xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #ifdef CONFIG_RCU_BOOST
34 
35 #include "../locking/rtmutex_common.h"
36 
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45 
46 #else /* #ifdef CONFIG_RCU_BOOST */
47 
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55 
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57 
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63 
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.  If you like #ifdef, you
67  * will love this function.
68  */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71 	if (IS_ENABLED(CONFIG_RCU_TRACE))
72 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76 		       RCU_FANOUT);
77 	if (rcu_fanout_exact)
78 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 	if (IS_ENABLED(CONFIG_PROVE_RCU))
82 		pr_info("\tRCU lockdep checking is enabled.\n");
83 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 		pr_info("\tRCU torture testing starts during boot.\n");
85 	if (RCU_NUM_LVLS >= 4)
86 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 	if (RCU_FANOUT_LEAF != 16)
88 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 			RCU_FANOUT_LEAF);
90 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 	if (nr_cpu_ids != NR_CPUS)
93 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 	if (IS_ENABLED(CONFIG_RCU_BOOST))
95 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 }
97 
98 #ifdef CONFIG_PREEMPT_RCU
99 
100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103 
104 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
105 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
106 			       bool wake);
107 
108 /*
109  * Tell them what RCU they are running.
110  */
111 static void __init rcu_bootup_announce(void)
112 {
113 	pr_info("Preemptible hierarchical RCU implementation.\n");
114 	rcu_bootup_announce_oddness();
115 }
116 
117 /*
118  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
119  * that this just means that the task currently running on the CPU is
120  * not in a quiescent state.  There might be any number of tasks blocked
121  * while in an RCU read-side critical section.
122  *
123  * As with the other rcu_*_qs() functions, callers to this function
124  * must disable preemption.
125  */
126 static void rcu_preempt_qs(void)
127 {
128 	if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
129 		trace_rcu_grace_period(TPS("rcu_preempt"),
130 				       __this_cpu_read(rcu_data_p->gpnum),
131 				       TPS("cpuqs"));
132 		__this_cpu_write(rcu_data_p->passed_quiesce, 1);
133 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
134 		current->rcu_read_unlock_special.b.need_qs = false;
135 	}
136 }
137 
138 /*
139  * We have entered the scheduler, and the current task might soon be
140  * context-switched away from.  If this task is in an RCU read-side
141  * critical section, we will no longer be able to rely on the CPU to
142  * record that fact, so we enqueue the task on the blkd_tasks list.
143  * The task will dequeue itself when it exits the outermost enclosing
144  * RCU read-side critical section.  Therefore, the current grace period
145  * cannot be permitted to complete until the blkd_tasks list entries
146  * predating the current grace period drain, in other words, until
147  * rnp->gp_tasks becomes NULL.
148  *
149  * Caller must disable preemption.
150  */
151 static void rcu_preempt_note_context_switch(void)
152 {
153 	struct task_struct *t = current;
154 	unsigned long flags;
155 	struct rcu_data *rdp;
156 	struct rcu_node *rnp;
157 
158 	if (t->rcu_read_lock_nesting > 0 &&
159 	    !t->rcu_read_unlock_special.b.blocked) {
160 
161 		/* Possibly blocking in an RCU read-side critical section. */
162 		rdp = this_cpu_ptr(rcu_state_p->rda);
163 		rnp = rdp->mynode;
164 		raw_spin_lock_irqsave(&rnp->lock, flags);
165 		smp_mb__after_unlock_lock();
166 		t->rcu_read_unlock_special.b.blocked = true;
167 		t->rcu_blocked_node = rnp;
168 
169 		/*
170 		 * If this CPU has already checked in, then this task
171 		 * will hold up the next grace period rather than the
172 		 * current grace period.  Queue the task accordingly.
173 		 * If the task is queued for the current grace period
174 		 * (i.e., this CPU has not yet passed through a quiescent
175 		 * state for the current grace period), then as long
176 		 * as that task remains queued, the current grace period
177 		 * cannot end.  Note that there is some uncertainty as
178 		 * to exactly when the current grace period started.
179 		 * We take a conservative approach, which can result
180 		 * in unnecessarily waiting on tasks that started very
181 		 * slightly after the current grace period began.  C'est
182 		 * la vie!!!
183 		 *
184 		 * But first, note that the current CPU must still be
185 		 * on line!
186 		 */
187 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
188 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
189 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
190 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
191 			rnp->gp_tasks = &t->rcu_node_entry;
192 			if (IS_ENABLED(CONFIG_RCU_BOOST) &&
193 			    rnp->boost_tasks != NULL)
194 				rnp->boost_tasks = rnp->gp_tasks;
195 		} else {
196 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197 			if (rnp->qsmask & rdp->grpmask)
198 				rnp->gp_tasks = &t->rcu_node_entry;
199 		}
200 		trace_rcu_preempt_task(rdp->rsp->name,
201 				       t->pid,
202 				       (rnp->qsmask & rdp->grpmask)
203 				       ? rnp->gpnum
204 				       : rnp->gpnum + 1);
205 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
206 	} else if (t->rcu_read_lock_nesting < 0 &&
207 		   t->rcu_read_unlock_special.s) {
208 
209 		/*
210 		 * Complete exit from RCU read-side critical section on
211 		 * behalf of preempted instance of __rcu_read_unlock().
212 		 */
213 		rcu_read_unlock_special(t);
214 	}
215 
216 	/*
217 	 * Either we were not in an RCU read-side critical section to
218 	 * begin with, or we have now recorded that critical section
219 	 * globally.  Either way, we can now note a quiescent state
220 	 * for this CPU.  Again, if we were in an RCU read-side critical
221 	 * section, and if that critical section was blocking the current
222 	 * grace period, then the fact that the task has been enqueued
223 	 * means that we continue to block the current grace period.
224 	 */
225 	rcu_preempt_qs();
226 }
227 
228 /*
229  * Check for preempted RCU readers blocking the current grace period
230  * for the specified rcu_node structure.  If the caller needs a reliable
231  * answer, it must hold the rcu_node's ->lock.
232  */
233 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
234 {
235 	return rnp->gp_tasks != NULL;
236 }
237 
238 /*
239  * Advance a ->blkd_tasks-list pointer to the next entry, instead
240  * returning NULL if at the end of the list.
241  */
242 static struct list_head *rcu_next_node_entry(struct task_struct *t,
243 					     struct rcu_node *rnp)
244 {
245 	struct list_head *np;
246 
247 	np = t->rcu_node_entry.next;
248 	if (np == &rnp->blkd_tasks)
249 		np = NULL;
250 	return np;
251 }
252 
253 /*
254  * Return true if the specified rcu_node structure has tasks that were
255  * preempted within an RCU read-side critical section.
256  */
257 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
258 {
259 	return !list_empty(&rnp->blkd_tasks);
260 }
261 
262 /*
263  * Handle special cases during rcu_read_unlock(), such as needing to
264  * notify RCU core processing or task having blocked during the RCU
265  * read-side critical section.
266  */
267 void rcu_read_unlock_special(struct task_struct *t)
268 {
269 	bool empty_exp;
270 	bool empty_norm;
271 	bool empty_exp_now;
272 	unsigned long flags;
273 	struct list_head *np;
274 	bool drop_boost_mutex = false;
275 	struct rcu_node *rnp;
276 	union rcu_special special;
277 
278 	/* NMI handlers cannot block and cannot safely manipulate state. */
279 	if (in_nmi())
280 		return;
281 
282 	local_irq_save(flags);
283 
284 	/*
285 	 * If RCU core is waiting for this CPU to exit critical section,
286 	 * let it know that we have done so.  Because irqs are disabled,
287 	 * t->rcu_read_unlock_special cannot change.
288 	 */
289 	special = t->rcu_read_unlock_special;
290 	if (special.b.need_qs) {
291 		rcu_preempt_qs();
292 		t->rcu_read_unlock_special.b.need_qs = false;
293 		if (!t->rcu_read_unlock_special.s) {
294 			local_irq_restore(flags);
295 			return;
296 		}
297 	}
298 
299 	/* Hardware IRQ handlers cannot block, complain if they get here. */
300 	if (in_irq() || in_serving_softirq()) {
301 		lockdep_rcu_suspicious(__FILE__, __LINE__,
302 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
303 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
304 			 t->rcu_read_unlock_special.s,
305 			 t->rcu_read_unlock_special.b.blocked,
306 			 t->rcu_read_unlock_special.b.need_qs);
307 		local_irq_restore(flags);
308 		return;
309 	}
310 
311 	/* Clean up if blocked during RCU read-side critical section. */
312 	if (special.b.blocked) {
313 		t->rcu_read_unlock_special.b.blocked = false;
314 
315 		/*
316 		 * Remove this task from the list it blocked on.  The task
317 		 * now remains queued on the rcu_node corresponding to
318 		 * the CPU it first blocked on, so the first attempt to
319 		 * acquire the task's rcu_node's ->lock will succeed.
320 		 * Keep the loop and add a WARN_ON() out of sheer paranoia.
321 		 */
322 		for (;;) {
323 			rnp = t->rcu_blocked_node;
324 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
325 			smp_mb__after_unlock_lock();
326 			if (rnp == t->rcu_blocked_node)
327 				break;
328 			WARN_ON_ONCE(1);
329 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
330 		}
331 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
332 		empty_exp = !rcu_preempted_readers_exp(rnp);
333 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
334 		np = rcu_next_node_entry(t, rnp);
335 		list_del_init(&t->rcu_node_entry);
336 		t->rcu_blocked_node = NULL;
337 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
338 						rnp->gpnum, t->pid);
339 		if (&t->rcu_node_entry == rnp->gp_tasks)
340 			rnp->gp_tasks = np;
341 		if (&t->rcu_node_entry == rnp->exp_tasks)
342 			rnp->exp_tasks = np;
343 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
344 			if (&t->rcu_node_entry == rnp->boost_tasks)
345 				rnp->boost_tasks = np;
346 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
347 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
348 		}
349 
350 		/*
351 		 * If this was the last task on the current list, and if
352 		 * we aren't waiting on any CPUs, report the quiescent state.
353 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
354 		 * so we must take a snapshot of the expedited state.
355 		 */
356 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
357 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
358 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
359 							 rnp->gpnum,
360 							 0, rnp->qsmask,
361 							 rnp->level,
362 							 rnp->grplo,
363 							 rnp->grphi,
364 							 !!rnp->gp_tasks);
365 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
366 		} else {
367 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
368 		}
369 
370 		/* Unboost if we were boosted. */
371 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
372 			rt_mutex_unlock(&rnp->boost_mtx);
373 
374 		/*
375 		 * If this was the last task on the expedited lists,
376 		 * then we need to report up the rcu_node hierarchy.
377 		 */
378 		if (!empty_exp && empty_exp_now)
379 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
380 	} else {
381 		local_irq_restore(flags);
382 	}
383 }
384 
385 /*
386  * Dump detailed information for all tasks blocking the current RCU
387  * grace period on the specified rcu_node structure.
388  */
389 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
390 {
391 	unsigned long flags;
392 	struct task_struct *t;
393 
394 	raw_spin_lock_irqsave(&rnp->lock, flags);
395 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
396 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
397 		return;
398 	}
399 	t = list_entry(rnp->gp_tasks->prev,
400 		       struct task_struct, rcu_node_entry);
401 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
402 		sched_show_task(t);
403 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
404 }
405 
406 /*
407  * Dump detailed information for all tasks blocking the current RCU
408  * grace period.
409  */
410 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
411 {
412 	struct rcu_node *rnp = rcu_get_root(rsp);
413 
414 	rcu_print_detail_task_stall_rnp(rnp);
415 	rcu_for_each_leaf_node(rsp, rnp)
416 		rcu_print_detail_task_stall_rnp(rnp);
417 }
418 
419 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
420 {
421 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
422 	       rnp->level, rnp->grplo, rnp->grphi);
423 }
424 
425 static void rcu_print_task_stall_end(void)
426 {
427 	pr_cont("\n");
428 }
429 
430 /*
431  * Scan the current list of tasks blocked within RCU read-side critical
432  * sections, printing out the tid of each.
433  */
434 static int rcu_print_task_stall(struct rcu_node *rnp)
435 {
436 	struct task_struct *t;
437 	int ndetected = 0;
438 
439 	if (!rcu_preempt_blocked_readers_cgp(rnp))
440 		return 0;
441 	rcu_print_task_stall_begin(rnp);
442 	t = list_entry(rnp->gp_tasks->prev,
443 		       struct task_struct, rcu_node_entry);
444 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
445 		pr_cont(" P%d", t->pid);
446 		ndetected++;
447 	}
448 	rcu_print_task_stall_end();
449 	return ndetected;
450 }
451 
452 /*
453  * Check that the list of blocked tasks for the newly completed grace
454  * period is in fact empty.  It is a serious bug to complete a grace
455  * period that still has RCU readers blocked!  This function must be
456  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
457  * must be held by the caller.
458  *
459  * Also, if there are blocked tasks on the list, they automatically
460  * block the newly created grace period, so set up ->gp_tasks accordingly.
461  */
462 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
463 {
464 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
465 	if (rcu_preempt_has_tasks(rnp))
466 		rnp->gp_tasks = rnp->blkd_tasks.next;
467 	WARN_ON_ONCE(rnp->qsmask);
468 }
469 
470 /*
471  * Check for a quiescent state from the current CPU.  When a task blocks,
472  * the task is recorded in the corresponding CPU's rcu_node structure,
473  * which is checked elsewhere.
474  *
475  * Caller must disable hard irqs.
476  */
477 static void rcu_preempt_check_callbacks(void)
478 {
479 	struct task_struct *t = current;
480 
481 	if (t->rcu_read_lock_nesting == 0) {
482 		rcu_preempt_qs();
483 		return;
484 	}
485 	if (t->rcu_read_lock_nesting > 0 &&
486 	    __this_cpu_read(rcu_data_p->qs_pending) &&
487 	    !__this_cpu_read(rcu_data_p->passed_quiesce))
488 		t->rcu_read_unlock_special.b.need_qs = true;
489 }
490 
491 #ifdef CONFIG_RCU_BOOST
492 
493 static void rcu_preempt_do_callbacks(void)
494 {
495 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
496 }
497 
498 #endif /* #ifdef CONFIG_RCU_BOOST */
499 
500 /*
501  * Queue a preemptible-RCU callback for invocation after a grace period.
502  */
503 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
504 {
505 	__call_rcu(head, func, rcu_state_p, -1, 0);
506 }
507 EXPORT_SYMBOL_GPL(call_rcu);
508 
509 /**
510  * synchronize_rcu - wait until a grace period has elapsed.
511  *
512  * Control will return to the caller some time after a full grace
513  * period has elapsed, in other words after all currently executing RCU
514  * read-side critical sections have completed.  Note, however, that
515  * upon return from synchronize_rcu(), the caller might well be executing
516  * concurrently with new RCU read-side critical sections that began while
517  * synchronize_rcu() was waiting.  RCU read-side critical sections are
518  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
519  *
520  * See the description of synchronize_sched() for more detailed information
521  * on memory ordering guarantees.
522  */
523 void synchronize_rcu(void)
524 {
525 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
526 			 lock_is_held(&rcu_lock_map) ||
527 			 lock_is_held(&rcu_sched_lock_map),
528 			 "Illegal synchronize_rcu() in RCU read-side critical section");
529 	if (!rcu_scheduler_active)
530 		return;
531 	if (rcu_gp_is_expedited())
532 		synchronize_rcu_expedited();
533 	else
534 		wait_rcu_gp(call_rcu);
535 }
536 EXPORT_SYMBOL_GPL(synchronize_rcu);
537 
538 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
539 
540 /*
541  * Return non-zero if there are any tasks in RCU read-side critical
542  * sections blocking the current preemptible-RCU expedited grace period.
543  * If there is no preemptible-RCU expedited grace period currently in
544  * progress, returns zero unconditionally.
545  */
546 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
547 {
548 	return rnp->exp_tasks != NULL;
549 }
550 
551 /*
552  * return non-zero if there is no RCU expedited grace period in progress
553  * for the specified rcu_node structure, in other words, if all CPUs and
554  * tasks covered by the specified rcu_node structure have done their bit
555  * for the current expedited grace period.  Works only for preemptible
556  * RCU -- other RCU implementation use other means.
557  *
558  * Caller must hold the root rcu_node's exp_funnel_mutex.
559  */
560 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
561 {
562 	return !rcu_preempted_readers_exp(rnp) &&
563 	       READ_ONCE(rnp->expmask) == 0;
564 }
565 
566 /*
567  * Report the exit from RCU read-side critical section for the last task
568  * that queued itself during or before the current expedited preemptible-RCU
569  * grace period.  This event is reported either to the rcu_node structure on
570  * which the task was queued or to one of that rcu_node structure's ancestors,
571  * recursively up the tree.  (Calm down, calm down, we do the recursion
572  * iteratively!)
573  *
574  * Caller must hold the root rcu_node's exp_funnel_mutex.
575  */
576 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
577 			       bool wake)
578 {
579 	unsigned long flags;
580 	unsigned long mask;
581 
582 	raw_spin_lock_irqsave(&rnp->lock, flags);
583 	smp_mb__after_unlock_lock();
584 	for (;;) {
585 		if (!sync_rcu_preempt_exp_done(rnp)) {
586 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
587 			break;
588 		}
589 		if (rnp->parent == NULL) {
590 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
591 			if (wake) {
592 				smp_mb(); /* EGP done before wake_up(). */
593 				wake_up(&sync_rcu_preempt_exp_wq);
594 			}
595 			break;
596 		}
597 		mask = rnp->grpmask;
598 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
599 		rnp = rnp->parent;
600 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
601 		smp_mb__after_unlock_lock();
602 		rnp->expmask &= ~mask;
603 	}
604 }
605 
606 /*
607  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
608  * grace period for the specified rcu_node structure, phase 1.  If there
609  * are such tasks, set the ->expmask bits up the rcu_node tree and also
610  * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
611  * that work is needed here.
612  *
613  * Caller must hold the root rcu_node's exp_funnel_mutex.
614  */
615 static void
616 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
617 {
618 	unsigned long flags;
619 	unsigned long mask;
620 	struct rcu_node *rnp_up;
621 
622 	raw_spin_lock_irqsave(&rnp->lock, flags);
623 	smp_mb__after_unlock_lock();
624 	WARN_ON_ONCE(rnp->expmask);
625 	WARN_ON_ONCE(rnp->exp_tasks);
626 	if (!rcu_preempt_has_tasks(rnp)) {
627 		/* No blocked tasks, nothing to do. */
628 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
629 		return;
630 	}
631 	/* Call for Phase 2 and propagate ->expmask bits up the tree. */
632 	rnp->expmask = 1;
633 	rnp_up = rnp;
634 	while (rnp_up->parent) {
635 		mask = rnp_up->grpmask;
636 		rnp_up = rnp_up->parent;
637 		if (rnp_up->expmask & mask)
638 			break;
639 		raw_spin_lock(&rnp_up->lock); /* irqs already off */
640 		smp_mb__after_unlock_lock();
641 		rnp_up->expmask |= mask;
642 		raw_spin_unlock(&rnp_up->lock); /* irqs still off */
643 	}
644 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
645 }
646 
647 /*
648  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
649  * grace period for the specified rcu_node structure, phase 2.  If the
650  * leaf rcu_node structure has its ->expmask field set, check for tasks.
651  * If there are some, clear ->expmask and set ->exp_tasks accordingly,
652  * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
653  * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
654  * enabling rcu_read_unlock_special() to do the bit-clearing.
655  *
656  * Caller must hold the root rcu_node's exp_funnel_mutex.
657  */
658 static void
659 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
660 {
661 	unsigned long flags;
662 
663 	raw_spin_lock_irqsave(&rnp->lock, flags);
664 	smp_mb__after_unlock_lock();
665 	if (!rnp->expmask) {
666 		/* Phase 1 didn't do anything, so Phase 2 doesn't either. */
667 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
668 		return;
669 	}
670 
671 	/* Phase 1 is over. */
672 	rnp->expmask = 0;
673 
674 	/*
675 	 * If there are still blocked tasks, set up ->exp_tasks so that
676 	 * rcu_read_unlock_special() will wake us and then boost them.
677 	 */
678 	if (rcu_preempt_has_tasks(rnp)) {
679 		rnp->exp_tasks = rnp->blkd_tasks.next;
680 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
681 		return;
682 	}
683 
684 	/* No longer any blocked tasks, so undo bit setting. */
685 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
686 	rcu_report_exp_rnp(rsp, rnp, false);
687 }
688 
689 /**
690  * synchronize_rcu_expedited - Brute-force RCU grace period
691  *
692  * Wait for an RCU-preempt grace period, but expedite it.  The basic
693  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
694  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
695  * significant time on all CPUs and is unfriendly to real-time workloads,
696  * so is thus not recommended for any sort of common-case code.
697  * In fact, if you are using synchronize_rcu_expedited() in a loop,
698  * please restructure your code to batch your updates, and then Use a
699  * single synchronize_rcu() instead.
700  */
701 void synchronize_rcu_expedited(void)
702 {
703 	struct rcu_node *rnp;
704 	struct rcu_node *rnp_unlock;
705 	struct rcu_state *rsp = rcu_state_p;
706 	unsigned long s;
707 
708 	s = rcu_exp_gp_seq_snap(rsp);
709 
710 	rnp_unlock = exp_funnel_lock(rsp, s);
711 	if (rnp_unlock == NULL)
712 		return;  /* Someone else did our work for us. */
713 
714 	rcu_exp_gp_seq_start(rsp);
715 
716 	/* force all RCU readers onto ->blkd_tasks lists. */
717 	synchronize_sched_expedited();
718 
719 	/*
720 	 * Snapshot current state of ->blkd_tasks lists into ->expmask.
721 	 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
722 	 * to start clearing them.  Doing this in one phase leads to
723 	 * strange races between setting and clearing bits, so just say "no"!
724 	 */
725 	rcu_for_each_leaf_node(rsp, rnp)
726 		sync_rcu_preempt_exp_init1(rsp, rnp);
727 	rcu_for_each_leaf_node(rsp, rnp)
728 		sync_rcu_preempt_exp_init2(rsp, rnp);
729 
730 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
731 	rnp = rcu_get_root(rsp);
732 	wait_event(sync_rcu_preempt_exp_wq,
733 		   sync_rcu_preempt_exp_done(rnp));
734 
735 	/* Clean up and exit. */
736 	rcu_exp_gp_seq_end(rsp);
737 	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
738 }
739 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
740 
741 /**
742  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
743  *
744  * Note that this primitive does not necessarily wait for an RCU grace period
745  * to complete.  For example, if there are no RCU callbacks queued anywhere
746  * in the system, then rcu_barrier() is within its rights to return
747  * immediately, without waiting for anything, much less an RCU grace period.
748  */
749 void rcu_barrier(void)
750 {
751 	_rcu_barrier(rcu_state_p);
752 }
753 EXPORT_SYMBOL_GPL(rcu_barrier);
754 
755 /*
756  * Initialize preemptible RCU's state structures.
757  */
758 static void __init __rcu_init_preempt(void)
759 {
760 	rcu_init_one(rcu_state_p, rcu_data_p);
761 }
762 
763 /*
764  * Check for a task exiting while in a preemptible-RCU read-side
765  * critical section, clean up if so.  No need to issue warnings,
766  * as debug_check_no_locks_held() already does this if lockdep
767  * is enabled.
768  */
769 void exit_rcu(void)
770 {
771 	struct task_struct *t = current;
772 
773 	if (likely(list_empty(&current->rcu_node_entry)))
774 		return;
775 	t->rcu_read_lock_nesting = 1;
776 	barrier();
777 	t->rcu_read_unlock_special.b.blocked = true;
778 	__rcu_read_unlock();
779 }
780 
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
782 
783 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
784 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
785 
786 /*
787  * Tell them what RCU they are running.
788  */
789 static void __init rcu_bootup_announce(void)
790 {
791 	pr_info("Hierarchical RCU implementation.\n");
792 	rcu_bootup_announce_oddness();
793 }
794 
795 /*
796  * Because preemptible RCU does not exist, we never have to check for
797  * CPUs being in quiescent states.
798  */
799 static void rcu_preempt_note_context_switch(void)
800 {
801 }
802 
803 /*
804  * Because preemptible RCU does not exist, there are never any preempted
805  * RCU readers.
806  */
807 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
808 {
809 	return 0;
810 }
811 
812 /*
813  * Because there is no preemptible RCU, there can be no readers blocked.
814  */
815 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
816 {
817 	return false;
818 }
819 
820 /*
821  * Because preemptible RCU does not exist, we never have to check for
822  * tasks blocked within RCU read-side critical sections.
823  */
824 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
825 {
826 }
827 
828 /*
829  * Because preemptible RCU does not exist, we never have to check for
830  * tasks blocked within RCU read-side critical sections.
831  */
832 static int rcu_print_task_stall(struct rcu_node *rnp)
833 {
834 	return 0;
835 }
836 
837 /*
838  * Because there is no preemptible RCU, there can be no readers blocked,
839  * so there is no need to check for blocked tasks.  So check only for
840  * bogus qsmask values.
841  */
842 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
843 {
844 	WARN_ON_ONCE(rnp->qsmask);
845 }
846 
847 /*
848  * Because preemptible RCU does not exist, it never has any callbacks
849  * to check.
850  */
851 static void rcu_preempt_check_callbacks(void)
852 {
853 }
854 
855 /*
856  * Wait for an rcu-preempt grace period, but make it happen quickly.
857  * But because preemptible RCU does not exist, map to rcu-sched.
858  */
859 void synchronize_rcu_expedited(void)
860 {
861 	synchronize_sched_expedited();
862 }
863 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
864 
865 /*
866  * Because preemptible RCU does not exist, rcu_barrier() is just
867  * another name for rcu_barrier_sched().
868  */
869 void rcu_barrier(void)
870 {
871 	rcu_barrier_sched();
872 }
873 EXPORT_SYMBOL_GPL(rcu_barrier);
874 
875 /*
876  * Because preemptible RCU does not exist, it need not be initialized.
877  */
878 static void __init __rcu_init_preempt(void)
879 {
880 }
881 
882 /*
883  * Because preemptible RCU does not exist, tasks cannot possibly exit
884  * while in preemptible RCU read-side critical sections.
885  */
886 void exit_rcu(void)
887 {
888 }
889 
890 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
891 
892 #ifdef CONFIG_RCU_BOOST
893 
894 #include "../locking/rtmutex_common.h"
895 
896 #ifdef CONFIG_RCU_TRACE
897 
898 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
899 {
900 	if (!rcu_preempt_has_tasks(rnp))
901 		rnp->n_balk_blkd_tasks++;
902 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
903 		rnp->n_balk_exp_gp_tasks++;
904 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
905 		rnp->n_balk_boost_tasks++;
906 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
907 		rnp->n_balk_notblocked++;
908 	else if (rnp->gp_tasks != NULL &&
909 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
910 		rnp->n_balk_notyet++;
911 	else
912 		rnp->n_balk_nos++;
913 }
914 
915 #else /* #ifdef CONFIG_RCU_TRACE */
916 
917 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
918 {
919 }
920 
921 #endif /* #else #ifdef CONFIG_RCU_TRACE */
922 
923 static void rcu_wake_cond(struct task_struct *t, int status)
924 {
925 	/*
926 	 * If the thread is yielding, only wake it when this
927 	 * is invoked from idle
928 	 */
929 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
930 		wake_up_process(t);
931 }
932 
933 /*
934  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
935  * or ->boost_tasks, advancing the pointer to the next task in the
936  * ->blkd_tasks list.
937  *
938  * Note that irqs must be enabled: boosting the task can block.
939  * Returns 1 if there are more tasks needing to be boosted.
940  */
941 static int rcu_boost(struct rcu_node *rnp)
942 {
943 	unsigned long flags;
944 	struct task_struct *t;
945 	struct list_head *tb;
946 
947 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
948 	    READ_ONCE(rnp->boost_tasks) == NULL)
949 		return 0;  /* Nothing left to boost. */
950 
951 	raw_spin_lock_irqsave(&rnp->lock, flags);
952 	smp_mb__after_unlock_lock();
953 
954 	/*
955 	 * Recheck under the lock: all tasks in need of boosting
956 	 * might exit their RCU read-side critical sections on their own.
957 	 */
958 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
959 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
960 		return 0;
961 	}
962 
963 	/*
964 	 * Preferentially boost tasks blocking expedited grace periods.
965 	 * This cannot starve the normal grace periods because a second
966 	 * expedited grace period must boost all blocked tasks, including
967 	 * those blocking the pre-existing normal grace period.
968 	 */
969 	if (rnp->exp_tasks != NULL) {
970 		tb = rnp->exp_tasks;
971 		rnp->n_exp_boosts++;
972 	} else {
973 		tb = rnp->boost_tasks;
974 		rnp->n_normal_boosts++;
975 	}
976 	rnp->n_tasks_boosted++;
977 
978 	/*
979 	 * We boost task t by manufacturing an rt_mutex that appears to
980 	 * be held by task t.  We leave a pointer to that rt_mutex where
981 	 * task t can find it, and task t will release the mutex when it
982 	 * exits its outermost RCU read-side critical section.  Then
983 	 * simply acquiring this artificial rt_mutex will boost task
984 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
985 	 *
986 	 * Note that task t must acquire rnp->lock to remove itself from
987 	 * the ->blkd_tasks list, which it will do from exit() if from
988 	 * nowhere else.  We therefore are guaranteed that task t will
989 	 * stay around at least until we drop rnp->lock.  Note that
990 	 * rnp->lock also resolves races between our priority boosting
991 	 * and task t's exiting its outermost RCU read-side critical
992 	 * section.
993 	 */
994 	t = container_of(tb, struct task_struct, rcu_node_entry);
995 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
996 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 	/* Lock only for side effect: boosts task t's priority. */
998 	rt_mutex_lock(&rnp->boost_mtx);
999 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1000 
1001 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1002 	       READ_ONCE(rnp->boost_tasks) != NULL;
1003 }
1004 
1005 /*
1006  * Priority-boosting kthread, one per leaf rcu_node.
1007  */
1008 static int rcu_boost_kthread(void *arg)
1009 {
1010 	struct rcu_node *rnp = (struct rcu_node *)arg;
1011 	int spincnt = 0;
1012 	int more2boost;
1013 
1014 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1015 	for (;;) {
1016 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1017 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1018 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1019 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1020 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1021 		more2boost = rcu_boost(rnp);
1022 		if (more2boost)
1023 			spincnt++;
1024 		else
1025 			spincnt = 0;
1026 		if (spincnt > 10) {
1027 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1028 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1029 			schedule_timeout_interruptible(2);
1030 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1031 			spincnt = 0;
1032 		}
1033 	}
1034 	/* NOTREACHED */
1035 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1036 	return 0;
1037 }
1038 
1039 /*
1040  * Check to see if it is time to start boosting RCU readers that are
1041  * blocking the current grace period, and, if so, tell the per-rcu_node
1042  * kthread to start boosting them.  If there is an expedited grace
1043  * period in progress, it is always time to boost.
1044  *
1045  * The caller must hold rnp->lock, which this function releases.
1046  * The ->boost_kthread_task is immortal, so we don't need to worry
1047  * about it going away.
1048  */
1049 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1050 	__releases(rnp->lock)
1051 {
1052 	struct task_struct *t;
1053 
1054 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1055 		rnp->n_balk_exp_gp_tasks++;
1056 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1057 		return;
1058 	}
1059 	if (rnp->exp_tasks != NULL ||
1060 	    (rnp->gp_tasks != NULL &&
1061 	     rnp->boost_tasks == NULL &&
1062 	     rnp->qsmask == 0 &&
1063 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1064 		if (rnp->exp_tasks == NULL)
1065 			rnp->boost_tasks = rnp->gp_tasks;
1066 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067 		t = rnp->boost_kthread_task;
1068 		if (t)
1069 			rcu_wake_cond(t, rnp->boost_kthread_status);
1070 	} else {
1071 		rcu_initiate_boost_trace(rnp);
1072 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1073 	}
1074 }
1075 
1076 /*
1077  * Wake up the per-CPU kthread to invoke RCU callbacks.
1078  */
1079 static void invoke_rcu_callbacks_kthread(void)
1080 {
1081 	unsigned long flags;
1082 
1083 	local_irq_save(flags);
1084 	__this_cpu_write(rcu_cpu_has_work, 1);
1085 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1086 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1087 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1088 			      __this_cpu_read(rcu_cpu_kthread_status));
1089 	}
1090 	local_irq_restore(flags);
1091 }
1092 
1093 /*
1094  * Is the current CPU running the RCU-callbacks kthread?
1095  * Caller must have preemption disabled.
1096  */
1097 static bool rcu_is_callbacks_kthread(void)
1098 {
1099 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1100 }
1101 
1102 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103 
1104 /*
1105  * Do priority-boost accounting for the start of a new grace period.
1106  */
1107 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1108 {
1109 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1110 }
1111 
1112 /*
1113  * Create an RCU-boost kthread for the specified node if one does not
1114  * already exist.  We only create this kthread for preemptible RCU.
1115  * Returns zero if all is well, a negated errno otherwise.
1116  */
1117 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1118 				       struct rcu_node *rnp)
1119 {
1120 	int rnp_index = rnp - &rsp->node[0];
1121 	unsigned long flags;
1122 	struct sched_param sp;
1123 	struct task_struct *t;
1124 
1125 	if (rcu_state_p != rsp)
1126 		return 0;
1127 
1128 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1129 		return 0;
1130 
1131 	rsp->boost = 1;
1132 	if (rnp->boost_kthread_task != NULL)
1133 		return 0;
1134 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1135 			   "rcub/%d", rnp_index);
1136 	if (IS_ERR(t))
1137 		return PTR_ERR(t);
1138 	raw_spin_lock_irqsave(&rnp->lock, flags);
1139 	smp_mb__after_unlock_lock();
1140 	rnp->boost_kthread_task = t;
1141 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1142 	sp.sched_priority = kthread_prio;
1143 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1144 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1145 	return 0;
1146 }
1147 
1148 static void rcu_kthread_do_work(void)
1149 {
1150 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1151 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1152 	rcu_preempt_do_callbacks();
1153 }
1154 
1155 static void rcu_cpu_kthread_setup(unsigned int cpu)
1156 {
1157 	struct sched_param sp;
1158 
1159 	sp.sched_priority = kthread_prio;
1160 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1161 }
1162 
1163 static void rcu_cpu_kthread_park(unsigned int cpu)
1164 {
1165 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1166 }
1167 
1168 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1169 {
1170 	return __this_cpu_read(rcu_cpu_has_work);
1171 }
1172 
1173 /*
1174  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1175  * RCU softirq used in flavors and configurations of RCU that do not
1176  * support RCU priority boosting.
1177  */
1178 static void rcu_cpu_kthread(unsigned int cpu)
1179 {
1180 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1181 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1182 	int spincnt;
1183 
1184 	for (spincnt = 0; spincnt < 10; spincnt++) {
1185 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1186 		local_bh_disable();
1187 		*statusp = RCU_KTHREAD_RUNNING;
1188 		this_cpu_inc(rcu_cpu_kthread_loops);
1189 		local_irq_disable();
1190 		work = *workp;
1191 		*workp = 0;
1192 		local_irq_enable();
1193 		if (work)
1194 			rcu_kthread_do_work();
1195 		local_bh_enable();
1196 		if (*workp == 0) {
1197 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1198 			*statusp = RCU_KTHREAD_WAITING;
1199 			return;
1200 		}
1201 	}
1202 	*statusp = RCU_KTHREAD_YIELDING;
1203 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1204 	schedule_timeout_interruptible(2);
1205 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1206 	*statusp = RCU_KTHREAD_WAITING;
1207 }
1208 
1209 /*
1210  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1211  * served by the rcu_node in question.  The CPU hotplug lock is still
1212  * held, so the value of rnp->qsmaskinit will be stable.
1213  *
1214  * We don't include outgoingcpu in the affinity set, use -1 if there is
1215  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1216  * this function allows the kthread to execute on any CPU.
1217  */
1218 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1219 {
1220 	struct task_struct *t = rnp->boost_kthread_task;
1221 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1222 	cpumask_var_t cm;
1223 	int cpu;
1224 
1225 	if (!t)
1226 		return;
1227 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1228 		return;
1229 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1230 		if ((mask & 0x1) && cpu != outgoingcpu)
1231 			cpumask_set_cpu(cpu, cm);
1232 	if (cpumask_weight(cm) == 0)
1233 		cpumask_setall(cm);
1234 	set_cpus_allowed_ptr(t, cm);
1235 	free_cpumask_var(cm);
1236 }
1237 
1238 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1239 	.store			= &rcu_cpu_kthread_task,
1240 	.thread_should_run	= rcu_cpu_kthread_should_run,
1241 	.thread_fn		= rcu_cpu_kthread,
1242 	.thread_comm		= "rcuc/%u",
1243 	.setup			= rcu_cpu_kthread_setup,
1244 	.park			= rcu_cpu_kthread_park,
1245 };
1246 
1247 /*
1248  * Spawn boost kthreads -- called as soon as the scheduler is running.
1249  */
1250 static void __init rcu_spawn_boost_kthreads(void)
1251 {
1252 	struct rcu_node *rnp;
1253 	int cpu;
1254 
1255 	for_each_possible_cpu(cpu)
1256 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1257 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1258 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1259 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1260 }
1261 
1262 static void rcu_prepare_kthreads(int cpu)
1263 {
1264 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1265 	struct rcu_node *rnp = rdp->mynode;
1266 
1267 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1268 	if (rcu_scheduler_fully_active)
1269 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1270 }
1271 
1272 #else /* #ifdef CONFIG_RCU_BOOST */
1273 
1274 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1275 	__releases(rnp->lock)
1276 {
1277 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1278 }
1279 
1280 static void invoke_rcu_callbacks_kthread(void)
1281 {
1282 	WARN_ON_ONCE(1);
1283 }
1284 
1285 static bool rcu_is_callbacks_kthread(void)
1286 {
1287 	return false;
1288 }
1289 
1290 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1291 {
1292 }
1293 
1294 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1295 {
1296 }
1297 
1298 static void __init rcu_spawn_boost_kthreads(void)
1299 {
1300 }
1301 
1302 static void rcu_prepare_kthreads(int cpu)
1303 {
1304 }
1305 
1306 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1307 
1308 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1309 
1310 /*
1311  * Check to see if any future RCU-related work will need to be done
1312  * by the current CPU, even if none need be done immediately, returning
1313  * 1 if so.  This function is part of the RCU implementation; it is -not-
1314  * an exported member of the RCU API.
1315  *
1316  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1317  * any flavor of RCU.
1318  */
1319 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1320 {
1321 	*nextevt = KTIME_MAX;
1322 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1323 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1324 }
1325 
1326 /*
1327  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1328  * after it.
1329  */
1330 static void rcu_cleanup_after_idle(void)
1331 {
1332 }
1333 
1334 /*
1335  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1336  * is nothing.
1337  */
1338 static void rcu_prepare_for_idle(void)
1339 {
1340 }
1341 
1342 /*
1343  * Don't bother keeping a running count of the number of RCU callbacks
1344  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1345  */
1346 static void rcu_idle_count_callbacks_posted(void)
1347 {
1348 }
1349 
1350 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1351 
1352 /*
1353  * This code is invoked when a CPU goes idle, at which point we want
1354  * to have the CPU do everything required for RCU so that it can enter
1355  * the energy-efficient dyntick-idle mode.  This is handled by a
1356  * state machine implemented by rcu_prepare_for_idle() below.
1357  *
1358  * The following three proprocessor symbols control this state machine:
1359  *
1360  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1361  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1362  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1363  *	benchmarkers who might otherwise be tempted to set this to a large
1364  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1365  *	system.  And if you are -that- concerned about energy efficiency,
1366  *	just power the system down and be done with it!
1367  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1368  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1369  *	callbacks pending.  Setting this too high can OOM your system.
1370  *
1371  * The values below work well in practice.  If future workloads require
1372  * adjustment, they can be converted into kernel config parameters, though
1373  * making the state machine smarter might be a better option.
1374  */
1375 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1376 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1377 
1378 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1379 module_param(rcu_idle_gp_delay, int, 0644);
1380 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1381 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1382 
1383 /*
1384  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1385  * only if it has been awhile since the last time we did so.  Afterwards,
1386  * if there are any callbacks ready for immediate invocation, return true.
1387  */
1388 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1389 {
1390 	bool cbs_ready = false;
1391 	struct rcu_data *rdp;
1392 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1393 	struct rcu_node *rnp;
1394 	struct rcu_state *rsp;
1395 
1396 	/* Exit early if we advanced recently. */
1397 	if (jiffies == rdtp->last_advance_all)
1398 		return false;
1399 	rdtp->last_advance_all = jiffies;
1400 
1401 	for_each_rcu_flavor(rsp) {
1402 		rdp = this_cpu_ptr(rsp->rda);
1403 		rnp = rdp->mynode;
1404 
1405 		/*
1406 		 * Don't bother checking unless a grace period has
1407 		 * completed since we last checked and there are
1408 		 * callbacks not yet ready to invoke.
1409 		 */
1410 		if ((rdp->completed != rnp->completed ||
1411 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1412 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1413 			note_gp_changes(rsp, rdp);
1414 
1415 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1416 			cbs_ready = true;
1417 	}
1418 	return cbs_ready;
1419 }
1420 
1421 /*
1422  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1423  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1424  * caller to set the timeout based on whether or not there are non-lazy
1425  * callbacks.
1426  *
1427  * The caller must have disabled interrupts.
1428  */
1429 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1430 {
1431 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1432 	unsigned long dj;
1433 
1434 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1435 		*nextevt = KTIME_MAX;
1436 		return 0;
1437 	}
1438 
1439 	/* Snapshot to detect later posting of non-lazy callback. */
1440 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1441 
1442 	/* If no callbacks, RCU doesn't need the CPU. */
1443 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1444 		*nextevt = KTIME_MAX;
1445 		return 0;
1446 	}
1447 
1448 	/* Attempt to advance callbacks. */
1449 	if (rcu_try_advance_all_cbs()) {
1450 		/* Some ready to invoke, so initiate later invocation. */
1451 		invoke_rcu_core();
1452 		return 1;
1453 	}
1454 	rdtp->last_accelerate = jiffies;
1455 
1456 	/* Request timer delay depending on laziness, and round. */
1457 	if (!rdtp->all_lazy) {
1458 		dj = round_up(rcu_idle_gp_delay + jiffies,
1459 			       rcu_idle_gp_delay) - jiffies;
1460 	} else {
1461 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1462 	}
1463 	*nextevt = basemono + dj * TICK_NSEC;
1464 	return 0;
1465 }
1466 
1467 /*
1468  * Prepare a CPU for idle from an RCU perspective.  The first major task
1469  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1470  * The second major task is to check to see if a non-lazy callback has
1471  * arrived at a CPU that previously had only lazy callbacks.  The third
1472  * major task is to accelerate (that is, assign grace-period numbers to)
1473  * any recently arrived callbacks.
1474  *
1475  * The caller must have disabled interrupts.
1476  */
1477 static void rcu_prepare_for_idle(void)
1478 {
1479 	bool needwake;
1480 	struct rcu_data *rdp;
1481 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1482 	struct rcu_node *rnp;
1483 	struct rcu_state *rsp;
1484 	int tne;
1485 
1486 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1487 		return;
1488 
1489 	/* Handle nohz enablement switches conservatively. */
1490 	tne = READ_ONCE(tick_nohz_active);
1491 	if (tne != rdtp->tick_nohz_enabled_snap) {
1492 		if (rcu_cpu_has_callbacks(NULL))
1493 			invoke_rcu_core(); /* force nohz to see update. */
1494 		rdtp->tick_nohz_enabled_snap = tne;
1495 		return;
1496 	}
1497 	if (!tne)
1498 		return;
1499 
1500 	/* If this is a no-CBs CPU, no callbacks, just return. */
1501 	if (rcu_is_nocb_cpu(smp_processor_id()))
1502 		return;
1503 
1504 	/*
1505 	 * If a non-lazy callback arrived at a CPU having only lazy
1506 	 * callbacks, invoke RCU core for the side-effect of recalculating
1507 	 * idle duration on re-entry to idle.
1508 	 */
1509 	if (rdtp->all_lazy &&
1510 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1511 		rdtp->all_lazy = false;
1512 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1513 		invoke_rcu_core();
1514 		return;
1515 	}
1516 
1517 	/*
1518 	 * If we have not yet accelerated this jiffy, accelerate all
1519 	 * callbacks on this CPU.
1520 	 */
1521 	if (rdtp->last_accelerate == jiffies)
1522 		return;
1523 	rdtp->last_accelerate = jiffies;
1524 	for_each_rcu_flavor(rsp) {
1525 		rdp = this_cpu_ptr(rsp->rda);
1526 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1527 			continue;
1528 		rnp = rdp->mynode;
1529 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1530 		smp_mb__after_unlock_lock();
1531 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1532 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1533 		if (needwake)
1534 			rcu_gp_kthread_wake(rsp);
1535 	}
1536 }
1537 
1538 /*
1539  * Clean up for exit from idle.  Attempt to advance callbacks based on
1540  * any grace periods that elapsed while the CPU was idle, and if any
1541  * callbacks are now ready to invoke, initiate invocation.
1542  */
1543 static void rcu_cleanup_after_idle(void)
1544 {
1545 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1546 	    rcu_is_nocb_cpu(smp_processor_id()))
1547 		return;
1548 	if (rcu_try_advance_all_cbs())
1549 		invoke_rcu_core();
1550 }
1551 
1552 /*
1553  * Keep a running count of the number of non-lazy callbacks posted
1554  * on this CPU.  This running counter (which is never decremented) allows
1555  * rcu_prepare_for_idle() to detect when something out of the idle loop
1556  * posts a callback, even if an equal number of callbacks are invoked.
1557  * Of course, callbacks should only be posted from within a trace event
1558  * designed to be called from idle or from within RCU_NONIDLE().
1559  */
1560 static void rcu_idle_count_callbacks_posted(void)
1561 {
1562 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1563 }
1564 
1565 /*
1566  * Data for flushing lazy RCU callbacks at OOM time.
1567  */
1568 static atomic_t oom_callback_count;
1569 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1570 
1571 /*
1572  * RCU OOM callback -- decrement the outstanding count and deliver the
1573  * wake-up if we are the last one.
1574  */
1575 static void rcu_oom_callback(struct rcu_head *rhp)
1576 {
1577 	if (atomic_dec_and_test(&oom_callback_count))
1578 		wake_up(&oom_callback_wq);
1579 }
1580 
1581 /*
1582  * Post an rcu_oom_notify callback on the current CPU if it has at
1583  * least one lazy callback.  This will unnecessarily post callbacks
1584  * to CPUs that already have a non-lazy callback at the end of their
1585  * callback list, but this is an infrequent operation, so accept some
1586  * extra overhead to keep things simple.
1587  */
1588 static void rcu_oom_notify_cpu(void *unused)
1589 {
1590 	struct rcu_state *rsp;
1591 	struct rcu_data *rdp;
1592 
1593 	for_each_rcu_flavor(rsp) {
1594 		rdp = raw_cpu_ptr(rsp->rda);
1595 		if (rdp->qlen_lazy != 0) {
1596 			atomic_inc(&oom_callback_count);
1597 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1598 		}
1599 	}
1600 }
1601 
1602 /*
1603  * If low on memory, ensure that each CPU has a non-lazy callback.
1604  * This will wake up CPUs that have only lazy callbacks, in turn
1605  * ensuring that they free up the corresponding memory in a timely manner.
1606  * Because an uncertain amount of memory will be freed in some uncertain
1607  * timeframe, we do not claim to have freed anything.
1608  */
1609 static int rcu_oom_notify(struct notifier_block *self,
1610 			  unsigned long notused, void *nfreed)
1611 {
1612 	int cpu;
1613 
1614 	/* Wait for callbacks from earlier instance to complete. */
1615 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1616 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1617 
1618 	/*
1619 	 * Prevent premature wakeup: ensure that all increments happen
1620 	 * before there is a chance of the counter reaching zero.
1621 	 */
1622 	atomic_set(&oom_callback_count, 1);
1623 
1624 	for_each_online_cpu(cpu) {
1625 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1626 		cond_resched_rcu_qs();
1627 	}
1628 
1629 	/* Unconditionally decrement: no need to wake ourselves up. */
1630 	atomic_dec(&oom_callback_count);
1631 
1632 	return NOTIFY_OK;
1633 }
1634 
1635 static struct notifier_block rcu_oom_nb = {
1636 	.notifier_call = rcu_oom_notify
1637 };
1638 
1639 static int __init rcu_register_oom_notifier(void)
1640 {
1641 	register_oom_notifier(&rcu_oom_nb);
1642 	return 0;
1643 }
1644 early_initcall(rcu_register_oom_notifier);
1645 
1646 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1647 
1648 #ifdef CONFIG_RCU_FAST_NO_HZ
1649 
1650 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1651 {
1652 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1653 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1654 
1655 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1656 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1657 		ulong2long(nlpd),
1658 		rdtp->all_lazy ? 'L' : '.',
1659 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1660 }
1661 
1662 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1663 
1664 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1665 {
1666 	*cp = '\0';
1667 }
1668 
1669 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1670 
1671 /* Initiate the stall-info list. */
1672 static void print_cpu_stall_info_begin(void)
1673 {
1674 	pr_cont("\n");
1675 }
1676 
1677 /*
1678  * Print out diagnostic information for the specified stalled CPU.
1679  *
1680  * If the specified CPU is aware of the current RCU grace period
1681  * (flavor specified by rsp), then print the number of scheduling
1682  * clock interrupts the CPU has taken during the time that it has
1683  * been aware.  Otherwise, print the number of RCU grace periods
1684  * that this CPU is ignorant of, for example, "1" if the CPU was
1685  * aware of the previous grace period.
1686  *
1687  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1688  */
1689 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1690 {
1691 	char fast_no_hz[72];
1692 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1693 	struct rcu_dynticks *rdtp = rdp->dynticks;
1694 	char *ticks_title;
1695 	unsigned long ticks_value;
1696 
1697 	if (rsp->gpnum == rdp->gpnum) {
1698 		ticks_title = "ticks this GP";
1699 		ticks_value = rdp->ticks_this_gp;
1700 	} else {
1701 		ticks_title = "GPs behind";
1702 		ticks_value = rsp->gpnum - rdp->gpnum;
1703 	}
1704 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1705 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1706 	       cpu, ticks_value, ticks_title,
1707 	       atomic_read(&rdtp->dynticks) & 0xfff,
1708 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1709 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1710 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1711 	       fast_no_hz);
1712 }
1713 
1714 /* Terminate the stall-info list. */
1715 static void print_cpu_stall_info_end(void)
1716 {
1717 	pr_err("\t");
1718 }
1719 
1720 /* Zero ->ticks_this_gp for all flavors of RCU. */
1721 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1722 {
1723 	rdp->ticks_this_gp = 0;
1724 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1725 }
1726 
1727 /* Increment ->ticks_this_gp for all flavors of RCU. */
1728 static void increment_cpu_stall_ticks(void)
1729 {
1730 	struct rcu_state *rsp;
1731 
1732 	for_each_rcu_flavor(rsp)
1733 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1734 }
1735 
1736 #ifdef CONFIG_RCU_NOCB_CPU
1737 
1738 /*
1739  * Offload callback processing from the boot-time-specified set of CPUs
1740  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1741  * kthread created that pulls the callbacks from the corresponding CPU,
1742  * waits for a grace period to elapse, and invokes the callbacks.
1743  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1744  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1745  * has been specified, in which case each kthread actively polls its
1746  * CPU.  (Which isn't so great for energy efficiency, but which does
1747  * reduce RCU's overhead on that CPU.)
1748  *
1749  * This is intended to be used in conjunction with Frederic Weisbecker's
1750  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1751  * running CPU-bound user-mode computations.
1752  *
1753  * Offloading of callback processing could also in theory be used as
1754  * an energy-efficiency measure because CPUs with no RCU callbacks
1755  * queued are more aggressive about entering dyntick-idle mode.
1756  */
1757 
1758 
1759 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1760 static int __init rcu_nocb_setup(char *str)
1761 {
1762 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1763 	have_rcu_nocb_mask = true;
1764 	cpulist_parse(str, rcu_nocb_mask);
1765 	return 1;
1766 }
1767 __setup("rcu_nocbs=", rcu_nocb_setup);
1768 
1769 static int __init parse_rcu_nocb_poll(char *arg)
1770 {
1771 	rcu_nocb_poll = 1;
1772 	return 0;
1773 }
1774 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1775 
1776 /*
1777  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1778  * grace period.
1779  */
1780 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1781 {
1782 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1783 }
1784 
1785 /*
1786  * Set the root rcu_node structure's ->need_future_gp field
1787  * based on the sum of those of all rcu_node structures.  This does
1788  * double-count the root rcu_node structure's requests, but this
1789  * is necessary to handle the possibility of a rcu_nocb_kthread()
1790  * having awakened during the time that the rcu_node structures
1791  * were being updated for the end of the previous grace period.
1792  */
1793 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1794 {
1795 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1796 }
1797 
1798 static void rcu_init_one_nocb(struct rcu_node *rnp)
1799 {
1800 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1801 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1802 }
1803 
1804 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1805 /* Is the specified CPU a no-CBs CPU? */
1806 bool rcu_is_nocb_cpu(int cpu)
1807 {
1808 	if (have_rcu_nocb_mask)
1809 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1810 	return false;
1811 }
1812 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1813 
1814 /*
1815  * Kick the leader kthread for this NOCB group.
1816  */
1817 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1818 {
1819 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1820 
1821 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1822 		return;
1823 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1824 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1825 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1826 		wake_up(&rdp_leader->nocb_wq);
1827 	}
1828 }
1829 
1830 /*
1831  * Does the specified CPU need an RCU callback for the specified flavor
1832  * of rcu_barrier()?
1833  */
1834 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1835 {
1836 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1837 	unsigned long ret;
1838 #ifdef CONFIG_PROVE_RCU
1839 	struct rcu_head *rhp;
1840 #endif /* #ifdef CONFIG_PROVE_RCU */
1841 
1842 	/*
1843 	 * Check count of all no-CBs callbacks awaiting invocation.
1844 	 * There needs to be a barrier before this function is called,
1845 	 * but associated with a prior determination that no more
1846 	 * callbacks would be posted.  In the worst case, the first
1847 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1848 	 * necessarily rely on this, not a substitute for the caller
1849 	 * getting the concurrency design right!).  There must also be
1850 	 * a barrier between the following load an posting of a callback
1851 	 * (if a callback is in fact needed).  This is associated with an
1852 	 * atomic_inc() in the caller.
1853 	 */
1854 	ret = atomic_long_read(&rdp->nocb_q_count);
1855 
1856 #ifdef CONFIG_PROVE_RCU
1857 	rhp = READ_ONCE(rdp->nocb_head);
1858 	if (!rhp)
1859 		rhp = READ_ONCE(rdp->nocb_gp_head);
1860 	if (!rhp)
1861 		rhp = READ_ONCE(rdp->nocb_follower_head);
1862 
1863 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1864 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1865 	    rcu_scheduler_fully_active) {
1866 		/* RCU callback enqueued before CPU first came online??? */
1867 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1868 		       cpu, rhp->func);
1869 		WARN_ON_ONCE(1);
1870 	}
1871 #endif /* #ifdef CONFIG_PROVE_RCU */
1872 
1873 	return !!ret;
1874 }
1875 
1876 /*
1877  * Enqueue the specified string of rcu_head structures onto the specified
1878  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1879  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1880  * counts are supplied by rhcount and rhcount_lazy.
1881  *
1882  * If warranted, also wake up the kthread servicing this CPUs queues.
1883  */
1884 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1885 				    struct rcu_head *rhp,
1886 				    struct rcu_head **rhtp,
1887 				    int rhcount, int rhcount_lazy,
1888 				    unsigned long flags)
1889 {
1890 	int len;
1891 	struct rcu_head **old_rhpp;
1892 	struct task_struct *t;
1893 
1894 	/* Enqueue the callback on the nocb list and update counts. */
1895 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1896 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1897 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1898 	WRITE_ONCE(*old_rhpp, rhp);
1899 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1900 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1901 
1902 	/* If we are not being polled and there is a kthread, awaken it ... */
1903 	t = READ_ONCE(rdp->nocb_kthread);
1904 	if (rcu_nocb_poll || !t) {
1905 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1906 				    TPS("WakeNotPoll"));
1907 		return;
1908 	}
1909 	len = atomic_long_read(&rdp->nocb_q_count);
1910 	if (old_rhpp == &rdp->nocb_head) {
1911 		if (!irqs_disabled_flags(flags)) {
1912 			/* ... if queue was empty ... */
1913 			wake_nocb_leader(rdp, false);
1914 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1915 					    TPS("WakeEmpty"));
1916 		} else {
1917 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1918 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1919 					    TPS("WakeEmptyIsDeferred"));
1920 		}
1921 		rdp->qlen_last_fqs_check = 0;
1922 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1923 		/* ... or if many callbacks queued. */
1924 		if (!irqs_disabled_flags(flags)) {
1925 			wake_nocb_leader(rdp, true);
1926 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1927 					    TPS("WakeOvf"));
1928 		} else {
1929 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1930 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1931 					    TPS("WakeOvfIsDeferred"));
1932 		}
1933 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1934 	} else {
1935 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1936 	}
1937 	return;
1938 }
1939 
1940 /*
1941  * This is a helper for __call_rcu(), which invokes this when the normal
1942  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1943  * function returns failure back to __call_rcu(), which can complain
1944  * appropriately.
1945  *
1946  * Otherwise, this function queues the callback where the corresponding
1947  * "rcuo" kthread can find it.
1948  */
1949 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1950 			    bool lazy, unsigned long flags)
1951 {
1952 
1953 	if (!rcu_is_nocb_cpu(rdp->cpu))
1954 		return false;
1955 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1956 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1957 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1958 					 (unsigned long)rhp->func,
1959 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1960 					 -atomic_long_read(&rdp->nocb_q_count));
1961 	else
1962 		trace_rcu_callback(rdp->rsp->name, rhp,
1963 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1964 				   -atomic_long_read(&rdp->nocb_q_count));
1965 
1966 	/*
1967 	 * If called from an extended quiescent state with interrupts
1968 	 * disabled, invoke the RCU core in order to allow the idle-entry
1969 	 * deferred-wakeup check to function.
1970 	 */
1971 	if (irqs_disabled_flags(flags) &&
1972 	    !rcu_is_watching() &&
1973 	    cpu_online(smp_processor_id()))
1974 		invoke_rcu_core();
1975 
1976 	return true;
1977 }
1978 
1979 /*
1980  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1981  * not a no-CBs CPU.
1982  */
1983 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1984 						     struct rcu_data *rdp,
1985 						     unsigned long flags)
1986 {
1987 	long ql = rsp->qlen;
1988 	long qll = rsp->qlen_lazy;
1989 
1990 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1991 	if (!rcu_is_nocb_cpu(smp_processor_id()))
1992 		return false;
1993 	rsp->qlen = 0;
1994 	rsp->qlen_lazy = 0;
1995 
1996 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1997 	if (rsp->orphan_donelist != NULL) {
1998 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1999 					rsp->orphan_donetail, ql, qll, flags);
2000 		ql = qll = 0;
2001 		rsp->orphan_donelist = NULL;
2002 		rsp->orphan_donetail = &rsp->orphan_donelist;
2003 	}
2004 	if (rsp->orphan_nxtlist != NULL) {
2005 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2006 					rsp->orphan_nxttail, ql, qll, flags);
2007 		ql = qll = 0;
2008 		rsp->orphan_nxtlist = NULL;
2009 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2010 	}
2011 	return true;
2012 }
2013 
2014 /*
2015  * If necessary, kick off a new grace period, and either way wait
2016  * for a subsequent grace period to complete.
2017  */
2018 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2019 {
2020 	unsigned long c;
2021 	bool d;
2022 	unsigned long flags;
2023 	bool needwake;
2024 	struct rcu_node *rnp = rdp->mynode;
2025 
2026 	raw_spin_lock_irqsave(&rnp->lock, flags);
2027 	smp_mb__after_unlock_lock();
2028 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2029 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2030 	if (needwake)
2031 		rcu_gp_kthread_wake(rdp->rsp);
2032 
2033 	/*
2034 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2035 	 * up the load average.
2036 	 */
2037 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2038 	for (;;) {
2039 		wait_event_interruptible(
2040 			rnp->nocb_gp_wq[c & 0x1],
2041 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2042 		if (likely(d))
2043 			break;
2044 		WARN_ON(signal_pending(current));
2045 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2046 	}
2047 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2048 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2049 }
2050 
2051 /*
2052  * Leaders come here to wait for additional callbacks to show up.
2053  * This function does not return until callbacks appear.
2054  */
2055 static void nocb_leader_wait(struct rcu_data *my_rdp)
2056 {
2057 	bool firsttime = true;
2058 	bool gotcbs;
2059 	struct rcu_data *rdp;
2060 	struct rcu_head **tail;
2061 
2062 wait_again:
2063 
2064 	/* Wait for callbacks to appear. */
2065 	if (!rcu_nocb_poll) {
2066 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2067 		wait_event_interruptible(my_rdp->nocb_wq,
2068 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2069 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2070 	} else if (firsttime) {
2071 		firsttime = false; /* Don't drown trace log with "Poll"! */
2072 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2073 	}
2074 
2075 	/*
2076 	 * Each pass through the following loop checks a follower for CBs.
2077 	 * We are our own first follower.  Any CBs found are moved to
2078 	 * nocb_gp_head, where they await a grace period.
2079 	 */
2080 	gotcbs = false;
2081 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2082 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2083 		if (!rdp->nocb_gp_head)
2084 			continue;  /* No CBs here, try next follower. */
2085 
2086 		/* Move callbacks to wait-for-GP list, which is empty. */
2087 		WRITE_ONCE(rdp->nocb_head, NULL);
2088 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2089 		gotcbs = true;
2090 	}
2091 
2092 	/*
2093 	 * If there were no callbacks, sleep a bit, rescan after a
2094 	 * memory barrier, and go retry.
2095 	 */
2096 	if (unlikely(!gotcbs)) {
2097 		if (!rcu_nocb_poll)
2098 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2099 					    "WokeEmpty");
2100 		WARN_ON(signal_pending(current));
2101 		schedule_timeout_interruptible(1);
2102 
2103 		/* Rescan in case we were a victim of memory ordering. */
2104 		my_rdp->nocb_leader_sleep = true;
2105 		smp_mb();  /* Ensure _sleep true before scan. */
2106 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2107 			if (READ_ONCE(rdp->nocb_head)) {
2108 				/* Found CB, so short-circuit next wait. */
2109 				my_rdp->nocb_leader_sleep = false;
2110 				break;
2111 			}
2112 		goto wait_again;
2113 	}
2114 
2115 	/* Wait for one grace period. */
2116 	rcu_nocb_wait_gp(my_rdp);
2117 
2118 	/*
2119 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2120 	 * We set it now, but recheck for new callbacks while
2121 	 * traversing our follower list.
2122 	 */
2123 	my_rdp->nocb_leader_sleep = true;
2124 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2125 
2126 	/* Each pass through the following loop wakes a follower, if needed. */
2127 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2128 		if (READ_ONCE(rdp->nocb_head))
2129 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2130 		if (!rdp->nocb_gp_head)
2131 			continue; /* No CBs, so no need to wake follower. */
2132 
2133 		/* Append callbacks to follower's "done" list. */
2134 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2135 		*tail = rdp->nocb_gp_head;
2136 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2137 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2138 			/*
2139 			 * List was empty, wake up the follower.
2140 			 * Memory barriers supplied by atomic_long_add().
2141 			 */
2142 			wake_up(&rdp->nocb_wq);
2143 		}
2144 	}
2145 
2146 	/* If we (the leader) don't have CBs, go wait some more. */
2147 	if (!my_rdp->nocb_follower_head)
2148 		goto wait_again;
2149 }
2150 
2151 /*
2152  * Followers come here to wait for additional callbacks to show up.
2153  * This function does not return until callbacks appear.
2154  */
2155 static void nocb_follower_wait(struct rcu_data *rdp)
2156 {
2157 	bool firsttime = true;
2158 
2159 	for (;;) {
2160 		if (!rcu_nocb_poll) {
2161 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2162 					    "FollowerSleep");
2163 			wait_event_interruptible(rdp->nocb_wq,
2164 						 READ_ONCE(rdp->nocb_follower_head));
2165 		} else if (firsttime) {
2166 			/* Don't drown trace log with "Poll"! */
2167 			firsttime = false;
2168 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2169 		}
2170 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2171 			/* ^^^ Ensure CB invocation follows _head test. */
2172 			return;
2173 		}
2174 		if (!rcu_nocb_poll)
2175 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2176 					    "WokeEmpty");
2177 		WARN_ON(signal_pending(current));
2178 		schedule_timeout_interruptible(1);
2179 	}
2180 }
2181 
2182 /*
2183  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2184  * callbacks queued by the corresponding no-CBs CPU, however, there is
2185  * an optional leader-follower relationship so that the grace-period
2186  * kthreads don't have to do quite so many wakeups.
2187  */
2188 static int rcu_nocb_kthread(void *arg)
2189 {
2190 	int c, cl;
2191 	struct rcu_head *list;
2192 	struct rcu_head *next;
2193 	struct rcu_head **tail;
2194 	struct rcu_data *rdp = arg;
2195 
2196 	/* Each pass through this loop invokes one batch of callbacks */
2197 	for (;;) {
2198 		/* Wait for callbacks. */
2199 		if (rdp->nocb_leader == rdp)
2200 			nocb_leader_wait(rdp);
2201 		else
2202 			nocb_follower_wait(rdp);
2203 
2204 		/* Pull the ready-to-invoke callbacks onto local list. */
2205 		list = READ_ONCE(rdp->nocb_follower_head);
2206 		BUG_ON(!list);
2207 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2208 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2209 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2210 
2211 		/* Each pass through the following loop invokes a callback. */
2212 		trace_rcu_batch_start(rdp->rsp->name,
2213 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2214 				      atomic_long_read(&rdp->nocb_q_count), -1);
2215 		c = cl = 0;
2216 		while (list) {
2217 			next = list->next;
2218 			/* Wait for enqueuing to complete, if needed. */
2219 			while (next == NULL && &list->next != tail) {
2220 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221 						    TPS("WaitQueue"));
2222 				schedule_timeout_interruptible(1);
2223 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2224 						    TPS("WokeQueue"));
2225 				next = list->next;
2226 			}
2227 			debug_rcu_head_unqueue(list);
2228 			local_bh_disable();
2229 			if (__rcu_reclaim(rdp->rsp->name, list))
2230 				cl++;
2231 			c++;
2232 			local_bh_enable();
2233 			list = next;
2234 		}
2235 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2236 		smp_mb__before_atomic();  /* _add after CB invocation. */
2237 		atomic_long_add(-c, &rdp->nocb_q_count);
2238 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2239 		rdp->n_nocbs_invoked += c;
2240 	}
2241 	return 0;
2242 }
2243 
2244 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2245 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2246 {
2247 	return READ_ONCE(rdp->nocb_defer_wakeup);
2248 }
2249 
2250 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2251 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2252 {
2253 	int ndw;
2254 
2255 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2256 		return;
2257 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2258 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2259 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2260 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2261 }
2262 
2263 void __init rcu_init_nohz(void)
2264 {
2265 	int cpu;
2266 	bool need_rcu_nocb_mask = true;
2267 	struct rcu_state *rsp;
2268 
2269 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2270 	need_rcu_nocb_mask = false;
2271 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2272 
2273 #if defined(CONFIG_NO_HZ_FULL)
2274 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2275 		need_rcu_nocb_mask = true;
2276 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2277 
2278 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2279 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2280 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2281 			return;
2282 		}
2283 		have_rcu_nocb_mask = true;
2284 	}
2285 	if (!have_rcu_nocb_mask)
2286 		return;
2287 
2288 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2289 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2290 	cpumask_set_cpu(0, rcu_nocb_mask);
2291 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2292 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2293 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2294 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2295 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2296 #if defined(CONFIG_NO_HZ_FULL)
2297 	if (tick_nohz_full_running)
2298 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2299 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2300 
2301 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2302 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2303 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2304 			    rcu_nocb_mask);
2305 	}
2306 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2307 		cpumask_pr_args(rcu_nocb_mask));
2308 	if (rcu_nocb_poll)
2309 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2310 
2311 	for_each_rcu_flavor(rsp) {
2312 		for_each_cpu(cpu, rcu_nocb_mask)
2313 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2314 		rcu_organize_nocb_kthreads(rsp);
2315 	}
2316 }
2317 
2318 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2319 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2320 {
2321 	rdp->nocb_tail = &rdp->nocb_head;
2322 	init_waitqueue_head(&rdp->nocb_wq);
2323 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2324 }
2325 
2326 /*
2327  * If the specified CPU is a no-CBs CPU that does not already have its
2328  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2329  * brought online out of order, this can require re-organizing the
2330  * leader-follower relationships.
2331  */
2332 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2333 {
2334 	struct rcu_data *rdp;
2335 	struct rcu_data *rdp_last;
2336 	struct rcu_data *rdp_old_leader;
2337 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2338 	struct task_struct *t;
2339 
2340 	/*
2341 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2342 	 * then nothing to do.
2343 	 */
2344 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2345 		return;
2346 
2347 	/* If we didn't spawn the leader first, reorganize! */
2348 	rdp_old_leader = rdp_spawn->nocb_leader;
2349 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2350 		rdp_last = NULL;
2351 		rdp = rdp_old_leader;
2352 		do {
2353 			rdp->nocb_leader = rdp_spawn;
2354 			if (rdp_last && rdp != rdp_spawn)
2355 				rdp_last->nocb_next_follower = rdp;
2356 			if (rdp == rdp_spawn) {
2357 				rdp = rdp->nocb_next_follower;
2358 			} else {
2359 				rdp_last = rdp;
2360 				rdp = rdp->nocb_next_follower;
2361 				rdp_last->nocb_next_follower = NULL;
2362 			}
2363 		} while (rdp);
2364 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2365 	}
2366 
2367 	/* Spawn the kthread for this CPU and RCU flavor. */
2368 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2369 			"rcuo%c/%d", rsp->abbr, cpu);
2370 	BUG_ON(IS_ERR(t));
2371 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2372 }
2373 
2374 /*
2375  * If the specified CPU is a no-CBs CPU that does not already have its
2376  * rcuo kthreads, spawn them.
2377  */
2378 static void rcu_spawn_all_nocb_kthreads(int cpu)
2379 {
2380 	struct rcu_state *rsp;
2381 
2382 	if (rcu_scheduler_fully_active)
2383 		for_each_rcu_flavor(rsp)
2384 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2385 }
2386 
2387 /*
2388  * Once the scheduler is running, spawn rcuo kthreads for all online
2389  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2390  * non-boot CPUs come online -- if this changes, we will need to add
2391  * some mutual exclusion.
2392  */
2393 static void __init rcu_spawn_nocb_kthreads(void)
2394 {
2395 	int cpu;
2396 
2397 	for_each_online_cpu(cpu)
2398 		rcu_spawn_all_nocb_kthreads(cpu);
2399 }
2400 
2401 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2402 static int rcu_nocb_leader_stride = -1;
2403 module_param(rcu_nocb_leader_stride, int, 0444);
2404 
2405 /*
2406  * Initialize leader-follower relationships for all no-CBs CPU.
2407  */
2408 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2409 {
2410 	int cpu;
2411 	int ls = rcu_nocb_leader_stride;
2412 	int nl = 0;  /* Next leader. */
2413 	struct rcu_data *rdp;
2414 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2415 	struct rcu_data *rdp_prev = NULL;
2416 
2417 	if (!have_rcu_nocb_mask)
2418 		return;
2419 	if (ls == -1) {
2420 		ls = int_sqrt(nr_cpu_ids);
2421 		rcu_nocb_leader_stride = ls;
2422 	}
2423 
2424 	/*
2425 	 * Each pass through this loop sets up one rcu_data structure and
2426 	 * spawns one rcu_nocb_kthread().
2427 	 */
2428 	for_each_cpu(cpu, rcu_nocb_mask) {
2429 		rdp = per_cpu_ptr(rsp->rda, cpu);
2430 		if (rdp->cpu >= nl) {
2431 			/* New leader, set up for followers & next leader. */
2432 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2433 			rdp->nocb_leader = rdp;
2434 			rdp_leader = rdp;
2435 		} else {
2436 			/* Another follower, link to previous leader. */
2437 			rdp->nocb_leader = rdp_leader;
2438 			rdp_prev->nocb_next_follower = rdp;
2439 		}
2440 		rdp_prev = rdp;
2441 	}
2442 }
2443 
2444 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2445 static bool init_nocb_callback_list(struct rcu_data *rdp)
2446 {
2447 	if (!rcu_is_nocb_cpu(rdp->cpu))
2448 		return false;
2449 
2450 	/* If there are early-boot callbacks, move them to nocb lists. */
2451 	if (rdp->nxtlist) {
2452 		rdp->nocb_head = rdp->nxtlist;
2453 		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2454 		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2455 		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2456 		rdp->nxtlist = NULL;
2457 		rdp->qlen = 0;
2458 		rdp->qlen_lazy = 0;
2459 	}
2460 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2461 	return true;
2462 }
2463 
2464 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2465 
2466 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2467 {
2468 	WARN_ON_ONCE(1); /* Should be dead code. */
2469 	return false;
2470 }
2471 
2472 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2473 {
2474 }
2475 
2476 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2477 {
2478 }
2479 
2480 static void rcu_init_one_nocb(struct rcu_node *rnp)
2481 {
2482 }
2483 
2484 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2485 			    bool lazy, unsigned long flags)
2486 {
2487 	return false;
2488 }
2489 
2490 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2491 						     struct rcu_data *rdp,
2492 						     unsigned long flags)
2493 {
2494 	return false;
2495 }
2496 
2497 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2498 {
2499 }
2500 
2501 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2502 {
2503 	return false;
2504 }
2505 
2506 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2507 {
2508 }
2509 
2510 static void rcu_spawn_all_nocb_kthreads(int cpu)
2511 {
2512 }
2513 
2514 static void __init rcu_spawn_nocb_kthreads(void)
2515 {
2516 }
2517 
2518 static bool init_nocb_callback_list(struct rcu_data *rdp)
2519 {
2520 	return false;
2521 }
2522 
2523 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2524 
2525 /*
2526  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2527  * arbitrarily long period of time with the scheduling-clock tick turned
2528  * off.  RCU will be paying attention to this CPU because it is in the
2529  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2530  * machine because the scheduling-clock tick has been disabled.  Therefore,
2531  * if an adaptive-ticks CPU is failing to respond to the current grace
2532  * period and has not be idle from an RCU perspective, kick it.
2533  */
2534 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2535 {
2536 #ifdef CONFIG_NO_HZ_FULL
2537 	if (tick_nohz_full_cpu(cpu))
2538 		smp_send_reschedule(cpu);
2539 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2540 }
2541 
2542 
2543 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2544 
2545 static int full_sysidle_state;		/* Current system-idle state. */
2546 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2547 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2548 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2549 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2550 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2551 
2552 /*
2553  * Invoked to note exit from irq or task transition to idle.  Note that
2554  * usermode execution does -not- count as idle here!  After all, we want
2555  * to detect full-system idle states, not RCU quiescent states and grace
2556  * periods.  The caller must have disabled interrupts.
2557  */
2558 static void rcu_sysidle_enter(int irq)
2559 {
2560 	unsigned long j;
2561 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2562 
2563 	/* If there are no nohz_full= CPUs, no need to track this. */
2564 	if (!tick_nohz_full_enabled())
2565 		return;
2566 
2567 	/* Adjust nesting, check for fully idle. */
2568 	if (irq) {
2569 		rdtp->dynticks_idle_nesting--;
2570 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2571 		if (rdtp->dynticks_idle_nesting != 0)
2572 			return;  /* Still not fully idle. */
2573 	} else {
2574 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2575 		    DYNTICK_TASK_NEST_VALUE) {
2576 			rdtp->dynticks_idle_nesting = 0;
2577 		} else {
2578 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2579 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2580 			return;  /* Still not fully idle. */
2581 		}
2582 	}
2583 
2584 	/* Record start of fully idle period. */
2585 	j = jiffies;
2586 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2587 	smp_mb__before_atomic();
2588 	atomic_inc(&rdtp->dynticks_idle);
2589 	smp_mb__after_atomic();
2590 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2591 }
2592 
2593 /*
2594  * Unconditionally force exit from full system-idle state.  This is
2595  * invoked when a normal CPU exits idle, but must be called separately
2596  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2597  * is that the timekeeping CPU is permitted to take scheduling-clock
2598  * interrupts while the system is in system-idle state, and of course
2599  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2600  * interrupt from any other type of interrupt.
2601  */
2602 void rcu_sysidle_force_exit(void)
2603 {
2604 	int oldstate = READ_ONCE(full_sysidle_state);
2605 	int newoldstate;
2606 
2607 	/*
2608 	 * Each pass through the following loop attempts to exit full
2609 	 * system-idle state.  If contention proves to be a problem,
2610 	 * a trylock-based contention tree could be used here.
2611 	 */
2612 	while (oldstate > RCU_SYSIDLE_SHORT) {
2613 		newoldstate = cmpxchg(&full_sysidle_state,
2614 				      oldstate, RCU_SYSIDLE_NOT);
2615 		if (oldstate == newoldstate &&
2616 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2617 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2618 			return; /* We cleared it, done! */
2619 		}
2620 		oldstate = newoldstate;
2621 	}
2622 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2623 }
2624 
2625 /*
2626  * Invoked to note entry to irq or task transition from idle.  Note that
2627  * usermode execution does -not- count as idle here!  The caller must
2628  * have disabled interrupts.
2629  */
2630 static void rcu_sysidle_exit(int irq)
2631 {
2632 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2633 
2634 	/* If there are no nohz_full= CPUs, no need to track this. */
2635 	if (!tick_nohz_full_enabled())
2636 		return;
2637 
2638 	/* Adjust nesting, check for already non-idle. */
2639 	if (irq) {
2640 		rdtp->dynticks_idle_nesting++;
2641 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2642 		if (rdtp->dynticks_idle_nesting != 1)
2643 			return; /* Already non-idle. */
2644 	} else {
2645 		/*
2646 		 * Allow for irq misnesting.  Yes, it really is possible
2647 		 * to enter an irq handler then never leave it, and maybe
2648 		 * also vice versa.  Handle both possibilities.
2649 		 */
2650 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2651 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2652 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2653 			return; /* Already non-idle. */
2654 		} else {
2655 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2656 		}
2657 	}
2658 
2659 	/* Record end of idle period. */
2660 	smp_mb__before_atomic();
2661 	atomic_inc(&rdtp->dynticks_idle);
2662 	smp_mb__after_atomic();
2663 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2664 
2665 	/*
2666 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2667 	 * during a system-idle state.  This must be the case, because
2668 	 * the timekeeping CPU has to take scheduling-clock interrupts
2669 	 * during the time that the system is transitioning to full
2670 	 * system-idle state.  This means that the timekeeping CPU must
2671 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2672 	 * more than take a scheduling-clock interrupt.
2673 	 */
2674 	if (smp_processor_id() == tick_do_timer_cpu)
2675 		return;
2676 
2677 	/* Update system-idle state: We are clearly no longer fully idle! */
2678 	rcu_sysidle_force_exit();
2679 }
2680 
2681 /*
2682  * Check to see if the current CPU is idle.  Note that usermode execution
2683  * does not count as idle.  The caller must have disabled interrupts,
2684  * and must be running on tick_do_timer_cpu.
2685  */
2686 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2687 				  unsigned long *maxj)
2688 {
2689 	int cur;
2690 	unsigned long j;
2691 	struct rcu_dynticks *rdtp = rdp->dynticks;
2692 
2693 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2694 	if (!tick_nohz_full_enabled())
2695 		return;
2696 
2697 	/*
2698 	 * If some other CPU has already reported non-idle, if this is
2699 	 * not the flavor of RCU that tracks sysidle state, or if this
2700 	 * is an offline or the timekeeping CPU, nothing to do.
2701 	 */
2702 	if (!*isidle || rdp->rsp != rcu_state_p ||
2703 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2704 		return;
2705 	/* Verify affinity of current kthread. */
2706 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2707 
2708 	/* Pick up current idle and NMI-nesting counter and check. */
2709 	cur = atomic_read(&rdtp->dynticks_idle);
2710 	if (cur & 0x1) {
2711 		*isidle = false; /* We are not idle! */
2712 		return;
2713 	}
2714 	smp_mb(); /* Read counters before timestamps. */
2715 
2716 	/* Pick up timestamps. */
2717 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2718 	/* If this CPU entered idle more recently, update maxj timestamp. */
2719 	if (ULONG_CMP_LT(*maxj, j))
2720 		*maxj = j;
2721 }
2722 
2723 /*
2724  * Is this the flavor of RCU that is handling full-system idle?
2725  */
2726 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2727 {
2728 	return rsp == rcu_state_p;
2729 }
2730 
2731 /*
2732  * Return a delay in jiffies based on the number of CPUs, rcu_node
2733  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2734  * systems more time to transition to full-idle state in order to
2735  * avoid the cache thrashing that otherwise occur on the state variable.
2736  * Really small systems (less than a couple of tens of CPUs) should
2737  * instead use a single global atomically incremented counter, and later
2738  * versions of this will automatically reconfigure themselves accordingly.
2739  */
2740 static unsigned long rcu_sysidle_delay(void)
2741 {
2742 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2743 		return 0;
2744 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2745 }
2746 
2747 /*
2748  * Advance the full-system-idle state.  This is invoked when all of
2749  * the non-timekeeping CPUs are idle.
2750  */
2751 static void rcu_sysidle(unsigned long j)
2752 {
2753 	/* Check the current state. */
2754 	switch (READ_ONCE(full_sysidle_state)) {
2755 	case RCU_SYSIDLE_NOT:
2756 
2757 		/* First time all are idle, so note a short idle period. */
2758 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2759 		break;
2760 
2761 	case RCU_SYSIDLE_SHORT:
2762 
2763 		/*
2764 		 * Idle for a bit, time to advance to next state?
2765 		 * cmpxchg failure means race with non-idle, let them win.
2766 		 */
2767 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2768 			(void)cmpxchg(&full_sysidle_state,
2769 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2770 		break;
2771 
2772 	case RCU_SYSIDLE_LONG:
2773 
2774 		/*
2775 		 * Do an additional check pass before advancing to full.
2776 		 * cmpxchg failure means race with non-idle, let them win.
2777 		 */
2778 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2779 			(void)cmpxchg(&full_sysidle_state,
2780 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2781 		break;
2782 
2783 	default:
2784 		break;
2785 	}
2786 }
2787 
2788 /*
2789  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2790  * back to the beginning.
2791  */
2792 static void rcu_sysidle_cancel(void)
2793 {
2794 	smp_mb();
2795 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2796 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2797 }
2798 
2799 /*
2800  * Update the sysidle state based on the results of a force-quiescent-state
2801  * scan of the CPUs' dyntick-idle state.
2802  */
2803 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2804 			       unsigned long maxj, bool gpkt)
2805 {
2806 	if (rsp != rcu_state_p)
2807 		return;  /* Wrong flavor, ignore. */
2808 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2809 		return;  /* Running state machine from timekeeping CPU. */
2810 	if (isidle)
2811 		rcu_sysidle(maxj);    /* More idle! */
2812 	else
2813 		rcu_sysidle_cancel(); /* Idle is over. */
2814 }
2815 
2816 /*
2817  * Wrapper for rcu_sysidle_report() when called from the grace-period
2818  * kthread's context.
2819  */
2820 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2821 				  unsigned long maxj)
2822 {
2823 	/* If there are no nohz_full= CPUs, no need to track this. */
2824 	if (!tick_nohz_full_enabled())
2825 		return;
2826 
2827 	rcu_sysidle_report(rsp, isidle, maxj, true);
2828 }
2829 
2830 /* Callback and function for forcing an RCU grace period. */
2831 struct rcu_sysidle_head {
2832 	struct rcu_head rh;
2833 	int inuse;
2834 };
2835 
2836 static void rcu_sysidle_cb(struct rcu_head *rhp)
2837 {
2838 	struct rcu_sysidle_head *rshp;
2839 
2840 	/*
2841 	 * The following memory barrier is needed to replace the
2842 	 * memory barriers that would normally be in the memory
2843 	 * allocator.
2844 	 */
2845 	smp_mb();  /* grace period precedes setting inuse. */
2846 
2847 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2848 	WRITE_ONCE(rshp->inuse, 0);
2849 }
2850 
2851 /*
2852  * Check to see if the system is fully idle, other than the timekeeping CPU.
2853  * The caller must have disabled interrupts.  This is not intended to be
2854  * called unless tick_nohz_full_enabled().
2855  */
2856 bool rcu_sys_is_idle(void)
2857 {
2858 	static struct rcu_sysidle_head rsh;
2859 	int rss = READ_ONCE(full_sysidle_state);
2860 
2861 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2862 		return false;
2863 
2864 	/* Handle small-system case by doing a full scan of CPUs. */
2865 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2866 		int oldrss = rss - 1;
2867 
2868 		/*
2869 		 * One pass to advance to each state up to _FULL.
2870 		 * Give up if any pass fails to advance the state.
2871 		 */
2872 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2873 			int cpu;
2874 			bool isidle = true;
2875 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2876 			struct rcu_data *rdp;
2877 
2878 			/* Scan all the CPUs looking for nonidle CPUs. */
2879 			for_each_possible_cpu(cpu) {
2880 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2881 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2882 				if (!isidle)
2883 					break;
2884 			}
2885 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2886 			oldrss = rss;
2887 			rss = READ_ONCE(full_sysidle_state);
2888 		}
2889 	}
2890 
2891 	/* If this is the first observation of an idle period, record it. */
2892 	if (rss == RCU_SYSIDLE_FULL) {
2893 		rss = cmpxchg(&full_sysidle_state,
2894 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2895 		return rss == RCU_SYSIDLE_FULL;
2896 	}
2897 
2898 	smp_mb(); /* ensure rss load happens before later caller actions. */
2899 
2900 	/* If already fully idle, tell the caller (in case of races). */
2901 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2902 		return true;
2903 
2904 	/*
2905 	 * If we aren't there yet, and a grace period is not in flight,
2906 	 * initiate a grace period.  Either way, tell the caller that
2907 	 * we are not there yet.  We use an xchg() rather than an assignment
2908 	 * to make up for the memory barriers that would otherwise be
2909 	 * provided by the memory allocator.
2910 	 */
2911 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2912 	    !rcu_gp_in_progress(rcu_state_p) &&
2913 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2914 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2915 	return false;
2916 }
2917 
2918 /*
2919  * Initialize dynticks sysidle state for CPUs coming online.
2920  */
2921 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2922 {
2923 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2924 }
2925 
2926 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2927 
2928 static void rcu_sysidle_enter(int irq)
2929 {
2930 }
2931 
2932 static void rcu_sysidle_exit(int irq)
2933 {
2934 }
2935 
2936 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2937 				  unsigned long *maxj)
2938 {
2939 }
2940 
2941 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2942 {
2943 	return false;
2944 }
2945 
2946 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2947 				  unsigned long maxj)
2948 {
2949 }
2950 
2951 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2952 {
2953 }
2954 
2955 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2956 
2957 /*
2958  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2959  * grace-period kthread will do force_quiescent_state() processing?
2960  * The idea is to avoid waking up RCU core processing on such a
2961  * CPU unless the grace period has extended for too long.
2962  *
2963  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2964  * CONFIG_RCU_NOCB_CPU CPUs.
2965  */
2966 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2967 {
2968 #ifdef CONFIG_NO_HZ_FULL
2969 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2970 	    (!rcu_gp_in_progress(rsp) ||
2971 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2972 		return true;
2973 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2974 	return false;
2975 }
2976 
2977 /*
2978  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2979  * timekeeping CPU.
2980  */
2981 static void rcu_bind_gp_kthread(void)
2982 {
2983 	int __maybe_unused cpu;
2984 
2985 	if (!tick_nohz_full_enabled())
2986 		return;
2987 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2988 	cpu = tick_do_timer_cpu;
2989 	if (cpu >= 0 && cpu < nr_cpu_ids)
2990 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2991 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2992 	housekeeping_affine(current);
2993 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2994 }
2995 
2996 /* Record the current task on dyntick-idle entry. */
2997 static void rcu_dynticks_task_enter(void)
2998 {
2999 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3000 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3001 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3002 }
3003 
3004 /* Record no current task on dyntick-idle exit. */
3005 static void rcu_dynticks_task_exit(void)
3006 {
3007 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3008 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3009 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3010 }
3011