1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <linux/sched/isolation.h> 33 #include <uapi/linux/sched/types.h> 34 #include "../time/tick-internal.h" 35 36 #ifdef CONFIG_RCU_BOOST 37 38 #include "../locking/rtmutex_common.h" 39 40 /* 41 * Control variables for per-CPU and per-rcu_node kthreads. These 42 * handle all flavors of RCU. 43 */ 44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 47 DEFINE_PER_CPU(char, rcu_cpu_has_work); 48 49 #else /* #ifdef CONFIG_RCU_BOOST */ 50 51 /* 52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 53 * all uses are in dead code. Provide a definition to keep the compiler 54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 55 * This probably needs to be excluded from -rt builds. 56 */ 57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1) 59 60 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 61 62 #ifdef CONFIG_RCU_NOCB_CPU 63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 64 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 66 67 /* 68 * Check the RCU kernel configuration parameters and print informative 69 * messages about anything out of the ordinary. 70 */ 71 static void __init rcu_bootup_announce_oddness(void) 72 { 73 if (IS_ENABLED(CONFIG_RCU_TRACE)) 74 pr_info("\tRCU event tracing is enabled.\n"); 75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 78 RCU_FANOUT); 79 if (rcu_fanout_exact) 80 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 83 if (IS_ENABLED(CONFIG_PROVE_RCU)) 84 pr_info("\tRCU lockdep checking is enabled.\n"); 85 if (RCU_NUM_LVLS >= 4) 86 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 87 if (RCU_FANOUT_LEAF != 16) 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 89 RCU_FANOUT_LEAF); 90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 92 if (nr_cpu_ids != NR_CPUS) 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 94 #ifdef CONFIG_RCU_BOOST 95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY); 96 #endif 97 if (blimit != DEFAULT_RCU_BLIMIT) 98 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 99 if (qhimark != DEFAULT_RCU_QHIMARK) 100 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 101 if (qlowmark != DEFAULT_RCU_QLOMARK) 102 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 103 if (jiffies_till_first_fqs != ULONG_MAX) 104 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 105 if (jiffies_till_next_fqs != ULONG_MAX) 106 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 107 if (rcu_kick_kthreads) 108 pr_info("\tKick kthreads if too-long grace period.\n"); 109 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 110 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 111 if (gp_preinit_delay) 112 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 113 if (gp_init_delay) 114 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 115 if (gp_cleanup_delay) 116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 117 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 118 pr_info("\tRCU debug extended QS entry/exit.\n"); 119 rcupdate_announce_bootup_oddness(); 120 } 121 122 #ifdef CONFIG_PREEMPT_RCU 123 124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 127 128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 129 bool wake); 130 131 /* 132 * Tell them what RCU they are running. 133 */ 134 static void __init rcu_bootup_announce(void) 135 { 136 pr_info("Preemptible hierarchical RCU implementation.\n"); 137 rcu_bootup_announce_oddness(); 138 } 139 140 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 141 #define RCU_GP_TASKS 0x8 142 #define RCU_EXP_TASKS 0x4 143 #define RCU_GP_BLKD 0x2 144 #define RCU_EXP_BLKD 0x1 145 146 /* 147 * Queues a task preempted within an RCU-preempt read-side critical 148 * section into the appropriate location within the ->blkd_tasks list, 149 * depending on the states of any ongoing normal and expedited grace 150 * periods. The ->gp_tasks pointer indicates which element the normal 151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 152 * indicates which element the expedited grace period is waiting on (again, 153 * NULL if none). If a grace period is waiting on a given element in the 154 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 155 * adding a task to the tail of the list blocks any grace period that is 156 * already waiting on one of the elements. In contrast, adding a task 157 * to the head of the list won't block any grace period that is already 158 * waiting on one of the elements. 159 * 160 * This queuing is imprecise, and can sometimes make an ongoing grace 161 * period wait for a task that is not strictly speaking blocking it. 162 * Given the choice, we needlessly block a normal grace period rather than 163 * blocking an expedited grace period. 164 * 165 * Note that an endless sequence of expedited grace periods still cannot 166 * indefinitely postpone a normal grace period. Eventually, all of the 167 * fixed number of preempted tasks blocking the normal grace period that are 168 * not also blocking the expedited grace period will resume and complete 169 * their RCU read-side critical sections. At that point, the ->gp_tasks 170 * pointer will equal the ->exp_tasks pointer, at which point the end of 171 * the corresponding expedited grace period will also be the end of the 172 * normal grace period. 173 */ 174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 175 __releases(rnp->lock) /* But leaves rrupts disabled. */ 176 { 177 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 178 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 179 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 180 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 181 struct task_struct *t = current; 182 183 raw_lockdep_assert_held_rcu_node(rnp); 184 WARN_ON_ONCE(rdp->mynode != rnp); 185 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 186 187 /* 188 * Decide where to queue the newly blocked task. In theory, 189 * this could be an if-statement. In practice, when I tried 190 * that, it was quite messy. 191 */ 192 switch (blkd_state) { 193 case 0: 194 case RCU_EXP_TASKS: 195 case RCU_EXP_TASKS + RCU_GP_BLKD: 196 case RCU_GP_TASKS: 197 case RCU_GP_TASKS + RCU_EXP_TASKS: 198 199 /* 200 * Blocking neither GP, or first task blocking the normal 201 * GP but not blocking the already-waiting expedited GP. 202 * Queue at the head of the list to avoid unnecessarily 203 * blocking the already-waiting GPs. 204 */ 205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 206 break; 207 208 case RCU_EXP_BLKD: 209 case RCU_GP_BLKD: 210 case RCU_GP_BLKD + RCU_EXP_BLKD: 211 case RCU_GP_TASKS + RCU_EXP_BLKD: 212 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 213 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 214 215 /* 216 * First task arriving that blocks either GP, or first task 217 * arriving that blocks the expedited GP (with the normal 218 * GP already waiting), or a task arriving that blocks 219 * both GPs with both GPs already waiting. Queue at the 220 * tail of the list to avoid any GP waiting on any of the 221 * already queued tasks that are not blocking it. 222 */ 223 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 224 break; 225 226 case RCU_EXP_TASKS + RCU_EXP_BLKD: 227 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 228 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 229 230 /* 231 * Second or subsequent task blocking the expedited GP. 232 * The task either does not block the normal GP, or is the 233 * first task blocking the normal GP. Queue just after 234 * the first task blocking the expedited GP. 235 */ 236 list_add(&t->rcu_node_entry, rnp->exp_tasks); 237 break; 238 239 case RCU_GP_TASKS + RCU_GP_BLKD: 240 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 241 242 /* 243 * Second or subsequent task blocking the normal GP. 244 * The task does not block the expedited GP. Queue just 245 * after the first task blocking the normal GP. 246 */ 247 list_add(&t->rcu_node_entry, rnp->gp_tasks); 248 break; 249 250 default: 251 252 /* Yet another exercise in excessive paranoia. */ 253 WARN_ON_ONCE(1); 254 break; 255 } 256 257 /* 258 * We have now queued the task. If it was the first one to 259 * block either grace period, update the ->gp_tasks and/or 260 * ->exp_tasks pointers, respectively, to reference the newly 261 * blocked tasks. 262 */ 263 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 264 rnp->gp_tasks = &t->rcu_node_entry; 265 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 266 rnp->exp_tasks = &t->rcu_node_entry; 267 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 268 !(rnp->qsmask & rdp->grpmask)); 269 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 270 !(rnp->expmask & rdp->grpmask)); 271 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 272 273 /* 274 * Report the quiescent state for the expedited GP. This expedited 275 * GP should not be able to end until we report, so there should be 276 * no need to check for a subsequent expedited GP. (Though we are 277 * still in a quiescent state in any case.) 278 */ 279 if (blkd_state & RCU_EXP_BLKD && 280 t->rcu_read_unlock_special.b.exp_need_qs) { 281 t->rcu_read_unlock_special.b.exp_need_qs = false; 282 rcu_report_exp_rdp(rdp->rsp, rdp, true); 283 } else { 284 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 285 } 286 } 287 288 /* 289 * Record a preemptible-RCU quiescent state for the specified CPU. Note 290 * that this just means that the task currently running on the CPU is 291 * not in a quiescent state. There might be any number of tasks blocked 292 * while in an RCU read-side critical section. 293 * 294 * As with the other rcu_*_qs() functions, callers to this function 295 * must disable preemption. 296 */ 297 static void rcu_preempt_qs(void) 298 { 299 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n"); 300 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 301 trace_rcu_grace_period(TPS("rcu_preempt"), 302 __this_cpu_read(rcu_data_p->gpnum), 303 TPS("cpuqs")); 304 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 305 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 306 current->rcu_read_unlock_special.b.need_qs = false; 307 } 308 } 309 310 /* 311 * We have entered the scheduler, and the current task might soon be 312 * context-switched away from. If this task is in an RCU read-side 313 * critical section, we will no longer be able to rely on the CPU to 314 * record that fact, so we enqueue the task on the blkd_tasks list. 315 * The task will dequeue itself when it exits the outermost enclosing 316 * RCU read-side critical section. Therefore, the current grace period 317 * cannot be permitted to complete until the blkd_tasks list entries 318 * predating the current grace period drain, in other words, until 319 * rnp->gp_tasks becomes NULL. 320 * 321 * Caller must disable interrupts. 322 */ 323 static void rcu_preempt_note_context_switch(bool preempt) 324 { 325 struct task_struct *t = current; 326 struct rcu_data *rdp; 327 struct rcu_node *rnp; 328 329 lockdep_assert_irqs_disabled(); 330 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); 331 if (t->rcu_read_lock_nesting > 0 && 332 !t->rcu_read_unlock_special.b.blocked) { 333 334 /* Possibly blocking in an RCU read-side critical section. */ 335 rdp = this_cpu_ptr(rcu_state_p->rda); 336 rnp = rdp->mynode; 337 raw_spin_lock_rcu_node(rnp); 338 t->rcu_read_unlock_special.b.blocked = true; 339 t->rcu_blocked_node = rnp; 340 341 /* 342 * Verify the CPU's sanity, trace the preemption, and 343 * then queue the task as required based on the states 344 * of any ongoing and expedited grace periods. 345 */ 346 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 347 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 348 trace_rcu_preempt_task(rdp->rsp->name, 349 t->pid, 350 (rnp->qsmask & rdp->grpmask) 351 ? rnp->gpnum 352 : rnp->gpnum + 1); 353 rcu_preempt_ctxt_queue(rnp, rdp); 354 } else if (t->rcu_read_lock_nesting < 0 && 355 t->rcu_read_unlock_special.s) { 356 357 /* 358 * Complete exit from RCU read-side critical section on 359 * behalf of preempted instance of __rcu_read_unlock(). 360 */ 361 rcu_read_unlock_special(t); 362 } 363 364 /* 365 * Either we were not in an RCU read-side critical section to 366 * begin with, or we have now recorded that critical section 367 * globally. Either way, we can now note a quiescent state 368 * for this CPU. Again, if we were in an RCU read-side critical 369 * section, and if that critical section was blocking the current 370 * grace period, then the fact that the task has been enqueued 371 * means that we continue to block the current grace period. 372 */ 373 rcu_preempt_qs(); 374 } 375 376 /* 377 * Check for preempted RCU readers blocking the current grace period 378 * for the specified rcu_node structure. If the caller needs a reliable 379 * answer, it must hold the rcu_node's ->lock. 380 */ 381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 382 { 383 return rnp->gp_tasks != NULL; 384 } 385 386 /* 387 * Preemptible RCU implementation for rcu_read_lock(). 388 * Just increment ->rcu_read_lock_nesting, shared state will be updated 389 * if we block. 390 */ 391 void __rcu_read_lock(void) 392 { 393 current->rcu_read_lock_nesting++; 394 barrier(); /* critical section after entry code. */ 395 } 396 EXPORT_SYMBOL_GPL(__rcu_read_lock); 397 398 /* 399 * Preemptible RCU implementation for rcu_read_unlock(). 400 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 401 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 402 * invoke rcu_read_unlock_special() to clean up after a context switch 403 * in an RCU read-side critical section and other special cases. 404 */ 405 void __rcu_read_unlock(void) 406 { 407 struct task_struct *t = current; 408 409 if (t->rcu_read_lock_nesting != 1) { 410 --t->rcu_read_lock_nesting; 411 } else { 412 barrier(); /* critical section before exit code. */ 413 t->rcu_read_lock_nesting = INT_MIN; 414 barrier(); /* assign before ->rcu_read_unlock_special load */ 415 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 416 rcu_read_unlock_special(t); 417 barrier(); /* ->rcu_read_unlock_special load before assign */ 418 t->rcu_read_lock_nesting = 0; 419 } 420 #ifdef CONFIG_PROVE_LOCKING 421 { 422 int rrln = READ_ONCE(t->rcu_read_lock_nesting); 423 424 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); 425 } 426 #endif /* #ifdef CONFIG_PROVE_LOCKING */ 427 } 428 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 429 430 /* 431 * Advance a ->blkd_tasks-list pointer to the next entry, instead 432 * returning NULL if at the end of the list. 433 */ 434 static struct list_head *rcu_next_node_entry(struct task_struct *t, 435 struct rcu_node *rnp) 436 { 437 struct list_head *np; 438 439 np = t->rcu_node_entry.next; 440 if (np == &rnp->blkd_tasks) 441 np = NULL; 442 return np; 443 } 444 445 /* 446 * Return true if the specified rcu_node structure has tasks that were 447 * preempted within an RCU read-side critical section. 448 */ 449 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 450 { 451 return !list_empty(&rnp->blkd_tasks); 452 } 453 454 /* 455 * Handle special cases during rcu_read_unlock(), such as needing to 456 * notify RCU core processing or task having blocked during the RCU 457 * read-side critical section. 458 */ 459 void rcu_read_unlock_special(struct task_struct *t) 460 { 461 bool empty_exp; 462 bool empty_norm; 463 bool empty_exp_now; 464 unsigned long flags; 465 struct list_head *np; 466 bool drop_boost_mutex = false; 467 struct rcu_data *rdp; 468 struct rcu_node *rnp; 469 union rcu_special special; 470 471 /* NMI handlers cannot block and cannot safely manipulate state. */ 472 if (in_nmi()) 473 return; 474 475 local_irq_save(flags); 476 477 /* 478 * If RCU core is waiting for this CPU to exit its critical section, 479 * report the fact that it has exited. Because irqs are disabled, 480 * t->rcu_read_unlock_special cannot change. 481 */ 482 special = t->rcu_read_unlock_special; 483 if (special.b.need_qs) { 484 rcu_preempt_qs(); 485 t->rcu_read_unlock_special.b.need_qs = false; 486 if (!t->rcu_read_unlock_special.s) { 487 local_irq_restore(flags); 488 return; 489 } 490 } 491 492 /* 493 * Respond to a request for an expedited grace period, but only if 494 * we were not preempted, meaning that we were running on the same 495 * CPU throughout. If we were preempted, the exp_need_qs flag 496 * would have been cleared at the time of the first preemption, 497 * and the quiescent state would be reported when we were dequeued. 498 */ 499 if (special.b.exp_need_qs) { 500 WARN_ON_ONCE(special.b.blocked); 501 t->rcu_read_unlock_special.b.exp_need_qs = false; 502 rdp = this_cpu_ptr(rcu_state_p->rda); 503 rcu_report_exp_rdp(rcu_state_p, rdp, true); 504 if (!t->rcu_read_unlock_special.s) { 505 local_irq_restore(flags); 506 return; 507 } 508 } 509 510 /* Hardware IRQ handlers cannot block, complain if they get here. */ 511 if (in_irq() || in_serving_softirq()) { 512 lockdep_rcu_suspicious(__FILE__, __LINE__, 513 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 514 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 515 t->rcu_read_unlock_special.s, 516 t->rcu_read_unlock_special.b.blocked, 517 t->rcu_read_unlock_special.b.exp_need_qs, 518 t->rcu_read_unlock_special.b.need_qs); 519 local_irq_restore(flags); 520 return; 521 } 522 523 /* Clean up if blocked during RCU read-side critical section. */ 524 if (special.b.blocked) { 525 t->rcu_read_unlock_special.b.blocked = false; 526 527 /* 528 * Remove this task from the list it blocked on. The task 529 * now remains queued on the rcu_node corresponding to the 530 * CPU it first blocked on, so there is no longer any need 531 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 532 */ 533 rnp = t->rcu_blocked_node; 534 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 535 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 536 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 537 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 538 empty_exp = sync_rcu_preempt_exp_done(rnp); 539 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 540 np = rcu_next_node_entry(t, rnp); 541 list_del_init(&t->rcu_node_entry); 542 t->rcu_blocked_node = NULL; 543 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 544 rnp->gpnum, t->pid); 545 if (&t->rcu_node_entry == rnp->gp_tasks) 546 rnp->gp_tasks = np; 547 if (&t->rcu_node_entry == rnp->exp_tasks) 548 rnp->exp_tasks = np; 549 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 550 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 551 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 552 if (&t->rcu_node_entry == rnp->boost_tasks) 553 rnp->boost_tasks = np; 554 } 555 556 /* 557 * If this was the last task on the current list, and if 558 * we aren't waiting on any CPUs, report the quiescent state. 559 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 560 * so we must take a snapshot of the expedited state. 561 */ 562 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 563 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 564 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 565 rnp->gpnum, 566 0, rnp->qsmask, 567 rnp->level, 568 rnp->grplo, 569 rnp->grphi, 570 !!rnp->gp_tasks); 571 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 572 } else { 573 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 574 } 575 576 /* Unboost if we were boosted. */ 577 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 578 rt_mutex_futex_unlock(&rnp->boost_mtx); 579 580 /* 581 * If this was the last task on the expedited lists, 582 * then we need to report up the rcu_node hierarchy. 583 */ 584 if (!empty_exp && empty_exp_now) 585 rcu_report_exp_rnp(rcu_state_p, rnp, true); 586 } else { 587 local_irq_restore(flags); 588 } 589 } 590 591 /* 592 * Dump detailed information for all tasks blocking the current RCU 593 * grace period on the specified rcu_node structure. 594 */ 595 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 596 { 597 unsigned long flags; 598 struct task_struct *t; 599 600 raw_spin_lock_irqsave_rcu_node(rnp, flags); 601 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 602 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 603 return; 604 } 605 t = list_entry(rnp->gp_tasks->prev, 606 struct task_struct, rcu_node_entry); 607 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 608 /* 609 * We could be printing a lot while holding a spinlock. 610 * Avoid triggering hard lockup. 611 */ 612 touch_nmi_watchdog(); 613 sched_show_task(t); 614 } 615 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 616 } 617 618 /* 619 * Dump detailed information for all tasks blocking the current RCU 620 * grace period. 621 */ 622 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 623 { 624 struct rcu_node *rnp = rcu_get_root(rsp); 625 626 rcu_print_detail_task_stall_rnp(rnp); 627 rcu_for_each_leaf_node(rsp, rnp) 628 rcu_print_detail_task_stall_rnp(rnp); 629 } 630 631 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 632 { 633 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 634 rnp->level, rnp->grplo, rnp->grphi); 635 } 636 637 static void rcu_print_task_stall_end(void) 638 { 639 pr_cont("\n"); 640 } 641 642 /* 643 * Scan the current list of tasks blocked within RCU read-side critical 644 * sections, printing out the tid of each. 645 */ 646 static int rcu_print_task_stall(struct rcu_node *rnp) 647 { 648 struct task_struct *t; 649 int ndetected = 0; 650 651 if (!rcu_preempt_blocked_readers_cgp(rnp)) 652 return 0; 653 rcu_print_task_stall_begin(rnp); 654 t = list_entry(rnp->gp_tasks->prev, 655 struct task_struct, rcu_node_entry); 656 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 657 pr_cont(" P%d", t->pid); 658 ndetected++; 659 } 660 rcu_print_task_stall_end(); 661 return ndetected; 662 } 663 664 /* 665 * Scan the current list of tasks blocked within RCU read-side critical 666 * sections, printing out the tid of each that is blocking the current 667 * expedited grace period. 668 */ 669 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 670 { 671 struct task_struct *t; 672 int ndetected = 0; 673 674 if (!rnp->exp_tasks) 675 return 0; 676 t = list_entry(rnp->exp_tasks->prev, 677 struct task_struct, rcu_node_entry); 678 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 679 pr_cont(" P%d", t->pid); 680 ndetected++; 681 } 682 return ndetected; 683 } 684 685 /* 686 * Check that the list of blocked tasks for the newly completed grace 687 * period is in fact empty. It is a serious bug to complete a grace 688 * period that still has RCU readers blocked! This function must be 689 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 690 * must be held by the caller. 691 * 692 * Also, if there are blocked tasks on the list, they automatically 693 * block the newly created grace period, so set up ->gp_tasks accordingly. 694 */ 695 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 696 { 697 struct task_struct *t; 698 699 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 700 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 701 if (rcu_preempt_has_tasks(rnp)) { 702 rnp->gp_tasks = rnp->blkd_tasks.next; 703 t = container_of(rnp->gp_tasks, struct task_struct, 704 rcu_node_entry); 705 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 706 rnp->gpnum, t->pid); 707 } 708 WARN_ON_ONCE(rnp->qsmask); 709 } 710 711 /* 712 * Check for a quiescent state from the current CPU. When a task blocks, 713 * the task is recorded in the corresponding CPU's rcu_node structure, 714 * which is checked elsewhere. 715 * 716 * Caller must disable hard irqs. 717 */ 718 static void rcu_preempt_check_callbacks(void) 719 { 720 struct task_struct *t = current; 721 722 if (t->rcu_read_lock_nesting == 0) { 723 rcu_preempt_qs(); 724 return; 725 } 726 if (t->rcu_read_lock_nesting > 0 && 727 __this_cpu_read(rcu_data_p->core_needs_qs) && 728 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 729 t->rcu_read_unlock_special.b.need_qs = true; 730 } 731 732 /** 733 * call_rcu() - Queue an RCU callback for invocation after a grace period. 734 * @head: structure to be used for queueing the RCU updates. 735 * @func: actual callback function to be invoked after the grace period 736 * 737 * The callback function will be invoked some time after a full grace 738 * period elapses, in other words after all pre-existing RCU read-side 739 * critical sections have completed. However, the callback function 740 * might well execute concurrently with RCU read-side critical sections 741 * that started after call_rcu() was invoked. RCU read-side critical 742 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 743 * and may be nested. 744 * 745 * Note that all CPUs must agree that the grace period extended beyond 746 * all pre-existing RCU read-side critical section. On systems with more 747 * than one CPU, this means that when "func()" is invoked, each CPU is 748 * guaranteed to have executed a full memory barrier since the end of its 749 * last RCU read-side critical section whose beginning preceded the call 750 * to call_rcu(). It also means that each CPU executing an RCU read-side 751 * critical section that continues beyond the start of "func()" must have 752 * executed a memory barrier after the call_rcu() but before the beginning 753 * of that RCU read-side critical section. Note that these guarantees 754 * include CPUs that are offline, idle, or executing in user mode, as 755 * well as CPUs that are executing in the kernel. 756 * 757 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 758 * resulting RCU callback function "func()", then both CPU A and CPU B are 759 * guaranteed to execute a full memory barrier during the time interval 760 * between the call to call_rcu() and the invocation of "func()" -- even 761 * if CPU A and CPU B are the same CPU (but again only if the system has 762 * more than one CPU). 763 */ 764 void call_rcu(struct rcu_head *head, rcu_callback_t func) 765 { 766 __call_rcu(head, func, rcu_state_p, -1, 0); 767 } 768 EXPORT_SYMBOL_GPL(call_rcu); 769 770 /** 771 * synchronize_rcu - wait until a grace period has elapsed. 772 * 773 * Control will return to the caller some time after a full grace 774 * period has elapsed, in other words after all currently executing RCU 775 * read-side critical sections have completed. Note, however, that 776 * upon return from synchronize_rcu(), the caller might well be executing 777 * concurrently with new RCU read-side critical sections that began while 778 * synchronize_rcu() was waiting. RCU read-side critical sections are 779 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 780 * 781 * See the description of synchronize_sched() for more detailed 782 * information on memory-ordering guarantees. However, please note 783 * that -only- the memory-ordering guarantees apply. For example, 784 * synchronize_rcu() is -not- guaranteed to wait on things like code 785 * protected by preempt_disable(), instead, synchronize_rcu() is -only- 786 * guaranteed to wait on RCU read-side critical sections, that is, sections 787 * of code protected by rcu_read_lock(). 788 */ 789 void synchronize_rcu(void) 790 { 791 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 792 lock_is_held(&rcu_lock_map) || 793 lock_is_held(&rcu_sched_lock_map), 794 "Illegal synchronize_rcu() in RCU read-side critical section"); 795 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 796 return; 797 if (rcu_gp_is_expedited()) 798 synchronize_rcu_expedited(); 799 else 800 wait_rcu_gp(call_rcu); 801 } 802 EXPORT_SYMBOL_GPL(synchronize_rcu); 803 804 /** 805 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 806 * 807 * Note that this primitive does not necessarily wait for an RCU grace period 808 * to complete. For example, if there are no RCU callbacks queued anywhere 809 * in the system, then rcu_barrier() is within its rights to return 810 * immediately, without waiting for anything, much less an RCU grace period. 811 */ 812 void rcu_barrier(void) 813 { 814 _rcu_barrier(rcu_state_p); 815 } 816 EXPORT_SYMBOL_GPL(rcu_barrier); 817 818 /* 819 * Initialize preemptible RCU's state structures. 820 */ 821 static void __init __rcu_init_preempt(void) 822 { 823 rcu_init_one(rcu_state_p); 824 } 825 826 /* 827 * Check for a task exiting while in a preemptible-RCU read-side 828 * critical section, clean up if so. No need to issue warnings, 829 * as debug_check_no_locks_held() already does this if lockdep 830 * is enabled. 831 */ 832 void exit_rcu(void) 833 { 834 struct task_struct *t = current; 835 836 if (likely(list_empty(¤t->rcu_node_entry))) 837 return; 838 t->rcu_read_lock_nesting = 1; 839 barrier(); 840 t->rcu_read_unlock_special.b.blocked = true; 841 __rcu_read_unlock(); 842 } 843 844 #else /* #ifdef CONFIG_PREEMPT_RCU */ 845 846 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 847 848 /* 849 * Tell them what RCU they are running. 850 */ 851 static void __init rcu_bootup_announce(void) 852 { 853 pr_info("Hierarchical RCU implementation.\n"); 854 rcu_bootup_announce_oddness(); 855 } 856 857 /* 858 * Because preemptible RCU does not exist, we never have to check for 859 * CPUs being in quiescent states. 860 */ 861 static void rcu_preempt_note_context_switch(bool preempt) 862 { 863 } 864 865 /* 866 * Because preemptible RCU does not exist, there are never any preempted 867 * RCU readers. 868 */ 869 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 870 { 871 return 0; 872 } 873 874 /* 875 * Because there is no preemptible RCU, there can be no readers blocked. 876 */ 877 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 878 { 879 return false; 880 } 881 882 /* 883 * Because preemptible RCU does not exist, we never have to check for 884 * tasks blocked within RCU read-side critical sections. 885 */ 886 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 887 { 888 } 889 890 /* 891 * Because preemptible RCU does not exist, we never have to check for 892 * tasks blocked within RCU read-side critical sections. 893 */ 894 static int rcu_print_task_stall(struct rcu_node *rnp) 895 { 896 return 0; 897 } 898 899 /* 900 * Because preemptible RCU does not exist, we never have to check for 901 * tasks blocked within RCU read-side critical sections that are 902 * blocking the current expedited grace period. 903 */ 904 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 905 { 906 return 0; 907 } 908 909 /* 910 * Because there is no preemptible RCU, there can be no readers blocked, 911 * so there is no need to check for blocked tasks. So check only for 912 * bogus qsmask values. 913 */ 914 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 915 { 916 WARN_ON_ONCE(rnp->qsmask); 917 } 918 919 /* 920 * Because preemptible RCU does not exist, it never has any callbacks 921 * to check. 922 */ 923 static void rcu_preempt_check_callbacks(void) 924 { 925 } 926 927 /* 928 * Because preemptible RCU does not exist, rcu_barrier() is just 929 * another name for rcu_barrier_sched(). 930 */ 931 void rcu_barrier(void) 932 { 933 rcu_barrier_sched(); 934 } 935 EXPORT_SYMBOL_GPL(rcu_barrier); 936 937 /* 938 * Because preemptible RCU does not exist, it need not be initialized. 939 */ 940 static void __init __rcu_init_preempt(void) 941 { 942 } 943 944 /* 945 * Because preemptible RCU does not exist, tasks cannot possibly exit 946 * while in preemptible RCU read-side critical sections. 947 */ 948 void exit_rcu(void) 949 { 950 } 951 952 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 953 954 #ifdef CONFIG_RCU_BOOST 955 956 static void rcu_wake_cond(struct task_struct *t, int status) 957 { 958 /* 959 * If the thread is yielding, only wake it when this 960 * is invoked from idle 961 */ 962 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 963 wake_up_process(t); 964 } 965 966 /* 967 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 968 * or ->boost_tasks, advancing the pointer to the next task in the 969 * ->blkd_tasks list. 970 * 971 * Note that irqs must be enabled: boosting the task can block. 972 * Returns 1 if there are more tasks needing to be boosted. 973 */ 974 static int rcu_boost(struct rcu_node *rnp) 975 { 976 unsigned long flags; 977 struct task_struct *t; 978 struct list_head *tb; 979 980 if (READ_ONCE(rnp->exp_tasks) == NULL && 981 READ_ONCE(rnp->boost_tasks) == NULL) 982 return 0; /* Nothing left to boost. */ 983 984 raw_spin_lock_irqsave_rcu_node(rnp, flags); 985 986 /* 987 * Recheck under the lock: all tasks in need of boosting 988 * might exit their RCU read-side critical sections on their own. 989 */ 990 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 991 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 992 return 0; 993 } 994 995 /* 996 * Preferentially boost tasks blocking expedited grace periods. 997 * This cannot starve the normal grace periods because a second 998 * expedited grace period must boost all blocked tasks, including 999 * those blocking the pre-existing normal grace period. 1000 */ 1001 if (rnp->exp_tasks != NULL) 1002 tb = rnp->exp_tasks; 1003 else 1004 tb = rnp->boost_tasks; 1005 1006 /* 1007 * We boost task t by manufacturing an rt_mutex that appears to 1008 * be held by task t. We leave a pointer to that rt_mutex where 1009 * task t can find it, and task t will release the mutex when it 1010 * exits its outermost RCU read-side critical section. Then 1011 * simply acquiring this artificial rt_mutex will boost task 1012 * t's priority. (Thanks to tglx for suggesting this approach!) 1013 * 1014 * Note that task t must acquire rnp->lock to remove itself from 1015 * the ->blkd_tasks list, which it will do from exit() if from 1016 * nowhere else. We therefore are guaranteed that task t will 1017 * stay around at least until we drop rnp->lock. Note that 1018 * rnp->lock also resolves races between our priority boosting 1019 * and task t's exiting its outermost RCU read-side critical 1020 * section. 1021 */ 1022 t = container_of(tb, struct task_struct, rcu_node_entry); 1023 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1024 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1025 /* Lock only for side effect: boosts task t's priority. */ 1026 rt_mutex_lock(&rnp->boost_mtx); 1027 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1028 1029 return READ_ONCE(rnp->exp_tasks) != NULL || 1030 READ_ONCE(rnp->boost_tasks) != NULL; 1031 } 1032 1033 /* 1034 * Priority-boosting kthread, one per leaf rcu_node. 1035 */ 1036 static int rcu_boost_kthread(void *arg) 1037 { 1038 struct rcu_node *rnp = (struct rcu_node *)arg; 1039 int spincnt = 0; 1040 int more2boost; 1041 1042 trace_rcu_utilization(TPS("Start boost kthread@init")); 1043 for (;;) { 1044 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1045 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1046 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1047 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1048 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1049 more2boost = rcu_boost(rnp); 1050 if (more2boost) 1051 spincnt++; 1052 else 1053 spincnt = 0; 1054 if (spincnt > 10) { 1055 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1056 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1057 schedule_timeout_interruptible(2); 1058 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1059 spincnt = 0; 1060 } 1061 } 1062 /* NOTREACHED */ 1063 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1064 return 0; 1065 } 1066 1067 /* 1068 * Check to see if it is time to start boosting RCU readers that are 1069 * blocking the current grace period, and, if so, tell the per-rcu_node 1070 * kthread to start boosting them. If there is an expedited grace 1071 * period in progress, it is always time to boost. 1072 * 1073 * The caller must hold rnp->lock, which this function releases. 1074 * The ->boost_kthread_task is immortal, so we don't need to worry 1075 * about it going away. 1076 */ 1077 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1078 __releases(rnp->lock) 1079 { 1080 struct task_struct *t; 1081 1082 raw_lockdep_assert_held_rcu_node(rnp); 1083 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1084 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1085 return; 1086 } 1087 if (rnp->exp_tasks != NULL || 1088 (rnp->gp_tasks != NULL && 1089 rnp->boost_tasks == NULL && 1090 rnp->qsmask == 0 && 1091 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1092 if (rnp->exp_tasks == NULL) 1093 rnp->boost_tasks = rnp->gp_tasks; 1094 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1095 t = rnp->boost_kthread_task; 1096 if (t) 1097 rcu_wake_cond(t, rnp->boost_kthread_status); 1098 } else { 1099 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1100 } 1101 } 1102 1103 /* 1104 * Wake up the per-CPU kthread to invoke RCU callbacks. 1105 */ 1106 static void invoke_rcu_callbacks_kthread(void) 1107 { 1108 unsigned long flags; 1109 1110 local_irq_save(flags); 1111 __this_cpu_write(rcu_cpu_has_work, 1); 1112 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1113 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1114 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1115 __this_cpu_read(rcu_cpu_kthread_status)); 1116 } 1117 local_irq_restore(flags); 1118 } 1119 1120 /* 1121 * Is the current CPU running the RCU-callbacks kthread? 1122 * Caller must have preemption disabled. 1123 */ 1124 static bool rcu_is_callbacks_kthread(void) 1125 { 1126 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1127 } 1128 1129 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1130 1131 /* 1132 * Do priority-boost accounting for the start of a new grace period. 1133 */ 1134 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1135 { 1136 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1137 } 1138 1139 /* 1140 * Create an RCU-boost kthread for the specified node if one does not 1141 * already exist. We only create this kthread for preemptible RCU. 1142 * Returns zero if all is well, a negated errno otherwise. 1143 */ 1144 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1145 struct rcu_node *rnp) 1146 { 1147 int rnp_index = rnp - &rsp->node[0]; 1148 unsigned long flags; 1149 struct sched_param sp; 1150 struct task_struct *t; 1151 1152 if (rcu_state_p != rsp) 1153 return 0; 1154 1155 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1156 return 0; 1157 1158 rsp->boost = 1; 1159 if (rnp->boost_kthread_task != NULL) 1160 return 0; 1161 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1162 "rcub/%d", rnp_index); 1163 if (IS_ERR(t)) 1164 return PTR_ERR(t); 1165 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1166 rnp->boost_kthread_task = t; 1167 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1168 sp.sched_priority = kthread_prio; 1169 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1170 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1171 return 0; 1172 } 1173 1174 static void rcu_kthread_do_work(void) 1175 { 1176 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1177 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1178 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); 1179 } 1180 1181 static void rcu_cpu_kthread_setup(unsigned int cpu) 1182 { 1183 struct sched_param sp; 1184 1185 sp.sched_priority = kthread_prio; 1186 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1187 } 1188 1189 static void rcu_cpu_kthread_park(unsigned int cpu) 1190 { 1191 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1192 } 1193 1194 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1195 { 1196 return __this_cpu_read(rcu_cpu_has_work); 1197 } 1198 1199 /* 1200 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1201 * RCU softirq used in flavors and configurations of RCU that do not 1202 * support RCU priority boosting. 1203 */ 1204 static void rcu_cpu_kthread(unsigned int cpu) 1205 { 1206 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1207 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1208 int spincnt; 1209 1210 for (spincnt = 0; spincnt < 10; spincnt++) { 1211 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1212 local_bh_disable(); 1213 *statusp = RCU_KTHREAD_RUNNING; 1214 this_cpu_inc(rcu_cpu_kthread_loops); 1215 local_irq_disable(); 1216 work = *workp; 1217 *workp = 0; 1218 local_irq_enable(); 1219 if (work) 1220 rcu_kthread_do_work(); 1221 local_bh_enable(); 1222 if (*workp == 0) { 1223 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1224 *statusp = RCU_KTHREAD_WAITING; 1225 return; 1226 } 1227 } 1228 *statusp = RCU_KTHREAD_YIELDING; 1229 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1230 schedule_timeout_interruptible(2); 1231 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1232 *statusp = RCU_KTHREAD_WAITING; 1233 } 1234 1235 /* 1236 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1237 * served by the rcu_node in question. The CPU hotplug lock is still 1238 * held, so the value of rnp->qsmaskinit will be stable. 1239 * 1240 * We don't include outgoingcpu in the affinity set, use -1 if there is 1241 * no outgoing CPU. If there are no CPUs left in the affinity set, 1242 * this function allows the kthread to execute on any CPU. 1243 */ 1244 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1245 { 1246 struct task_struct *t = rnp->boost_kthread_task; 1247 unsigned long mask = rcu_rnp_online_cpus(rnp); 1248 cpumask_var_t cm; 1249 int cpu; 1250 1251 if (!t) 1252 return; 1253 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1254 return; 1255 for_each_leaf_node_possible_cpu(rnp, cpu) 1256 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1257 cpu != outgoingcpu) 1258 cpumask_set_cpu(cpu, cm); 1259 if (cpumask_weight(cm) == 0) 1260 cpumask_setall(cm); 1261 set_cpus_allowed_ptr(t, cm); 1262 free_cpumask_var(cm); 1263 } 1264 1265 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1266 .store = &rcu_cpu_kthread_task, 1267 .thread_should_run = rcu_cpu_kthread_should_run, 1268 .thread_fn = rcu_cpu_kthread, 1269 .thread_comm = "rcuc/%u", 1270 .setup = rcu_cpu_kthread_setup, 1271 .park = rcu_cpu_kthread_park, 1272 }; 1273 1274 /* 1275 * Spawn boost kthreads -- called as soon as the scheduler is running. 1276 */ 1277 static void __init rcu_spawn_boost_kthreads(void) 1278 { 1279 struct rcu_node *rnp; 1280 int cpu; 1281 1282 for_each_possible_cpu(cpu) 1283 per_cpu(rcu_cpu_has_work, cpu) = 0; 1284 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1285 rcu_for_each_leaf_node(rcu_state_p, rnp) 1286 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1287 } 1288 1289 static void rcu_prepare_kthreads(int cpu) 1290 { 1291 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1292 struct rcu_node *rnp = rdp->mynode; 1293 1294 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1295 if (rcu_scheduler_fully_active) 1296 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1297 } 1298 1299 #else /* #ifdef CONFIG_RCU_BOOST */ 1300 1301 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1302 __releases(rnp->lock) 1303 { 1304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1305 } 1306 1307 static void invoke_rcu_callbacks_kthread(void) 1308 { 1309 WARN_ON_ONCE(1); 1310 } 1311 1312 static bool rcu_is_callbacks_kthread(void) 1313 { 1314 return false; 1315 } 1316 1317 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1318 { 1319 } 1320 1321 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1322 { 1323 } 1324 1325 static void __init rcu_spawn_boost_kthreads(void) 1326 { 1327 } 1328 1329 static void rcu_prepare_kthreads(int cpu) 1330 { 1331 } 1332 1333 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1334 1335 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1336 1337 /* 1338 * Check to see if any future RCU-related work will need to be done 1339 * by the current CPU, even if none need be done immediately, returning 1340 * 1 if so. This function is part of the RCU implementation; it is -not- 1341 * an exported member of the RCU API. 1342 * 1343 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1344 * any flavor of RCU. 1345 */ 1346 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1347 { 1348 *nextevt = KTIME_MAX; 1349 return rcu_cpu_has_callbacks(NULL); 1350 } 1351 1352 /* 1353 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1354 * after it. 1355 */ 1356 static void rcu_cleanup_after_idle(void) 1357 { 1358 } 1359 1360 /* 1361 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1362 * is nothing. 1363 */ 1364 static void rcu_prepare_for_idle(void) 1365 { 1366 } 1367 1368 /* 1369 * Don't bother keeping a running count of the number of RCU callbacks 1370 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1371 */ 1372 static void rcu_idle_count_callbacks_posted(void) 1373 { 1374 } 1375 1376 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1377 1378 /* 1379 * This code is invoked when a CPU goes idle, at which point we want 1380 * to have the CPU do everything required for RCU so that it can enter 1381 * the energy-efficient dyntick-idle mode. This is handled by a 1382 * state machine implemented by rcu_prepare_for_idle() below. 1383 * 1384 * The following three proprocessor symbols control this state machine: 1385 * 1386 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1387 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1388 * is sized to be roughly one RCU grace period. Those energy-efficiency 1389 * benchmarkers who might otherwise be tempted to set this to a large 1390 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1391 * system. And if you are -that- concerned about energy efficiency, 1392 * just power the system down and be done with it! 1393 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1394 * permitted to sleep in dyntick-idle mode with only lazy RCU 1395 * callbacks pending. Setting this too high can OOM your system. 1396 * 1397 * The values below work well in practice. If future workloads require 1398 * adjustment, they can be converted into kernel config parameters, though 1399 * making the state machine smarter might be a better option. 1400 */ 1401 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1402 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1403 1404 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1405 module_param(rcu_idle_gp_delay, int, 0644); 1406 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1407 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1408 1409 /* 1410 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1411 * only if it has been awhile since the last time we did so. Afterwards, 1412 * if there are any callbacks ready for immediate invocation, return true. 1413 */ 1414 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1415 { 1416 bool cbs_ready = false; 1417 struct rcu_data *rdp; 1418 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1419 struct rcu_node *rnp; 1420 struct rcu_state *rsp; 1421 1422 /* Exit early if we advanced recently. */ 1423 if (jiffies == rdtp->last_advance_all) 1424 return false; 1425 rdtp->last_advance_all = jiffies; 1426 1427 for_each_rcu_flavor(rsp) { 1428 rdp = this_cpu_ptr(rsp->rda); 1429 rnp = rdp->mynode; 1430 1431 /* 1432 * Don't bother checking unless a grace period has 1433 * completed since we last checked and there are 1434 * callbacks not yet ready to invoke. 1435 */ 1436 if ((rdp->completed != rnp->completed || 1437 unlikely(READ_ONCE(rdp->gpwrap))) && 1438 rcu_segcblist_pend_cbs(&rdp->cblist)) 1439 note_gp_changes(rsp, rdp); 1440 1441 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1442 cbs_ready = true; 1443 } 1444 return cbs_ready; 1445 } 1446 1447 /* 1448 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1449 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1450 * caller to set the timeout based on whether or not there are non-lazy 1451 * callbacks. 1452 * 1453 * The caller must have disabled interrupts. 1454 */ 1455 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1456 { 1457 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1458 unsigned long dj; 1459 1460 lockdep_assert_irqs_disabled(); 1461 1462 /* Snapshot to detect later posting of non-lazy callback. */ 1463 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1464 1465 /* If no callbacks, RCU doesn't need the CPU. */ 1466 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1467 *nextevt = KTIME_MAX; 1468 return 0; 1469 } 1470 1471 /* Attempt to advance callbacks. */ 1472 if (rcu_try_advance_all_cbs()) { 1473 /* Some ready to invoke, so initiate later invocation. */ 1474 invoke_rcu_core(); 1475 return 1; 1476 } 1477 rdtp->last_accelerate = jiffies; 1478 1479 /* Request timer delay depending on laziness, and round. */ 1480 if (!rdtp->all_lazy) { 1481 dj = round_up(rcu_idle_gp_delay + jiffies, 1482 rcu_idle_gp_delay) - jiffies; 1483 } else { 1484 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1485 } 1486 *nextevt = basemono + dj * TICK_NSEC; 1487 return 0; 1488 } 1489 1490 /* 1491 * Prepare a CPU for idle from an RCU perspective. The first major task 1492 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1493 * The second major task is to check to see if a non-lazy callback has 1494 * arrived at a CPU that previously had only lazy callbacks. The third 1495 * major task is to accelerate (that is, assign grace-period numbers to) 1496 * any recently arrived callbacks. 1497 * 1498 * The caller must have disabled interrupts. 1499 */ 1500 static void rcu_prepare_for_idle(void) 1501 { 1502 bool needwake; 1503 struct rcu_data *rdp; 1504 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1505 struct rcu_node *rnp; 1506 struct rcu_state *rsp; 1507 int tne; 1508 1509 lockdep_assert_irqs_disabled(); 1510 if (rcu_is_nocb_cpu(smp_processor_id())) 1511 return; 1512 1513 /* Handle nohz enablement switches conservatively. */ 1514 tne = READ_ONCE(tick_nohz_active); 1515 if (tne != rdtp->tick_nohz_enabled_snap) { 1516 if (rcu_cpu_has_callbacks(NULL)) 1517 invoke_rcu_core(); /* force nohz to see update. */ 1518 rdtp->tick_nohz_enabled_snap = tne; 1519 return; 1520 } 1521 if (!tne) 1522 return; 1523 1524 /* 1525 * If a non-lazy callback arrived at a CPU having only lazy 1526 * callbacks, invoke RCU core for the side-effect of recalculating 1527 * idle duration on re-entry to idle. 1528 */ 1529 if (rdtp->all_lazy && 1530 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1531 rdtp->all_lazy = false; 1532 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1533 invoke_rcu_core(); 1534 return; 1535 } 1536 1537 /* 1538 * If we have not yet accelerated this jiffy, accelerate all 1539 * callbacks on this CPU. 1540 */ 1541 if (rdtp->last_accelerate == jiffies) 1542 return; 1543 rdtp->last_accelerate = jiffies; 1544 for_each_rcu_flavor(rsp) { 1545 rdp = this_cpu_ptr(rsp->rda); 1546 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1547 continue; 1548 rnp = rdp->mynode; 1549 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1550 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1551 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1552 if (needwake) 1553 rcu_gp_kthread_wake(rsp); 1554 } 1555 } 1556 1557 /* 1558 * Clean up for exit from idle. Attempt to advance callbacks based on 1559 * any grace periods that elapsed while the CPU was idle, and if any 1560 * callbacks are now ready to invoke, initiate invocation. 1561 */ 1562 static void rcu_cleanup_after_idle(void) 1563 { 1564 lockdep_assert_irqs_disabled(); 1565 if (rcu_is_nocb_cpu(smp_processor_id())) 1566 return; 1567 if (rcu_try_advance_all_cbs()) 1568 invoke_rcu_core(); 1569 } 1570 1571 /* 1572 * Keep a running count of the number of non-lazy callbacks posted 1573 * on this CPU. This running counter (which is never decremented) allows 1574 * rcu_prepare_for_idle() to detect when something out of the idle loop 1575 * posts a callback, even if an equal number of callbacks are invoked. 1576 * Of course, callbacks should only be posted from within a trace event 1577 * designed to be called from idle or from within RCU_NONIDLE(). 1578 */ 1579 static void rcu_idle_count_callbacks_posted(void) 1580 { 1581 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1582 } 1583 1584 /* 1585 * Data for flushing lazy RCU callbacks at OOM time. 1586 */ 1587 static atomic_t oom_callback_count; 1588 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1589 1590 /* 1591 * RCU OOM callback -- decrement the outstanding count and deliver the 1592 * wake-up if we are the last one. 1593 */ 1594 static void rcu_oom_callback(struct rcu_head *rhp) 1595 { 1596 if (atomic_dec_and_test(&oom_callback_count)) 1597 wake_up(&oom_callback_wq); 1598 } 1599 1600 /* 1601 * Post an rcu_oom_notify callback on the current CPU if it has at 1602 * least one lazy callback. This will unnecessarily post callbacks 1603 * to CPUs that already have a non-lazy callback at the end of their 1604 * callback list, but this is an infrequent operation, so accept some 1605 * extra overhead to keep things simple. 1606 */ 1607 static void rcu_oom_notify_cpu(void *unused) 1608 { 1609 struct rcu_state *rsp; 1610 struct rcu_data *rdp; 1611 1612 for_each_rcu_flavor(rsp) { 1613 rdp = raw_cpu_ptr(rsp->rda); 1614 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { 1615 atomic_inc(&oom_callback_count); 1616 rsp->call(&rdp->oom_head, rcu_oom_callback); 1617 } 1618 } 1619 } 1620 1621 /* 1622 * If low on memory, ensure that each CPU has a non-lazy callback. 1623 * This will wake up CPUs that have only lazy callbacks, in turn 1624 * ensuring that they free up the corresponding memory in a timely manner. 1625 * Because an uncertain amount of memory will be freed in some uncertain 1626 * timeframe, we do not claim to have freed anything. 1627 */ 1628 static int rcu_oom_notify(struct notifier_block *self, 1629 unsigned long notused, void *nfreed) 1630 { 1631 int cpu; 1632 1633 /* Wait for callbacks from earlier instance to complete. */ 1634 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1635 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1636 1637 /* 1638 * Prevent premature wakeup: ensure that all increments happen 1639 * before there is a chance of the counter reaching zero. 1640 */ 1641 atomic_set(&oom_callback_count, 1); 1642 1643 for_each_online_cpu(cpu) { 1644 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1645 cond_resched_tasks_rcu_qs(); 1646 } 1647 1648 /* Unconditionally decrement: no need to wake ourselves up. */ 1649 atomic_dec(&oom_callback_count); 1650 1651 return NOTIFY_OK; 1652 } 1653 1654 static struct notifier_block rcu_oom_nb = { 1655 .notifier_call = rcu_oom_notify 1656 }; 1657 1658 static int __init rcu_register_oom_notifier(void) 1659 { 1660 register_oom_notifier(&rcu_oom_nb); 1661 return 0; 1662 } 1663 early_initcall(rcu_register_oom_notifier); 1664 1665 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1666 1667 #ifdef CONFIG_RCU_FAST_NO_HZ 1668 1669 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1670 { 1671 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1672 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1673 1674 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1675 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1676 ulong2long(nlpd), 1677 rdtp->all_lazy ? 'L' : '.', 1678 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1679 } 1680 1681 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1682 1683 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1684 { 1685 *cp = '\0'; 1686 } 1687 1688 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1689 1690 /* Initiate the stall-info list. */ 1691 static void print_cpu_stall_info_begin(void) 1692 { 1693 pr_cont("\n"); 1694 } 1695 1696 /* 1697 * Print out diagnostic information for the specified stalled CPU. 1698 * 1699 * If the specified CPU is aware of the current RCU grace period 1700 * (flavor specified by rsp), then print the number of scheduling 1701 * clock interrupts the CPU has taken during the time that it has 1702 * been aware. Otherwise, print the number of RCU grace periods 1703 * that this CPU is ignorant of, for example, "1" if the CPU was 1704 * aware of the previous grace period. 1705 * 1706 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1707 */ 1708 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1709 { 1710 unsigned long delta; 1711 char fast_no_hz[72]; 1712 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1713 struct rcu_dynticks *rdtp = rdp->dynticks; 1714 char *ticks_title; 1715 unsigned long ticks_value; 1716 1717 /* 1718 * We could be printing a lot while holding a spinlock. Avoid 1719 * triggering hard lockup. 1720 */ 1721 touch_nmi_watchdog(); 1722 1723 if (rsp->gpnum == rdp->gpnum) { 1724 ticks_title = "ticks this GP"; 1725 ticks_value = rdp->ticks_this_gp; 1726 } else { 1727 ticks_title = "GPs behind"; 1728 ticks_value = rsp->gpnum - rdp->gpnum; 1729 } 1730 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1731 delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum; 1732 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n", 1733 cpu, 1734 "O."[!!cpu_online(cpu)], 1735 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1736 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1737 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' : 1738 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' : 1739 "!."[!delta], 1740 ticks_value, ticks_title, 1741 rcu_dynticks_snap(rdtp) & 0xfff, 1742 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1743 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1744 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1745 fast_no_hz); 1746 } 1747 1748 /* Terminate the stall-info list. */ 1749 static void print_cpu_stall_info_end(void) 1750 { 1751 pr_err("\t"); 1752 } 1753 1754 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1755 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1756 { 1757 rdp->ticks_this_gp = 0; 1758 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1759 } 1760 1761 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1762 static void increment_cpu_stall_ticks(void) 1763 { 1764 struct rcu_state *rsp; 1765 1766 for_each_rcu_flavor(rsp) 1767 raw_cpu_inc(rsp->rda->ticks_this_gp); 1768 } 1769 1770 #ifdef CONFIG_RCU_NOCB_CPU 1771 1772 /* 1773 * Offload callback processing from the boot-time-specified set of CPUs 1774 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1775 * kthread created that pulls the callbacks from the corresponding CPU, 1776 * waits for a grace period to elapse, and invokes the callbacks. 1777 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1778 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1779 * has been specified, in which case each kthread actively polls its 1780 * CPU. (Which isn't so great for energy efficiency, but which does 1781 * reduce RCU's overhead on that CPU.) 1782 * 1783 * This is intended to be used in conjunction with Frederic Weisbecker's 1784 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1785 * running CPU-bound user-mode computations. 1786 * 1787 * Offloading of callback processing could also in theory be used as 1788 * an energy-efficiency measure because CPUs with no RCU callbacks 1789 * queued are more aggressive about entering dyntick-idle mode. 1790 */ 1791 1792 1793 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1794 static int __init rcu_nocb_setup(char *str) 1795 { 1796 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1797 cpulist_parse(str, rcu_nocb_mask); 1798 return 1; 1799 } 1800 __setup("rcu_nocbs=", rcu_nocb_setup); 1801 1802 static int __init parse_rcu_nocb_poll(char *arg) 1803 { 1804 rcu_nocb_poll = true; 1805 return 0; 1806 } 1807 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1808 1809 /* 1810 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1811 * grace period. 1812 */ 1813 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1814 { 1815 swake_up_all(sq); 1816 } 1817 1818 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1819 { 1820 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1821 } 1822 1823 static void rcu_init_one_nocb(struct rcu_node *rnp) 1824 { 1825 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1826 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1827 } 1828 1829 /* Is the specified CPU a no-CBs CPU? */ 1830 bool rcu_is_nocb_cpu(int cpu) 1831 { 1832 if (cpumask_available(rcu_nocb_mask)) 1833 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1834 return false; 1835 } 1836 1837 /* 1838 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock 1839 * and this function releases it. 1840 */ 1841 static void __wake_nocb_leader(struct rcu_data *rdp, bool force, 1842 unsigned long flags) 1843 __releases(rdp->nocb_lock) 1844 { 1845 struct rcu_data *rdp_leader = rdp->nocb_leader; 1846 1847 lockdep_assert_held(&rdp->nocb_lock); 1848 if (!READ_ONCE(rdp_leader->nocb_kthread)) { 1849 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1850 return; 1851 } 1852 if (rdp_leader->nocb_leader_sleep || force) { 1853 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1854 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1855 del_timer(&rdp->nocb_timer); 1856 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1857 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */ 1858 swake_up(&rdp_leader->nocb_wq); 1859 } else { 1860 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1861 } 1862 } 1863 1864 /* 1865 * Kick the leader kthread for this NOCB group, but caller has not 1866 * acquired locks. 1867 */ 1868 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1869 { 1870 unsigned long flags; 1871 1872 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1873 __wake_nocb_leader(rdp, force, flags); 1874 } 1875 1876 /* 1877 * Arrange to wake the leader kthread for this NOCB group at some 1878 * future time when it is safe to do so. 1879 */ 1880 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, 1881 const char *reason) 1882 { 1883 unsigned long flags; 1884 1885 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1886 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1887 mod_timer(&rdp->nocb_timer, jiffies + 1); 1888 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1889 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason); 1890 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1891 } 1892 1893 /* 1894 * Does the specified CPU need an RCU callback for the specified flavor 1895 * of rcu_barrier()? 1896 */ 1897 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1898 { 1899 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1900 unsigned long ret; 1901 #ifdef CONFIG_PROVE_RCU 1902 struct rcu_head *rhp; 1903 #endif /* #ifdef CONFIG_PROVE_RCU */ 1904 1905 /* 1906 * Check count of all no-CBs callbacks awaiting invocation. 1907 * There needs to be a barrier before this function is called, 1908 * but associated with a prior determination that no more 1909 * callbacks would be posted. In the worst case, the first 1910 * barrier in _rcu_barrier() suffices (but the caller cannot 1911 * necessarily rely on this, not a substitute for the caller 1912 * getting the concurrency design right!). There must also be 1913 * a barrier between the following load an posting of a callback 1914 * (if a callback is in fact needed). This is associated with an 1915 * atomic_inc() in the caller. 1916 */ 1917 ret = atomic_long_read(&rdp->nocb_q_count); 1918 1919 #ifdef CONFIG_PROVE_RCU 1920 rhp = READ_ONCE(rdp->nocb_head); 1921 if (!rhp) 1922 rhp = READ_ONCE(rdp->nocb_gp_head); 1923 if (!rhp) 1924 rhp = READ_ONCE(rdp->nocb_follower_head); 1925 1926 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1927 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1928 rcu_scheduler_fully_active) { 1929 /* RCU callback enqueued before CPU first came online??? */ 1930 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1931 cpu, rhp->func); 1932 WARN_ON_ONCE(1); 1933 } 1934 #endif /* #ifdef CONFIG_PROVE_RCU */ 1935 1936 return !!ret; 1937 } 1938 1939 /* 1940 * Enqueue the specified string of rcu_head structures onto the specified 1941 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1942 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1943 * counts are supplied by rhcount and rhcount_lazy. 1944 * 1945 * If warranted, also wake up the kthread servicing this CPUs queues. 1946 */ 1947 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1948 struct rcu_head *rhp, 1949 struct rcu_head **rhtp, 1950 int rhcount, int rhcount_lazy, 1951 unsigned long flags) 1952 { 1953 int len; 1954 struct rcu_head **old_rhpp; 1955 struct task_struct *t; 1956 1957 /* Enqueue the callback on the nocb list and update counts. */ 1958 atomic_long_add(rhcount, &rdp->nocb_q_count); 1959 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1960 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1961 WRITE_ONCE(*old_rhpp, rhp); 1962 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1963 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1964 1965 /* If we are not being polled and there is a kthread, awaken it ... */ 1966 t = READ_ONCE(rdp->nocb_kthread); 1967 if (rcu_nocb_poll || !t) { 1968 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1969 TPS("WakeNotPoll")); 1970 return; 1971 } 1972 len = atomic_long_read(&rdp->nocb_q_count); 1973 if (old_rhpp == &rdp->nocb_head) { 1974 if (!irqs_disabled_flags(flags)) { 1975 /* ... if queue was empty ... */ 1976 wake_nocb_leader(rdp, false); 1977 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1978 TPS("WakeEmpty")); 1979 } else { 1980 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 1981 TPS("WakeEmptyIsDeferred")); 1982 } 1983 rdp->qlen_last_fqs_check = 0; 1984 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1985 /* ... or if many callbacks queued. */ 1986 if (!irqs_disabled_flags(flags)) { 1987 wake_nocb_leader(rdp, true); 1988 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1989 TPS("WakeOvf")); 1990 } else { 1991 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE, 1992 TPS("WakeOvfIsDeferred")); 1993 } 1994 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1995 } else { 1996 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1997 } 1998 return; 1999 } 2000 2001 /* 2002 * This is a helper for __call_rcu(), which invokes this when the normal 2003 * callback queue is inoperable. If this is not a no-CBs CPU, this 2004 * function returns failure back to __call_rcu(), which can complain 2005 * appropriately. 2006 * 2007 * Otherwise, this function queues the callback where the corresponding 2008 * "rcuo" kthread can find it. 2009 */ 2010 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2011 bool lazy, unsigned long flags) 2012 { 2013 2014 if (!rcu_is_nocb_cpu(rdp->cpu)) 2015 return false; 2016 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2017 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2018 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2019 (unsigned long)rhp->func, 2020 -atomic_long_read(&rdp->nocb_q_count_lazy), 2021 -atomic_long_read(&rdp->nocb_q_count)); 2022 else 2023 trace_rcu_callback(rdp->rsp->name, rhp, 2024 -atomic_long_read(&rdp->nocb_q_count_lazy), 2025 -atomic_long_read(&rdp->nocb_q_count)); 2026 2027 /* 2028 * If called from an extended quiescent state with interrupts 2029 * disabled, invoke the RCU core in order to allow the idle-entry 2030 * deferred-wakeup check to function. 2031 */ 2032 if (irqs_disabled_flags(flags) && 2033 !rcu_is_watching() && 2034 cpu_online(smp_processor_id())) 2035 invoke_rcu_core(); 2036 2037 return true; 2038 } 2039 2040 /* 2041 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2042 * not a no-CBs CPU. 2043 */ 2044 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2045 struct rcu_data *rdp, 2046 unsigned long flags) 2047 { 2048 lockdep_assert_irqs_disabled(); 2049 if (!rcu_is_nocb_cpu(smp_processor_id())) 2050 return false; /* Not NOCBs CPU, caller must migrate CBs. */ 2051 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist), 2052 rcu_segcblist_tail(&rdp->cblist), 2053 rcu_segcblist_n_cbs(&rdp->cblist), 2054 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags); 2055 rcu_segcblist_init(&rdp->cblist); 2056 rcu_segcblist_disable(&rdp->cblist); 2057 return true; 2058 } 2059 2060 /* 2061 * If necessary, kick off a new grace period, and either way wait 2062 * for a subsequent grace period to complete. 2063 */ 2064 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2065 { 2066 unsigned long c; 2067 bool d; 2068 unsigned long flags; 2069 bool needwake; 2070 struct rcu_node *rnp = rdp->mynode; 2071 2072 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2073 c = rcu_cbs_completed(rdp->rsp, rnp); 2074 needwake = rcu_start_this_gp(rnp, rdp, c); 2075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2076 if (needwake) 2077 rcu_gp_kthread_wake(rdp->rsp); 2078 2079 /* 2080 * Wait for the grace period. Do so interruptibly to avoid messing 2081 * up the load average. 2082 */ 2083 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait")); 2084 for (;;) { 2085 swait_event_interruptible( 2086 rnp->nocb_gp_wq[c & 0x1], 2087 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2088 if (likely(d)) 2089 break; 2090 WARN_ON(signal_pending(current)); 2091 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait")); 2092 } 2093 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait")); 2094 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2095 } 2096 2097 /* 2098 * Leaders come here to wait for additional callbacks to show up. 2099 * This function does not return until callbacks appear. 2100 */ 2101 static void nocb_leader_wait(struct rcu_data *my_rdp) 2102 { 2103 bool firsttime = true; 2104 unsigned long flags; 2105 bool gotcbs; 2106 struct rcu_data *rdp; 2107 struct rcu_head **tail; 2108 2109 wait_again: 2110 2111 /* Wait for callbacks to appear. */ 2112 if (!rcu_nocb_poll) { 2113 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep")); 2114 swait_event_interruptible(my_rdp->nocb_wq, 2115 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2116 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2117 my_rdp->nocb_leader_sleep = true; 2118 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2119 del_timer(&my_rdp->nocb_timer); 2120 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2121 } else if (firsttime) { 2122 firsttime = false; /* Don't drown trace log with "Poll"! */ 2123 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll")); 2124 } 2125 2126 /* 2127 * Each pass through the following loop checks a follower for CBs. 2128 * We are our own first follower. Any CBs found are moved to 2129 * nocb_gp_head, where they await a grace period. 2130 */ 2131 gotcbs = false; 2132 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */ 2133 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2134 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2135 if (!rdp->nocb_gp_head) 2136 continue; /* No CBs here, try next follower. */ 2137 2138 /* Move callbacks to wait-for-GP list, which is empty. */ 2139 WRITE_ONCE(rdp->nocb_head, NULL); 2140 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2141 gotcbs = true; 2142 } 2143 2144 /* No callbacks? Sleep a bit if polling, and go retry. */ 2145 if (unlikely(!gotcbs)) { 2146 WARN_ON(signal_pending(current)); 2147 if (rcu_nocb_poll) { 2148 schedule_timeout_interruptible(1); 2149 } else { 2150 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2151 TPS("WokeEmpty")); 2152 } 2153 goto wait_again; 2154 } 2155 2156 /* Wait for one grace period. */ 2157 rcu_nocb_wait_gp(my_rdp); 2158 2159 /* Each pass through the following loop wakes a follower, if needed. */ 2160 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2161 if (!rcu_nocb_poll && 2162 READ_ONCE(rdp->nocb_head) && 2163 READ_ONCE(my_rdp->nocb_leader_sleep)) { 2164 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2165 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2166 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2167 } 2168 if (!rdp->nocb_gp_head) 2169 continue; /* No CBs, so no need to wake follower. */ 2170 2171 /* Append callbacks to follower's "done" list. */ 2172 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2173 tail = rdp->nocb_follower_tail; 2174 rdp->nocb_follower_tail = rdp->nocb_gp_tail; 2175 *tail = rdp->nocb_gp_head; 2176 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2177 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2178 /* List was empty, so wake up the follower. */ 2179 swake_up(&rdp->nocb_wq); 2180 } 2181 } 2182 2183 /* If we (the leader) don't have CBs, go wait some more. */ 2184 if (!my_rdp->nocb_follower_head) 2185 goto wait_again; 2186 } 2187 2188 /* 2189 * Followers come here to wait for additional callbacks to show up. 2190 * This function does not return until callbacks appear. 2191 */ 2192 static void nocb_follower_wait(struct rcu_data *rdp) 2193 { 2194 for (;;) { 2195 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep")); 2196 swait_event_interruptible(rdp->nocb_wq, 2197 READ_ONCE(rdp->nocb_follower_head)); 2198 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2199 /* ^^^ Ensure CB invocation follows _head test. */ 2200 return; 2201 } 2202 WARN_ON(signal_pending(current)); 2203 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty")); 2204 } 2205 } 2206 2207 /* 2208 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2209 * callbacks queued by the corresponding no-CBs CPU, however, there is 2210 * an optional leader-follower relationship so that the grace-period 2211 * kthreads don't have to do quite so many wakeups. 2212 */ 2213 static int rcu_nocb_kthread(void *arg) 2214 { 2215 int c, cl; 2216 unsigned long flags; 2217 struct rcu_head *list; 2218 struct rcu_head *next; 2219 struct rcu_head **tail; 2220 struct rcu_data *rdp = arg; 2221 2222 /* Each pass through this loop invokes one batch of callbacks */ 2223 for (;;) { 2224 /* Wait for callbacks. */ 2225 if (rdp->nocb_leader == rdp) 2226 nocb_leader_wait(rdp); 2227 else 2228 nocb_follower_wait(rdp); 2229 2230 /* Pull the ready-to-invoke callbacks onto local list. */ 2231 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2232 list = rdp->nocb_follower_head; 2233 rdp->nocb_follower_head = NULL; 2234 tail = rdp->nocb_follower_tail; 2235 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2236 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2237 BUG_ON(!list); 2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty")); 2239 2240 /* Each pass through the following loop invokes a callback. */ 2241 trace_rcu_batch_start(rdp->rsp->name, 2242 atomic_long_read(&rdp->nocb_q_count_lazy), 2243 atomic_long_read(&rdp->nocb_q_count), -1); 2244 c = cl = 0; 2245 while (list) { 2246 next = list->next; 2247 /* Wait for enqueuing to complete, if needed. */ 2248 while (next == NULL && &list->next != tail) { 2249 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2250 TPS("WaitQueue")); 2251 schedule_timeout_interruptible(1); 2252 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2253 TPS("WokeQueue")); 2254 next = list->next; 2255 } 2256 debug_rcu_head_unqueue(list); 2257 local_bh_disable(); 2258 if (__rcu_reclaim(rdp->rsp->name, list)) 2259 cl++; 2260 c++; 2261 local_bh_enable(); 2262 cond_resched_tasks_rcu_qs(); 2263 list = next; 2264 } 2265 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2266 smp_mb__before_atomic(); /* _add after CB invocation. */ 2267 atomic_long_add(-c, &rdp->nocb_q_count); 2268 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2269 } 2270 return 0; 2271 } 2272 2273 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2274 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2275 { 2276 return READ_ONCE(rdp->nocb_defer_wakeup); 2277 } 2278 2279 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2280 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2281 { 2282 unsigned long flags; 2283 int ndw; 2284 2285 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2286 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2287 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2288 return; 2289 } 2290 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2291 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2292 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2293 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2294 } 2295 2296 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2297 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2298 { 2299 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2300 2301 do_nocb_deferred_wakeup_common(rdp); 2302 } 2303 2304 /* 2305 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2306 * This means we do an inexact common-case check. Note that if 2307 * we miss, ->nocb_timer will eventually clean things up. 2308 */ 2309 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2310 { 2311 if (rcu_nocb_need_deferred_wakeup(rdp)) 2312 do_nocb_deferred_wakeup_common(rdp); 2313 } 2314 2315 void __init rcu_init_nohz(void) 2316 { 2317 int cpu; 2318 bool need_rcu_nocb_mask = false; 2319 struct rcu_state *rsp; 2320 2321 #if defined(CONFIG_NO_HZ_FULL) 2322 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2323 need_rcu_nocb_mask = true; 2324 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2325 2326 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2327 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2328 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2329 return; 2330 } 2331 } 2332 if (!cpumask_available(rcu_nocb_mask)) 2333 return; 2334 2335 #if defined(CONFIG_NO_HZ_FULL) 2336 if (tick_nohz_full_running) 2337 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2338 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2339 2340 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2341 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2342 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2343 rcu_nocb_mask); 2344 } 2345 if (cpumask_empty(rcu_nocb_mask)) 2346 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2347 else 2348 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2349 cpumask_pr_args(rcu_nocb_mask)); 2350 if (rcu_nocb_poll) 2351 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2352 2353 for_each_rcu_flavor(rsp) { 2354 for_each_cpu(cpu, rcu_nocb_mask) 2355 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2356 rcu_organize_nocb_kthreads(rsp); 2357 } 2358 } 2359 2360 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2361 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2362 { 2363 rdp->nocb_tail = &rdp->nocb_head; 2364 init_swait_queue_head(&rdp->nocb_wq); 2365 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2366 raw_spin_lock_init(&rdp->nocb_lock); 2367 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2368 } 2369 2370 /* 2371 * If the specified CPU is a no-CBs CPU that does not already have its 2372 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2373 * brought online out of order, this can require re-organizing the 2374 * leader-follower relationships. 2375 */ 2376 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2377 { 2378 struct rcu_data *rdp; 2379 struct rcu_data *rdp_last; 2380 struct rcu_data *rdp_old_leader; 2381 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2382 struct task_struct *t; 2383 2384 /* 2385 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2386 * then nothing to do. 2387 */ 2388 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2389 return; 2390 2391 /* If we didn't spawn the leader first, reorganize! */ 2392 rdp_old_leader = rdp_spawn->nocb_leader; 2393 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2394 rdp_last = NULL; 2395 rdp = rdp_old_leader; 2396 do { 2397 rdp->nocb_leader = rdp_spawn; 2398 if (rdp_last && rdp != rdp_spawn) 2399 rdp_last->nocb_next_follower = rdp; 2400 if (rdp == rdp_spawn) { 2401 rdp = rdp->nocb_next_follower; 2402 } else { 2403 rdp_last = rdp; 2404 rdp = rdp->nocb_next_follower; 2405 rdp_last->nocb_next_follower = NULL; 2406 } 2407 } while (rdp); 2408 rdp_spawn->nocb_next_follower = rdp_old_leader; 2409 } 2410 2411 /* Spawn the kthread for this CPU and RCU flavor. */ 2412 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2413 "rcuo%c/%d", rsp->abbr, cpu); 2414 BUG_ON(IS_ERR(t)); 2415 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2416 } 2417 2418 /* 2419 * If the specified CPU is a no-CBs CPU that does not already have its 2420 * rcuo kthreads, spawn them. 2421 */ 2422 static void rcu_spawn_all_nocb_kthreads(int cpu) 2423 { 2424 struct rcu_state *rsp; 2425 2426 if (rcu_scheduler_fully_active) 2427 for_each_rcu_flavor(rsp) 2428 rcu_spawn_one_nocb_kthread(rsp, cpu); 2429 } 2430 2431 /* 2432 * Once the scheduler is running, spawn rcuo kthreads for all online 2433 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2434 * non-boot CPUs come online -- if this changes, we will need to add 2435 * some mutual exclusion. 2436 */ 2437 static void __init rcu_spawn_nocb_kthreads(void) 2438 { 2439 int cpu; 2440 2441 for_each_online_cpu(cpu) 2442 rcu_spawn_all_nocb_kthreads(cpu); 2443 } 2444 2445 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2446 static int rcu_nocb_leader_stride = -1; 2447 module_param(rcu_nocb_leader_stride, int, 0444); 2448 2449 /* 2450 * Initialize leader-follower relationships for all no-CBs CPU. 2451 */ 2452 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2453 { 2454 int cpu; 2455 int ls = rcu_nocb_leader_stride; 2456 int nl = 0; /* Next leader. */ 2457 struct rcu_data *rdp; 2458 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2459 struct rcu_data *rdp_prev = NULL; 2460 2461 if (!cpumask_available(rcu_nocb_mask)) 2462 return; 2463 if (ls == -1) { 2464 ls = int_sqrt(nr_cpu_ids); 2465 rcu_nocb_leader_stride = ls; 2466 } 2467 2468 /* 2469 * Each pass through this loop sets up one rcu_data structure. 2470 * Should the corresponding CPU come online in the future, then 2471 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2472 */ 2473 for_each_cpu(cpu, rcu_nocb_mask) { 2474 rdp = per_cpu_ptr(rsp->rda, cpu); 2475 if (rdp->cpu >= nl) { 2476 /* New leader, set up for followers & next leader. */ 2477 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2478 rdp->nocb_leader = rdp; 2479 rdp_leader = rdp; 2480 } else { 2481 /* Another follower, link to previous leader. */ 2482 rdp->nocb_leader = rdp_leader; 2483 rdp_prev->nocb_next_follower = rdp; 2484 } 2485 rdp_prev = rdp; 2486 } 2487 } 2488 2489 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2490 static bool init_nocb_callback_list(struct rcu_data *rdp) 2491 { 2492 if (!rcu_is_nocb_cpu(rdp->cpu)) 2493 return false; 2494 2495 /* If there are early-boot callbacks, move them to nocb lists. */ 2496 if (!rcu_segcblist_empty(&rdp->cblist)) { 2497 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2498 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2499 atomic_long_set(&rdp->nocb_q_count, 2500 rcu_segcblist_n_cbs(&rdp->cblist)); 2501 atomic_long_set(&rdp->nocb_q_count_lazy, 2502 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2503 rcu_segcblist_init(&rdp->cblist); 2504 } 2505 rcu_segcblist_disable(&rdp->cblist); 2506 return true; 2507 } 2508 2509 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2510 2511 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2512 { 2513 WARN_ON_ONCE(1); /* Should be dead code. */ 2514 return false; 2515 } 2516 2517 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2518 { 2519 } 2520 2521 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2522 { 2523 return NULL; 2524 } 2525 2526 static void rcu_init_one_nocb(struct rcu_node *rnp) 2527 { 2528 } 2529 2530 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2531 bool lazy, unsigned long flags) 2532 { 2533 return false; 2534 } 2535 2536 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2537 struct rcu_data *rdp, 2538 unsigned long flags) 2539 { 2540 return false; 2541 } 2542 2543 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2544 { 2545 } 2546 2547 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2548 { 2549 return false; 2550 } 2551 2552 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2553 { 2554 } 2555 2556 static void rcu_spawn_all_nocb_kthreads(int cpu) 2557 { 2558 } 2559 2560 static void __init rcu_spawn_nocb_kthreads(void) 2561 { 2562 } 2563 2564 static bool init_nocb_callback_list(struct rcu_data *rdp) 2565 { 2566 return false; 2567 } 2568 2569 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2570 2571 /* 2572 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2573 * arbitrarily long period of time with the scheduling-clock tick turned 2574 * off. RCU will be paying attention to this CPU because it is in the 2575 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2576 * machine because the scheduling-clock tick has been disabled. Therefore, 2577 * if an adaptive-ticks CPU is failing to respond to the current grace 2578 * period and has not be idle from an RCU perspective, kick it. 2579 */ 2580 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2581 { 2582 #ifdef CONFIG_NO_HZ_FULL 2583 if (tick_nohz_full_cpu(cpu)) 2584 smp_send_reschedule(cpu); 2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2586 } 2587 2588 /* 2589 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2590 * grace-period kthread will do force_quiescent_state() processing? 2591 * The idea is to avoid waking up RCU core processing on such a 2592 * CPU unless the grace period has extended for too long. 2593 * 2594 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2595 * CONFIG_RCU_NOCB_CPU CPUs. 2596 */ 2597 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2598 { 2599 #ifdef CONFIG_NO_HZ_FULL 2600 if (tick_nohz_full_cpu(smp_processor_id()) && 2601 (!rcu_gp_in_progress(rsp) || 2602 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2603 return true; 2604 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2605 return false; 2606 } 2607 2608 /* 2609 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2610 */ 2611 static void rcu_bind_gp_kthread(void) 2612 { 2613 int __maybe_unused cpu; 2614 2615 if (!tick_nohz_full_enabled()) 2616 return; 2617 housekeeping_affine(current, HK_FLAG_RCU); 2618 } 2619 2620 /* Record the current task on dyntick-idle entry. */ 2621 static void rcu_dynticks_task_enter(void) 2622 { 2623 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2624 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2625 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2626 } 2627 2628 /* Record no current task on dyntick-idle exit. */ 2629 static void rcu_dynticks_task_exit(void) 2630 { 2631 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2632 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2633 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2634 } 2635