1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 25 * Papers: 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 28 * 29 * For detailed explanation of Read-Copy Update mechanism see - 30 * http://lse.sourceforge.net/locking/rcupdate.html 31 * 32 */ 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/interrupt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/debug.h> 41 #include <linux/atomic.h> 42 #include <linux/bitops.h> 43 #include <linux/percpu.h> 44 #include <linux/notifier.h> 45 #include <linux/cpu.h> 46 #include <linux/mutex.h> 47 #include <linux/export.h> 48 #include <linux/hardirq.h> 49 #include <linux/delay.h> 50 #include <linux/moduleparam.h> 51 #include <linux/kthread.h> 52 #include <linux/tick.h> 53 #include <linux/rcupdate_wait.h> 54 #include <linux/sched/isolation.h> 55 56 #define CREATE_TRACE_POINTS 57 58 #include "rcu.h" 59 60 #ifdef MODULE_PARAM_PREFIX 61 #undef MODULE_PARAM_PREFIX 62 #endif 63 #define MODULE_PARAM_PREFIX "rcupdate." 64 65 #ifndef CONFIG_TINY_RCU 66 extern int rcu_expedited; /* from sysctl */ 67 module_param(rcu_expedited, int, 0); 68 extern int rcu_normal; /* from sysctl */ 69 module_param(rcu_normal, int, 0); 70 static int rcu_normal_after_boot; 71 module_param(rcu_normal_after_boot, int, 0); 72 #endif /* #ifndef CONFIG_TINY_RCU */ 73 74 #ifdef CONFIG_DEBUG_LOCK_ALLOC 75 /** 76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 77 * 78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 79 * RCU-sched read-side critical section. In absence of 80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 81 * critical section unless it can prove otherwise. Note that disabling 82 * of preemption (including disabling irqs) counts as an RCU-sched 83 * read-side critical section. This is useful for debug checks in functions 84 * that required that they be called within an RCU-sched read-side 85 * critical section. 86 * 87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 88 * and while lockdep is disabled. 89 * 90 * Note that if the CPU is in the idle loop from an RCU point of 91 * view (ie: that we are in the section between rcu_idle_enter() and 92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 93 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 94 * that are in such a section, considering these as in extended quiescent 95 * state, so such a CPU is effectively never in an RCU read-side critical 96 * section regardless of what RCU primitives it invokes. This state of 97 * affairs is required --- we need to keep an RCU-free window in idle 98 * where the CPU may possibly enter into low power mode. This way we can 99 * notice an extended quiescent state to other CPUs that started a grace 100 * period. Otherwise we would delay any grace period as long as we run in 101 * the idle task. 102 * 103 * Similarly, we avoid claiming an SRCU read lock held if the current 104 * CPU is offline. 105 */ 106 int rcu_read_lock_sched_held(void) 107 { 108 int lockdep_opinion = 0; 109 110 if (!debug_lockdep_rcu_enabled()) 111 return 1; 112 if (!rcu_is_watching()) 113 return 0; 114 if (!rcu_lockdep_current_cpu_online()) 115 return 0; 116 if (debug_locks) 117 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 118 return lockdep_opinion || !preemptible(); 119 } 120 EXPORT_SYMBOL(rcu_read_lock_sched_held); 121 #endif 122 123 #ifndef CONFIG_TINY_RCU 124 125 /* 126 * Should expedited grace-period primitives always fall back to their 127 * non-expedited counterparts? Intended for use within RCU. Note 128 * that if the user specifies both rcu_expedited and rcu_normal, then 129 * rcu_normal wins. (Except during the time period during boot from 130 * when the first task is spawned until the rcu_set_runtime_mode() 131 * core_initcall() is invoked, at which point everything is expedited.) 132 */ 133 bool rcu_gp_is_normal(void) 134 { 135 return READ_ONCE(rcu_normal) && 136 rcu_scheduler_active != RCU_SCHEDULER_INIT; 137 } 138 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 139 140 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); 141 142 /* 143 * Should normal grace-period primitives be expedited? Intended for 144 * use within RCU. Note that this function takes the rcu_expedited 145 * sysfs/boot variable and rcu_scheduler_active into account as well 146 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp() 147 * until rcu_gp_is_expedited() returns false is a -really- bad idea. 148 */ 149 bool rcu_gp_is_expedited(void) 150 { 151 return rcu_expedited || atomic_read(&rcu_expedited_nesting) || 152 rcu_scheduler_active == RCU_SCHEDULER_INIT; 153 } 154 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 155 156 /** 157 * rcu_expedite_gp - Expedite future RCU grace periods 158 * 159 * After a call to this function, future calls to synchronize_rcu() and 160 * friends act as the corresponding synchronize_rcu_expedited() function 161 * had instead been called. 162 */ 163 void rcu_expedite_gp(void) 164 { 165 atomic_inc(&rcu_expedited_nesting); 166 } 167 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 168 169 /** 170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 171 * 172 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 174 * and if the rcu_expedited sysfs/boot parameter is not set, then all 175 * subsequent calls to synchronize_rcu() and friends will return to 176 * their normal non-expedited behavior. 177 */ 178 void rcu_unexpedite_gp(void) 179 { 180 atomic_dec(&rcu_expedited_nesting); 181 } 182 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 183 184 /* 185 * Inform RCU of the end of the in-kernel boot sequence. 186 */ 187 void rcu_end_inkernel_boot(void) 188 { 189 rcu_unexpedite_gp(); 190 if (rcu_normal_after_boot) 191 WRITE_ONCE(rcu_normal, 1); 192 } 193 194 #endif /* #ifndef CONFIG_TINY_RCU */ 195 196 /* 197 * Test each non-SRCU synchronous grace-period wait API. This is 198 * useful just after a change in mode for these primitives, and 199 * during early boot. 200 */ 201 void rcu_test_sync_prims(void) 202 { 203 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 204 return; 205 synchronize_rcu(); 206 synchronize_rcu_expedited(); 207 } 208 209 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) 210 211 /* 212 * Switch to run-time mode once RCU has fully initialized. 213 */ 214 static int __init rcu_set_runtime_mode(void) 215 { 216 rcu_test_sync_prims(); 217 rcu_scheduler_active = RCU_SCHEDULER_RUNNING; 218 rcu_test_sync_prims(); 219 return 0; 220 } 221 core_initcall(rcu_set_runtime_mode); 222 223 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 static struct lock_class_key rcu_lock_key; 227 struct lockdep_map rcu_lock_map = 228 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 229 EXPORT_SYMBOL_GPL(rcu_lock_map); 230 231 static struct lock_class_key rcu_bh_lock_key; 232 struct lockdep_map rcu_bh_lock_map = 233 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 234 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 235 236 static struct lock_class_key rcu_sched_lock_key; 237 struct lockdep_map rcu_sched_lock_map = 238 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 239 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 240 241 static struct lock_class_key rcu_callback_key; 242 struct lockdep_map rcu_callback_map = 243 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 244 EXPORT_SYMBOL_GPL(rcu_callback_map); 245 246 int notrace debug_lockdep_rcu_enabled(void) 247 { 248 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && 249 current->lockdep_recursion == 0; 250 } 251 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 252 253 /** 254 * rcu_read_lock_held() - might we be in RCU read-side critical section? 255 * 256 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 257 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 258 * this assumes we are in an RCU read-side critical section unless it can 259 * prove otherwise. This is useful for debug checks in functions that 260 * require that they be called within an RCU read-side critical section. 261 * 262 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 263 * and while lockdep is disabled. 264 * 265 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 266 * occur in the same context, for example, it is illegal to invoke 267 * rcu_read_unlock() in process context if the matching rcu_read_lock() 268 * was invoked from within an irq handler. 269 * 270 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 271 * offline from an RCU perspective, so check for those as well. 272 */ 273 int rcu_read_lock_held(void) 274 { 275 if (!debug_lockdep_rcu_enabled()) 276 return 1; 277 if (!rcu_is_watching()) 278 return 0; 279 if (!rcu_lockdep_current_cpu_online()) 280 return 0; 281 return lock_is_held(&rcu_lock_map); 282 } 283 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 284 285 /** 286 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 287 * 288 * Check for bottom half being disabled, which covers both the 289 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 290 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 291 * will show the situation. This is useful for debug checks in functions 292 * that require that they be called within an RCU read-side critical 293 * section. 294 * 295 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 296 * 297 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or 298 * offline from an RCU perspective, so check for those as well. 299 */ 300 int rcu_read_lock_bh_held(void) 301 { 302 if (!debug_lockdep_rcu_enabled()) 303 return 1; 304 if (!rcu_is_watching()) 305 return 0; 306 if (!rcu_lockdep_current_cpu_online()) 307 return 0; 308 return in_softirq() || irqs_disabled(); 309 } 310 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 311 312 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 313 314 /** 315 * wakeme_after_rcu() - Callback function to awaken a task after grace period 316 * @head: Pointer to rcu_head member within rcu_synchronize structure 317 * 318 * Awaken the corresponding task now that a grace period has elapsed. 319 */ 320 void wakeme_after_rcu(struct rcu_head *head) 321 { 322 struct rcu_synchronize *rcu; 323 324 rcu = container_of(head, struct rcu_synchronize, head); 325 complete(&rcu->completion); 326 } 327 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 328 329 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 330 struct rcu_synchronize *rs_array) 331 { 332 int i; 333 int j; 334 335 /* Initialize and register callbacks for each crcu_array element. */ 336 for (i = 0; i < n; i++) { 337 if (checktiny && 338 (crcu_array[i] == call_rcu || 339 crcu_array[i] == call_rcu_bh)) { 340 might_sleep(); 341 continue; 342 } 343 init_rcu_head_on_stack(&rs_array[i].head); 344 init_completion(&rs_array[i].completion); 345 for (j = 0; j < i; j++) 346 if (crcu_array[j] == crcu_array[i]) 347 break; 348 if (j == i) 349 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 350 } 351 352 /* Wait for all callbacks to be invoked. */ 353 for (i = 0; i < n; i++) { 354 if (checktiny && 355 (crcu_array[i] == call_rcu || 356 crcu_array[i] == call_rcu_bh)) 357 continue; 358 for (j = 0; j < i; j++) 359 if (crcu_array[j] == crcu_array[i]) 360 break; 361 if (j == i) 362 wait_for_completion(&rs_array[i].completion); 363 destroy_rcu_head_on_stack(&rs_array[i].head); 364 } 365 } 366 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 367 368 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 369 void init_rcu_head(struct rcu_head *head) 370 { 371 debug_object_init(head, &rcuhead_debug_descr); 372 } 373 EXPORT_SYMBOL_GPL(init_rcu_head); 374 375 void destroy_rcu_head(struct rcu_head *head) 376 { 377 debug_object_free(head, &rcuhead_debug_descr); 378 } 379 EXPORT_SYMBOL_GPL(destroy_rcu_head); 380 381 static bool rcuhead_is_static_object(void *addr) 382 { 383 return true; 384 } 385 386 /** 387 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 388 * @head: pointer to rcu_head structure to be initialized 389 * 390 * This function informs debugobjects of a new rcu_head structure that 391 * has been allocated as an auto variable on the stack. This function 392 * is not required for rcu_head structures that are statically defined or 393 * that are dynamically allocated on the heap. This function has no 394 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 395 */ 396 void init_rcu_head_on_stack(struct rcu_head *head) 397 { 398 debug_object_init_on_stack(head, &rcuhead_debug_descr); 399 } 400 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 401 402 /** 403 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 404 * @head: pointer to rcu_head structure to be initialized 405 * 406 * This function informs debugobjects that an on-stack rcu_head structure 407 * is about to go out of scope. As with init_rcu_head_on_stack(), this 408 * function is not required for rcu_head structures that are statically 409 * defined or that are dynamically allocated on the heap. Also as with 410 * init_rcu_head_on_stack(), this function has no effect for 411 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 412 */ 413 void destroy_rcu_head_on_stack(struct rcu_head *head) 414 { 415 debug_object_free(head, &rcuhead_debug_descr); 416 } 417 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 418 419 struct debug_obj_descr rcuhead_debug_descr = { 420 .name = "rcu_head", 421 .is_static_object = rcuhead_is_static_object, 422 }; 423 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 424 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 425 426 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 427 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 428 unsigned long secs, 429 unsigned long c_old, unsigned long c) 430 { 431 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 432 } 433 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 434 #else 435 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 436 do { } while (0) 437 #endif 438 439 #ifdef CONFIG_RCU_STALL_COMMON 440 441 #ifdef CONFIG_PROVE_RCU 442 #define RCU_STALL_DELAY_DELTA (5 * HZ) 443 #else 444 #define RCU_STALL_DELAY_DELTA 0 445 #endif 446 447 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 448 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 449 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 450 451 module_param(rcu_cpu_stall_suppress, int, 0644); 452 module_param(rcu_cpu_stall_timeout, int, 0644); 453 454 int rcu_jiffies_till_stall_check(void) 455 { 456 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 457 458 /* 459 * Limit check must be consistent with the Kconfig limits 460 * for CONFIG_RCU_CPU_STALL_TIMEOUT. 461 */ 462 if (till_stall_check < 3) { 463 WRITE_ONCE(rcu_cpu_stall_timeout, 3); 464 till_stall_check = 3; 465 } else if (till_stall_check > 300) { 466 WRITE_ONCE(rcu_cpu_stall_timeout, 300); 467 till_stall_check = 300; 468 } 469 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; 470 } 471 EXPORT_SYMBOL_GPL(rcu_jiffies_till_stall_check); 472 473 void rcu_sysrq_start(void) 474 { 475 if (!rcu_cpu_stall_suppress) 476 rcu_cpu_stall_suppress = 2; 477 } 478 479 void rcu_sysrq_end(void) 480 { 481 if (rcu_cpu_stall_suppress == 2) 482 rcu_cpu_stall_suppress = 0; 483 } 484 485 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) 486 { 487 rcu_cpu_stall_suppress = 1; 488 return NOTIFY_DONE; 489 } 490 491 static struct notifier_block rcu_panic_block = { 492 .notifier_call = rcu_panic, 493 }; 494 495 static int __init check_cpu_stall_init(void) 496 { 497 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); 498 return 0; 499 } 500 early_initcall(check_cpu_stall_init); 501 502 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 503 504 #ifdef CONFIG_TASKS_RCU 505 506 /* 507 * Simple variant of RCU whose quiescent states are voluntary context 508 * switch, cond_resched_rcu_qs(), user-space execution, and idle. 509 * As such, grace periods can take one good long time. There are no 510 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 511 * because this implementation is intended to get the system into a safe 512 * state for some of the manipulations involved in tracing and the like. 513 * Finally, this implementation does not support high call_rcu_tasks() 514 * rates from multiple CPUs. If this is required, per-CPU callback lists 515 * will be needed. 516 */ 517 518 /* Global list of callbacks and associated lock. */ 519 static struct rcu_head *rcu_tasks_cbs_head; 520 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 523 524 /* Track exiting tasks in order to allow them to be waited for. */ 525 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 526 527 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 528 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 529 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 530 module_param(rcu_task_stall_timeout, int, 0644); 531 532 static struct task_struct *rcu_tasks_kthread_ptr; 533 534 /** 535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 536 * @rhp: structure to be used for queueing the RCU updates. 537 * @func: actual callback function to be invoked after the grace period 538 * 539 * The callback function will be invoked some time after a full grace 540 * period elapses, in other words after all currently executing RCU 541 * read-side critical sections have completed. call_rcu_tasks() assumes 542 * that the read-side critical sections end at a voluntary context 543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 544 * or transition to usermode execution. As such, there are no read-side 545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 546 * this primitive is intended to determine that all tasks have passed 547 * through a safe state, not so much for data-strcuture synchronization. 548 * 549 * See the description of call_rcu() for more detailed information on 550 * memory ordering guarantees. 551 */ 552 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 553 { 554 unsigned long flags; 555 bool needwake; 556 557 rhp->next = NULL; 558 rhp->func = func; 559 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 560 needwake = !rcu_tasks_cbs_head; 561 *rcu_tasks_cbs_tail = rhp; 562 rcu_tasks_cbs_tail = &rhp->next; 563 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 564 /* We can't create the thread unless interrupts are enabled. */ 565 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) 566 wake_up(&rcu_tasks_cbs_wq); 567 } 568 EXPORT_SYMBOL_GPL(call_rcu_tasks); 569 570 /** 571 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 572 * 573 * Control will return to the caller some time after a full rcu-tasks 574 * grace period has elapsed, in other words after all currently 575 * executing rcu-tasks read-side critical sections have elapsed. These 576 * read-side critical sections are delimited by calls to schedule(), 577 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 578 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 579 * 580 * This is a very specialized primitive, intended only for a few uses in 581 * tracing and other situations requiring manipulation of function 582 * preambles and profiling hooks. The synchronize_rcu_tasks() function 583 * is not (yet) intended for heavy use from multiple CPUs. 584 * 585 * Note that this guarantee implies further memory-ordering guarantees. 586 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 587 * each CPU is guaranteed to have executed a full memory barrier since the 588 * end of its last RCU-tasks read-side critical section whose beginning 589 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 590 * having an RCU-tasks read-side critical section that extends beyond 591 * the return from synchronize_rcu_tasks() is guaranteed to have executed 592 * a full memory barrier after the beginning of synchronize_rcu_tasks() 593 * and before the beginning of that RCU-tasks read-side critical section. 594 * Note that these guarantees include CPUs that are offline, idle, or 595 * executing in user mode, as well as CPUs that are executing in the kernel. 596 * 597 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 598 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 599 * to have executed a full memory barrier during the execution of 600 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 601 * (but again only if the system has more than one CPU). 602 */ 603 void synchronize_rcu_tasks(void) 604 { 605 /* Complain if the scheduler has not started. */ 606 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 607 "synchronize_rcu_tasks called too soon"); 608 609 /* Wait for the grace period. */ 610 wait_rcu_gp(call_rcu_tasks); 611 } 612 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 613 614 /** 615 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 616 * 617 * Although the current implementation is guaranteed to wait, it is not 618 * obligated to, for example, if there are no pending callbacks. 619 */ 620 void rcu_barrier_tasks(void) 621 { 622 /* There is only one callback queue, so this is easy. ;-) */ 623 synchronize_rcu_tasks(); 624 } 625 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 626 627 /* See if tasks are still holding out, complain if so. */ 628 static void check_holdout_task(struct task_struct *t, 629 bool needreport, bool *firstreport) 630 { 631 int cpu; 632 633 if (!READ_ONCE(t->rcu_tasks_holdout) || 634 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 635 !READ_ONCE(t->on_rq) || 636 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 637 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 638 WRITE_ONCE(t->rcu_tasks_holdout, false); 639 list_del_init(&t->rcu_tasks_holdout_list); 640 put_task_struct(t); 641 return; 642 } 643 rcu_request_urgent_qs_task(t); 644 if (!needreport) 645 return; 646 if (*firstreport) { 647 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 648 *firstreport = false; 649 } 650 cpu = task_cpu(t); 651 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 652 t, ".I"[is_idle_task(t)], 653 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 654 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 655 t->rcu_tasks_idle_cpu, cpu); 656 sched_show_task(t); 657 } 658 659 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 660 static int __noreturn rcu_tasks_kthread(void *arg) 661 { 662 unsigned long flags; 663 struct task_struct *g, *t; 664 unsigned long lastreport; 665 struct rcu_head *list; 666 struct rcu_head *next; 667 LIST_HEAD(rcu_tasks_holdouts); 668 int fract; 669 670 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 671 housekeeping_affine(current, HK_FLAG_RCU); 672 673 /* 674 * Each pass through the following loop makes one check for 675 * newly arrived callbacks, and, if there are some, waits for 676 * one RCU-tasks grace period and then invokes the callbacks. 677 * This loop is terminated by the system going down. ;-) 678 */ 679 for (;;) { 680 681 /* Pick up any new callbacks. */ 682 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 683 list = rcu_tasks_cbs_head; 684 rcu_tasks_cbs_head = NULL; 685 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 686 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 687 688 /* If there were none, wait a bit and start over. */ 689 if (!list) { 690 wait_event_interruptible(rcu_tasks_cbs_wq, 691 rcu_tasks_cbs_head); 692 if (!rcu_tasks_cbs_head) { 693 WARN_ON(signal_pending(current)); 694 schedule_timeout_interruptible(HZ/10); 695 } 696 continue; 697 } 698 699 /* 700 * Wait for all pre-existing t->on_rq and t->nvcsw 701 * transitions to complete. Invoking synchronize_rcu() 702 * suffices because all these transitions occur with 703 * interrupts disabled. Without this synchronize_rcu(), 704 * a read-side critical section that started before the 705 * grace period might be incorrectly seen as having started 706 * after the grace period. 707 * 708 * This synchronize_rcu() also dispenses with the 709 * need for a memory barrier on the first store to 710 * ->rcu_tasks_holdout, as it forces the store to happen 711 * after the beginning of the grace period. 712 */ 713 synchronize_rcu(); 714 715 /* 716 * There were callbacks, so we need to wait for an 717 * RCU-tasks grace period. Start off by scanning 718 * the task list for tasks that are not already 719 * voluntarily blocked. Mark these tasks and make 720 * a list of them in rcu_tasks_holdouts. 721 */ 722 rcu_read_lock(); 723 for_each_process_thread(g, t) { 724 if (t != current && READ_ONCE(t->on_rq) && 725 !is_idle_task(t)) { 726 get_task_struct(t); 727 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 728 WRITE_ONCE(t->rcu_tasks_holdout, true); 729 list_add(&t->rcu_tasks_holdout_list, 730 &rcu_tasks_holdouts); 731 } 732 } 733 rcu_read_unlock(); 734 735 /* 736 * Wait for tasks that are in the process of exiting. 737 * This does only part of the job, ensuring that all 738 * tasks that were previously exiting reach the point 739 * where they have disabled preemption, allowing the 740 * later synchronize_rcu() to finish the job. 741 */ 742 synchronize_srcu(&tasks_rcu_exit_srcu); 743 744 /* 745 * Each pass through the following loop scans the list 746 * of holdout tasks, removing any that are no longer 747 * holdouts. When the list is empty, we are done. 748 */ 749 lastreport = jiffies; 750 751 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ 752 fract = 10; 753 754 for (;;) { 755 bool firstreport; 756 bool needreport; 757 int rtst; 758 struct task_struct *t1; 759 760 if (list_empty(&rcu_tasks_holdouts)) 761 break; 762 763 /* Slowly back off waiting for holdouts */ 764 schedule_timeout_interruptible(HZ/fract); 765 766 if (fract > 1) 767 fract--; 768 769 rtst = READ_ONCE(rcu_task_stall_timeout); 770 needreport = rtst > 0 && 771 time_after(jiffies, lastreport + rtst); 772 if (needreport) 773 lastreport = jiffies; 774 firstreport = true; 775 WARN_ON(signal_pending(current)); 776 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 777 rcu_tasks_holdout_list) { 778 check_holdout_task(t, needreport, &firstreport); 779 cond_resched(); 780 } 781 } 782 783 /* 784 * Because ->on_rq and ->nvcsw are not guaranteed 785 * to have a full memory barriers prior to them in the 786 * schedule() path, memory reordering on other CPUs could 787 * cause their RCU-tasks read-side critical sections to 788 * extend past the end of the grace period. However, 789 * because these ->nvcsw updates are carried out with 790 * interrupts disabled, we can use synchronize_rcu() 791 * to force the needed ordering on all such CPUs. 792 * 793 * This synchronize_rcu() also confines all 794 * ->rcu_tasks_holdout accesses to be within the grace 795 * period, avoiding the need for memory barriers for 796 * ->rcu_tasks_holdout accesses. 797 * 798 * In addition, this synchronize_rcu() waits for exiting 799 * tasks to complete their final preempt_disable() region 800 * of execution, cleaning up after the synchronize_srcu() 801 * above. 802 */ 803 synchronize_rcu(); 804 805 /* Invoke the callbacks. */ 806 while (list) { 807 next = list->next; 808 local_bh_disable(); 809 list->func(list); 810 local_bh_enable(); 811 list = next; 812 cond_resched(); 813 } 814 /* Paranoid sleep to keep this from entering a tight loop */ 815 schedule_timeout_uninterruptible(HZ/10); 816 } 817 } 818 819 /* Spawn rcu_tasks_kthread() at core_initcall() time. */ 820 static int __init rcu_spawn_tasks_kthread(void) 821 { 822 struct task_struct *t; 823 824 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 825 BUG_ON(IS_ERR(t)); 826 smp_mb(); /* Ensure others see full kthread. */ 827 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 828 return 0; 829 } 830 core_initcall(rcu_spawn_tasks_kthread); 831 832 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 833 void exit_tasks_rcu_start(void) 834 { 835 preempt_disable(); 836 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 837 preempt_enable(); 838 } 839 840 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 841 void exit_tasks_rcu_finish(void) 842 { 843 preempt_disable(); 844 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); 845 preempt_enable(); 846 } 847 848 #endif /* #ifdef CONFIG_TASKS_RCU */ 849 850 #ifndef CONFIG_TINY_RCU 851 852 /* 853 * Print any non-default Tasks RCU settings. 854 */ 855 static void __init rcu_tasks_bootup_oddness(void) 856 { 857 #ifdef CONFIG_TASKS_RCU 858 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 859 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 860 else 861 pr_info("\tTasks RCU enabled.\n"); 862 #endif /* #ifdef CONFIG_TASKS_RCU */ 863 } 864 865 #endif /* #ifndef CONFIG_TINY_RCU */ 866 867 #ifdef CONFIG_PROVE_RCU 868 869 /* 870 * Early boot self test parameters. 871 */ 872 static bool rcu_self_test; 873 module_param(rcu_self_test, bool, 0444); 874 875 static int rcu_self_test_counter; 876 877 static void test_callback(struct rcu_head *r) 878 { 879 rcu_self_test_counter++; 880 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 881 } 882 883 DEFINE_STATIC_SRCU(early_srcu); 884 885 static void early_boot_test_call_rcu(void) 886 { 887 static struct rcu_head head; 888 static struct rcu_head shead; 889 890 call_rcu(&head, test_callback); 891 if (IS_ENABLED(CONFIG_SRCU)) 892 call_srcu(&early_srcu, &shead, test_callback); 893 } 894 895 void rcu_early_boot_tests(void) 896 { 897 pr_info("Running RCU self tests\n"); 898 899 if (rcu_self_test) 900 early_boot_test_call_rcu(); 901 rcu_test_sync_prims(); 902 } 903 904 static int rcu_verify_early_boot_tests(void) 905 { 906 int ret = 0; 907 int early_boot_test_counter = 0; 908 909 if (rcu_self_test) { 910 early_boot_test_counter++; 911 rcu_barrier(); 912 if (IS_ENABLED(CONFIG_SRCU)) { 913 early_boot_test_counter++; 914 srcu_barrier(&early_srcu); 915 } 916 } 917 if (rcu_self_test_counter != early_boot_test_counter) { 918 WARN_ON(1); 919 ret = -1; 920 } 921 922 return ret; 923 } 924 late_initcall(rcu_verify_early_boot_tests); 925 #else 926 void rcu_early_boot_tests(void) {} 927 #endif /* CONFIG_PROVE_RCU */ 928 929 #ifndef CONFIG_TINY_RCU 930 931 /* 932 * Print any significant non-default boot-time settings. 933 */ 934 void __init rcupdate_announce_bootup_oddness(void) 935 { 936 if (rcu_normal) 937 pr_info("\tNo expedited grace period (rcu_normal).\n"); 938 else if (rcu_normal_after_boot) 939 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); 940 else if (rcu_expedited) 941 pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); 942 if (rcu_cpu_stall_suppress) 943 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); 944 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) 945 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); 946 rcu_tasks_bootup_oddness(); 947 } 948 949 #endif /* #ifndef CONFIG_TINY_RCU */ 950