /* #ifndef CONFIG_TINY_RCU */ 189 190 #ifdef CONFIG_PREEMPT_RCU 191 192 /* 193 * Preemptible RCU implementation for rcu_read_lock(). 194 * Just increment ->rcu_read_lock_nesting, shared state will be updated 195 * if we block. 196 */ 197 void __rcu_read_lock(void) 198 { 199 current->rcu_read_lock_nesting++; 200 barrier(); /* critical section after entry code. */ 201 } 202 EXPORT_SYMBOL_GPL(__rcu_read_lock); 203 204 /* 205 * Preemptible RCU implementation for rcu_read_unlock(). 206 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 207 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 208 * invoke rcu_read_unlock_special() to clean up after a context switch 209 * in an RCU read-side critical section and other special cases. 210 */ 211 void __rcu_read_unlock(void) 212 { 213 struct task_struct *t = current; 214 215 if (t->rcu_read_lock_nesting != 1) { 216 --t->rcu_read_lock_nesting; 217 } else { 218 barrier(); /* critical section before exit code. */ 219 t->rcu_read_lock_nesting = INT_MIN; 220 barrier(); /* assign before ->rcu_read_unlock_special load */ 221 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 222 rcu_read_unlock_special(t); 223 barrier(); /* ->rcu_read_unlock_special load before assign */ 224 t->rcu_read_lock_nesting = 0; 225 } 226 #ifdef CONFIG_PROVE_LOCKING 227 { 228 int rrln = READ_ONCE(t->rcu_read_lock_nesting); 229 230 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); 231 } 232 #endif /* #ifdef CONFIG_PROVE_LOCKING */ 233 } 234 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 235 236 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 static struct lock_class_key rcu_lock_key; 240 struct lockdep_map rcu_lock_map = 241 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 242 EXPORT_SYMBOL_GPL(rcu_lock_map); 243 244 static struct lock_class_key rcu_bh_lock_key; 245 struct lockdep_map rcu_bh_lock_map = 246 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 247 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 248 249 static struct lock_class_key rcu_sched_lock_key; 250 struct lockdep_map rcu_sched_lock_map = 251 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 252 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 253 254 static struct lock_class_key rcu_callback_key; 255 struct lockdep_map rcu_callback_map = 256 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 257 EXPORT_SYMBOL_GPL(rcu_callback_map); 258 259 int notrace debug_lockdep_rcu_enabled(void) 260 { 261 return rcu_scheduler_active && debug_locks && 262 current->lockdep_recursion == 0; 263 } 264 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 265 266 /** 267 * rcu_read_lock_held() - might we be in RCU read-side critical section? 268 * 269 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 270 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 271 * this assumes we are in an RCU read-side critical section unless it can 272 * prove otherwise. This is useful for debug checks in functions that 273 * require that they be called within an RCU read-side critical section. 274 * 275 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 276 * and while lockdep is disabled. 277 * 278 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 279 * occur in the same context, for example, it is illegal to invoke 280 * rcu_read_unlock() in process context if the matching rcu_read_lock() 281 * was invoked from within an irq handler. 282 * 283 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 284 * offline from an RCU perspective, so check for those as well. 285 */ 286 int rcu_read_lock_held(void) 287 { 288 if (!debug_lockdep_rcu_enabled()) 289 return 1; 290 if (!rcu_is_watching()) 291 return 0; 292 if (!rcu_lockdep_current_cpu_online()) 293 return 0; 294 return lock_is_held(&rcu_lock_map); 295 } 296 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 297 298 /** 299 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 300 * 301 * Check for bottom half being disabled, which covers both the 302 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 303 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 304 * will show the situation. This is useful for debug checks in functions 305 * that require that they be called within an RCU read-side critical 306 * section. 307 * 308 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 309 * 310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 311 * offline from an RCU perspective, so check for those as well. 312 */ 313 int rcu_read_lock_bh_held(void) 314 { 315 if (!debug_lockdep_rcu_enabled()) 316 return 1; 317 if (!rcu_is_watching()) 318 return 0; 319 if (!rcu_lockdep_current_cpu_online()) 320 return 0; 321 return in_softirq() || irqs_disabled(); 322 } 323 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 324 325 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 326 327 /** 328 * wakeme_after_rcu() - Callback function to awaken a task after grace period 329 * @head: Pointer to rcu_head member within rcu_synchronize structure 330 * 331 * Awaken the corresponding task now that a grace period has elapsed. 332 */ 333 void wakeme_after_rcu(struct rcu_head *head) 334 { 335 struct rcu_synchronize *rcu; 336 337 rcu = container_of(head, struct rcu_synchronize, head); 338 complete(&rcu->completion); 339 } 340 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 341 342 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 343 struct rcu_synchronize *rs_array) 344 { 345 int i; 346 347 /* Initialize and register callbacks for each flavor specified. */ 348 for (i = 0; i < n; i++) { 349 if (checktiny && 350 (crcu_array[i] == call_rcu || 351 crcu_array[i] == call_rcu_bh)) { 352 might_sleep(); 353 continue; 354 } 355 init_rcu_head_on_stack(&rs_array[i].head); 356 init_completion(&rs_array[i].completion); 357 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 358 } 359 360 /* Wait for all callbacks to be invoked. */ 361 for (i = 0; i < n; i++) { 362 if (checktiny && 363 (crcu_array[i] == call_rcu || 364 crcu_array[i] == call_rcu_bh)) 365 continue; 366 wait_for_completion(&rs_array[i].completion); 367 destroy_rcu_head_on_stack(&rs_array[i].head); 368 } 369 } 370 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 371 372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 373 void init_rcu_head(struct rcu_head *head) 374 { 375 debug_object_init(head, &rcuhead_debug_descr); 376 } 377 378 void destroy_rcu_head(struct rcu_head *head) 379 { 380 debug_object_free(head, &rcuhead_debug_descr); 381 } 382 383 static bool rcuhead_is_static_object(void *addr) 384 { 385 return true; 386 } 387 388 /** 389 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 390 * @head: pointer to rcu_head structure to be initialized 391 * 392 * This function informs debugobjects of a new rcu_head structure that 393 * has been allocated as an auto variable on the stack. This function 394 * is not required for rcu_head structures that are statically defined or 395 * that are dynamically allocated on the heap. This function has no 396 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 397 */ 398 void init_rcu_head_on_stack(struct rcu_head *head) 399 { 400 debug_object_init_on_stack(head, &rcuhead_debug_descr); 401 } 402 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 403 404 /** 405 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 406 * @head: pointer to rcu_head structure to be initialized 407 * 408 * This function informs debugobjects that an on-stack rcu_head structure 409 * is about to go out of scope. As with init_rcu_head_on_stack(), this 410 * function is not required for rcu_head structures that are statically 411 * defined or that are dynamically allocated on the heap. Also as with 412 * init_rcu_head_on_stack(), this function has no effect for 413 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 414 */ 415 void destroy_rcu_head_on_stack(struct rcu_head *head) 416 { 417 debug_object_free(head, &rcuhead_debug_descr); 418 } 419 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 420 421 struct debug_obj_descr rcuhead_debug_descr = { 422 .name = "rcu_head", 423 .is_static_object = rcuhead_is_static_object, 424 }; 425 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 426 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 427 428 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 429 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 430 unsigned long secs, 431 unsigned long c_old, unsigned long c) 432 { 433 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 434 } 435 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 436 #else 437 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 438 do { } while (0) 439 #endif 440 441 #ifdef CONFIG_RCU_STALL_COMMON 442 443 #ifdef CONFIG_PROVE_RCU 444 #define RCU_STALL_DELAY_DELTA (5 * HZ) 445 #else 446 #define RCU_STALL_DELAY_DELTA 0 447 #endif 448 449 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 450 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 451 452 module_param(rcu_cpu_stall_suppress, int, 0644); 453 module_param(rcu_cpu_stall_timeout, int, 0644); 454 455 int rcu_jiffies_till_stall_check(void) 456 { 457 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 458 459 /* 460 * Limit check must be consistent with the Kconfig limits 461 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 462 */ 463 if (till_stall_check < 3) { 464 WRITE_ONCE(rcu_cpu_stall_timeout, 3); 465 till_stall_check = 3; 466 } else if (till_stall_check > 300) { 467 WRITE_ONCE(rcu_cpu_stall_timeout, 300); 468 till_stall_check = 300; 469 } 470 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 471 } 472 473 void rcu_sysrq_start(void) 474 { 475 if (!rcu_cpu_stall_suppress) 476 rcu_cpu_stall_suppress = 2; 477 } 478 479 void rcu_sysrq_end(void) 480 { 481 if (rcu_cpu_stall_suppress == 2) 482 rcu_cpu_stall_suppress = 0; 483 } 484 485 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 486 { 487 rcu_cpu_stall_suppress = 1; 488 return NOTIFY_DONE; 489 } 490 491 static struct notifier_block rcu_panic_block = { 492 .notifier_call = rcu_panic, 493 }; 494 495 static int __init check_cpu_stall_init(void) 496 { 497 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 498 return 0; 499 } 500 early_initcall(check_cpu_stall_init); 501 502 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 503 504 #ifdef CONFIG_TASKS_RCU 505 506 /* 507 * Simple variant of RCU whose quiescent states are voluntary context switch, 508 * user-space execution, and idle. As such, grace periods can take one good 509 * long time. There are no read-side primitives similar to rcu_read_lock() 510 * and rcu_read_unlock() because this implementation is intended to get 511 * the system into a safe state for some of the manipulations involved in 512 * tracing and the like. Finally, this implementation does not support 513 * high call_rcu_tasks() rates from multiple CPUs. If this is required, 514 * per-CPU callback lists will be needed. 515 */ 516 517 /* Global list of callbacks and associated lock. */ 518 static struct rcu_head *rcu_tasks_cbs_head; 519 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 520 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 521 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 522 523 /* Track exiting tasks in order to allow them to be waited for. */ 524 DEFINE_SRCU(tasks_rcu_exit_srcu); 525 526 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 527 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; 528 module_param(rcu_task_stall_timeout, int, 0644); 529 530 static void rcu_spawn_tasks_kthread(void); 531 static struct task_struct *rcu_tasks_kthread_ptr; 532 533 /* 534 * Post an RCU-tasks callback. First call must be from process context 535 * after the scheduler if fully operational. 536 */ 537 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 538 { 539 unsigned long flags; 540 bool needwake; 541 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr); 542 543 rhp->next = NULL; 544 rhp->func = func; 545 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 546 needwake = !rcu_tasks_cbs_head; 547 *rcu_tasks_cbs_tail = rhp; 548 rcu_tasks_cbs_tail = &rhp->next; 549 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 550 /* We can't create the thread unless interrupts are enabled. */ 551 if ((needwake && havetask) || 552 (!havetask && !irqs_disabled_flags(flags))) { 553 rcu_spawn_tasks_kthread(); 554 wake_up(&rcu_tasks_cbs_wq); 555 } 556 } 557 EXPORT_SYMBOL_GPL(call_rcu_tasks); 558 559 /** 560 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 561 * 562 * Control will return to the caller some time after a full rcu-tasks 563 * grace period has elapsed, in other words after all currently 564 * executing rcu-tasks read-side critical sections have elapsed. These 565 * read-side critical sections are delimited by calls to schedule(), 566 * cond_resched_rcu_qs(), idle execution, userspace execution, calls 567 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 568 * 569 * This is a very specialized primitive, intended only for a few uses in 570 * tracing and other situations requiring manipulation of function 571 * preambles and profiling hooks. The synchronize_rcu_tasks() function 572 * is not (yet) intended for heavy use from multiple CPUs. 573 * 574 * Note that this guarantee implies further memory-ordering guarantees. 575 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 576 * each CPU is guaranteed to have executed a full memory barrier since the 577 * end of its last RCU-tasks read-side critical section whose beginning 578 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 579 * having an RCU-tasks read-side critical section that extends beyond 580 * the return from synchronize_rcu_tasks() is guaranteed to have executed 581 * a full memory barrier after the beginning of synchronize_rcu_tasks() 582 * and before the beginning of that RCU-tasks read-side critical section. 583 * Note that these guarantees include CPUs that are offline, idle, or 584 * executing in user mode, as well as CPUs that are executing in the kernel. 585 * 586 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 587 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 588 * to have executed a full memory barrier during the execution of 589 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 590 * (but again only if the system has more than one CPU). 591 */ 592 void synchronize_rcu_tasks(void) 593 { 594 /* Complain if the scheduler has not started. */ 595 RCU_LOCKDEP_WARN(!rcu_scheduler_active, 596 "synchronize_rcu_tasks called too soon"); 597 598 /* Wait for the grace period. */ 599 wait_rcu_gp(call_rcu_tasks); 600 } 601 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 602 603 /** 604 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 605 * 606 * Although the current implementation is guaranteed to wait, it is not 607 * obligated to, for example, if there are no pending callbacks. 608 */ 609 void rcu_barrier_tasks(void) 610 { 611 /* There is only one callback queue, so this is easy. ;-) */ 612 synchronize_rcu_tasks(); 613 } 614 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 615 616 /* See if tasks are still holding out, complain if so. */ 617 static void check_holdout_task(struct task_struct *t, 618 bool needreport, bool *firstreport) 619 { 620 int cpu; 621 622 if (!READ_ONCE(t->rcu_tasks_holdout) || 623 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 624 !READ_ONCE(t->on_rq) || 625 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 626 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 627 WRITE_ONCE(t->rcu_tasks_holdout, false); 628 list_del_init(&t->rcu_tasks_holdout_list); 629 put_task_struct(t); 630 return; 631 } 632 if (!needreport) 633 return; 634 if (*firstreport) { 635 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 636 *firstreport = false; 637 } 638 cpu = task_cpu(t); 639 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 640 t, ".I"[is_idle_task(t)], 641 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 642 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 643 t->rcu_tasks_idle_cpu, cpu); 644 sched_show_task(t); 645 } 646 647 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 648 static int __noreturn rcu_tasks_kthread(void *arg) 649 { 650 unsigned long flags; 651 struct task_struct *g, *t; 652 unsigned long lastreport; 653 struct rcu_head *list; 654 struct rcu_head *next; 655 LIST_HEAD(rcu_tasks_holdouts); 656 657 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 658 housekeeping_affine(current); 659 660 /* 661 * Each pass through the following loop makes one check for 662 * newly arrived callbacks, and, if there are some, waits for 663 * one RCU-tasks grace period and then invokes the callbacks. 664 * This loop is terminated by the system going down. ;-) 665 */ 666 for (;;) { 667 668 /* Pick up any new callbacks. */ 669 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 670 list = rcu_tasks_cbs_head; 671 rcu_tasks_cbs_head = NULL; 672 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 673 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 674 675 /* If there were none, wait a bit and start over. */ 676 if (!list) { 677 wait_event_interruptible(rcu_tasks_cbs_wq, 678 rcu_tasks_cbs_head); 679 if (!rcu_tasks_cbs_head) { 680 WARN_ON(signal_pending(current)); 681 schedule_timeout_interruptible(HZ/10); 682 } 683 continue; 684 } 685 686 /* 687 * Wait for all pre-existing t->on_rq and t->nvcsw 688 * transitions to complete. Invoking synchronize_sched() 689 * suffices because all these transitions occur with 690 * interrupts disabled. Without this synchronize_sched(), 691 * a read-side critical section that started before the 692 * grace period might be incorrectly seen as having started 693 * after the grace period. 694 * 695 * This synchronize_sched() also dispenses with the 696 * need for a memory barrier on the first store to 697 * ->rcu_tasks_holdout, as it forces the store to happen 698 * after the beginning of the grace period. 699 */ 700 synchronize_sched(); 701 702 /* 703 * There were callbacks, so we need to wait for an 704 * RCU-tasks grace period. Start off by scanning 705 * the task list for tasks that are not already 706 * voluntarily blocked. Mark these tasks and make 707 * a list of them in rcu_tasks_holdouts. 708 */ 709 rcu_read_lock(); 710 for_each_process_thread(g, t) { 711 if (t != current && READ_ONCE(t->on_rq) && 712 !is_idle_task(t)) { 713 get_task_struct(t); 714 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 715 WRITE_ONCE(t->rcu_tasks_holdout, true); 716 list_add(&t->rcu_tasks_holdout_list, 717 &rcu_tasks_holdouts); 718 } 719 } 720 rcu_read_unlock(); 721 722 /* 723 * Wait for tasks that are in the process of exiting. 724 * This does only part of the job, ensuring that all 725 * tasks that were previously exiting reach the point 726 * where they have disabled preemption, allowing the 727 * later synchronize_sched() to finish the job. 728 */ 729 synchronize_srcu(&tasks_rcu_exit_srcu); 730 731 /* 732 * Each pass through the following loop scans the list 733 * of holdout tasks, removing any that are no longer 734 * holdouts. When the list is empty, we are done. 735 */ 736 lastreport = jiffies; 737 while (!list_empty(&rcu_tasks_holdouts)) { 738 bool firstreport; 739 bool needreport; 740 int rtst; 741 struct task_struct *t1; 742 743 schedule_timeout_interruptible(HZ); 744 rtst = READ_ONCE(rcu_task_stall_timeout); 745 needreport = rtst > 0 && 746 time_after(jiffies, lastreport + rtst); 747 if (needreport) 748 lastreport = jiffies; 749 firstreport = true; 750 WARN_ON(signal_pending(current)); 751 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 752 rcu_tasks_holdout_list) { 753 check_holdout_task(t, needreport, &firstreport); 754 cond_resched(); 755 } 756 } 757 758 /* 759 * Because ->on_rq and ->nvcsw are not guaranteed 760 * to have a full memory barriers prior to them in the 761 * schedule() path, memory reordering on other CPUs could 762 * cause their RCU-tasks read-side critical sections to 763 * extend past the end of the grace period. However, 764 * because these ->nvcsw updates are carried out with 765 * interrupts disabled, we can use synchronize_sched() 766 * to force the needed ordering on all such CPUs. 767 * 768 * This synchronize_sched() also confines all 769 * ->rcu_tasks_holdout accesses to be within the grace 770 * period, avoiding the need for memory barriers for 771 * ->rcu_tasks_holdout accesses. 772 * 773 * In addition, this synchronize_sched() waits for exiting 774 * tasks to complete their final preempt_disable() region 775 * of execution, cleaning up after the synchronize_srcu() 776 * above. 777 */ 778 synchronize_sched(); 779 780 /* Invoke the callbacks. */ 781 while (list) { 782 next = list->next; 783 local_bh_disable(); 784 list->func(list); 785 local_bh_enable(); 786 list = next; 787 cond_resched(); 788 } 789 schedule_timeout_uninterruptible(HZ/10); 790 } 791 } 792 793 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ 794 static void rcu_spawn_tasks_kthread(void) 795 { 796 static DEFINE_MUTEX(rcu_tasks_kthread_mutex); 797 struct task_struct *t; 798 799 if (READ_ONCE(rcu_tasks_kthread_ptr)) { 800 smp_mb(); /* Ensure caller sees full kthread. */ 801 return; 802 } 803 mutex_lock(&rcu_tasks_kthread_mutex); 804 if (rcu_tasks_kthread_ptr) { 805 mutex_unlock(&rcu_tasks_kthread_mutex); 806 return; 807 } 808 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 809 BUG_ON(IS_ERR(t)); 810 smp_mb(); /* Ensure others see full kthread. */ 811 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 812 mutex_unlock(&rcu_tasks_kthread_mutex); 813 } 814 815 #endif /* #ifdef CONFIG_TASKS_RCU */ 816 817 #ifdef CONFIG_PROVE_RCU 818 819 /* 820 * Early boot self test parameters, one for each flavor 821 */ 822 static bool rcu_self_test; 823 static bool rcu_self_test_bh; 824 static bool rcu_self_test_sched; 825 826 module_param(rcu_self_test, bool, 0444); 827 module_param(rcu_self_test_bh, bool, 0444); 828 module_param(rcu_self_test_sched, bool, 0444); 829 830 static int rcu_self_test_counter; 831 832 static void test_callback(struct rcu_head *r) 833 { 834 rcu_self_test_counter++; 835 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 836 } 837 838 static void early_boot_test_call_rcu(void) 839 { 840 static struct rcu_head head; 841 842 call_rcu(&head, test_callback); 843 } 844 845 static void early_boot_test_call_rcu_bh(void) 846 { 847 static struct rcu_head head; 848 849 call_rcu_bh(&head, test_callback); 850 } 851 852 static void early_boot_test_call_rcu_sched(void) 853 { 854 static struct rcu_head head; 855 856 call_rcu_sched(&head, test_callback); 857 } 858 859 void rcu_early_boot_tests(void) 860 { 861 pr_info("Running RCU self tests\n"); 862 863 if (rcu_self_test) 864 early_boot_test_call_rcu(); 865 if (rcu_self_test_bh) 866 early_boot_test_call_rcu_bh(); 867 if (rcu_self_test_sched) 868 early_boot_test_call_rcu_sched(); 869 } 870 871 static int rcu_verify_early_boot_tests(void) 872 { 873 int ret = 0; 874 int early_boot_test_counter = 0; 875 876 if (rcu_self_test) { 877 early_boot_test_counter++; 878 rcu_barrier(); 879 } 880 if (rcu_self_test_bh) { 881 early_boot_test_counter++; 882 rcu_barrier_bh(); 883 } 884 if (rcu_self_test_sched) { 885 early_boot_test_counter++; 886 rcu_barrier_sched(); 887 } 888 889 if (rcu_self_test_counter != early_boot_test_counter) { 890 WARN_ON(1); 891 ret = -1; 892 } 893 894 return ret; 895 } 896 late_initcall(rcu_verify_early_boot_tests); 897 #else 898 void rcu_early_boot_tests(void) {} 899 #endif /* CONFIG_PROVE_RCU */ 900