xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision f412eef0)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 	/*
19 	 * In order to read the offloaded state of an rdp in a safe
20 	 * and stable way and prevent from its value to be changed
21 	 * under us, we must either hold the barrier mutex, the cpu
22 	 * hotplug lock (read or write) or the nocb lock. Local
23 	 * non-preemptible reads are also safe. NOCB kthreads and
24 	 * timers have their own means of synchronization against the
25 	 * offloaded state updaters.
26 	 */
27 	RCU_LOCKDEP_WARN(
28 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 		  rcu_lockdep_is_held_nocb(rdp) ||
31 		  (rdp == this_cpu_ptr(&rcu_data) &&
32 		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
33 		  rcu_current_is_nocb_kthread(rdp)),
34 		"Unsafe read of RCU_NOCB offloaded state"
35 	);
36 
37 	return rcu_segcblist_is_offloaded(&rdp->cblist);
38 }
39 
40 /*
41  * Check the RCU kernel configuration parameters and print informative
42  * messages about anything out of the ordinary.
43  */
44 static void __init rcu_bootup_announce_oddness(void)
45 {
46 	if (IS_ENABLED(CONFIG_RCU_TRACE))
47 		pr_info("\tRCU event tracing is enabled.\n");
48 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
49 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
50 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
51 			RCU_FANOUT);
52 	if (rcu_fanout_exact)
53 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
54 	if (IS_ENABLED(CONFIG_PROVE_RCU))
55 		pr_info("\tRCU lockdep checking is enabled.\n");
56 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
57 		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
58 	if (RCU_NUM_LVLS >= 4)
59 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
60 	if (RCU_FANOUT_LEAF != 16)
61 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
62 			RCU_FANOUT_LEAF);
63 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
64 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
65 			rcu_fanout_leaf);
66 	if (nr_cpu_ids != NR_CPUS)
67 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
68 #ifdef CONFIG_RCU_BOOST
69 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
70 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
71 #endif
72 	if (blimit != DEFAULT_RCU_BLIMIT)
73 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
74 	if (qhimark != DEFAULT_RCU_QHIMARK)
75 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
76 	if (qlowmark != DEFAULT_RCU_QLOMARK)
77 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
78 	if (qovld != DEFAULT_RCU_QOVLD)
79 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
80 	if (jiffies_till_first_fqs != ULONG_MAX)
81 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
82 	if (jiffies_till_next_fqs != ULONG_MAX)
83 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
84 	if (jiffies_till_sched_qs != ULONG_MAX)
85 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
86 	if (rcu_kick_kthreads)
87 		pr_info("\tKick kthreads if too-long grace period.\n");
88 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
89 		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
90 	if (gp_preinit_delay)
91 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
92 	if (gp_init_delay)
93 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
94 	if (gp_cleanup_delay)
95 		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
96 	if (!use_softirq)
97 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
98 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
99 		pr_info("\tRCU debug extended QS entry/exit.\n");
100 	rcupdate_announce_bootup_oddness();
101 }
102 
103 #ifdef CONFIG_PREEMPT_RCU
104 
105 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
106 static void rcu_read_unlock_special(struct task_struct *t);
107 
108 /*
109  * Tell them what RCU they are running.
110  */
111 static void __init rcu_bootup_announce(void)
112 {
113 	pr_info("Preemptible hierarchical RCU implementation.\n");
114 	rcu_bootup_announce_oddness();
115 }
116 
117 /* Flags for rcu_preempt_ctxt_queue() decision table. */
118 #define RCU_GP_TASKS	0x8
119 #define RCU_EXP_TASKS	0x4
120 #define RCU_GP_BLKD	0x2
121 #define RCU_EXP_BLKD	0x1
122 
123 /*
124  * Queues a task preempted within an RCU-preempt read-side critical
125  * section into the appropriate location within the ->blkd_tasks list,
126  * depending on the states of any ongoing normal and expedited grace
127  * periods.  The ->gp_tasks pointer indicates which element the normal
128  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
129  * indicates which element the expedited grace period is waiting on (again,
130  * NULL if none).  If a grace period is waiting on a given element in the
131  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
132  * adding a task to the tail of the list blocks any grace period that is
133  * already waiting on one of the elements.  In contrast, adding a task
134  * to the head of the list won't block any grace period that is already
135  * waiting on one of the elements.
136  *
137  * This queuing is imprecise, and can sometimes make an ongoing grace
138  * period wait for a task that is not strictly speaking blocking it.
139  * Given the choice, we needlessly block a normal grace period rather than
140  * blocking an expedited grace period.
141  *
142  * Note that an endless sequence of expedited grace periods still cannot
143  * indefinitely postpone a normal grace period.  Eventually, all of the
144  * fixed number of preempted tasks blocking the normal grace period that are
145  * not also blocking the expedited grace period will resume and complete
146  * their RCU read-side critical sections.  At that point, the ->gp_tasks
147  * pointer will equal the ->exp_tasks pointer, at which point the end of
148  * the corresponding expedited grace period will also be the end of the
149  * normal grace period.
150  */
151 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
152 	__releases(rnp->lock) /* But leaves rrupts disabled. */
153 {
154 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
155 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
156 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
157 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
158 	struct task_struct *t = current;
159 
160 	raw_lockdep_assert_held_rcu_node(rnp);
161 	WARN_ON_ONCE(rdp->mynode != rnp);
162 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
163 	/* RCU better not be waiting on newly onlined CPUs! */
164 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
165 		     rdp->grpmask);
166 
167 	/*
168 	 * Decide where to queue the newly blocked task.  In theory,
169 	 * this could be an if-statement.  In practice, when I tried
170 	 * that, it was quite messy.
171 	 */
172 	switch (blkd_state) {
173 	case 0:
174 	case                RCU_EXP_TASKS:
175 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
176 	case RCU_GP_TASKS:
177 	case RCU_GP_TASKS + RCU_EXP_TASKS:
178 
179 		/*
180 		 * Blocking neither GP, or first task blocking the normal
181 		 * GP but not blocking the already-waiting expedited GP.
182 		 * Queue at the head of the list to avoid unnecessarily
183 		 * blocking the already-waiting GPs.
184 		 */
185 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
186 		break;
187 
188 	case                                              RCU_EXP_BLKD:
189 	case                                RCU_GP_BLKD:
190 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
191 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
192 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
193 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
194 
195 		/*
196 		 * First task arriving that blocks either GP, or first task
197 		 * arriving that blocks the expedited GP (with the normal
198 		 * GP already waiting), or a task arriving that blocks
199 		 * both GPs with both GPs already waiting.  Queue at the
200 		 * tail of the list to avoid any GP waiting on any of the
201 		 * already queued tasks that are not blocking it.
202 		 */
203 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
204 		break;
205 
206 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
207 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
208 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
209 
210 		/*
211 		 * Second or subsequent task blocking the expedited GP.
212 		 * The task either does not block the normal GP, or is the
213 		 * first task blocking the normal GP.  Queue just after
214 		 * the first task blocking the expedited GP.
215 		 */
216 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
217 		break;
218 
219 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
220 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
221 
222 		/*
223 		 * Second or subsequent task blocking the normal GP.
224 		 * The task does not block the expedited GP. Queue just
225 		 * after the first task blocking the normal GP.
226 		 */
227 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
228 		break;
229 
230 	default:
231 
232 		/* Yet another exercise in excessive paranoia. */
233 		WARN_ON_ONCE(1);
234 		break;
235 	}
236 
237 	/*
238 	 * We have now queued the task.  If it was the first one to
239 	 * block either grace period, update the ->gp_tasks and/or
240 	 * ->exp_tasks pointers, respectively, to reference the newly
241 	 * blocked tasks.
242 	 */
243 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
244 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
245 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
246 	}
247 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
248 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
249 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
250 		     !(rnp->qsmask & rdp->grpmask));
251 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
252 		     !(rnp->expmask & rdp->grpmask));
253 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
254 
255 	/*
256 	 * Report the quiescent state for the expedited GP.  This expedited
257 	 * GP should not be able to end until we report, so there should be
258 	 * no need to check for a subsequent expedited GP.  (Though we are
259 	 * still in a quiescent state in any case.)
260 	 */
261 	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
262 		rcu_report_exp_rdp(rdp);
263 	else
264 		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
265 }
266 
267 /*
268  * Record a preemptible-RCU quiescent state for the specified CPU.
269  * Note that this does not necessarily mean that the task currently running
270  * on the CPU is in a quiescent state:  Instead, it means that the current
271  * grace period need not wait on any RCU read-side critical section that
272  * starts later on this CPU.  It also means that if the current task is
273  * in an RCU read-side critical section, it has already added itself to
274  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
275  * current task, there might be any number of other tasks blocked while
276  * in an RCU read-side critical section.
277  *
278  * Unlike non-preemptible-RCU, quiescent state reports for expedited
279  * grace periods are handled separately via deferred quiescent states
280  * and context switch events.
281  *
282  * Callers to this function must disable preemption.
283  */
284 static void rcu_qs(void)
285 {
286 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
287 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
288 		trace_rcu_grace_period(TPS("rcu_preempt"),
289 				       __this_cpu_read(rcu_data.gp_seq),
290 				       TPS("cpuqs"));
291 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
292 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
293 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
294 	}
295 }
296 
297 /*
298  * We have entered the scheduler, and the current task might soon be
299  * context-switched away from.  If this task is in an RCU read-side
300  * critical section, we will no longer be able to rely on the CPU to
301  * record that fact, so we enqueue the task on the blkd_tasks list.
302  * The task will dequeue itself when it exits the outermost enclosing
303  * RCU read-side critical section.  Therefore, the current grace period
304  * cannot be permitted to complete until the blkd_tasks list entries
305  * predating the current grace period drain, in other words, until
306  * rnp->gp_tasks becomes NULL.
307  *
308  * Caller must disable interrupts.
309  */
310 void rcu_note_context_switch(bool preempt)
311 {
312 	struct task_struct *t = current;
313 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
314 	struct rcu_node *rnp;
315 
316 	trace_rcu_utilization(TPS("Start context switch"));
317 	lockdep_assert_irqs_disabled();
318 	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
319 	if (rcu_preempt_depth() > 0 &&
320 	    !t->rcu_read_unlock_special.b.blocked) {
321 
322 		/* Possibly blocking in an RCU read-side critical section. */
323 		rnp = rdp->mynode;
324 		raw_spin_lock_rcu_node(rnp);
325 		t->rcu_read_unlock_special.b.blocked = true;
326 		t->rcu_blocked_node = rnp;
327 
328 		/*
329 		 * Verify the CPU's sanity, trace the preemption, and
330 		 * then queue the task as required based on the states
331 		 * of any ongoing and expedited grace periods.
332 		 */
333 		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
334 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
335 		trace_rcu_preempt_task(rcu_state.name,
336 				       t->pid,
337 				       (rnp->qsmask & rdp->grpmask)
338 				       ? rnp->gp_seq
339 				       : rcu_seq_snap(&rnp->gp_seq));
340 		rcu_preempt_ctxt_queue(rnp, rdp);
341 	} else {
342 		rcu_preempt_deferred_qs(t);
343 	}
344 
345 	/*
346 	 * Either we were not in an RCU read-side critical section to
347 	 * begin with, or we have now recorded that critical section
348 	 * globally.  Either way, we can now note a quiescent state
349 	 * for this CPU.  Again, if we were in an RCU read-side critical
350 	 * section, and if that critical section was blocking the current
351 	 * grace period, then the fact that the task has been enqueued
352 	 * means that we continue to block the current grace period.
353 	 */
354 	rcu_qs();
355 	if (rdp->cpu_no_qs.b.exp)
356 		rcu_report_exp_rdp(rdp);
357 	rcu_tasks_qs(current, preempt);
358 	trace_rcu_utilization(TPS("End context switch"));
359 }
360 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
361 
362 /*
363  * Check for preempted RCU readers blocking the current grace period
364  * for the specified rcu_node structure.  If the caller needs a reliable
365  * answer, it must hold the rcu_node's ->lock.
366  */
367 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
368 {
369 	return READ_ONCE(rnp->gp_tasks) != NULL;
370 }
371 
372 /* limit value for ->rcu_read_lock_nesting. */
373 #define RCU_NEST_PMAX (INT_MAX / 2)
374 
375 static void rcu_preempt_read_enter(void)
376 {
377 	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
378 }
379 
380 static int rcu_preempt_read_exit(void)
381 {
382 	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
383 
384 	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
385 	return ret;
386 }
387 
388 static void rcu_preempt_depth_set(int val)
389 {
390 	WRITE_ONCE(current->rcu_read_lock_nesting, val);
391 }
392 
393 /*
394  * Preemptible RCU implementation for rcu_read_lock().
395  * Just increment ->rcu_read_lock_nesting, shared state will be updated
396  * if we block.
397  */
398 void __rcu_read_lock(void)
399 {
400 	rcu_preempt_read_enter();
401 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
402 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
403 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
404 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
405 	barrier();  /* critical section after entry code. */
406 }
407 EXPORT_SYMBOL_GPL(__rcu_read_lock);
408 
409 /*
410  * Preemptible RCU implementation for rcu_read_unlock().
411  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
412  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
413  * invoke rcu_read_unlock_special() to clean up after a context switch
414  * in an RCU read-side critical section and other special cases.
415  */
416 void __rcu_read_unlock(void)
417 {
418 	struct task_struct *t = current;
419 
420 	barrier();  // critical section before exit code.
421 	if (rcu_preempt_read_exit() == 0) {
422 		barrier();  // critical-section exit before .s check.
423 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
424 			rcu_read_unlock_special(t);
425 	}
426 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
427 		int rrln = rcu_preempt_depth();
428 
429 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
430 	}
431 }
432 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
433 
434 /*
435  * Advance a ->blkd_tasks-list pointer to the next entry, instead
436  * returning NULL if at the end of the list.
437  */
438 static struct list_head *rcu_next_node_entry(struct task_struct *t,
439 					     struct rcu_node *rnp)
440 {
441 	struct list_head *np;
442 
443 	np = t->rcu_node_entry.next;
444 	if (np == &rnp->blkd_tasks)
445 		np = NULL;
446 	return np;
447 }
448 
449 /*
450  * Return true if the specified rcu_node structure has tasks that were
451  * preempted within an RCU read-side critical section.
452  */
453 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
454 {
455 	return !list_empty(&rnp->blkd_tasks);
456 }
457 
458 /*
459  * Report deferred quiescent states.  The deferral time can
460  * be quite short, for example, in the case of the call from
461  * rcu_read_unlock_special().
462  */
463 static notrace void
464 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
465 {
466 	bool empty_exp;
467 	bool empty_norm;
468 	bool empty_exp_now;
469 	struct list_head *np;
470 	bool drop_boost_mutex = false;
471 	struct rcu_data *rdp;
472 	struct rcu_node *rnp;
473 	union rcu_special special;
474 
475 	/*
476 	 * If RCU core is waiting for this CPU to exit its critical section,
477 	 * report the fact that it has exited.  Because irqs are disabled,
478 	 * t->rcu_read_unlock_special cannot change.
479 	 */
480 	special = t->rcu_read_unlock_special;
481 	rdp = this_cpu_ptr(&rcu_data);
482 	if (!special.s && !rdp->cpu_no_qs.b.exp) {
483 		local_irq_restore(flags);
484 		return;
485 	}
486 	t->rcu_read_unlock_special.s = 0;
487 	if (special.b.need_qs) {
488 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
489 			rdp->cpu_no_qs.b.norm = false;
490 			rcu_report_qs_rdp(rdp);
491 			udelay(rcu_unlock_delay);
492 		} else {
493 			rcu_qs();
494 		}
495 	}
496 
497 	/*
498 	 * Respond to a request by an expedited grace period for a
499 	 * quiescent state from this CPU.  Note that requests from
500 	 * tasks are handled when removing the task from the
501 	 * blocked-tasks list below.
502 	 */
503 	if (rdp->cpu_no_qs.b.exp)
504 		rcu_report_exp_rdp(rdp);
505 
506 	/* Clean up if blocked during RCU read-side critical section. */
507 	if (special.b.blocked) {
508 
509 		/*
510 		 * Remove this task from the list it blocked on.  The task
511 		 * now remains queued on the rcu_node corresponding to the
512 		 * CPU it first blocked on, so there is no longer any need
513 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
514 		 */
515 		rnp = t->rcu_blocked_node;
516 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
517 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
518 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
519 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
520 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
521 			     (!empty_norm || rnp->qsmask));
522 		empty_exp = sync_rcu_exp_done(rnp);
523 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
524 		np = rcu_next_node_entry(t, rnp);
525 		list_del_init(&t->rcu_node_entry);
526 		t->rcu_blocked_node = NULL;
527 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
528 						rnp->gp_seq, t->pid);
529 		if (&t->rcu_node_entry == rnp->gp_tasks)
530 			WRITE_ONCE(rnp->gp_tasks, np);
531 		if (&t->rcu_node_entry == rnp->exp_tasks)
532 			WRITE_ONCE(rnp->exp_tasks, np);
533 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
534 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
535 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
536 			if (&t->rcu_node_entry == rnp->boost_tasks)
537 				WRITE_ONCE(rnp->boost_tasks, np);
538 		}
539 
540 		/*
541 		 * If this was the last task on the current list, and if
542 		 * we aren't waiting on any CPUs, report the quiescent state.
543 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
544 		 * so we must take a snapshot of the expedited state.
545 		 */
546 		empty_exp_now = sync_rcu_exp_done(rnp);
547 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
548 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
549 							 rnp->gp_seq,
550 							 0, rnp->qsmask,
551 							 rnp->level,
552 							 rnp->grplo,
553 							 rnp->grphi,
554 							 !!rnp->gp_tasks);
555 			rcu_report_unblock_qs_rnp(rnp, flags);
556 		} else {
557 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
558 		}
559 
560 		/*
561 		 * If this was the last task on the expedited lists,
562 		 * then we need to report up the rcu_node hierarchy.
563 		 */
564 		if (!empty_exp && empty_exp_now)
565 			rcu_report_exp_rnp(rnp, true);
566 
567 		/* Unboost if we were boosted. */
568 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
569 			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
570 	} else {
571 		local_irq_restore(flags);
572 	}
573 }
574 
575 /*
576  * Is a deferred quiescent-state pending, and are we also not in
577  * an RCU read-side critical section?  It is the caller's responsibility
578  * to ensure it is otherwise safe to report any deferred quiescent
579  * states.  The reason for this is that it is safe to report a
580  * quiescent state during context switch even though preemption
581  * is disabled.  This function cannot be expected to understand these
582  * nuances, so the caller must handle them.
583  */
584 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
585 {
586 	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
587 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
588 	       rcu_preempt_depth() == 0;
589 }
590 
591 /*
592  * Report a deferred quiescent state if needed and safe to do so.
593  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
594  * not being in an RCU read-side critical section.  The caller must
595  * evaluate safety in terms of interrupt, softirq, and preemption
596  * disabling.
597  */
598 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
599 {
600 	unsigned long flags;
601 
602 	if (!rcu_preempt_need_deferred_qs(t))
603 		return;
604 	local_irq_save(flags);
605 	rcu_preempt_deferred_qs_irqrestore(t, flags);
606 }
607 
608 /*
609  * Minimal handler to give the scheduler a chance to re-evaluate.
610  */
611 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
612 {
613 	struct rcu_data *rdp;
614 
615 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
616 	rdp->defer_qs_iw_pending = false;
617 }
618 
619 /*
620  * Handle special cases during rcu_read_unlock(), such as needing to
621  * notify RCU core processing or task having blocked during the RCU
622  * read-side critical section.
623  */
624 static void rcu_read_unlock_special(struct task_struct *t)
625 {
626 	unsigned long flags;
627 	bool irqs_were_disabled;
628 	bool preempt_bh_were_disabled =
629 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
630 
631 	/* NMI handlers cannot block and cannot safely manipulate state. */
632 	if (in_nmi())
633 		return;
634 
635 	local_irq_save(flags);
636 	irqs_were_disabled = irqs_disabled_flags(flags);
637 	if (preempt_bh_were_disabled || irqs_were_disabled) {
638 		bool expboost; // Expedited GP in flight or possible boosting.
639 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
640 		struct rcu_node *rnp = rdp->mynode;
641 
642 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
643 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
644 			   (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
645 			   ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
646 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
647 			    t->rcu_blocked_node);
648 		// Need to defer quiescent state until everything is enabled.
649 		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
650 			// Using softirq, safe to awaken, and either the
651 			// wakeup is free or there is either an expedited
652 			// GP in flight or a potential need to deboost.
653 			raise_softirq_irqoff(RCU_SOFTIRQ);
654 		} else {
655 			// Enabling BH or preempt does reschedule, so...
656 			// Also if no expediting and no possible deboosting,
657 			// slow is OK.  Plus nohz_full CPUs eventually get
658 			// tick enabled.
659 			set_tsk_need_resched(current);
660 			set_preempt_need_resched();
661 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
662 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
663 				// Get scheduler to re-evaluate and call hooks.
664 				// If !IRQ_WORK, FQS scan will eventually IPI.
665 				if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
666 				    IS_ENABLED(CONFIG_PREEMPT_RT))
667 					rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
668 								rcu_preempt_deferred_qs_handler);
669 				else
670 					init_irq_work(&rdp->defer_qs_iw,
671 						      rcu_preempt_deferred_qs_handler);
672 				rdp->defer_qs_iw_pending = true;
673 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
674 			}
675 		}
676 		local_irq_restore(flags);
677 		return;
678 	}
679 	rcu_preempt_deferred_qs_irqrestore(t, flags);
680 }
681 
682 /*
683  * Check that the list of blocked tasks for the newly completed grace
684  * period is in fact empty.  It is a serious bug to complete a grace
685  * period that still has RCU readers blocked!  This function must be
686  * invoked -before- updating this rnp's ->gp_seq.
687  *
688  * Also, if there are blocked tasks on the list, they automatically
689  * block the newly created grace period, so set up ->gp_tasks accordingly.
690  */
691 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
692 {
693 	struct task_struct *t;
694 
695 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
696 	raw_lockdep_assert_held_rcu_node(rnp);
697 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
698 		dump_blkd_tasks(rnp, 10);
699 	if (rcu_preempt_has_tasks(rnp) &&
700 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
701 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
702 		t = container_of(rnp->gp_tasks, struct task_struct,
703 				 rcu_node_entry);
704 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
705 						rnp->gp_seq, t->pid);
706 	}
707 	WARN_ON_ONCE(rnp->qsmask);
708 }
709 
710 /*
711  * Check for a quiescent state from the current CPU, including voluntary
712  * context switches for Tasks RCU.  When a task blocks, the task is
713  * recorded in the corresponding CPU's rcu_node structure, which is checked
714  * elsewhere, hence this function need only check for quiescent states
715  * related to the current CPU, not to those related to tasks.
716  */
717 static void rcu_flavor_sched_clock_irq(int user)
718 {
719 	struct task_struct *t = current;
720 
721 	lockdep_assert_irqs_disabled();
722 	if (rcu_preempt_depth() > 0 ||
723 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
724 		/* No QS, force context switch if deferred. */
725 		if (rcu_preempt_need_deferred_qs(t)) {
726 			set_tsk_need_resched(t);
727 			set_preempt_need_resched();
728 		}
729 	} else if (rcu_preempt_need_deferred_qs(t)) {
730 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
731 		return;
732 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
733 		rcu_qs(); /* Report immediate QS. */
734 		return;
735 	}
736 
737 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
738 	if (rcu_preempt_depth() > 0 &&
739 	    __this_cpu_read(rcu_data.core_needs_qs) &&
740 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
741 	    !t->rcu_read_unlock_special.b.need_qs &&
742 	    time_after(jiffies, rcu_state.gp_start + HZ))
743 		t->rcu_read_unlock_special.b.need_qs = true;
744 }
745 
746 /*
747  * Check for a task exiting while in a preemptible-RCU read-side
748  * critical section, clean up if so.  No need to issue warnings, as
749  * debug_check_no_locks_held() already does this if lockdep is enabled.
750  * Besides, if this function does anything other than just immediately
751  * return, there was a bug of some sort.  Spewing warnings from this
752  * function is like as not to simply obscure important prior warnings.
753  */
754 void exit_rcu(void)
755 {
756 	struct task_struct *t = current;
757 
758 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
759 		rcu_preempt_depth_set(1);
760 		barrier();
761 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
762 	} else if (unlikely(rcu_preempt_depth())) {
763 		rcu_preempt_depth_set(1);
764 	} else {
765 		return;
766 	}
767 	__rcu_read_unlock();
768 	rcu_preempt_deferred_qs(current);
769 }
770 
771 /*
772  * Dump the blocked-tasks state, but limit the list dump to the
773  * specified number of elements.
774  */
775 static void
776 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
777 {
778 	int cpu;
779 	int i;
780 	struct list_head *lhp;
781 	struct rcu_data *rdp;
782 	struct rcu_node *rnp1;
783 
784 	raw_lockdep_assert_held_rcu_node(rnp);
785 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
786 		__func__, rnp->grplo, rnp->grphi, rnp->level,
787 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
788 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
789 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
790 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
791 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
792 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
793 		READ_ONCE(rnp->exp_tasks));
794 	pr_info("%s: ->blkd_tasks", __func__);
795 	i = 0;
796 	list_for_each(lhp, &rnp->blkd_tasks) {
797 		pr_cont(" %p", lhp);
798 		if (++i >= ncheck)
799 			break;
800 	}
801 	pr_cont("\n");
802 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
803 		rdp = per_cpu_ptr(&rcu_data, cpu);
804 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
805 			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
806 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
807 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
808 	}
809 }
810 
811 #else /* #ifdef CONFIG_PREEMPT_RCU */
812 
813 /*
814  * If strict grace periods are enabled, and if the calling
815  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
816  * report that quiescent state and, if requested, spin for a bit.
817  */
818 void rcu_read_unlock_strict(void)
819 {
820 	struct rcu_data *rdp;
821 
822 	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
823 		return;
824 	rdp = this_cpu_ptr(&rcu_data);
825 	rdp->cpu_no_qs.b.norm = false;
826 	rcu_report_qs_rdp(rdp);
827 	udelay(rcu_unlock_delay);
828 }
829 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
830 
831 /*
832  * Tell them what RCU they are running.
833  */
834 static void __init rcu_bootup_announce(void)
835 {
836 	pr_info("Hierarchical RCU implementation.\n");
837 	rcu_bootup_announce_oddness();
838 }
839 
840 /*
841  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
842  * how many quiescent states passed, just if there was at least one since
843  * the start of the grace period, this just sets a flag.  The caller must
844  * have disabled preemption.
845  */
846 static void rcu_qs(void)
847 {
848 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
849 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
850 		return;
851 	trace_rcu_grace_period(TPS("rcu_sched"),
852 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
853 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
854 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
855 		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
856 }
857 
858 /*
859  * Register an urgently needed quiescent state.  If there is an
860  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
861  * dyntick-idle quiescent state visible to other CPUs, which will in
862  * some cases serve for expedited as well as normal grace periods.
863  * Either way, register a lightweight quiescent state.
864  */
865 void rcu_all_qs(void)
866 {
867 	unsigned long flags;
868 
869 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
870 		return;
871 	preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
872 	/* Load rcu_urgent_qs before other flags. */
873 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
874 		preempt_enable();
875 		return;
876 	}
877 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
878 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
879 		local_irq_save(flags);
880 		rcu_momentary_dyntick_idle();
881 		local_irq_restore(flags);
882 	}
883 	rcu_qs();
884 	preempt_enable();
885 }
886 EXPORT_SYMBOL_GPL(rcu_all_qs);
887 
888 /*
889  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
890  */
891 void rcu_note_context_switch(bool preempt)
892 {
893 	trace_rcu_utilization(TPS("Start context switch"));
894 	rcu_qs();
895 	/* Load rcu_urgent_qs before other flags. */
896 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
897 		goto out;
898 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
899 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
900 		rcu_momentary_dyntick_idle();
901 out:
902 	rcu_tasks_qs(current, preempt);
903 	trace_rcu_utilization(TPS("End context switch"));
904 }
905 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
906 
907 /*
908  * Because preemptible RCU does not exist, there are never any preempted
909  * RCU readers.
910  */
911 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
912 {
913 	return 0;
914 }
915 
916 /*
917  * Because there is no preemptible RCU, there can be no readers blocked.
918  */
919 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
920 {
921 	return false;
922 }
923 
924 /*
925  * Because there is no preemptible RCU, there can be no deferred quiescent
926  * states.
927  */
928 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
929 {
930 	return false;
931 }
932 
933 // Except that we do need to respond to a request by an expedited
934 // grace period for a quiescent state from this CPU.  Note that in
935 // non-preemptible kernels, there can be no context switches within RCU
936 // read-side critical sections, which in turn means that the leaf rcu_node
937 // structure's blocked-tasks list is always empty.  is therefore no need to
938 // actually check it.  Instead, a quiescent state from this CPU suffices,
939 // and this function is only called from such a quiescent state.
940 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
941 {
942 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
943 
944 	if (rdp->cpu_no_qs.b.exp)
945 		rcu_report_exp_rdp(rdp);
946 }
947 
948 /*
949  * Because there is no preemptible RCU, there can be no readers blocked,
950  * so there is no need to check for blocked tasks.  So check only for
951  * bogus qsmask values.
952  */
953 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
954 {
955 	WARN_ON_ONCE(rnp->qsmask);
956 }
957 
958 /*
959  * Check to see if this CPU is in a non-context-switch quiescent state,
960  * namely user mode and idle loop.
961  */
962 static void rcu_flavor_sched_clock_irq(int user)
963 {
964 	if (user || rcu_is_cpu_rrupt_from_idle()) {
965 
966 		/*
967 		 * Get here if this CPU took its interrupt from user
968 		 * mode or from the idle loop, and if this is not a
969 		 * nested interrupt.  In this case, the CPU is in
970 		 * a quiescent state, so note it.
971 		 *
972 		 * No memory barrier is required here because rcu_qs()
973 		 * references only CPU-local variables that other CPUs
974 		 * neither access nor modify, at least not while the
975 		 * corresponding CPU is online.
976 		 */
977 		rcu_qs();
978 	}
979 }
980 
981 /*
982  * Because preemptible RCU does not exist, tasks cannot possibly exit
983  * while in preemptible RCU read-side critical sections.
984  */
985 void exit_rcu(void)
986 {
987 }
988 
989 /*
990  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
991  */
992 static void
993 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
994 {
995 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
996 }
997 
998 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
999 
1000 /*
1001  * If boosting, set rcuc kthreads to realtime priority.
1002  */
1003 static void rcu_cpu_kthread_setup(unsigned int cpu)
1004 {
1005 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1006 #ifdef CONFIG_RCU_BOOST
1007 	struct sched_param sp;
1008 
1009 	sp.sched_priority = kthread_prio;
1010 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1011 #endif /* #ifdef CONFIG_RCU_BOOST */
1012 
1013 	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1014 }
1015 
1016 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1017 {
1018 #ifdef CONFIG_RCU_NOCB_CPU
1019 	return rdp->nocb_cb_kthread == current;
1020 #else
1021 	return false;
1022 #endif
1023 }
1024 
1025 /*
1026  * Is the current CPU running the RCU-callbacks kthread?
1027  * Caller must have preemption disabled.
1028  */
1029 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1030 {
1031 	return rdp->rcu_cpu_kthread_task == current ||
1032 			rcu_is_callbacks_nocb_kthread(rdp);
1033 }
1034 
1035 #ifdef CONFIG_RCU_BOOST
1036 
1037 /*
1038  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1039  * or ->boost_tasks, advancing the pointer to the next task in the
1040  * ->blkd_tasks list.
1041  *
1042  * Note that irqs must be enabled: boosting the task can block.
1043  * Returns 1 if there are more tasks needing to be boosted.
1044  */
1045 static int rcu_boost(struct rcu_node *rnp)
1046 {
1047 	unsigned long flags;
1048 	struct task_struct *t;
1049 	struct list_head *tb;
1050 
1051 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1052 	    READ_ONCE(rnp->boost_tasks) == NULL)
1053 		return 0;  /* Nothing left to boost. */
1054 
1055 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1056 
1057 	/*
1058 	 * Recheck under the lock: all tasks in need of boosting
1059 	 * might exit their RCU read-side critical sections on their own.
1060 	 */
1061 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1062 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1063 		return 0;
1064 	}
1065 
1066 	/*
1067 	 * Preferentially boost tasks blocking expedited grace periods.
1068 	 * This cannot starve the normal grace periods because a second
1069 	 * expedited grace period must boost all blocked tasks, including
1070 	 * those blocking the pre-existing normal grace period.
1071 	 */
1072 	if (rnp->exp_tasks != NULL)
1073 		tb = rnp->exp_tasks;
1074 	else
1075 		tb = rnp->boost_tasks;
1076 
1077 	/*
1078 	 * We boost task t by manufacturing an rt_mutex that appears to
1079 	 * be held by task t.  We leave a pointer to that rt_mutex where
1080 	 * task t can find it, and task t will release the mutex when it
1081 	 * exits its outermost RCU read-side critical section.  Then
1082 	 * simply acquiring this artificial rt_mutex will boost task
1083 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1084 	 *
1085 	 * Note that task t must acquire rnp->lock to remove itself from
1086 	 * the ->blkd_tasks list, which it will do from exit() if from
1087 	 * nowhere else.  We therefore are guaranteed that task t will
1088 	 * stay around at least until we drop rnp->lock.  Note that
1089 	 * rnp->lock also resolves races between our priority boosting
1090 	 * and task t's exiting its outermost RCU read-side critical
1091 	 * section.
1092 	 */
1093 	t = container_of(tb, struct task_struct, rcu_node_entry);
1094 	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1095 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1096 	/* Lock only for side effect: boosts task t's priority. */
1097 	rt_mutex_lock(&rnp->boost_mtx);
1098 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1099 	rnp->n_boosts++;
1100 
1101 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1102 	       READ_ONCE(rnp->boost_tasks) != NULL;
1103 }
1104 
1105 /*
1106  * Priority-boosting kthread, one per leaf rcu_node.
1107  */
1108 static int rcu_boost_kthread(void *arg)
1109 {
1110 	struct rcu_node *rnp = (struct rcu_node *)arg;
1111 	int spincnt = 0;
1112 	int more2boost;
1113 
1114 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1115 	for (;;) {
1116 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1117 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1118 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1119 			 READ_ONCE(rnp->exp_tasks));
1120 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1121 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1122 		more2boost = rcu_boost(rnp);
1123 		if (more2boost)
1124 			spincnt++;
1125 		else
1126 			spincnt = 0;
1127 		if (spincnt > 10) {
1128 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1129 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1130 			schedule_timeout_idle(2);
1131 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1132 			spincnt = 0;
1133 		}
1134 	}
1135 	/* NOTREACHED */
1136 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Check to see if it is time to start boosting RCU readers that are
1142  * blocking the current grace period, and, if so, tell the per-rcu_node
1143  * kthread to start boosting them.  If there is an expedited grace
1144  * period in progress, it is always time to boost.
1145  *
1146  * The caller must hold rnp->lock, which this function releases.
1147  * The ->boost_kthread_task is immortal, so we don't need to worry
1148  * about it going away.
1149  */
1150 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1151 	__releases(rnp->lock)
1152 {
1153 	raw_lockdep_assert_held_rcu_node(rnp);
1154 	if (!rnp->boost_kthread_task ||
1155 	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1156 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1157 		return;
1158 	}
1159 	if (rnp->exp_tasks != NULL ||
1160 	    (rnp->gp_tasks != NULL &&
1161 	     rnp->boost_tasks == NULL &&
1162 	     rnp->qsmask == 0 &&
1163 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1164 	      IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1165 		if (rnp->exp_tasks == NULL)
1166 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1167 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1168 		rcu_wake_cond(rnp->boost_kthread_task,
1169 			      READ_ONCE(rnp->boost_kthread_status));
1170 	} else {
1171 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1172 	}
1173 }
1174 
1175 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1176 
1177 /*
1178  * Do priority-boost accounting for the start of a new grace period.
1179  */
1180 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1181 {
1182 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1183 }
1184 
1185 /*
1186  * Create an RCU-boost kthread for the specified node if one does not
1187  * already exist.  We only create this kthread for preemptible RCU.
1188  */
1189 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1190 {
1191 	unsigned long flags;
1192 	int rnp_index = rnp - rcu_get_root();
1193 	struct sched_param sp;
1194 	struct task_struct *t;
1195 
1196 	mutex_lock(&rnp->boost_kthread_mutex);
1197 	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
1198 		goto out;
1199 
1200 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1201 			   "rcub/%d", rnp_index);
1202 	if (WARN_ON_ONCE(IS_ERR(t)))
1203 		goto out;
1204 
1205 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1206 	rnp->boost_kthread_task = t;
1207 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1208 	sp.sched_priority = kthread_prio;
1209 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1210 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1211 
1212  out:
1213 	mutex_unlock(&rnp->boost_kthread_mutex);
1214 }
1215 
1216 /*
1217  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1218  * served by the rcu_node in question.  The CPU hotplug lock is still
1219  * held, so the value of rnp->qsmaskinit will be stable.
1220  *
1221  * We don't include outgoingcpu in the affinity set, use -1 if there is
1222  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1223  * this function allows the kthread to execute on any CPU.
1224  *
1225  * Any future concurrent calls are serialized via ->boost_kthread_mutex.
1226  */
1227 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1228 {
1229 	struct task_struct *t = rnp->boost_kthread_task;
1230 	unsigned long mask;
1231 	cpumask_var_t cm;
1232 	int cpu;
1233 
1234 	if (!t)
1235 		return;
1236 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1237 		return;
1238 	mutex_lock(&rnp->boost_kthread_mutex);
1239 	mask = rcu_rnp_online_cpus(rnp);
1240 	for_each_leaf_node_possible_cpu(rnp, cpu)
1241 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1242 		    cpu != outgoingcpu)
1243 			cpumask_set_cpu(cpu, cm);
1244 	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
1245 	if (cpumask_empty(cm)) {
1246 		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
1247 		if (outgoingcpu >= 0)
1248 			cpumask_clear_cpu(outgoingcpu, cm);
1249 	}
1250 	set_cpus_allowed_ptr(t, cm);
1251 	mutex_unlock(&rnp->boost_kthread_mutex);
1252 	free_cpumask_var(cm);
1253 }
1254 
1255 #else /* #ifdef CONFIG_RCU_BOOST */
1256 
1257 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1258 	__releases(rnp->lock)
1259 {
1260 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1261 }
1262 
1263 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1264 {
1265 }
1266 
1267 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1268 {
1269 }
1270 
1271 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1272 {
1273 }
1274 
1275 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1276 
1277 /*
1278  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1279  * grace-period kthread will do force_quiescent_state() processing?
1280  * The idea is to avoid waking up RCU core processing on such a
1281  * CPU unless the grace period has extended for too long.
1282  *
1283  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1284  * RCU_NOCB_CPU CPUs.
1285  */
1286 static bool rcu_nohz_full_cpu(void)
1287 {
1288 #ifdef CONFIG_NO_HZ_FULL
1289 	if (tick_nohz_full_cpu(smp_processor_id()) &&
1290 	    (!rcu_gp_in_progress() ||
1291 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1292 		return true;
1293 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1294 	return false;
1295 }
1296 
1297 /*
1298  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1299  */
1300 static void rcu_bind_gp_kthread(void)
1301 {
1302 	if (!tick_nohz_full_enabled())
1303 		return;
1304 	housekeeping_affine(current, HK_TYPE_RCU);
1305 }
1306