xref: /openbmc/linux/kernel/rcu/update.c (revision 06c2a923)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 
52 #define CREATE_TRACE_POINTS
53 
54 #include "rcu.h"
55 
56 MODULE_ALIAS("rcupdate");
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "rcupdate."
61 
62 module_param(rcu_expedited, int, 0);
63 
64 #ifdef CONFIG_PREEMPT_RCU
65 
66 /*
67  * Preemptible RCU implementation for rcu_read_lock().
68  * Just increment ->rcu_read_lock_nesting, shared state will be updated
69  * if we block.
70  */
71 void __rcu_read_lock(void)
72 {
73 	current->rcu_read_lock_nesting++;
74 	barrier();  /* critical section after entry code. */
75 }
76 EXPORT_SYMBOL_GPL(__rcu_read_lock);
77 
78 /*
79  * Preemptible RCU implementation for rcu_read_unlock().
80  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
81  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
82  * invoke rcu_read_unlock_special() to clean up after a context switch
83  * in an RCU read-side critical section and other special cases.
84  */
85 void __rcu_read_unlock(void)
86 {
87 	struct task_struct *t = current;
88 
89 	if (t->rcu_read_lock_nesting != 1) {
90 		--t->rcu_read_lock_nesting;
91 	} else {
92 		barrier();  /* critical section before exit code. */
93 		t->rcu_read_lock_nesting = INT_MIN;
94 		barrier();  /* assign before ->rcu_read_unlock_special load */
95 		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
96 			rcu_read_unlock_special(t);
97 		barrier();  /* ->rcu_read_unlock_special load before assign */
98 		t->rcu_read_lock_nesting = 0;
99 	}
100 #ifdef CONFIG_PROVE_LOCKING
101 	{
102 		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
103 
104 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
105 	}
106 #endif /* #ifdef CONFIG_PROVE_LOCKING */
107 }
108 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
109 
110 #endif /* #ifdef CONFIG_PREEMPT_RCU */
111 
112 #ifdef CONFIG_DEBUG_LOCK_ALLOC
113 static struct lock_class_key rcu_lock_key;
114 struct lockdep_map rcu_lock_map =
115 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
116 EXPORT_SYMBOL_GPL(rcu_lock_map);
117 
118 static struct lock_class_key rcu_bh_lock_key;
119 struct lockdep_map rcu_bh_lock_map =
120 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
121 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
122 
123 static struct lock_class_key rcu_sched_lock_key;
124 struct lockdep_map rcu_sched_lock_map =
125 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
126 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
127 
128 static struct lock_class_key rcu_callback_key;
129 struct lockdep_map rcu_callback_map =
130 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
131 EXPORT_SYMBOL_GPL(rcu_callback_map);
132 
133 int notrace debug_lockdep_rcu_enabled(void)
134 {
135 	return rcu_scheduler_active && debug_locks &&
136 	       current->lockdep_recursion == 0;
137 }
138 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
139 
140 /**
141  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
142  *
143  * Check for bottom half being disabled, which covers both the
144  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
145  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
146  * will show the situation.  This is useful for debug checks in functions
147  * that require that they be called within an RCU read-side critical
148  * section.
149  *
150  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
151  *
152  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
153  * offline from an RCU perspective, so check for those as well.
154  */
155 int rcu_read_lock_bh_held(void)
156 {
157 	if (!debug_lockdep_rcu_enabled())
158 		return 1;
159 	if (!rcu_is_watching())
160 		return 0;
161 	if (!rcu_lockdep_current_cpu_online())
162 		return 0;
163 	return in_softirq() || irqs_disabled();
164 }
165 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
166 
167 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
168 
169 struct rcu_synchronize {
170 	struct rcu_head head;
171 	struct completion completion;
172 };
173 
174 /*
175  * Awaken the corresponding synchronize_rcu() instance now that a
176  * grace period has elapsed.
177  */
178 static void wakeme_after_rcu(struct rcu_head  *head)
179 {
180 	struct rcu_synchronize *rcu;
181 
182 	rcu = container_of(head, struct rcu_synchronize, head);
183 	complete(&rcu->completion);
184 }
185 
186 void wait_rcu_gp(call_rcu_func_t crf)
187 {
188 	struct rcu_synchronize rcu;
189 
190 	init_rcu_head_on_stack(&rcu.head);
191 	init_completion(&rcu.completion);
192 	/* Will wake me after RCU finished. */
193 	crf(&rcu.head, wakeme_after_rcu);
194 	/* Wait for it. */
195 	wait_for_completion(&rcu.completion);
196 	destroy_rcu_head_on_stack(&rcu.head);
197 }
198 EXPORT_SYMBOL_GPL(wait_rcu_gp);
199 
200 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
201 void init_rcu_head(struct rcu_head *head)
202 {
203 	debug_object_init(head, &rcuhead_debug_descr);
204 }
205 
206 void destroy_rcu_head(struct rcu_head *head)
207 {
208 	debug_object_free(head, &rcuhead_debug_descr);
209 }
210 
211 /*
212  * fixup_activate is called when:
213  * - an active object is activated
214  * - an unknown object is activated (might be a statically initialized object)
215  * Activation is performed internally by call_rcu().
216  */
217 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
218 {
219 	struct rcu_head *head = addr;
220 
221 	switch (state) {
222 
223 	case ODEBUG_STATE_NOTAVAILABLE:
224 		/*
225 		 * This is not really a fixup. We just make sure that it is
226 		 * tracked in the object tracker.
227 		 */
228 		debug_object_init(head, &rcuhead_debug_descr);
229 		debug_object_activate(head, &rcuhead_debug_descr);
230 		return 0;
231 	default:
232 		return 1;
233 	}
234 }
235 
236 /**
237  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
238  * @head: pointer to rcu_head structure to be initialized
239  *
240  * This function informs debugobjects of a new rcu_head structure that
241  * has been allocated as an auto variable on the stack.  This function
242  * is not required for rcu_head structures that are statically defined or
243  * that are dynamically allocated on the heap.  This function has no
244  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
245  */
246 void init_rcu_head_on_stack(struct rcu_head *head)
247 {
248 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
249 }
250 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
251 
252 /**
253  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
254  * @head: pointer to rcu_head structure to be initialized
255  *
256  * This function informs debugobjects that an on-stack rcu_head structure
257  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
258  * function is not required for rcu_head structures that are statically
259  * defined or that are dynamically allocated on the heap.  Also as with
260  * init_rcu_head_on_stack(), this function has no effect for
261  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
262  */
263 void destroy_rcu_head_on_stack(struct rcu_head *head)
264 {
265 	debug_object_free(head, &rcuhead_debug_descr);
266 }
267 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
268 
269 struct debug_obj_descr rcuhead_debug_descr = {
270 	.name = "rcu_head",
271 	.fixup_activate = rcuhead_fixup_activate,
272 };
273 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
274 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
275 
276 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
277 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
278 			       unsigned long secs,
279 			       unsigned long c_old, unsigned long c)
280 {
281 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
282 }
283 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
284 #else
285 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
286 	do { } while (0)
287 #endif
288 
289 #ifdef CONFIG_RCU_STALL_COMMON
290 
291 #ifdef CONFIG_PROVE_RCU
292 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
293 #else
294 #define RCU_STALL_DELAY_DELTA	       0
295 #endif
296 
297 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
298 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
299 
300 module_param(rcu_cpu_stall_suppress, int, 0644);
301 module_param(rcu_cpu_stall_timeout, int, 0644);
302 
303 int rcu_jiffies_till_stall_check(void)
304 {
305 	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
306 
307 	/*
308 	 * Limit check must be consistent with the Kconfig limits
309 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
310 	 */
311 	if (till_stall_check < 3) {
312 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
313 		till_stall_check = 3;
314 	} else if (till_stall_check > 300) {
315 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
316 		till_stall_check = 300;
317 	}
318 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
319 }
320 
321 void rcu_sysrq_start(void)
322 {
323 	if (!rcu_cpu_stall_suppress)
324 		rcu_cpu_stall_suppress = 2;
325 }
326 
327 void rcu_sysrq_end(void)
328 {
329 	if (rcu_cpu_stall_suppress == 2)
330 		rcu_cpu_stall_suppress = 0;
331 }
332 
333 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
334 {
335 	rcu_cpu_stall_suppress = 1;
336 	return NOTIFY_DONE;
337 }
338 
339 static struct notifier_block rcu_panic_block = {
340 	.notifier_call = rcu_panic,
341 };
342 
343 static int __init check_cpu_stall_init(void)
344 {
345 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
346 	return 0;
347 }
348 early_initcall(check_cpu_stall_init);
349 
350 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
351 
352 #ifdef CONFIG_TASKS_RCU
353 
354 /*
355  * Simple variant of RCU whose quiescent states are voluntary context switch,
356  * user-space execution, and idle.  As such, grace periods can take one good
357  * long time.  There are no read-side primitives similar to rcu_read_lock()
358  * and rcu_read_unlock() because this implementation is intended to get
359  * the system into a safe state for some of the manipulations involved in
360  * tracing and the like.  Finally, this implementation does not support
361  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
362  * per-CPU callback lists will be needed.
363  */
364 
365 /* Global list of callbacks and associated lock. */
366 static struct rcu_head *rcu_tasks_cbs_head;
367 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
368 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
369 
370 /* Track exiting tasks in order to allow them to be waited for. */
371 DEFINE_SRCU(tasks_rcu_exit_srcu);
372 
373 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
374 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 3;
375 module_param(rcu_task_stall_timeout, int, 0644);
376 
377 /* Post an RCU-tasks callback. */
378 void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
379 {
380 	unsigned long flags;
381 
382 	rhp->next = NULL;
383 	rhp->func = func;
384 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
385 	*rcu_tasks_cbs_tail = rhp;
386 	rcu_tasks_cbs_tail = &rhp->next;
387 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
388 }
389 EXPORT_SYMBOL_GPL(call_rcu_tasks);
390 
391 /**
392  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
393  *
394  * Control will return to the caller some time after a full rcu-tasks
395  * grace period has elapsed, in other words after all currently
396  * executing rcu-tasks read-side critical sections have elapsed.  These
397  * read-side critical sections are delimited by calls to schedule(),
398  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
399  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
400  *
401  * This is a very specialized primitive, intended only for a few uses in
402  * tracing and other situations requiring manipulation of function
403  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
404  * is not (yet) intended for heavy use from multiple CPUs.
405  *
406  * Note that this guarantee implies further memory-ordering guarantees.
407  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
408  * each CPU is guaranteed to have executed a full memory barrier since the
409  * end of its last RCU-tasks read-side critical section whose beginning
410  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
411  * having an RCU-tasks read-side critical section that extends beyond
412  * the return from synchronize_rcu_tasks() is guaranteed to have executed
413  * a full memory barrier after the beginning of synchronize_rcu_tasks()
414  * and before the beginning of that RCU-tasks read-side critical section.
415  * Note that these guarantees include CPUs that are offline, idle, or
416  * executing in user mode, as well as CPUs that are executing in the kernel.
417  *
418  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
419  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
420  * to have executed a full memory barrier during the execution of
421  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
422  * (but again only if the system has more than one CPU).
423  */
424 void synchronize_rcu_tasks(void)
425 {
426 	/* Complain if the scheduler has not started.  */
427 	rcu_lockdep_assert(!rcu_scheduler_active,
428 			   "synchronize_rcu_tasks called too soon");
429 
430 	/* Wait for the grace period. */
431 	wait_rcu_gp(call_rcu_tasks);
432 }
433 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
434 
435 /**
436  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
437  *
438  * Although the current implementation is guaranteed to wait, it is not
439  * obligated to, for example, if there are no pending callbacks.
440  */
441 void rcu_barrier_tasks(void)
442 {
443 	/* There is only one callback queue, so this is easy.  ;-) */
444 	synchronize_rcu_tasks();
445 }
446 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
447 
448 /* See if the current task has stopped holding out, remove from list if so. */
449 static void check_holdout_task(struct task_struct *t)
450 {
451 	if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
452 	    t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
453 	    !ACCESS_ONCE(t->on_rq)) {
454 		ACCESS_ONCE(t->rcu_tasks_holdout) = false;
455 		list_del_rcu(&t->rcu_tasks_holdout_list);
456 		put_task_struct(t);
457 	}
458 }
459 
460 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
461 static int __noreturn rcu_tasks_kthread(void *arg)
462 {
463 	unsigned long flags;
464 	struct task_struct *g, *t;
465 	struct rcu_head *list;
466 	struct rcu_head *next;
467 	LIST_HEAD(rcu_tasks_holdouts);
468 
469 	/* FIXME: Add housekeeping affinity. */
470 
471 	/*
472 	 * Each pass through the following loop makes one check for
473 	 * newly arrived callbacks, and, if there are some, waits for
474 	 * one RCU-tasks grace period and then invokes the callbacks.
475 	 * This loop is terminated by the system going down.  ;-)
476 	 */
477 	for (;;) {
478 
479 		/* Pick up any new callbacks. */
480 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
481 		list = rcu_tasks_cbs_head;
482 		rcu_tasks_cbs_head = NULL;
483 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
484 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
485 
486 		/* If there were none, wait a bit and start over. */
487 		if (!list) {
488 			schedule_timeout_interruptible(HZ);
489 			WARN_ON(signal_pending(current));
490 			continue;
491 		}
492 
493 		/*
494 		 * Wait for all pre-existing t->on_rq and t->nvcsw
495 		 * transitions to complete.  Invoking synchronize_sched()
496 		 * suffices because all these transitions occur with
497 		 * interrupts disabled.  Without this synchronize_sched(),
498 		 * a read-side critical section that started before the
499 		 * grace period might be incorrectly seen as having started
500 		 * after the grace period.
501 		 *
502 		 * This synchronize_sched() also dispenses with the
503 		 * need for a memory barrier on the first store to
504 		 * ->rcu_tasks_holdout, as it forces the store to happen
505 		 * after the beginning of the grace period.
506 		 */
507 		synchronize_sched();
508 
509 		/*
510 		 * There were callbacks, so we need to wait for an
511 		 * RCU-tasks grace period.  Start off by scanning
512 		 * the task list for tasks that are not already
513 		 * voluntarily blocked.  Mark these tasks and make
514 		 * a list of them in rcu_tasks_holdouts.
515 		 */
516 		rcu_read_lock();
517 		for_each_process_thread(g, t) {
518 			if (t != current && ACCESS_ONCE(t->on_rq) &&
519 			    !is_idle_task(t)) {
520 				get_task_struct(t);
521 				t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
522 				ACCESS_ONCE(t->rcu_tasks_holdout) = true;
523 				list_add(&t->rcu_tasks_holdout_list,
524 					 &rcu_tasks_holdouts);
525 			}
526 		}
527 		rcu_read_unlock();
528 
529 		/*
530 		 * Wait for tasks that are in the process of exiting.
531 		 * This does only part of the job, ensuring that all
532 		 * tasks that were previously exiting reach the point
533 		 * where they have disabled preemption, allowing the
534 		 * later synchronize_sched() to finish the job.
535 		 */
536 		synchronize_srcu(&tasks_rcu_exit_srcu);
537 
538 		/*
539 		 * Each pass through the following loop scans the list
540 		 * of holdout tasks, removing any that are no longer
541 		 * holdouts.  When the list is empty, we are done.
542 		 */
543 		while (!list_empty(&rcu_tasks_holdouts)) {
544 			schedule_timeout_interruptible(HZ);
545 			WARN_ON(signal_pending(current));
546 			rcu_read_lock();
547 			list_for_each_entry_rcu(t, &rcu_tasks_holdouts,
548 						rcu_tasks_holdout_list)
549 				check_holdout_task(t);
550 			rcu_read_unlock();
551 		}
552 
553 		/*
554 		 * Because ->on_rq and ->nvcsw are not guaranteed
555 		 * to have a full memory barriers prior to them in the
556 		 * schedule() path, memory reordering on other CPUs could
557 		 * cause their RCU-tasks read-side critical sections to
558 		 * extend past the end of the grace period.  However,
559 		 * because these ->nvcsw updates are carried out with
560 		 * interrupts disabled, we can use synchronize_sched()
561 		 * to force the needed ordering on all such CPUs.
562 		 *
563 		 * This synchronize_sched() also confines all
564 		 * ->rcu_tasks_holdout accesses to be within the grace
565 		 * period, avoiding the need for memory barriers for
566 		 * ->rcu_tasks_holdout accesses.
567 		 *
568 		 * In addition, this synchronize_sched() waits for exiting
569 		 * tasks to complete their final preempt_disable() region
570 		 * of execution, cleaning up after the synchronize_srcu()
571 		 * above.
572 		 */
573 		synchronize_sched();
574 
575 		/* Invoke the callbacks. */
576 		while (list) {
577 			next = list->next;
578 			local_bh_disable();
579 			list->func(list);
580 			local_bh_enable();
581 			list = next;
582 			cond_resched();
583 		}
584 	}
585 }
586 
587 /* Spawn rcu_tasks_kthread() at boot time. */
588 static int __init rcu_spawn_tasks_kthread(void)
589 {
590 	struct task_struct __maybe_unused *t;
591 
592 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
593 	BUG_ON(IS_ERR(t));
594 	return 0;
595 }
596 early_initcall(rcu_spawn_tasks_kthread);
597 
598 #endif /* #ifdef CONFIG_TASKS_RCU */
599