xref: /openbmc/linux/kernel/rcu/update.c (revision 232b0b08)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54 
55 #define CREATE_TRACE_POINTS
56 
57 #include "rcu.h"
58 
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "rcupdate."
63 
64 #ifndef CONFIG_TINY_RCU
65 module_param(rcu_expedited, int, 0);
66 module_param(rcu_normal, int, 0);
67 static int rcu_normal_after_boot;
68 module_param(rcu_normal_after_boot, int, 0);
69 #endif /* #ifndef CONFIG_TINY_RCU */
70 
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 /**
73  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
74  *
75  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
76  * RCU-sched read-side critical section.  In absence of
77  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
78  * critical section unless it can prove otherwise.  Note that disabling
79  * of preemption (including disabling irqs) counts as an RCU-sched
80  * read-side critical section.  This is useful for debug checks in functions
81  * that required that they be called within an RCU-sched read-side
82  * critical section.
83  *
84  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
85  * and while lockdep is disabled.
86  *
87  * Note that if the CPU is in the idle loop from an RCU point of
88  * view (ie: that we are in the section between rcu_idle_enter() and
89  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
90  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
91  * that are in such a section, considering these as in extended quiescent
92  * state, so such a CPU is effectively never in an RCU read-side critical
93  * section regardless of what RCU primitives it invokes.  This state of
94  * affairs is required --- we need to keep an RCU-free window in idle
95  * where the CPU may possibly enter into low power mode. This way we can
96  * notice an extended quiescent state to other CPUs that started a grace
97  * period. Otherwise we would delay any grace period as long as we run in
98  * the idle task.
99  *
100  * Similarly, we avoid claiming an SRCU read lock held if the current
101  * CPU is offline.
102  */
103 int rcu_read_lock_sched_held(void)
104 {
105 	int lockdep_opinion = 0;
106 
107 	if (!debug_lockdep_rcu_enabled())
108 		return 1;
109 	if (!rcu_is_watching())
110 		return 0;
111 	if (!rcu_lockdep_current_cpu_online())
112 		return 0;
113 	if (debug_locks)
114 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
115 	return lockdep_opinion || !preemptible();
116 }
117 EXPORT_SYMBOL(rcu_read_lock_sched_held);
118 #endif
119 
120 #ifndef CONFIG_TINY_RCU
121 
122 /*
123  * Should expedited grace-period primitives always fall back to their
124  * non-expedited counterparts?  Intended for use within RCU.  Note
125  * that if the user specifies both rcu_expedited and rcu_normal, then
126  * rcu_normal wins.  (Except during the time period during boot from
127  * when the first task is spawned until the rcu_exp_runtime_mode()
128  * core_initcall() is invoked, at which point everything is expedited.)
129  */
130 bool rcu_gp_is_normal(void)
131 {
132 	return READ_ONCE(rcu_normal) &&
133 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
134 }
135 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
136 
137 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
138 
139 /*
140  * Should normal grace-period primitives be expedited?  Intended for
141  * use within RCU.  Note that this function takes the rcu_expedited
142  * sysfs/boot variable and rcu_scheduler_active into account as well
143  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
144  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
145  */
146 bool rcu_gp_is_expedited(void)
147 {
148 	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
149 	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
150 }
151 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
152 
153 /**
154  * rcu_expedite_gp - Expedite future RCU grace periods
155  *
156  * After a call to this function, future calls to synchronize_rcu() and
157  * friends act as the corresponding synchronize_rcu_expedited() function
158  * had instead been called.
159  */
160 void rcu_expedite_gp(void)
161 {
162 	atomic_inc(&rcu_expedited_nesting);
163 }
164 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
165 
166 /**
167  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
168  *
169  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
170  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
171  * and if the rcu_expedited sysfs/boot parameter is not set, then all
172  * subsequent calls to synchronize_rcu() and friends will return to
173  * their normal non-expedited behavior.
174  */
175 void rcu_unexpedite_gp(void)
176 {
177 	atomic_dec(&rcu_expedited_nesting);
178 }
179 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
180 
181 /*
182  * Inform RCU of the end of the in-kernel boot sequence.
183  */
184 void rcu_end_inkernel_boot(void)
185 {
186 	rcu_unexpedite_gp();
187 	if (rcu_normal_after_boot)
188 		WRITE_ONCE(rcu_normal, 1);
189 }
190 
191 #endif /* #ifndef CONFIG_TINY_RCU */
192 
193 #ifdef CONFIG_PREEMPT_RCU
194 
195 /*
196  * Preemptible RCU implementation for rcu_read_lock().
197  * Just increment ->rcu_read_lock_nesting, shared state will be updated
198  * if we block.
199  */
200 void __rcu_read_lock(void)
201 {
202 	current->rcu_read_lock_nesting++;
203 	barrier();  /* critical section after entry code. */
204 }
205 EXPORT_SYMBOL_GPL(__rcu_read_lock);
206 
207 /*
208  * Preemptible RCU implementation for rcu_read_unlock().
209  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
210  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
211  * invoke rcu_read_unlock_special() to clean up after a context switch
212  * in an RCU read-side critical section and other special cases.
213  */
214 void __rcu_read_unlock(void)
215 {
216 	struct task_struct *t = current;
217 
218 	if (t->rcu_read_lock_nesting != 1) {
219 		--t->rcu_read_lock_nesting;
220 	} else {
221 		barrier();  /* critical section before exit code. */
222 		t->rcu_read_lock_nesting = INT_MIN;
223 		barrier();  /* assign before ->rcu_read_unlock_special load */
224 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
225 			rcu_read_unlock_special(t);
226 		barrier();  /* ->rcu_read_unlock_special load before assign */
227 		t->rcu_read_lock_nesting = 0;
228 	}
229 #ifdef CONFIG_PROVE_LOCKING
230 	{
231 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
232 
233 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
234 	}
235 #endif /* #ifdef CONFIG_PROVE_LOCKING */
236 }
237 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
238 
239 #endif /* #ifdef CONFIG_PREEMPT_RCU */
240 
241 #ifdef CONFIG_DEBUG_LOCK_ALLOC
242 static struct lock_class_key rcu_lock_key;
243 struct lockdep_map rcu_lock_map =
244 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
245 EXPORT_SYMBOL_GPL(rcu_lock_map);
246 
247 static struct lock_class_key rcu_bh_lock_key;
248 struct lockdep_map rcu_bh_lock_map =
249 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
250 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
251 
252 static struct lock_class_key rcu_sched_lock_key;
253 struct lockdep_map rcu_sched_lock_map =
254 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
255 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
256 
257 static struct lock_class_key rcu_callback_key;
258 struct lockdep_map rcu_callback_map =
259 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
260 EXPORT_SYMBOL_GPL(rcu_callback_map);
261 
262 int notrace debug_lockdep_rcu_enabled(void)
263 {
264 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
265 	       current->lockdep_recursion == 0;
266 }
267 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
268 
269 /**
270  * rcu_read_lock_held() - might we be in RCU read-side critical section?
271  *
272  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
273  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
274  * this assumes we are in an RCU read-side critical section unless it can
275  * prove otherwise.  This is useful for debug checks in functions that
276  * require that they be called within an RCU read-side critical section.
277  *
278  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
279  * and while lockdep is disabled.
280  *
281  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
282  * occur in the same context, for example, it is illegal to invoke
283  * rcu_read_unlock() in process context if the matching rcu_read_lock()
284  * was invoked from within an irq handler.
285  *
286  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
287  * offline from an RCU perspective, so check for those as well.
288  */
289 int rcu_read_lock_held(void)
290 {
291 	if (!debug_lockdep_rcu_enabled())
292 		return 1;
293 	if (!rcu_is_watching())
294 		return 0;
295 	if (!rcu_lockdep_current_cpu_online())
296 		return 0;
297 	return lock_is_held(&rcu_lock_map);
298 }
299 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
300 
301 /**
302  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
303  *
304  * Check for bottom half being disabled, which covers both the
305  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
306  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
307  * will show the situation.  This is useful for debug checks in functions
308  * that require that they be called within an RCU read-side critical
309  * section.
310  *
311  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
312  *
313  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
314  * offline from an RCU perspective, so check for those as well.
315  */
316 int rcu_read_lock_bh_held(void)
317 {
318 	if (!debug_lockdep_rcu_enabled())
319 		return 1;
320 	if (!rcu_is_watching())
321 		return 0;
322 	if (!rcu_lockdep_current_cpu_online())
323 		return 0;
324 	return in_softirq() || irqs_disabled();
325 }
326 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
327 
328 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
329 
330 /**
331  * wakeme_after_rcu() - Callback function to awaken a task after grace period
332  * @head: Pointer to rcu_head member within rcu_synchronize structure
333  *
334  * Awaken the corresponding task now that a grace period has elapsed.
335  */
336 void wakeme_after_rcu(struct rcu_head *head)
337 {
338 	struct rcu_synchronize *rcu;
339 
340 	rcu = container_of(head, struct rcu_synchronize, head);
341 	complete(&rcu->completion);
342 }
343 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
344 
345 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
346 		   struct rcu_synchronize *rs_array)
347 {
348 	int i;
349 
350 	/* Initialize and register callbacks for each flavor specified. */
351 	for (i = 0; i < n; i++) {
352 		if (checktiny &&
353 		    (crcu_array[i] == call_rcu ||
354 		     crcu_array[i] == call_rcu_bh)) {
355 			might_sleep();
356 			continue;
357 		}
358 		init_rcu_head_on_stack(&rs_array[i].head);
359 		init_completion(&rs_array[i].completion);
360 		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
361 	}
362 
363 	/* Wait for all callbacks to be invoked. */
364 	for (i = 0; i < n; i++) {
365 		if (checktiny &&
366 		    (crcu_array[i] == call_rcu ||
367 		     crcu_array[i] == call_rcu_bh))
368 			continue;
369 		wait_for_completion(&rs_array[i].completion);
370 		destroy_rcu_head_on_stack(&rs_array[i].head);
371 	}
372 }
373 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
374 
375 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
376 void init_rcu_head(struct rcu_head *head)
377 {
378 	debug_object_init(head, &rcuhead_debug_descr);
379 }
380 
381 void destroy_rcu_head(struct rcu_head *head)
382 {
383 	debug_object_free(head, &rcuhead_debug_descr);
384 }
385 
386 static bool rcuhead_is_static_object(void *addr)
387 {
388 	return true;
389 }
390 
391 /**
392  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
393  * @head: pointer to rcu_head structure to be initialized
394  *
395  * This function informs debugobjects of a new rcu_head structure that
396  * has been allocated as an auto variable on the stack.  This function
397  * is not required for rcu_head structures that are statically defined or
398  * that are dynamically allocated on the heap.  This function has no
399  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
400  */
401 void init_rcu_head_on_stack(struct rcu_head *head)
402 {
403 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
404 }
405 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
406 
407 /**
408  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
409  * @head: pointer to rcu_head structure to be initialized
410  *
411  * This function informs debugobjects that an on-stack rcu_head structure
412  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
413  * function is not required for rcu_head structures that are statically
414  * defined or that are dynamically allocated on the heap.  Also as with
415  * init_rcu_head_on_stack(), this function has no effect for
416  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
417  */
418 void destroy_rcu_head_on_stack(struct rcu_head *head)
419 {
420 	debug_object_free(head, &rcuhead_debug_descr);
421 }
422 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
423 
424 struct debug_obj_descr rcuhead_debug_descr = {
425 	.name = "rcu_head",
426 	.is_static_object = rcuhead_is_static_object,
427 };
428 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
429 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
430 
431 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
432 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
433 			       unsigned long secs,
434 			       unsigned long c_old, unsigned long c)
435 {
436 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
437 }
438 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
439 #else
440 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
441 	do { } while (0)
442 #endif
443 
444 #ifdef CONFIG_RCU_STALL_COMMON
445 
446 #ifdef CONFIG_PROVE_RCU
447 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
448 #else
449 #define RCU_STALL_DELAY_DELTA	       0
450 #endif
451 
452 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
453 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
454 
455 module_param(rcu_cpu_stall_suppress, int, 0644);
456 module_param(rcu_cpu_stall_timeout, int, 0644);
457 
458 int rcu_jiffies_till_stall_check(void)
459 {
460 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
461 
462 	/*
463 	 * Limit check must be consistent with the Kconfig limits
464 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
465 	 */
466 	if (till_stall_check < 3) {
467 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
468 		till_stall_check = 3;
469 	} else if (till_stall_check > 300) {
470 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
471 		till_stall_check = 300;
472 	}
473 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
474 }
475 
476 void rcu_sysrq_start(void)
477 {
478 	if (!rcu_cpu_stall_suppress)
479 		rcu_cpu_stall_suppress = 2;
480 }
481 
482 void rcu_sysrq_end(void)
483 {
484 	if (rcu_cpu_stall_suppress == 2)
485 		rcu_cpu_stall_suppress = 0;
486 }
487 
488 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
489 {
490 	rcu_cpu_stall_suppress = 1;
491 	return NOTIFY_DONE;
492 }
493 
494 static struct notifier_block rcu_panic_block = {
495 	.notifier_call = rcu_panic,
496 };
497 
498 static int __init check_cpu_stall_init(void)
499 {
500 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
501 	return 0;
502 }
503 early_initcall(check_cpu_stall_init);
504 
505 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
506 
507 #ifdef CONFIG_TASKS_RCU
508 
509 /*
510  * Simple variant of RCU whose quiescent states are voluntary context switch,
511  * user-space execution, and idle.  As such, grace periods can take one good
512  * long time.  There are no read-side primitives similar to rcu_read_lock()
513  * and rcu_read_unlock() because this implementation is intended to get
514  * the system into a safe state for some of the manipulations involved in
515  * tracing and the like.  Finally, this implementation does not support
516  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
517  * per-CPU callback lists will be needed.
518  */
519 
520 /* Global list of callbacks and associated lock. */
521 static struct rcu_head *rcu_tasks_cbs_head;
522 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
523 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
524 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
525 
526 /* Track exiting tasks in order to allow them to be waited for. */
527 DEFINE_SRCU(tasks_rcu_exit_srcu);
528 
529 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
530 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
531 module_param(rcu_task_stall_timeout, int, 0644);
532 
533 static void rcu_spawn_tasks_kthread(void);
534 static struct task_struct *rcu_tasks_kthread_ptr;
535 
536 /*
537  * Post an RCU-tasks callback.  First call must be from process context
538  * after the scheduler if fully operational.
539  */
540 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
541 {
542 	unsigned long flags;
543 	bool needwake;
544 	bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
545 
546 	rhp->next = NULL;
547 	rhp->func = func;
548 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
549 	needwake = !rcu_tasks_cbs_head;
550 	*rcu_tasks_cbs_tail = rhp;
551 	rcu_tasks_cbs_tail = &rhp->next;
552 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
553 	/* We can't create the thread unless interrupts are enabled. */
554 	if ((needwake && havetask) ||
555 	    (!havetask && !irqs_disabled_flags(flags))) {
556 		rcu_spawn_tasks_kthread();
557 		wake_up(&rcu_tasks_cbs_wq);
558 	}
559 }
560 EXPORT_SYMBOL_GPL(call_rcu_tasks);
561 
562 /**
563  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
564  *
565  * Control will return to the caller some time after a full rcu-tasks
566  * grace period has elapsed, in other words after all currently
567  * executing rcu-tasks read-side critical sections have elapsed.  These
568  * read-side critical sections are delimited by calls to schedule(),
569  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
570  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
571  *
572  * This is a very specialized primitive, intended only for a few uses in
573  * tracing and other situations requiring manipulation of function
574  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
575  * is not (yet) intended for heavy use from multiple CPUs.
576  *
577  * Note that this guarantee implies further memory-ordering guarantees.
578  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
579  * each CPU is guaranteed to have executed a full memory barrier since the
580  * end of its last RCU-tasks read-side critical section whose beginning
581  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
582  * having an RCU-tasks read-side critical section that extends beyond
583  * the return from synchronize_rcu_tasks() is guaranteed to have executed
584  * a full memory barrier after the beginning of synchronize_rcu_tasks()
585  * and before the beginning of that RCU-tasks read-side critical section.
586  * Note that these guarantees include CPUs that are offline, idle, or
587  * executing in user mode, as well as CPUs that are executing in the kernel.
588  *
589  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
590  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
591  * to have executed a full memory barrier during the execution of
592  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
593  * (but again only if the system has more than one CPU).
594  */
595 void synchronize_rcu_tasks(void)
596 {
597 	/* Complain if the scheduler has not started.  */
598 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
599 			 "synchronize_rcu_tasks called too soon");
600 
601 	/* Wait for the grace period. */
602 	wait_rcu_gp(call_rcu_tasks);
603 }
604 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
605 
606 /**
607  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
608  *
609  * Although the current implementation is guaranteed to wait, it is not
610  * obligated to, for example, if there are no pending callbacks.
611  */
612 void rcu_barrier_tasks(void)
613 {
614 	/* There is only one callback queue, so this is easy.  ;-) */
615 	synchronize_rcu_tasks();
616 }
617 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
618 
619 /* See if tasks are still holding out, complain if so. */
620 static void check_holdout_task(struct task_struct *t,
621 			       bool needreport, bool *firstreport)
622 {
623 	int cpu;
624 
625 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
626 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
627 	    !READ_ONCE(t->on_rq) ||
628 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
629 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
630 		WRITE_ONCE(t->rcu_tasks_holdout, false);
631 		list_del_init(&t->rcu_tasks_holdout_list);
632 		put_task_struct(t);
633 		return;
634 	}
635 	if (!needreport)
636 		return;
637 	if (*firstreport) {
638 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
639 		*firstreport = false;
640 	}
641 	cpu = task_cpu(t);
642 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
643 		 t, ".I"[is_idle_task(t)],
644 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
645 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
646 		 t->rcu_tasks_idle_cpu, cpu);
647 	sched_show_task(t);
648 }
649 
650 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
651 static int __noreturn rcu_tasks_kthread(void *arg)
652 {
653 	unsigned long flags;
654 	struct task_struct *g, *t;
655 	unsigned long lastreport;
656 	struct rcu_head *list;
657 	struct rcu_head *next;
658 	LIST_HEAD(rcu_tasks_holdouts);
659 
660 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
661 	housekeeping_affine(current);
662 
663 	/*
664 	 * Each pass through the following loop makes one check for
665 	 * newly arrived callbacks, and, if there are some, waits for
666 	 * one RCU-tasks grace period and then invokes the callbacks.
667 	 * This loop is terminated by the system going down.  ;-)
668 	 */
669 	for (;;) {
670 
671 		/* Pick up any new callbacks. */
672 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
673 		list = rcu_tasks_cbs_head;
674 		rcu_tasks_cbs_head = NULL;
675 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
676 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
677 
678 		/* If there were none, wait a bit and start over. */
679 		if (!list) {
680 			wait_event_interruptible(rcu_tasks_cbs_wq,
681 						 rcu_tasks_cbs_head);
682 			if (!rcu_tasks_cbs_head) {
683 				WARN_ON(signal_pending(current));
684 				schedule_timeout_interruptible(HZ/10);
685 			}
686 			continue;
687 		}
688 
689 		/*
690 		 * Wait for all pre-existing t->on_rq and t->nvcsw
691 		 * transitions to complete.  Invoking synchronize_sched()
692 		 * suffices because all these transitions occur with
693 		 * interrupts disabled.  Without this synchronize_sched(),
694 		 * a read-side critical section that started before the
695 		 * grace period might be incorrectly seen as having started
696 		 * after the grace period.
697 		 *
698 		 * This synchronize_sched() also dispenses with the
699 		 * need for a memory barrier on the first store to
700 		 * ->rcu_tasks_holdout, as it forces the store to happen
701 		 * after the beginning of the grace period.
702 		 */
703 		synchronize_sched();
704 
705 		/*
706 		 * There were callbacks, so we need to wait for an
707 		 * RCU-tasks grace period.  Start off by scanning
708 		 * the task list for tasks that are not already
709 		 * voluntarily blocked.  Mark these tasks and make
710 		 * a list of them in rcu_tasks_holdouts.
711 		 */
712 		rcu_read_lock();
713 		for_each_process_thread(g, t) {
714 			if (t != current && READ_ONCE(t->on_rq) &&
715 			    !is_idle_task(t)) {
716 				get_task_struct(t);
717 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
718 				WRITE_ONCE(t->rcu_tasks_holdout, true);
719 				list_add(&t->rcu_tasks_holdout_list,
720 					 &rcu_tasks_holdouts);
721 			}
722 		}
723 		rcu_read_unlock();
724 
725 		/*
726 		 * Wait for tasks that are in the process of exiting.
727 		 * This does only part of the job, ensuring that all
728 		 * tasks that were previously exiting reach the point
729 		 * where they have disabled preemption, allowing the
730 		 * later synchronize_sched() to finish the job.
731 		 */
732 		synchronize_srcu(&tasks_rcu_exit_srcu);
733 
734 		/*
735 		 * Each pass through the following loop scans the list
736 		 * of holdout tasks, removing any that are no longer
737 		 * holdouts.  When the list is empty, we are done.
738 		 */
739 		lastreport = jiffies;
740 		while (!list_empty(&rcu_tasks_holdouts)) {
741 			bool firstreport;
742 			bool needreport;
743 			int rtst;
744 			struct task_struct *t1;
745 
746 			schedule_timeout_interruptible(HZ);
747 			rtst = READ_ONCE(rcu_task_stall_timeout);
748 			needreport = rtst > 0 &&
749 				     time_after(jiffies, lastreport + rtst);
750 			if (needreport)
751 				lastreport = jiffies;
752 			firstreport = true;
753 			WARN_ON(signal_pending(current));
754 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
755 						rcu_tasks_holdout_list) {
756 				check_holdout_task(t, needreport, &firstreport);
757 				cond_resched();
758 			}
759 		}
760 
761 		/*
762 		 * Because ->on_rq and ->nvcsw are not guaranteed
763 		 * to have a full memory barriers prior to them in the
764 		 * schedule() path, memory reordering on other CPUs could
765 		 * cause their RCU-tasks read-side critical sections to
766 		 * extend past the end of the grace period.  However,
767 		 * because these ->nvcsw updates are carried out with
768 		 * interrupts disabled, we can use synchronize_sched()
769 		 * to force the needed ordering on all such CPUs.
770 		 *
771 		 * This synchronize_sched() also confines all
772 		 * ->rcu_tasks_holdout accesses to be within the grace
773 		 * period, avoiding the need for memory barriers for
774 		 * ->rcu_tasks_holdout accesses.
775 		 *
776 		 * In addition, this synchronize_sched() waits for exiting
777 		 * tasks to complete their final preempt_disable() region
778 		 * of execution, cleaning up after the synchronize_srcu()
779 		 * above.
780 		 */
781 		synchronize_sched();
782 
783 		/* Invoke the callbacks. */
784 		while (list) {
785 			next = list->next;
786 			local_bh_disable();
787 			list->func(list);
788 			local_bh_enable();
789 			list = next;
790 			cond_resched();
791 		}
792 		schedule_timeout_uninterruptible(HZ/10);
793 	}
794 }
795 
796 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
797 static void rcu_spawn_tasks_kthread(void)
798 {
799 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
800 	struct task_struct *t;
801 
802 	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
803 		smp_mb(); /* Ensure caller sees full kthread. */
804 		return;
805 	}
806 	mutex_lock(&rcu_tasks_kthread_mutex);
807 	if (rcu_tasks_kthread_ptr) {
808 		mutex_unlock(&rcu_tasks_kthread_mutex);
809 		return;
810 	}
811 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
812 	BUG_ON(IS_ERR(t));
813 	smp_mb(); /* Ensure others see full kthread. */
814 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
815 	mutex_unlock(&rcu_tasks_kthread_mutex);
816 }
817 
818 #endif /* #ifdef CONFIG_TASKS_RCU */
819 
820 /*
821  * Test each non-SRCU synchronous grace-period wait API.  This is
822  * useful just after a change in mode for these primitives, and
823  * during early boot.
824  */
825 void rcu_test_sync_prims(void)
826 {
827 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
828 		return;
829 	synchronize_rcu();
830 	synchronize_rcu_bh();
831 	synchronize_sched();
832 	synchronize_rcu_expedited();
833 	synchronize_rcu_bh_expedited();
834 	synchronize_sched_expedited();
835 }
836 
837 #ifdef CONFIG_PROVE_RCU
838 
839 /*
840  * Early boot self test parameters, one for each flavor
841  */
842 static bool rcu_self_test;
843 static bool rcu_self_test_bh;
844 static bool rcu_self_test_sched;
845 
846 module_param(rcu_self_test, bool, 0444);
847 module_param(rcu_self_test_bh, bool, 0444);
848 module_param(rcu_self_test_sched, bool, 0444);
849 
850 static int rcu_self_test_counter;
851 
852 static void test_callback(struct rcu_head *r)
853 {
854 	rcu_self_test_counter++;
855 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
856 }
857 
858 static void early_boot_test_call_rcu(void)
859 {
860 	static struct rcu_head head;
861 
862 	call_rcu(&head, test_callback);
863 }
864 
865 static void early_boot_test_call_rcu_bh(void)
866 {
867 	static struct rcu_head head;
868 
869 	call_rcu_bh(&head, test_callback);
870 }
871 
872 static void early_boot_test_call_rcu_sched(void)
873 {
874 	static struct rcu_head head;
875 
876 	call_rcu_sched(&head, test_callback);
877 }
878 
879 void rcu_early_boot_tests(void)
880 {
881 	pr_info("Running RCU self tests\n");
882 
883 	if (rcu_self_test)
884 		early_boot_test_call_rcu();
885 	if (rcu_self_test_bh)
886 		early_boot_test_call_rcu_bh();
887 	if (rcu_self_test_sched)
888 		early_boot_test_call_rcu_sched();
889 	rcu_test_sync_prims();
890 }
891 
892 static int rcu_verify_early_boot_tests(void)
893 {
894 	int ret = 0;
895 	int early_boot_test_counter = 0;
896 
897 	if (rcu_self_test) {
898 		early_boot_test_counter++;
899 		rcu_barrier();
900 	}
901 	if (rcu_self_test_bh) {
902 		early_boot_test_counter++;
903 		rcu_barrier_bh();
904 	}
905 	if (rcu_self_test_sched) {
906 		early_boot_test_counter++;
907 		rcu_barrier_sched();
908 	}
909 
910 	if (rcu_self_test_counter != early_boot_test_counter) {
911 		WARN_ON(1);
912 		ret = -1;
913 	}
914 
915 	return ret;
916 }
917 late_initcall(rcu_verify_early_boot_tests);
918 #else
919 void rcu_early_boot_tests(void) {}
920 #endif /* CONFIG_PROVE_RCU */
921