xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision e9246c87)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #define RCU_KTHREAD_PRIO 1
34 
35 #ifdef CONFIG_RCU_BOOST
36 #include "../locking/rtmutex_common.h"
37 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #else
39 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #endif
41 
42 #ifdef CONFIG_RCU_NOCB_CPU
43 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46 static char __initdata nocb_buf[NR_CPUS * 5];
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48 
49 /*
50  * Check the RCU kernel configuration parameters and print informative
51  * messages about anything out of the ordinary.  If you like #ifdef, you
52  * will love this function.
53  */
54 static void __init rcu_bootup_announce_oddness(void)
55 {
56 #ifdef CONFIG_RCU_TRACE
57 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #endif
59 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61 	       CONFIG_RCU_FANOUT);
62 #endif
63 #ifdef CONFIG_RCU_FANOUT_EXACT
64 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #endif
66 #ifdef CONFIG_RCU_FAST_NO_HZ
67 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #endif
69 #ifdef CONFIG_PROVE_RCU
70 	pr_info("\tRCU lockdep checking is enabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73 	pr_info("\tRCU torture testing starts during boot.\n");
74 #endif
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76 	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #endif
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #endif
81 #if NUM_RCU_LVL_4 != 0
82 	pr_info("\tFour-level hierarchy is enabled.\n");
83 #endif
84 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86 	if (nr_cpu_ids != NR_CPUS)
87 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 }
89 
90 #ifdef CONFIG_TREE_PREEMPT_RCU
91 
92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94 
95 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96 
97 /*
98  * Tell them what RCU they are running.
99  */
100 static void __init rcu_bootup_announce(void)
101 {
102 	pr_info("Preemptible hierarchical RCU implementation.\n");
103 	rcu_bootup_announce_oddness();
104 }
105 
106 /*
107  * Return the number of RCU-preempt batches processed thus far
108  * for debug and statistics.
109  */
110 static long rcu_batches_completed_preempt(void)
111 {
112 	return rcu_preempt_state.completed;
113 }
114 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
115 
116 /*
117  * Return the number of RCU batches processed thus far for debug & stats.
118  */
119 long rcu_batches_completed(void)
120 {
121 	return rcu_batches_completed_preempt();
122 }
123 EXPORT_SYMBOL_GPL(rcu_batches_completed);
124 
125 /*
126  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127  * that this just means that the task currently running on the CPU is
128  * not in a quiescent state.  There might be any number of tasks blocked
129  * while in an RCU read-side critical section.
130  *
131  * As with the other rcu_*_qs() functions, callers to this function
132  * must disable preemption.
133  */
134 static void rcu_preempt_qs(void)
135 {
136 	if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
137 		trace_rcu_grace_period(TPS("rcu_preempt"),
138 				       __this_cpu_read(rcu_preempt_data.gpnum),
139 				       TPS("cpuqs"));
140 		__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
141 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
142 		current->rcu_read_unlock_special.b.need_qs = false;
143 	}
144 }
145 
146 /*
147  * We have entered the scheduler, and the current task might soon be
148  * context-switched away from.  If this task is in an RCU read-side
149  * critical section, we will no longer be able to rely on the CPU to
150  * record that fact, so we enqueue the task on the blkd_tasks list.
151  * The task will dequeue itself when it exits the outermost enclosing
152  * RCU read-side critical section.  Therefore, the current grace period
153  * cannot be permitted to complete until the blkd_tasks list entries
154  * predating the current grace period drain, in other words, until
155  * rnp->gp_tasks becomes NULL.
156  *
157  * Caller must disable preemption.
158  */
159 static void rcu_preempt_note_context_switch(int cpu)
160 {
161 	struct task_struct *t = current;
162 	unsigned long flags;
163 	struct rcu_data *rdp;
164 	struct rcu_node *rnp;
165 
166 	if (t->rcu_read_lock_nesting > 0 &&
167 	    !t->rcu_read_unlock_special.b.blocked) {
168 
169 		/* Possibly blocking in an RCU read-side critical section. */
170 		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
171 		rnp = rdp->mynode;
172 		raw_spin_lock_irqsave(&rnp->lock, flags);
173 		smp_mb__after_unlock_lock();
174 		t->rcu_read_unlock_special.b.blocked = true;
175 		t->rcu_blocked_node = rnp;
176 
177 		/*
178 		 * If this CPU has already checked in, then this task
179 		 * will hold up the next grace period rather than the
180 		 * current grace period.  Queue the task accordingly.
181 		 * If the task is queued for the current grace period
182 		 * (i.e., this CPU has not yet passed through a quiescent
183 		 * state for the current grace period), then as long
184 		 * as that task remains queued, the current grace period
185 		 * cannot end.  Note that there is some uncertainty as
186 		 * to exactly when the current grace period started.
187 		 * We take a conservative approach, which can result
188 		 * in unnecessarily waiting on tasks that started very
189 		 * slightly after the current grace period began.  C'est
190 		 * la vie!!!
191 		 *
192 		 * But first, note that the current CPU must still be
193 		 * on line!
194 		 */
195 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199 			rnp->gp_tasks = &t->rcu_node_entry;
200 #ifdef CONFIG_RCU_BOOST
201 			if (rnp->boost_tasks != NULL)
202 				rnp->boost_tasks = rnp->gp_tasks;
203 #endif /* #ifdef CONFIG_RCU_BOOST */
204 		} else {
205 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 			if (rnp->qsmask & rdp->grpmask)
207 				rnp->gp_tasks = &t->rcu_node_entry;
208 		}
209 		trace_rcu_preempt_task(rdp->rsp->name,
210 				       t->pid,
211 				       (rnp->qsmask & rdp->grpmask)
212 				       ? rnp->gpnum
213 				       : rnp->gpnum + 1);
214 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
215 	} else if (t->rcu_read_lock_nesting < 0 &&
216 		   t->rcu_read_unlock_special.s) {
217 
218 		/*
219 		 * Complete exit from RCU read-side critical section on
220 		 * behalf of preempted instance of __rcu_read_unlock().
221 		 */
222 		rcu_read_unlock_special(t);
223 	}
224 
225 	/*
226 	 * Either we were not in an RCU read-side critical section to
227 	 * begin with, or we have now recorded that critical section
228 	 * globally.  Either way, we can now note a quiescent state
229 	 * for this CPU.  Again, if we were in an RCU read-side critical
230 	 * section, and if that critical section was blocking the current
231 	 * grace period, then the fact that the task has been enqueued
232 	 * means that we continue to block the current grace period.
233 	 */
234 	rcu_preempt_qs();
235 }
236 
237 /*
238  * Check for preempted RCU readers blocking the current grace period
239  * for the specified rcu_node structure.  If the caller needs a reliable
240  * answer, it must hold the rcu_node's ->lock.
241  */
242 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
243 {
244 	return rnp->gp_tasks != NULL;
245 }
246 
247 /*
248  * Record a quiescent state for all tasks that were previously queued
249  * on the specified rcu_node structure and that were blocking the current
250  * RCU grace period.  The caller must hold the specified rnp->lock with
251  * irqs disabled, and this lock is released upon return, but irqs remain
252  * disabled.
253  */
254 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
255 	__releases(rnp->lock)
256 {
257 	unsigned long mask;
258 	struct rcu_node *rnp_p;
259 
260 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
261 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
262 		return;  /* Still need more quiescent states! */
263 	}
264 
265 	rnp_p = rnp->parent;
266 	if (rnp_p == NULL) {
267 		/*
268 		 * Either there is only one rcu_node in the tree,
269 		 * or tasks were kicked up to root rcu_node due to
270 		 * CPUs going offline.
271 		 */
272 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
273 		return;
274 	}
275 
276 	/* Report up the rest of the hierarchy. */
277 	mask = rnp->grpmask;
278 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
279 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
280 	smp_mb__after_unlock_lock();
281 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
282 }
283 
284 /*
285  * Advance a ->blkd_tasks-list pointer to the next entry, instead
286  * returning NULL if at the end of the list.
287  */
288 static struct list_head *rcu_next_node_entry(struct task_struct *t,
289 					     struct rcu_node *rnp)
290 {
291 	struct list_head *np;
292 
293 	np = t->rcu_node_entry.next;
294 	if (np == &rnp->blkd_tasks)
295 		np = NULL;
296 	return np;
297 }
298 
299 /*
300  * Handle special cases during rcu_read_unlock(), such as needing to
301  * notify RCU core processing or task having blocked during the RCU
302  * read-side critical section.
303  */
304 void rcu_read_unlock_special(struct task_struct *t)
305 {
306 	int empty;
307 	int empty_exp;
308 	int empty_exp_now;
309 	unsigned long flags;
310 	struct list_head *np;
311 #ifdef CONFIG_RCU_BOOST
312 	bool drop_boost_mutex = false;
313 #endif /* #ifdef CONFIG_RCU_BOOST */
314 	struct rcu_node *rnp;
315 	union rcu_special special;
316 
317 	/* NMI handlers cannot block and cannot safely manipulate state. */
318 	if (in_nmi())
319 		return;
320 
321 	local_irq_save(flags);
322 
323 	/*
324 	 * If RCU core is waiting for this CPU to exit critical section,
325 	 * let it know that we have done so.  Because irqs are disabled,
326 	 * t->rcu_read_unlock_special cannot change.
327 	 */
328 	special = t->rcu_read_unlock_special;
329 	if (special.b.need_qs) {
330 		rcu_preempt_qs();
331 		if (!t->rcu_read_unlock_special.s) {
332 			local_irq_restore(flags);
333 			return;
334 		}
335 	}
336 
337 	/* Hardware IRQ handlers cannot block, complain if they get here. */
338 	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339 		local_irq_restore(flags);
340 		return;
341 	}
342 
343 	/* Clean up if blocked during RCU read-side critical section. */
344 	if (special.b.blocked) {
345 		t->rcu_read_unlock_special.b.blocked = false;
346 
347 		/*
348 		 * Remove this task from the list it blocked on.  The
349 		 * task can migrate while we acquire the lock, but at
350 		 * most one time.  So at most two passes through loop.
351 		 */
352 		for (;;) {
353 			rnp = t->rcu_blocked_node;
354 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355 			smp_mb__after_unlock_lock();
356 			if (rnp == t->rcu_blocked_node)
357 				break;
358 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359 		}
360 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
361 		empty_exp = !rcu_preempted_readers_exp(rnp);
362 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363 		np = rcu_next_node_entry(t, rnp);
364 		list_del_init(&t->rcu_node_entry);
365 		t->rcu_blocked_node = NULL;
366 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367 						rnp->gpnum, t->pid);
368 		if (&t->rcu_node_entry == rnp->gp_tasks)
369 			rnp->gp_tasks = np;
370 		if (&t->rcu_node_entry == rnp->exp_tasks)
371 			rnp->exp_tasks = np;
372 #ifdef CONFIG_RCU_BOOST
373 		if (&t->rcu_node_entry == rnp->boost_tasks)
374 			rnp->boost_tasks = np;
375 		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376 		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377 #endif /* #ifdef CONFIG_RCU_BOOST */
378 
379 		/*
380 		 * If this was the last task on the current list, and if
381 		 * we aren't waiting on any CPUs, report the quiescent state.
382 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
383 		 * so we must take a snapshot of the expedited state.
384 		 */
385 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
386 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
387 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
388 							 rnp->gpnum,
389 							 0, rnp->qsmask,
390 							 rnp->level,
391 							 rnp->grplo,
392 							 rnp->grphi,
393 							 !!rnp->gp_tasks);
394 			rcu_report_unblock_qs_rnp(rnp, flags);
395 		} else {
396 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
397 		}
398 
399 #ifdef CONFIG_RCU_BOOST
400 		/* Unboost if we were boosted. */
401 		if (drop_boost_mutex) {
402 			rt_mutex_unlock(&rnp->boost_mtx);
403 			complete(&rnp->boost_completion);
404 		}
405 #endif /* #ifdef CONFIG_RCU_BOOST */
406 
407 		/*
408 		 * If this was the last task on the expedited lists,
409 		 * then we need to report up the rcu_node hierarchy.
410 		 */
411 		if (!empty_exp && empty_exp_now)
412 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
413 	} else {
414 		local_irq_restore(flags);
415 	}
416 }
417 
418 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
419 
420 /*
421  * Dump detailed information for all tasks blocking the current RCU
422  * grace period on the specified rcu_node structure.
423  */
424 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
425 {
426 	unsigned long flags;
427 	struct task_struct *t;
428 
429 	raw_spin_lock_irqsave(&rnp->lock, flags);
430 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
431 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
432 		return;
433 	}
434 	t = list_entry(rnp->gp_tasks,
435 		       struct task_struct, rcu_node_entry);
436 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
437 		sched_show_task(t);
438 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
439 }
440 
441 /*
442  * Dump detailed information for all tasks blocking the current RCU
443  * grace period.
444  */
445 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
446 {
447 	struct rcu_node *rnp = rcu_get_root(rsp);
448 
449 	rcu_print_detail_task_stall_rnp(rnp);
450 	rcu_for_each_leaf_node(rsp, rnp)
451 		rcu_print_detail_task_stall_rnp(rnp);
452 }
453 
454 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455 
456 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
457 {
458 }
459 
460 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
461 
462 #ifdef CONFIG_RCU_CPU_STALL_INFO
463 
464 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465 {
466 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467 	       rnp->level, rnp->grplo, rnp->grphi);
468 }
469 
470 static void rcu_print_task_stall_end(void)
471 {
472 	pr_cont("\n");
473 }
474 
475 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476 
477 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478 {
479 }
480 
481 static void rcu_print_task_stall_end(void)
482 {
483 }
484 
485 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486 
487 /*
488  * Scan the current list of tasks blocked within RCU read-side critical
489  * sections, printing out the tid of each.
490  */
491 static int rcu_print_task_stall(struct rcu_node *rnp)
492 {
493 	struct task_struct *t;
494 	int ndetected = 0;
495 
496 	if (!rcu_preempt_blocked_readers_cgp(rnp))
497 		return 0;
498 	rcu_print_task_stall_begin(rnp);
499 	t = list_entry(rnp->gp_tasks,
500 		       struct task_struct, rcu_node_entry);
501 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502 		pr_cont(" P%d", t->pid);
503 		ndetected++;
504 	}
505 	rcu_print_task_stall_end();
506 	return ndetected;
507 }
508 
509 /*
510  * Check that the list of blocked tasks for the newly completed grace
511  * period is in fact empty.  It is a serious bug to complete a grace
512  * period that still has RCU readers blocked!  This function must be
513  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514  * must be held by the caller.
515  *
516  * Also, if there are blocked tasks on the list, they automatically
517  * block the newly created grace period, so set up ->gp_tasks accordingly.
518  */
519 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520 {
521 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522 	if (!list_empty(&rnp->blkd_tasks))
523 		rnp->gp_tasks = rnp->blkd_tasks.next;
524 	WARN_ON_ONCE(rnp->qsmask);
525 }
526 
527 #ifdef CONFIG_HOTPLUG_CPU
528 
529 /*
530  * Handle tasklist migration for case in which all CPUs covered by the
531  * specified rcu_node have gone offline.  Move them up to the root
532  * rcu_node.  The reason for not just moving them to the immediate
533  * parent is to remove the need for rcu_read_unlock_special() to
534  * make more than two attempts to acquire the target rcu_node's lock.
535  * Returns true if there were tasks blocking the current RCU grace
536  * period.
537  *
538  * Returns 1 if there was previously a task blocking the current grace
539  * period on the specified rcu_node structure.
540  *
541  * The caller must hold rnp->lock with irqs disabled.
542  */
543 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544 				     struct rcu_node *rnp,
545 				     struct rcu_data *rdp)
546 {
547 	struct list_head *lp;
548 	struct list_head *lp_root;
549 	int retval = 0;
550 	struct rcu_node *rnp_root = rcu_get_root(rsp);
551 	struct task_struct *t;
552 
553 	if (rnp == rnp_root) {
554 		WARN_ONCE(1, "Last CPU thought to be offlined?");
555 		return 0;  /* Shouldn't happen: at least one CPU online. */
556 	}
557 
558 	/* If we are on an internal node, complain bitterly. */
559 	WARN_ON_ONCE(rnp != rdp->mynode);
560 
561 	/*
562 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
563 	 * this corner-case operation -- just put this node's tasks
564 	 * at the head of the root node's list, and update the root node's
565 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566 	 * if non-NULL.  This might result in waiting for more tasks than
567 	 * absolutely necessary, but this is a good performance/complexity
568 	 * tradeoff.
569 	 */
570 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571 		retval |= RCU_OFL_TASKS_NORM_GP;
572 	if (rcu_preempted_readers_exp(rnp))
573 		retval |= RCU_OFL_TASKS_EXP_GP;
574 	lp = &rnp->blkd_tasks;
575 	lp_root = &rnp_root->blkd_tasks;
576 	while (!list_empty(lp)) {
577 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579 		smp_mb__after_unlock_lock();
580 		list_del(&t->rcu_node_entry);
581 		t->rcu_blocked_node = rnp_root;
582 		list_add(&t->rcu_node_entry, lp_root);
583 		if (&t->rcu_node_entry == rnp->gp_tasks)
584 			rnp_root->gp_tasks = rnp->gp_tasks;
585 		if (&t->rcu_node_entry == rnp->exp_tasks)
586 			rnp_root->exp_tasks = rnp->exp_tasks;
587 #ifdef CONFIG_RCU_BOOST
588 		if (&t->rcu_node_entry == rnp->boost_tasks)
589 			rnp_root->boost_tasks = rnp->boost_tasks;
590 #endif /* #ifdef CONFIG_RCU_BOOST */
591 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592 	}
593 
594 	rnp->gp_tasks = NULL;
595 	rnp->exp_tasks = NULL;
596 #ifdef CONFIG_RCU_BOOST
597 	rnp->boost_tasks = NULL;
598 	/*
599 	 * In case root is being boosted and leaf was not.  Make sure
600 	 * that we boost the tasks blocking the current grace period
601 	 * in this case.
602 	 */
603 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604 	smp_mb__after_unlock_lock();
605 	if (rnp_root->boost_tasks != NULL &&
606 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
607 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
608 		rnp_root->boost_tasks = rnp_root->gp_tasks;
609 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610 #endif /* #ifdef CONFIG_RCU_BOOST */
611 
612 	return retval;
613 }
614 
615 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
616 
617 /*
618  * Check for a quiescent state from the current CPU.  When a task blocks,
619  * the task is recorded in the corresponding CPU's rcu_node structure,
620  * which is checked elsewhere.
621  *
622  * Caller must disable hard irqs.
623  */
624 static void rcu_preempt_check_callbacks(int cpu)
625 {
626 	struct task_struct *t = current;
627 
628 	if (t->rcu_read_lock_nesting == 0) {
629 		rcu_preempt_qs();
630 		return;
631 	}
632 	if (t->rcu_read_lock_nesting > 0 &&
633 	    per_cpu(rcu_preempt_data, cpu).qs_pending &&
634 	    !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
635 		t->rcu_read_unlock_special.b.need_qs = true;
636 }
637 
638 #ifdef CONFIG_RCU_BOOST
639 
640 static void rcu_preempt_do_callbacks(void)
641 {
642 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
643 }
644 
645 #endif /* #ifdef CONFIG_RCU_BOOST */
646 
647 /*
648  * Queue a preemptible-RCU callback for invocation after a grace period.
649  */
650 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
651 {
652 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
653 }
654 EXPORT_SYMBOL_GPL(call_rcu);
655 
656 /**
657  * synchronize_rcu - wait until a grace period has elapsed.
658  *
659  * Control will return to the caller some time after a full grace
660  * period has elapsed, in other words after all currently executing RCU
661  * read-side critical sections have completed.  Note, however, that
662  * upon return from synchronize_rcu(), the caller might well be executing
663  * concurrently with new RCU read-side critical sections that began while
664  * synchronize_rcu() was waiting.  RCU read-side critical sections are
665  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666  *
667  * See the description of synchronize_sched() for more detailed information
668  * on memory ordering guarantees.
669  */
670 void synchronize_rcu(void)
671 {
672 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
673 			   !lock_is_held(&rcu_lock_map) &&
674 			   !lock_is_held(&rcu_sched_lock_map),
675 			   "Illegal synchronize_rcu() in RCU read-side critical section");
676 	if (!rcu_scheduler_active)
677 		return;
678 	if (rcu_expedited)
679 		synchronize_rcu_expedited();
680 	else
681 		wait_rcu_gp(call_rcu);
682 }
683 EXPORT_SYMBOL_GPL(synchronize_rcu);
684 
685 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
686 static unsigned long sync_rcu_preempt_exp_count;
687 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
688 
689 /*
690  * Return non-zero if there are any tasks in RCU read-side critical
691  * sections blocking the current preemptible-RCU expedited grace period.
692  * If there is no preemptible-RCU expedited grace period currently in
693  * progress, returns zero unconditionally.
694  */
695 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
696 {
697 	return rnp->exp_tasks != NULL;
698 }
699 
700 /*
701  * return non-zero if there is no RCU expedited grace period in progress
702  * for the specified rcu_node structure, in other words, if all CPUs and
703  * tasks covered by the specified rcu_node structure have done their bit
704  * for the current expedited grace period.  Works only for preemptible
705  * RCU -- other RCU implementation use other means.
706  *
707  * Caller must hold sync_rcu_preempt_exp_mutex.
708  */
709 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
710 {
711 	return !rcu_preempted_readers_exp(rnp) &&
712 	       ACCESS_ONCE(rnp->expmask) == 0;
713 }
714 
715 /*
716  * Report the exit from RCU read-side critical section for the last task
717  * that queued itself during or before the current expedited preemptible-RCU
718  * grace period.  This event is reported either to the rcu_node structure on
719  * which the task was queued or to one of that rcu_node structure's ancestors,
720  * recursively up the tree.  (Calm down, calm down, we do the recursion
721  * iteratively!)
722  *
723  * Most callers will set the "wake" flag, but the task initiating the
724  * expedited grace period need not wake itself.
725  *
726  * Caller must hold sync_rcu_preempt_exp_mutex.
727  */
728 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
729 			       bool wake)
730 {
731 	unsigned long flags;
732 	unsigned long mask;
733 
734 	raw_spin_lock_irqsave(&rnp->lock, flags);
735 	smp_mb__after_unlock_lock();
736 	for (;;) {
737 		if (!sync_rcu_preempt_exp_done(rnp)) {
738 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
739 			break;
740 		}
741 		if (rnp->parent == NULL) {
742 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
743 			if (wake) {
744 				smp_mb(); /* EGP done before wake_up(). */
745 				wake_up(&sync_rcu_preempt_exp_wq);
746 			}
747 			break;
748 		}
749 		mask = rnp->grpmask;
750 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
751 		rnp = rnp->parent;
752 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
753 		smp_mb__after_unlock_lock();
754 		rnp->expmask &= ~mask;
755 	}
756 }
757 
758 /*
759  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
760  * grace period for the specified rcu_node structure.  If there are no such
761  * tasks, report it up the rcu_node hierarchy.
762  *
763  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
764  * CPU hotplug operations.
765  */
766 static void
767 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
768 {
769 	unsigned long flags;
770 	int must_wait = 0;
771 
772 	raw_spin_lock_irqsave(&rnp->lock, flags);
773 	smp_mb__after_unlock_lock();
774 	if (list_empty(&rnp->blkd_tasks)) {
775 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
776 	} else {
777 		rnp->exp_tasks = rnp->blkd_tasks.next;
778 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
779 		must_wait = 1;
780 	}
781 	if (!must_wait)
782 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
783 }
784 
785 /**
786  * synchronize_rcu_expedited - Brute-force RCU grace period
787  *
788  * Wait for an RCU-preempt grace period, but expedite it.  The basic
789  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
790  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
791  * significant time on all CPUs and is unfriendly to real-time workloads,
792  * so is thus not recommended for any sort of common-case code.
793  * In fact, if you are using synchronize_rcu_expedited() in a loop,
794  * please restructure your code to batch your updates, and then Use a
795  * single synchronize_rcu() instead.
796  */
797 void synchronize_rcu_expedited(void)
798 {
799 	unsigned long flags;
800 	struct rcu_node *rnp;
801 	struct rcu_state *rsp = &rcu_preempt_state;
802 	unsigned long snap;
803 	int trycount = 0;
804 
805 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
806 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
807 	smp_mb(); /* Above access cannot bleed into critical section. */
808 
809 	/*
810 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
811 	 * operation that finds an rcu_node structure with tasks in the
812 	 * process of being boosted will know that all tasks blocking
813 	 * this expedited grace period will already be in the process of
814 	 * being boosted.  This simplifies the process of moving tasks
815 	 * from leaf to root rcu_node structures.
816 	 */
817 	if (!try_get_online_cpus()) {
818 		/* CPU-hotplug operation in flight, fall back to normal GP. */
819 		wait_rcu_gp(call_rcu);
820 		return;
821 	}
822 
823 	/*
824 	 * Acquire lock, falling back to synchronize_rcu() if too many
825 	 * lock-acquisition failures.  Of course, if someone does the
826 	 * expedited grace period for us, just leave.
827 	 */
828 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829 		if (ULONG_CMP_LT(snap,
830 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831 			put_online_cpus();
832 			goto mb_ret; /* Others did our work for us. */
833 		}
834 		if (trycount++ < 10) {
835 			udelay(trycount * num_online_cpus());
836 		} else {
837 			put_online_cpus();
838 			wait_rcu_gp(call_rcu);
839 			return;
840 		}
841 	}
842 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843 		put_online_cpus();
844 		goto unlock_mb_ret; /* Others did our work for us. */
845 	}
846 
847 	/* force all RCU readers onto ->blkd_tasks lists. */
848 	synchronize_sched_expedited();
849 
850 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
851 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852 		raw_spin_lock_irqsave(&rnp->lock, flags);
853 		smp_mb__after_unlock_lock();
854 		rnp->expmask = rnp->qsmaskinit;
855 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
856 	}
857 
858 	/* Snapshot current state of ->blkd_tasks lists. */
859 	rcu_for_each_leaf_node(rsp, rnp)
860 		sync_rcu_preempt_exp_init(rsp, rnp);
861 	if (NUM_RCU_NODES > 1)
862 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863 
864 	put_online_cpus();
865 
866 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
867 	rnp = rcu_get_root(rsp);
868 	wait_event(sync_rcu_preempt_exp_wq,
869 		   sync_rcu_preempt_exp_done(rnp));
870 
871 	/* Clean up and exit. */
872 	smp_mb(); /* ensure expedited GP seen before counter increment. */
873 	ACCESS_ONCE(sync_rcu_preempt_exp_count) =
874 					sync_rcu_preempt_exp_count + 1;
875 unlock_mb_ret:
876 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
877 mb_ret:
878 	smp_mb(); /* ensure subsequent action seen after grace period. */
879 }
880 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
881 
882 /**
883  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
884  *
885  * Note that this primitive does not necessarily wait for an RCU grace period
886  * to complete.  For example, if there are no RCU callbacks queued anywhere
887  * in the system, then rcu_barrier() is within its rights to return
888  * immediately, without waiting for anything, much less an RCU grace period.
889  */
890 void rcu_barrier(void)
891 {
892 	_rcu_barrier(&rcu_preempt_state);
893 }
894 EXPORT_SYMBOL_GPL(rcu_barrier);
895 
896 /*
897  * Initialize preemptible RCU's state structures.
898  */
899 static void __init __rcu_init_preempt(void)
900 {
901 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
902 }
903 
904 /*
905  * Check for a task exiting while in a preemptible-RCU read-side
906  * critical section, clean up if so.  No need to issue warnings,
907  * as debug_check_no_locks_held() already does this if lockdep
908  * is enabled.
909  */
910 void exit_rcu(void)
911 {
912 	struct task_struct *t = current;
913 
914 	if (likely(list_empty(&current->rcu_node_entry)))
915 		return;
916 	t->rcu_read_lock_nesting = 1;
917 	barrier();
918 	t->rcu_read_unlock_special.b.blocked = true;
919 	__rcu_read_unlock();
920 }
921 
922 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
923 
924 static struct rcu_state *rcu_state_p = &rcu_sched_state;
925 
926 /*
927  * Tell them what RCU they are running.
928  */
929 static void __init rcu_bootup_announce(void)
930 {
931 	pr_info("Hierarchical RCU implementation.\n");
932 	rcu_bootup_announce_oddness();
933 }
934 
935 /*
936  * Return the number of RCU batches processed thus far for debug & stats.
937  */
938 long rcu_batches_completed(void)
939 {
940 	return rcu_batches_completed_sched();
941 }
942 EXPORT_SYMBOL_GPL(rcu_batches_completed);
943 
944 /*
945  * Because preemptible RCU does not exist, we never have to check for
946  * CPUs being in quiescent states.
947  */
948 static void rcu_preempt_note_context_switch(int cpu)
949 {
950 }
951 
952 /*
953  * Because preemptible RCU does not exist, there are never any preempted
954  * RCU readers.
955  */
956 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
957 {
958 	return 0;
959 }
960 
961 #ifdef CONFIG_HOTPLUG_CPU
962 
963 /* Because preemptible RCU does not exist, no quieting of tasks. */
964 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
965 	__releases(rnp->lock)
966 {
967 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
968 }
969 
970 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
971 
972 /*
973  * Because preemptible RCU does not exist, we never have to check for
974  * tasks blocked within RCU read-side critical sections.
975  */
976 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
977 {
978 }
979 
980 /*
981  * Because preemptible RCU does not exist, we never have to check for
982  * tasks blocked within RCU read-side critical sections.
983  */
984 static int rcu_print_task_stall(struct rcu_node *rnp)
985 {
986 	return 0;
987 }
988 
989 /*
990  * Because there is no preemptible RCU, there can be no readers blocked,
991  * so there is no need to check for blocked tasks.  So check only for
992  * bogus qsmask values.
993  */
994 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
995 {
996 	WARN_ON_ONCE(rnp->qsmask);
997 }
998 
999 #ifdef CONFIG_HOTPLUG_CPU
1000 
1001 /*
1002  * Because preemptible RCU does not exist, it never needs to migrate
1003  * tasks that were blocked within RCU read-side critical sections, and
1004  * such non-existent tasks cannot possibly have been blocking the current
1005  * grace period.
1006  */
1007 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1008 				     struct rcu_node *rnp,
1009 				     struct rcu_data *rdp)
1010 {
1011 	return 0;
1012 }
1013 
1014 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1015 
1016 /*
1017  * Because preemptible RCU does not exist, it never has any callbacks
1018  * to check.
1019  */
1020 static void rcu_preempt_check_callbacks(int cpu)
1021 {
1022 }
1023 
1024 /*
1025  * Wait for an rcu-preempt grace period, but make it happen quickly.
1026  * But because preemptible RCU does not exist, map to rcu-sched.
1027  */
1028 void synchronize_rcu_expedited(void)
1029 {
1030 	synchronize_sched_expedited();
1031 }
1032 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1033 
1034 #ifdef CONFIG_HOTPLUG_CPU
1035 
1036 /*
1037  * Because preemptible RCU does not exist, there is never any need to
1038  * report on tasks preempted in RCU read-side critical sections during
1039  * expedited RCU grace periods.
1040  */
1041 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1042 			       bool wake)
1043 {
1044 }
1045 
1046 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1047 
1048 /*
1049  * Because preemptible RCU does not exist, rcu_barrier() is just
1050  * another name for rcu_barrier_sched().
1051  */
1052 void rcu_barrier(void)
1053 {
1054 	rcu_barrier_sched();
1055 }
1056 EXPORT_SYMBOL_GPL(rcu_barrier);
1057 
1058 /*
1059  * Because preemptible RCU does not exist, it need not be initialized.
1060  */
1061 static void __init __rcu_init_preempt(void)
1062 {
1063 }
1064 
1065 /*
1066  * Because preemptible RCU does not exist, tasks cannot possibly exit
1067  * while in preemptible RCU read-side critical sections.
1068  */
1069 void exit_rcu(void)
1070 {
1071 }
1072 
1073 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1074 
1075 #ifdef CONFIG_RCU_BOOST
1076 
1077 #include "../locking/rtmutex_common.h"
1078 
1079 #ifdef CONFIG_RCU_TRACE
1080 
1081 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1082 {
1083 	if (list_empty(&rnp->blkd_tasks))
1084 		rnp->n_balk_blkd_tasks++;
1085 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1086 		rnp->n_balk_exp_gp_tasks++;
1087 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1088 		rnp->n_balk_boost_tasks++;
1089 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1090 		rnp->n_balk_notblocked++;
1091 	else if (rnp->gp_tasks != NULL &&
1092 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1093 		rnp->n_balk_notyet++;
1094 	else
1095 		rnp->n_balk_nos++;
1096 }
1097 
1098 #else /* #ifdef CONFIG_RCU_TRACE */
1099 
1100 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1101 {
1102 }
1103 
1104 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1105 
1106 static void rcu_wake_cond(struct task_struct *t, int status)
1107 {
1108 	/*
1109 	 * If the thread is yielding, only wake it when this
1110 	 * is invoked from idle
1111 	 */
1112 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1113 		wake_up_process(t);
1114 }
1115 
1116 /*
1117  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1118  * or ->boost_tasks, advancing the pointer to the next task in the
1119  * ->blkd_tasks list.
1120  *
1121  * Note that irqs must be enabled: boosting the task can block.
1122  * Returns 1 if there are more tasks needing to be boosted.
1123  */
1124 static int rcu_boost(struct rcu_node *rnp)
1125 {
1126 	unsigned long flags;
1127 	struct task_struct *t;
1128 	struct list_head *tb;
1129 
1130 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1131 		return 0;  /* Nothing left to boost. */
1132 
1133 	raw_spin_lock_irqsave(&rnp->lock, flags);
1134 	smp_mb__after_unlock_lock();
1135 
1136 	/*
1137 	 * Recheck under the lock: all tasks in need of boosting
1138 	 * might exit their RCU read-side critical sections on their own.
1139 	 */
1140 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1141 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1142 		return 0;
1143 	}
1144 
1145 	/*
1146 	 * Preferentially boost tasks blocking expedited grace periods.
1147 	 * This cannot starve the normal grace periods because a second
1148 	 * expedited grace period must boost all blocked tasks, including
1149 	 * those blocking the pre-existing normal grace period.
1150 	 */
1151 	if (rnp->exp_tasks != NULL) {
1152 		tb = rnp->exp_tasks;
1153 		rnp->n_exp_boosts++;
1154 	} else {
1155 		tb = rnp->boost_tasks;
1156 		rnp->n_normal_boosts++;
1157 	}
1158 	rnp->n_tasks_boosted++;
1159 
1160 	/*
1161 	 * We boost task t by manufacturing an rt_mutex that appears to
1162 	 * be held by task t.  We leave a pointer to that rt_mutex where
1163 	 * task t can find it, and task t will release the mutex when it
1164 	 * exits its outermost RCU read-side critical section.  Then
1165 	 * simply acquiring this artificial rt_mutex will boost task
1166 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1167 	 *
1168 	 * Note that task t must acquire rnp->lock to remove itself from
1169 	 * the ->blkd_tasks list, which it will do from exit() if from
1170 	 * nowhere else.  We therefore are guaranteed that task t will
1171 	 * stay around at least until we drop rnp->lock.  Note that
1172 	 * rnp->lock also resolves races between our priority boosting
1173 	 * and task t's exiting its outermost RCU read-side critical
1174 	 * section.
1175 	 */
1176 	t = container_of(tb, struct task_struct, rcu_node_entry);
1177 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1178 	init_completion(&rnp->boost_completion);
1179 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180 	/* Lock only for side effect: boosts task t's priority. */
1181 	rt_mutex_lock(&rnp->boost_mtx);
1182 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1183 
1184 	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1185 	wait_for_completion(&rnp->boost_completion);
1186 
1187 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1188 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1189 }
1190 
1191 /*
1192  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1193  * root rcu_node.
1194  */
1195 static int rcu_boost_kthread(void *arg)
1196 {
1197 	struct rcu_node *rnp = (struct rcu_node *)arg;
1198 	int spincnt = 0;
1199 	int more2boost;
1200 
1201 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1202 	for (;;) {
1203 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1204 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1205 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1206 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1207 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1208 		more2boost = rcu_boost(rnp);
1209 		if (more2boost)
1210 			spincnt++;
1211 		else
1212 			spincnt = 0;
1213 		if (spincnt > 10) {
1214 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1215 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1216 			schedule_timeout_interruptible(2);
1217 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1218 			spincnt = 0;
1219 		}
1220 	}
1221 	/* NOTREACHED */
1222 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Check to see if it is time to start boosting RCU readers that are
1228  * blocking the current grace period, and, if so, tell the per-rcu_node
1229  * kthread to start boosting them.  If there is an expedited grace
1230  * period in progress, it is always time to boost.
1231  *
1232  * The caller must hold rnp->lock, which this function releases.
1233  * The ->boost_kthread_task is immortal, so we don't need to worry
1234  * about it going away.
1235  */
1236 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1237 	__releases(rnp->lock)
1238 {
1239 	struct task_struct *t;
1240 
1241 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1242 		rnp->n_balk_exp_gp_tasks++;
1243 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1244 		return;
1245 	}
1246 	if (rnp->exp_tasks != NULL ||
1247 	    (rnp->gp_tasks != NULL &&
1248 	     rnp->boost_tasks == NULL &&
1249 	     rnp->qsmask == 0 &&
1250 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1251 		if (rnp->exp_tasks == NULL)
1252 			rnp->boost_tasks = rnp->gp_tasks;
1253 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1254 		t = rnp->boost_kthread_task;
1255 		if (t)
1256 			rcu_wake_cond(t, rnp->boost_kthread_status);
1257 	} else {
1258 		rcu_initiate_boost_trace(rnp);
1259 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260 	}
1261 }
1262 
1263 /*
1264  * Wake up the per-CPU kthread to invoke RCU callbacks.
1265  */
1266 static void invoke_rcu_callbacks_kthread(void)
1267 {
1268 	unsigned long flags;
1269 
1270 	local_irq_save(flags);
1271 	__this_cpu_write(rcu_cpu_has_work, 1);
1272 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1273 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1274 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1275 			      __this_cpu_read(rcu_cpu_kthread_status));
1276 	}
1277 	local_irq_restore(flags);
1278 }
1279 
1280 /*
1281  * Is the current CPU running the RCU-callbacks kthread?
1282  * Caller must have preemption disabled.
1283  */
1284 static bool rcu_is_callbacks_kthread(void)
1285 {
1286 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1287 }
1288 
1289 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1290 
1291 /*
1292  * Do priority-boost accounting for the start of a new grace period.
1293  */
1294 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1295 {
1296 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1297 }
1298 
1299 /*
1300  * Create an RCU-boost kthread for the specified node if one does not
1301  * already exist.  We only create this kthread for preemptible RCU.
1302  * Returns zero if all is well, a negated errno otherwise.
1303  */
1304 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1305 						 struct rcu_node *rnp)
1306 {
1307 	int rnp_index = rnp - &rsp->node[0];
1308 	unsigned long flags;
1309 	struct sched_param sp;
1310 	struct task_struct *t;
1311 
1312 	if (&rcu_preempt_state != rsp)
1313 		return 0;
1314 
1315 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1316 		return 0;
1317 
1318 	rsp->boost = 1;
1319 	if (rnp->boost_kthread_task != NULL)
1320 		return 0;
1321 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1322 			   "rcub/%d", rnp_index);
1323 	if (IS_ERR(t))
1324 		return PTR_ERR(t);
1325 	raw_spin_lock_irqsave(&rnp->lock, flags);
1326 	smp_mb__after_unlock_lock();
1327 	rnp->boost_kthread_task = t;
1328 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1329 	sp.sched_priority = RCU_BOOST_PRIO;
1330 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1331 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1332 	return 0;
1333 }
1334 
1335 static void rcu_kthread_do_work(void)
1336 {
1337 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1338 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1339 	rcu_preempt_do_callbacks();
1340 }
1341 
1342 static void rcu_cpu_kthread_setup(unsigned int cpu)
1343 {
1344 	struct sched_param sp;
1345 
1346 	sp.sched_priority = RCU_KTHREAD_PRIO;
1347 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1348 }
1349 
1350 static void rcu_cpu_kthread_park(unsigned int cpu)
1351 {
1352 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1353 }
1354 
1355 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1356 {
1357 	return __this_cpu_read(rcu_cpu_has_work);
1358 }
1359 
1360 /*
1361  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1362  * RCU softirq used in flavors and configurations of RCU that do not
1363  * support RCU priority boosting.
1364  */
1365 static void rcu_cpu_kthread(unsigned int cpu)
1366 {
1367 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1368 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1369 	int spincnt;
1370 
1371 	for (spincnt = 0; spincnt < 10; spincnt++) {
1372 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1373 		local_bh_disable();
1374 		*statusp = RCU_KTHREAD_RUNNING;
1375 		this_cpu_inc(rcu_cpu_kthread_loops);
1376 		local_irq_disable();
1377 		work = *workp;
1378 		*workp = 0;
1379 		local_irq_enable();
1380 		if (work)
1381 			rcu_kthread_do_work();
1382 		local_bh_enable();
1383 		if (*workp == 0) {
1384 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1385 			*statusp = RCU_KTHREAD_WAITING;
1386 			return;
1387 		}
1388 	}
1389 	*statusp = RCU_KTHREAD_YIELDING;
1390 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1391 	schedule_timeout_interruptible(2);
1392 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1393 	*statusp = RCU_KTHREAD_WAITING;
1394 }
1395 
1396 /*
1397  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1398  * served by the rcu_node in question.  The CPU hotplug lock is still
1399  * held, so the value of rnp->qsmaskinit will be stable.
1400  *
1401  * We don't include outgoingcpu in the affinity set, use -1 if there is
1402  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1403  * this function allows the kthread to execute on any CPU.
1404  */
1405 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1406 {
1407 	struct task_struct *t = rnp->boost_kthread_task;
1408 	unsigned long mask = rnp->qsmaskinit;
1409 	cpumask_var_t cm;
1410 	int cpu;
1411 
1412 	if (!t)
1413 		return;
1414 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1415 		return;
1416 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1417 		if ((mask & 0x1) && cpu != outgoingcpu)
1418 			cpumask_set_cpu(cpu, cm);
1419 	if (cpumask_weight(cm) == 0) {
1420 		cpumask_setall(cm);
1421 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1422 			cpumask_clear_cpu(cpu, cm);
1423 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1424 	}
1425 	set_cpus_allowed_ptr(t, cm);
1426 	free_cpumask_var(cm);
1427 }
1428 
1429 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1430 	.store			= &rcu_cpu_kthread_task,
1431 	.thread_should_run	= rcu_cpu_kthread_should_run,
1432 	.thread_fn		= rcu_cpu_kthread,
1433 	.thread_comm		= "rcuc/%u",
1434 	.setup			= rcu_cpu_kthread_setup,
1435 	.park			= rcu_cpu_kthread_park,
1436 };
1437 
1438 /*
1439  * Spawn boost kthreads -- called as soon as the scheduler is running.
1440  */
1441 static void __init rcu_spawn_boost_kthreads(void)
1442 {
1443 	struct rcu_node *rnp;
1444 	int cpu;
1445 
1446 	for_each_possible_cpu(cpu)
1447 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1448 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1449 	rnp = rcu_get_root(rcu_state_p);
1450 	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1451 	if (NUM_RCU_NODES > 1) {
1452 		rcu_for_each_leaf_node(rcu_state_p, rnp)
1453 			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1454 	}
1455 }
1456 
1457 static void rcu_prepare_kthreads(int cpu)
1458 {
1459 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1460 	struct rcu_node *rnp = rdp->mynode;
1461 
1462 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1463 	if (rcu_scheduler_fully_active)
1464 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1465 }
1466 
1467 #else /* #ifdef CONFIG_RCU_BOOST */
1468 
1469 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1470 	__releases(rnp->lock)
1471 {
1472 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1473 }
1474 
1475 static void invoke_rcu_callbacks_kthread(void)
1476 {
1477 	WARN_ON_ONCE(1);
1478 }
1479 
1480 static bool rcu_is_callbacks_kthread(void)
1481 {
1482 	return false;
1483 }
1484 
1485 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1486 {
1487 }
1488 
1489 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1490 {
1491 }
1492 
1493 static void __init rcu_spawn_boost_kthreads(void)
1494 {
1495 }
1496 
1497 static void rcu_prepare_kthreads(int cpu)
1498 {
1499 }
1500 
1501 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1502 
1503 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1504 
1505 /*
1506  * Check to see if any future RCU-related work will need to be done
1507  * by the current CPU, even if none need be done immediately, returning
1508  * 1 if so.  This function is part of the RCU implementation; it is -not-
1509  * an exported member of the RCU API.
1510  *
1511  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1512  * any flavor of RCU.
1513  */
1514 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1515 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1516 {
1517 	*delta_jiffies = ULONG_MAX;
1518 	return rcu_cpu_has_callbacks(cpu, NULL);
1519 }
1520 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1521 
1522 /*
1523  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1524  * after it.
1525  */
1526 static void rcu_cleanup_after_idle(int cpu)
1527 {
1528 }
1529 
1530 /*
1531  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1532  * is nothing.
1533  */
1534 static void rcu_prepare_for_idle(int cpu)
1535 {
1536 }
1537 
1538 /*
1539  * Don't bother keeping a running count of the number of RCU callbacks
1540  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1541  */
1542 static void rcu_idle_count_callbacks_posted(void)
1543 {
1544 }
1545 
1546 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1547 
1548 /*
1549  * This code is invoked when a CPU goes idle, at which point we want
1550  * to have the CPU do everything required for RCU so that it can enter
1551  * the energy-efficient dyntick-idle mode.  This is handled by a
1552  * state machine implemented by rcu_prepare_for_idle() below.
1553  *
1554  * The following three proprocessor symbols control this state machine:
1555  *
1556  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1557  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1558  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1559  *	benchmarkers who might otherwise be tempted to set this to a large
1560  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1561  *	system.  And if you are -that- concerned about energy efficiency,
1562  *	just power the system down and be done with it!
1563  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1564  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1565  *	callbacks pending.  Setting this too high can OOM your system.
1566  *
1567  * The values below work well in practice.  If future workloads require
1568  * adjustment, they can be converted into kernel config parameters, though
1569  * making the state machine smarter might be a better option.
1570  */
1571 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1572 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1573 
1574 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1575 module_param(rcu_idle_gp_delay, int, 0644);
1576 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1577 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1578 
1579 extern int tick_nohz_active;
1580 
1581 /*
1582  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1583  * only if it has been awhile since the last time we did so.  Afterwards,
1584  * if there are any callbacks ready for immediate invocation, return true.
1585  */
1586 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1587 {
1588 	bool cbs_ready = false;
1589 	struct rcu_data *rdp;
1590 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1591 	struct rcu_node *rnp;
1592 	struct rcu_state *rsp;
1593 
1594 	/* Exit early if we advanced recently. */
1595 	if (jiffies == rdtp->last_advance_all)
1596 		return false;
1597 	rdtp->last_advance_all = jiffies;
1598 
1599 	for_each_rcu_flavor(rsp) {
1600 		rdp = this_cpu_ptr(rsp->rda);
1601 		rnp = rdp->mynode;
1602 
1603 		/*
1604 		 * Don't bother checking unless a grace period has
1605 		 * completed since we last checked and there are
1606 		 * callbacks not yet ready to invoke.
1607 		 */
1608 		if (rdp->completed != rnp->completed &&
1609 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1610 			note_gp_changes(rsp, rdp);
1611 
1612 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1613 			cbs_ready = true;
1614 	}
1615 	return cbs_ready;
1616 }
1617 
1618 /*
1619  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1620  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1621  * caller to set the timeout based on whether or not there are non-lazy
1622  * callbacks.
1623  *
1624  * The caller must have disabled interrupts.
1625  */
1626 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1627 int rcu_needs_cpu(int cpu, unsigned long *dj)
1628 {
1629 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1630 
1631 	/* Snapshot to detect later posting of non-lazy callback. */
1632 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1633 
1634 	/* If no callbacks, RCU doesn't need the CPU. */
1635 	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1636 		*dj = ULONG_MAX;
1637 		return 0;
1638 	}
1639 
1640 	/* Attempt to advance callbacks. */
1641 	if (rcu_try_advance_all_cbs()) {
1642 		/* Some ready to invoke, so initiate later invocation. */
1643 		invoke_rcu_core();
1644 		return 1;
1645 	}
1646 	rdtp->last_accelerate = jiffies;
1647 
1648 	/* Request timer delay depending on laziness, and round. */
1649 	if (!rdtp->all_lazy) {
1650 		*dj = round_up(rcu_idle_gp_delay + jiffies,
1651 			       rcu_idle_gp_delay) - jiffies;
1652 	} else {
1653 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1654 	}
1655 	return 0;
1656 }
1657 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1658 
1659 /*
1660  * Prepare a CPU for idle from an RCU perspective.  The first major task
1661  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1662  * The second major task is to check to see if a non-lazy callback has
1663  * arrived at a CPU that previously had only lazy callbacks.  The third
1664  * major task is to accelerate (that is, assign grace-period numbers to)
1665  * any recently arrived callbacks.
1666  *
1667  * The caller must have disabled interrupts.
1668  */
1669 static void rcu_prepare_for_idle(int cpu)
1670 {
1671 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1672 	bool needwake;
1673 	struct rcu_data *rdp;
1674 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1675 	struct rcu_node *rnp;
1676 	struct rcu_state *rsp;
1677 	int tne;
1678 
1679 	/* Handle nohz enablement switches conservatively. */
1680 	tne = ACCESS_ONCE(tick_nohz_active);
1681 	if (tne != rdtp->tick_nohz_enabled_snap) {
1682 		if (rcu_cpu_has_callbacks(cpu, NULL))
1683 			invoke_rcu_core(); /* force nohz to see update. */
1684 		rdtp->tick_nohz_enabled_snap = tne;
1685 		return;
1686 	}
1687 	if (!tne)
1688 		return;
1689 
1690 	/* If this is a no-CBs CPU, no callbacks, just return. */
1691 	if (rcu_is_nocb_cpu(cpu))
1692 		return;
1693 
1694 	/*
1695 	 * If a non-lazy callback arrived at a CPU having only lazy
1696 	 * callbacks, invoke RCU core for the side-effect of recalculating
1697 	 * idle duration on re-entry to idle.
1698 	 */
1699 	if (rdtp->all_lazy &&
1700 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1701 		rdtp->all_lazy = false;
1702 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1703 		invoke_rcu_core();
1704 		return;
1705 	}
1706 
1707 	/*
1708 	 * If we have not yet accelerated this jiffy, accelerate all
1709 	 * callbacks on this CPU.
1710 	 */
1711 	if (rdtp->last_accelerate == jiffies)
1712 		return;
1713 	rdtp->last_accelerate = jiffies;
1714 	for_each_rcu_flavor(rsp) {
1715 		rdp = per_cpu_ptr(rsp->rda, cpu);
1716 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1717 			continue;
1718 		rnp = rdp->mynode;
1719 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1720 		smp_mb__after_unlock_lock();
1721 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1722 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1723 		if (needwake)
1724 			rcu_gp_kthread_wake(rsp);
1725 	}
1726 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1727 }
1728 
1729 /*
1730  * Clean up for exit from idle.  Attempt to advance callbacks based on
1731  * any grace periods that elapsed while the CPU was idle, and if any
1732  * callbacks are now ready to invoke, initiate invocation.
1733  */
1734 static void rcu_cleanup_after_idle(int cpu)
1735 {
1736 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1737 	if (rcu_is_nocb_cpu(cpu))
1738 		return;
1739 	if (rcu_try_advance_all_cbs())
1740 		invoke_rcu_core();
1741 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1742 }
1743 
1744 /*
1745  * Keep a running count of the number of non-lazy callbacks posted
1746  * on this CPU.  This running counter (which is never decremented) allows
1747  * rcu_prepare_for_idle() to detect when something out of the idle loop
1748  * posts a callback, even if an equal number of callbacks are invoked.
1749  * Of course, callbacks should only be posted from within a trace event
1750  * designed to be called from idle or from within RCU_NONIDLE().
1751  */
1752 static void rcu_idle_count_callbacks_posted(void)
1753 {
1754 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1755 }
1756 
1757 /*
1758  * Data for flushing lazy RCU callbacks at OOM time.
1759  */
1760 static atomic_t oom_callback_count;
1761 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1762 
1763 /*
1764  * RCU OOM callback -- decrement the outstanding count and deliver the
1765  * wake-up if we are the last one.
1766  */
1767 static void rcu_oom_callback(struct rcu_head *rhp)
1768 {
1769 	if (atomic_dec_and_test(&oom_callback_count))
1770 		wake_up(&oom_callback_wq);
1771 }
1772 
1773 /*
1774  * Post an rcu_oom_notify callback on the current CPU if it has at
1775  * least one lazy callback.  This will unnecessarily post callbacks
1776  * to CPUs that already have a non-lazy callback at the end of their
1777  * callback list, but this is an infrequent operation, so accept some
1778  * extra overhead to keep things simple.
1779  */
1780 static void rcu_oom_notify_cpu(void *unused)
1781 {
1782 	struct rcu_state *rsp;
1783 	struct rcu_data *rdp;
1784 
1785 	for_each_rcu_flavor(rsp) {
1786 		rdp = raw_cpu_ptr(rsp->rda);
1787 		if (rdp->qlen_lazy != 0) {
1788 			atomic_inc(&oom_callback_count);
1789 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1790 		}
1791 	}
1792 }
1793 
1794 /*
1795  * If low on memory, ensure that each CPU has a non-lazy callback.
1796  * This will wake up CPUs that have only lazy callbacks, in turn
1797  * ensuring that they free up the corresponding memory in a timely manner.
1798  * Because an uncertain amount of memory will be freed in some uncertain
1799  * timeframe, we do not claim to have freed anything.
1800  */
1801 static int rcu_oom_notify(struct notifier_block *self,
1802 			  unsigned long notused, void *nfreed)
1803 {
1804 	int cpu;
1805 
1806 	/* Wait for callbacks from earlier instance to complete. */
1807 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1808 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1809 
1810 	/*
1811 	 * Prevent premature wakeup: ensure that all increments happen
1812 	 * before there is a chance of the counter reaching zero.
1813 	 */
1814 	atomic_set(&oom_callback_count, 1);
1815 
1816 	get_online_cpus();
1817 	for_each_online_cpu(cpu) {
1818 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1819 		cond_resched_rcu_qs();
1820 	}
1821 	put_online_cpus();
1822 
1823 	/* Unconditionally decrement: no need to wake ourselves up. */
1824 	atomic_dec(&oom_callback_count);
1825 
1826 	return NOTIFY_OK;
1827 }
1828 
1829 static struct notifier_block rcu_oom_nb = {
1830 	.notifier_call = rcu_oom_notify
1831 };
1832 
1833 static int __init rcu_register_oom_notifier(void)
1834 {
1835 	register_oom_notifier(&rcu_oom_nb);
1836 	return 0;
1837 }
1838 early_initcall(rcu_register_oom_notifier);
1839 
1840 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1841 
1842 #ifdef CONFIG_RCU_CPU_STALL_INFO
1843 
1844 #ifdef CONFIG_RCU_FAST_NO_HZ
1845 
1846 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1847 {
1848 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1849 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1850 
1851 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1852 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1853 		ulong2long(nlpd),
1854 		rdtp->all_lazy ? 'L' : '.',
1855 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1856 }
1857 
1858 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1859 
1860 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1861 {
1862 	*cp = '\0';
1863 }
1864 
1865 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1866 
1867 /* Initiate the stall-info list. */
1868 static void print_cpu_stall_info_begin(void)
1869 {
1870 	pr_cont("\n");
1871 }
1872 
1873 /*
1874  * Print out diagnostic information for the specified stalled CPU.
1875  *
1876  * If the specified CPU is aware of the current RCU grace period
1877  * (flavor specified by rsp), then print the number of scheduling
1878  * clock interrupts the CPU has taken during the time that it has
1879  * been aware.  Otherwise, print the number of RCU grace periods
1880  * that this CPU is ignorant of, for example, "1" if the CPU was
1881  * aware of the previous grace period.
1882  *
1883  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1884  */
1885 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1886 {
1887 	char fast_no_hz[72];
1888 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1889 	struct rcu_dynticks *rdtp = rdp->dynticks;
1890 	char *ticks_title;
1891 	unsigned long ticks_value;
1892 
1893 	if (rsp->gpnum == rdp->gpnum) {
1894 		ticks_title = "ticks this GP";
1895 		ticks_value = rdp->ticks_this_gp;
1896 	} else {
1897 		ticks_title = "GPs behind";
1898 		ticks_value = rsp->gpnum - rdp->gpnum;
1899 	}
1900 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1901 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1902 	       cpu, ticks_value, ticks_title,
1903 	       atomic_read(&rdtp->dynticks) & 0xfff,
1904 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1905 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1906 	       fast_no_hz);
1907 }
1908 
1909 /* Terminate the stall-info list. */
1910 static void print_cpu_stall_info_end(void)
1911 {
1912 	pr_err("\t");
1913 }
1914 
1915 /* Zero ->ticks_this_gp for all flavors of RCU. */
1916 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1917 {
1918 	rdp->ticks_this_gp = 0;
1919 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1920 }
1921 
1922 /* Increment ->ticks_this_gp for all flavors of RCU. */
1923 static void increment_cpu_stall_ticks(void)
1924 {
1925 	struct rcu_state *rsp;
1926 
1927 	for_each_rcu_flavor(rsp)
1928 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1929 }
1930 
1931 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1932 
1933 static void print_cpu_stall_info_begin(void)
1934 {
1935 	pr_cont(" {");
1936 }
1937 
1938 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1939 {
1940 	pr_cont(" %d", cpu);
1941 }
1942 
1943 static void print_cpu_stall_info_end(void)
1944 {
1945 	pr_cont("} ");
1946 }
1947 
1948 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949 {
1950 }
1951 
1952 static void increment_cpu_stall_ticks(void)
1953 {
1954 }
1955 
1956 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1957 
1958 #ifdef CONFIG_RCU_NOCB_CPU
1959 
1960 /*
1961  * Offload callback processing from the boot-time-specified set of CPUs
1962  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1963  * kthread created that pulls the callbacks from the corresponding CPU,
1964  * waits for a grace period to elapse, and invokes the callbacks.
1965  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1966  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1967  * has been specified, in which case each kthread actively polls its
1968  * CPU.  (Which isn't so great for energy efficiency, but which does
1969  * reduce RCU's overhead on that CPU.)
1970  *
1971  * This is intended to be used in conjunction with Frederic Weisbecker's
1972  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1973  * running CPU-bound user-mode computations.
1974  *
1975  * Offloading of callback processing could also in theory be used as
1976  * an energy-efficiency measure because CPUs with no RCU callbacks
1977  * queued are more aggressive about entering dyntick-idle mode.
1978  */
1979 
1980 
1981 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1982 static int __init rcu_nocb_setup(char *str)
1983 {
1984 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1985 	have_rcu_nocb_mask = true;
1986 	cpulist_parse(str, rcu_nocb_mask);
1987 	return 1;
1988 }
1989 __setup("rcu_nocbs=", rcu_nocb_setup);
1990 
1991 static int __init parse_rcu_nocb_poll(char *arg)
1992 {
1993 	rcu_nocb_poll = 1;
1994 	return 0;
1995 }
1996 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1997 
1998 /*
1999  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2000  * grace period.
2001  */
2002 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2003 {
2004 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2005 }
2006 
2007 /*
2008  * Set the root rcu_node structure's ->need_future_gp field
2009  * based on the sum of those of all rcu_node structures.  This does
2010  * double-count the root rcu_node structure's requests, but this
2011  * is necessary to handle the possibility of a rcu_nocb_kthread()
2012  * having awakened during the time that the rcu_node structures
2013  * were being updated for the end of the previous grace period.
2014  */
2015 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2016 {
2017 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2018 }
2019 
2020 static void rcu_init_one_nocb(struct rcu_node *rnp)
2021 {
2022 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2023 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2024 }
2025 
2026 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2027 /* Is the specified CPU a no-CBs CPU? */
2028 bool rcu_is_nocb_cpu(int cpu)
2029 {
2030 	if (have_rcu_nocb_mask)
2031 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2032 	return false;
2033 }
2034 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2035 
2036 /*
2037  * Kick the leader kthread for this NOCB group.
2038  */
2039 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2040 {
2041 	struct rcu_data *rdp_leader = rdp->nocb_leader;
2042 
2043 	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2044 		return;
2045 	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2046 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
2047 		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2048 		wake_up(&rdp_leader->nocb_wq);
2049 	}
2050 }
2051 
2052 /*
2053  * Enqueue the specified string of rcu_head structures onto the specified
2054  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2055  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2056  * counts are supplied by rhcount and rhcount_lazy.
2057  *
2058  * If warranted, also wake up the kthread servicing this CPUs queues.
2059  */
2060 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2061 				    struct rcu_head *rhp,
2062 				    struct rcu_head **rhtp,
2063 				    int rhcount, int rhcount_lazy,
2064 				    unsigned long flags)
2065 {
2066 	int len;
2067 	struct rcu_head **old_rhpp;
2068 	struct task_struct *t;
2069 
2070 	/* Enqueue the callback on the nocb list and update counts. */
2071 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2072 	ACCESS_ONCE(*old_rhpp) = rhp;
2073 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2074 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2075 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2076 
2077 	/* If we are not being polled and there is a kthread, awaken it ... */
2078 	t = ACCESS_ONCE(rdp->nocb_kthread);
2079 	if (rcu_nocb_poll || !t) {
2080 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2081 				    TPS("WakeNotPoll"));
2082 		return;
2083 	}
2084 	len = atomic_long_read(&rdp->nocb_q_count);
2085 	if (old_rhpp == &rdp->nocb_head) {
2086 		if (!irqs_disabled_flags(flags)) {
2087 			/* ... if queue was empty ... */
2088 			wake_nocb_leader(rdp, false);
2089 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2090 					    TPS("WakeEmpty"));
2091 		} else {
2092 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2093 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2094 					    TPS("WakeEmptyIsDeferred"));
2095 		}
2096 		rdp->qlen_last_fqs_check = 0;
2097 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2098 		/* ... or if many callbacks queued. */
2099 		if (!irqs_disabled_flags(flags)) {
2100 			wake_nocb_leader(rdp, true);
2101 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2102 					    TPS("WakeOvf"));
2103 		} else {
2104 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2105 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2106 					    TPS("WakeOvfIsDeferred"));
2107 		}
2108 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2109 	} else {
2110 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2111 	}
2112 	return;
2113 }
2114 
2115 /*
2116  * This is a helper for __call_rcu(), which invokes this when the normal
2117  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2118  * function returns failure back to __call_rcu(), which can complain
2119  * appropriately.
2120  *
2121  * Otherwise, this function queues the callback where the corresponding
2122  * "rcuo" kthread can find it.
2123  */
2124 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2125 			    bool lazy, unsigned long flags)
2126 {
2127 
2128 	if (!rcu_is_nocb_cpu(rdp->cpu))
2129 		return false;
2130 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2131 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2132 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2133 					 (unsigned long)rhp->func,
2134 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2135 					 -atomic_long_read(&rdp->nocb_q_count));
2136 	else
2137 		trace_rcu_callback(rdp->rsp->name, rhp,
2138 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2139 				   -atomic_long_read(&rdp->nocb_q_count));
2140 
2141 	/*
2142 	 * If called from an extended quiescent state with interrupts
2143 	 * disabled, invoke the RCU core in order to allow the idle-entry
2144 	 * deferred-wakeup check to function.
2145 	 */
2146 	if (irqs_disabled_flags(flags) &&
2147 	    !rcu_is_watching() &&
2148 	    cpu_online(smp_processor_id()))
2149 		invoke_rcu_core();
2150 
2151 	return true;
2152 }
2153 
2154 /*
2155  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2156  * not a no-CBs CPU.
2157  */
2158 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2159 						     struct rcu_data *rdp,
2160 						     unsigned long flags)
2161 {
2162 	long ql = rsp->qlen;
2163 	long qll = rsp->qlen_lazy;
2164 
2165 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2166 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2167 		return false;
2168 	rsp->qlen = 0;
2169 	rsp->qlen_lazy = 0;
2170 
2171 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2172 	if (rsp->orphan_donelist != NULL) {
2173 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2174 					rsp->orphan_donetail, ql, qll, flags);
2175 		ql = qll = 0;
2176 		rsp->orphan_donelist = NULL;
2177 		rsp->orphan_donetail = &rsp->orphan_donelist;
2178 	}
2179 	if (rsp->orphan_nxtlist != NULL) {
2180 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2181 					rsp->orphan_nxttail, ql, qll, flags);
2182 		ql = qll = 0;
2183 		rsp->orphan_nxtlist = NULL;
2184 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2185 	}
2186 	return true;
2187 }
2188 
2189 /*
2190  * If necessary, kick off a new grace period, and either way wait
2191  * for a subsequent grace period to complete.
2192  */
2193 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2194 {
2195 	unsigned long c;
2196 	bool d;
2197 	unsigned long flags;
2198 	bool needwake;
2199 	struct rcu_node *rnp = rdp->mynode;
2200 
2201 	raw_spin_lock_irqsave(&rnp->lock, flags);
2202 	smp_mb__after_unlock_lock();
2203 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2204 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2205 	if (needwake)
2206 		rcu_gp_kthread_wake(rdp->rsp);
2207 
2208 	/*
2209 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2210 	 * up the load average.
2211 	 */
2212 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2213 	for (;;) {
2214 		wait_event_interruptible(
2215 			rnp->nocb_gp_wq[c & 0x1],
2216 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2217 		if (likely(d))
2218 			break;
2219 		WARN_ON(signal_pending(current));
2220 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2221 	}
2222 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2223 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2224 }
2225 
2226 /*
2227  * Leaders come here to wait for additional callbacks to show up.
2228  * This function does not return until callbacks appear.
2229  */
2230 static void nocb_leader_wait(struct rcu_data *my_rdp)
2231 {
2232 	bool firsttime = true;
2233 	bool gotcbs;
2234 	struct rcu_data *rdp;
2235 	struct rcu_head **tail;
2236 
2237 wait_again:
2238 
2239 	/* Wait for callbacks to appear. */
2240 	if (!rcu_nocb_poll) {
2241 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2242 		wait_event_interruptible(my_rdp->nocb_wq,
2243 				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2244 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2245 	} else if (firsttime) {
2246 		firsttime = false; /* Don't drown trace log with "Poll"! */
2247 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2248 	}
2249 
2250 	/*
2251 	 * Each pass through the following loop checks a follower for CBs.
2252 	 * We are our own first follower.  Any CBs found are moved to
2253 	 * nocb_gp_head, where they await a grace period.
2254 	 */
2255 	gotcbs = false;
2256 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2257 		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2258 		if (!rdp->nocb_gp_head)
2259 			continue;  /* No CBs here, try next follower. */
2260 
2261 		/* Move callbacks to wait-for-GP list, which is empty. */
2262 		ACCESS_ONCE(rdp->nocb_head) = NULL;
2263 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2264 		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2265 		rdp->nocb_gp_count_lazy =
2266 			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2267 		gotcbs = true;
2268 	}
2269 
2270 	/*
2271 	 * If there were no callbacks, sleep a bit, rescan after a
2272 	 * memory barrier, and go retry.
2273 	 */
2274 	if (unlikely(!gotcbs)) {
2275 		if (!rcu_nocb_poll)
2276 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2277 					    "WokeEmpty");
2278 		WARN_ON(signal_pending(current));
2279 		schedule_timeout_interruptible(1);
2280 
2281 		/* Rescan in case we were a victim of memory ordering. */
2282 		my_rdp->nocb_leader_sleep = true;
2283 		smp_mb();  /* Ensure _sleep true before scan. */
2284 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2285 			if (ACCESS_ONCE(rdp->nocb_head)) {
2286 				/* Found CB, so short-circuit next wait. */
2287 				my_rdp->nocb_leader_sleep = false;
2288 				break;
2289 			}
2290 		goto wait_again;
2291 	}
2292 
2293 	/* Wait for one grace period. */
2294 	rcu_nocb_wait_gp(my_rdp);
2295 
2296 	/*
2297 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2298 	 * We set it now, but recheck for new callbacks while
2299 	 * traversing our follower list.
2300 	 */
2301 	my_rdp->nocb_leader_sleep = true;
2302 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2303 
2304 	/* Each pass through the following loop wakes a follower, if needed. */
2305 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2306 		if (ACCESS_ONCE(rdp->nocb_head))
2307 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2308 		if (!rdp->nocb_gp_head)
2309 			continue; /* No CBs, so no need to wake follower. */
2310 
2311 		/* Append callbacks to follower's "done" list. */
2312 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2313 		*tail = rdp->nocb_gp_head;
2314 		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2315 		atomic_long_add(rdp->nocb_gp_count_lazy,
2316 				&rdp->nocb_follower_count_lazy);
2317 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2318 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2319 			/*
2320 			 * List was empty, wake up the follower.
2321 			 * Memory barriers supplied by atomic_long_add().
2322 			 */
2323 			wake_up(&rdp->nocb_wq);
2324 		}
2325 	}
2326 
2327 	/* If we (the leader) don't have CBs, go wait some more. */
2328 	if (!my_rdp->nocb_follower_head)
2329 		goto wait_again;
2330 }
2331 
2332 /*
2333  * Followers come here to wait for additional callbacks to show up.
2334  * This function does not return until callbacks appear.
2335  */
2336 static void nocb_follower_wait(struct rcu_data *rdp)
2337 {
2338 	bool firsttime = true;
2339 
2340 	for (;;) {
2341 		if (!rcu_nocb_poll) {
2342 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2343 					    "FollowerSleep");
2344 			wait_event_interruptible(rdp->nocb_wq,
2345 						 ACCESS_ONCE(rdp->nocb_follower_head));
2346 		} else if (firsttime) {
2347 			/* Don't drown trace log with "Poll"! */
2348 			firsttime = false;
2349 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2350 		}
2351 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2352 			/* ^^^ Ensure CB invocation follows _head test. */
2353 			return;
2354 		}
2355 		if (!rcu_nocb_poll)
2356 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2357 					    "WokeEmpty");
2358 		WARN_ON(signal_pending(current));
2359 		schedule_timeout_interruptible(1);
2360 	}
2361 }
2362 
2363 /*
2364  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2365  * callbacks queued by the corresponding no-CBs CPU, however, there is
2366  * an optional leader-follower relationship so that the grace-period
2367  * kthreads don't have to do quite so many wakeups.
2368  */
2369 static int rcu_nocb_kthread(void *arg)
2370 {
2371 	int c, cl;
2372 	struct rcu_head *list;
2373 	struct rcu_head *next;
2374 	struct rcu_head **tail;
2375 	struct rcu_data *rdp = arg;
2376 
2377 	/* Each pass through this loop invokes one batch of callbacks */
2378 	for (;;) {
2379 		/* Wait for callbacks. */
2380 		if (rdp->nocb_leader == rdp)
2381 			nocb_leader_wait(rdp);
2382 		else
2383 			nocb_follower_wait(rdp);
2384 
2385 		/* Pull the ready-to-invoke callbacks onto local list. */
2386 		list = ACCESS_ONCE(rdp->nocb_follower_head);
2387 		BUG_ON(!list);
2388 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2389 		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2390 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2391 		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2392 		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2393 		rdp->nocb_p_count += c;
2394 		rdp->nocb_p_count_lazy += cl;
2395 
2396 		/* Each pass through the following loop invokes a callback. */
2397 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2398 		c = cl = 0;
2399 		while (list) {
2400 			next = list->next;
2401 			/* Wait for enqueuing to complete, if needed. */
2402 			while (next == NULL && &list->next != tail) {
2403 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2404 						    TPS("WaitQueue"));
2405 				schedule_timeout_interruptible(1);
2406 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2407 						    TPS("WokeQueue"));
2408 				next = list->next;
2409 			}
2410 			debug_rcu_head_unqueue(list);
2411 			local_bh_disable();
2412 			if (__rcu_reclaim(rdp->rsp->name, list))
2413 				cl++;
2414 			c++;
2415 			local_bh_enable();
2416 			list = next;
2417 		}
2418 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2419 		ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2420 		ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2421 						rdp->nocb_p_count_lazy - cl;
2422 		rdp->n_nocbs_invoked += c;
2423 	}
2424 	return 0;
2425 }
2426 
2427 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2428 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2429 {
2430 	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2431 }
2432 
2433 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2434 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2435 {
2436 	int ndw;
2437 
2438 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2439 		return;
2440 	ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2441 	ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2442 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2443 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2444 }
2445 
2446 void __init rcu_init_nohz(void)
2447 {
2448 	int cpu;
2449 	bool need_rcu_nocb_mask = true;
2450 	struct rcu_state *rsp;
2451 
2452 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2453 	need_rcu_nocb_mask = false;
2454 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2455 
2456 #if defined(CONFIG_NO_HZ_FULL)
2457 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2458 		need_rcu_nocb_mask = true;
2459 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2460 
2461 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2462 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2463 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2464 			return;
2465 		}
2466 		have_rcu_nocb_mask = true;
2467 	}
2468 	if (!have_rcu_nocb_mask)
2469 		return;
2470 
2471 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2472 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2473 	cpumask_set_cpu(0, rcu_nocb_mask);
2474 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2475 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2476 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2477 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2478 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2479 #if defined(CONFIG_NO_HZ_FULL)
2480 	if (tick_nohz_full_running)
2481 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2482 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2483 
2484 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2485 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2486 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2487 			    rcu_nocb_mask);
2488 	}
2489 	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2490 	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2491 	if (rcu_nocb_poll)
2492 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2493 
2494 	for_each_rcu_flavor(rsp) {
2495 		for_each_cpu(cpu, rcu_nocb_mask) {
2496 			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2497 
2498 			/*
2499 			 * If there are early callbacks, they will need
2500 			 * to be moved to the nocb lists.
2501 			 */
2502 			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2503 				     &rdp->nxtlist &&
2504 				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2505 			init_nocb_callback_list(rdp);
2506 		}
2507 		rcu_organize_nocb_kthreads(rsp);
2508 	}
2509 }
2510 
2511 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2512 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2513 {
2514 	rdp->nocb_tail = &rdp->nocb_head;
2515 	init_waitqueue_head(&rdp->nocb_wq);
2516 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2517 }
2518 
2519 /*
2520  * If the specified CPU is a no-CBs CPU that does not already have its
2521  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2522  * brought online out of order, this can require re-organizing the
2523  * leader-follower relationships.
2524  */
2525 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2526 {
2527 	struct rcu_data *rdp;
2528 	struct rcu_data *rdp_last;
2529 	struct rcu_data *rdp_old_leader;
2530 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2531 	struct task_struct *t;
2532 
2533 	/*
2534 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2535 	 * then nothing to do.
2536 	 */
2537 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2538 		return;
2539 
2540 	/* If we didn't spawn the leader first, reorganize! */
2541 	rdp_old_leader = rdp_spawn->nocb_leader;
2542 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2543 		rdp_last = NULL;
2544 		rdp = rdp_old_leader;
2545 		do {
2546 			rdp->nocb_leader = rdp_spawn;
2547 			if (rdp_last && rdp != rdp_spawn)
2548 				rdp_last->nocb_next_follower = rdp;
2549 			rdp_last = rdp;
2550 			rdp = rdp->nocb_next_follower;
2551 			rdp_last->nocb_next_follower = NULL;
2552 		} while (rdp);
2553 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2554 	}
2555 
2556 	/* Spawn the kthread for this CPU and RCU flavor. */
2557 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2558 			"rcuo%c/%d", rsp->abbr, cpu);
2559 	BUG_ON(IS_ERR(t));
2560 	ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2561 }
2562 
2563 /*
2564  * If the specified CPU is a no-CBs CPU that does not already have its
2565  * rcuo kthreads, spawn them.
2566  */
2567 static void rcu_spawn_all_nocb_kthreads(int cpu)
2568 {
2569 	struct rcu_state *rsp;
2570 
2571 	if (rcu_scheduler_fully_active)
2572 		for_each_rcu_flavor(rsp)
2573 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2574 }
2575 
2576 /*
2577  * Once the scheduler is running, spawn rcuo kthreads for all online
2578  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2579  * non-boot CPUs come online -- if this changes, we will need to add
2580  * some mutual exclusion.
2581  */
2582 static void __init rcu_spawn_nocb_kthreads(void)
2583 {
2584 	int cpu;
2585 
2586 	for_each_online_cpu(cpu)
2587 		rcu_spawn_all_nocb_kthreads(cpu);
2588 }
2589 
2590 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2591 static int rcu_nocb_leader_stride = -1;
2592 module_param(rcu_nocb_leader_stride, int, 0444);
2593 
2594 /*
2595  * Initialize leader-follower relationships for all no-CBs CPU.
2596  */
2597 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2598 {
2599 	int cpu;
2600 	int ls = rcu_nocb_leader_stride;
2601 	int nl = 0;  /* Next leader. */
2602 	struct rcu_data *rdp;
2603 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2604 	struct rcu_data *rdp_prev = NULL;
2605 
2606 	if (!have_rcu_nocb_mask)
2607 		return;
2608 	if (ls == -1) {
2609 		ls = int_sqrt(nr_cpu_ids);
2610 		rcu_nocb_leader_stride = ls;
2611 	}
2612 
2613 	/*
2614 	 * Each pass through this loop sets up one rcu_data structure and
2615 	 * spawns one rcu_nocb_kthread().
2616 	 */
2617 	for_each_cpu(cpu, rcu_nocb_mask) {
2618 		rdp = per_cpu_ptr(rsp->rda, cpu);
2619 		if (rdp->cpu >= nl) {
2620 			/* New leader, set up for followers & next leader. */
2621 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2622 			rdp->nocb_leader = rdp;
2623 			rdp_leader = rdp;
2624 		} else {
2625 			/* Another follower, link to previous leader. */
2626 			rdp->nocb_leader = rdp_leader;
2627 			rdp_prev->nocb_next_follower = rdp;
2628 		}
2629 		rdp_prev = rdp;
2630 	}
2631 }
2632 
2633 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2634 static bool init_nocb_callback_list(struct rcu_data *rdp)
2635 {
2636 	if (!rcu_is_nocb_cpu(rdp->cpu))
2637 		return false;
2638 
2639 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2640 	return true;
2641 }
2642 
2643 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2644 
2645 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2646 {
2647 }
2648 
2649 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2650 {
2651 }
2652 
2653 static void rcu_init_one_nocb(struct rcu_node *rnp)
2654 {
2655 }
2656 
2657 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2658 			    bool lazy, unsigned long flags)
2659 {
2660 	return false;
2661 }
2662 
2663 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2664 						     struct rcu_data *rdp,
2665 						     unsigned long flags)
2666 {
2667 	return false;
2668 }
2669 
2670 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2671 {
2672 }
2673 
2674 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2675 {
2676 	return false;
2677 }
2678 
2679 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2680 {
2681 }
2682 
2683 static void rcu_spawn_all_nocb_kthreads(int cpu)
2684 {
2685 }
2686 
2687 static void __init rcu_spawn_nocb_kthreads(void)
2688 {
2689 }
2690 
2691 static bool init_nocb_callback_list(struct rcu_data *rdp)
2692 {
2693 	return false;
2694 }
2695 
2696 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2697 
2698 /*
2699  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2700  * arbitrarily long period of time with the scheduling-clock tick turned
2701  * off.  RCU will be paying attention to this CPU because it is in the
2702  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2703  * machine because the scheduling-clock tick has been disabled.  Therefore,
2704  * if an adaptive-ticks CPU is failing to respond to the current grace
2705  * period and has not be idle from an RCU perspective, kick it.
2706  */
2707 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2708 {
2709 #ifdef CONFIG_NO_HZ_FULL
2710 	if (tick_nohz_full_cpu(cpu))
2711 		smp_send_reschedule(cpu);
2712 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2713 }
2714 
2715 
2716 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2717 
2718 static int full_sysidle_state;		/* Current system-idle state. */
2719 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2720 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2721 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2722 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2723 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2724 
2725 /*
2726  * Invoked to note exit from irq or task transition to idle.  Note that
2727  * usermode execution does -not- count as idle here!  After all, we want
2728  * to detect full-system idle states, not RCU quiescent states and grace
2729  * periods.  The caller must have disabled interrupts.
2730  */
2731 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2732 {
2733 	unsigned long j;
2734 
2735 	/* If there are no nohz_full= CPUs, no need to track this. */
2736 	if (!tick_nohz_full_enabled())
2737 		return;
2738 
2739 	/* Adjust nesting, check for fully idle. */
2740 	if (irq) {
2741 		rdtp->dynticks_idle_nesting--;
2742 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2743 		if (rdtp->dynticks_idle_nesting != 0)
2744 			return;  /* Still not fully idle. */
2745 	} else {
2746 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2747 		    DYNTICK_TASK_NEST_VALUE) {
2748 			rdtp->dynticks_idle_nesting = 0;
2749 		} else {
2750 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2751 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2752 			return;  /* Still not fully idle. */
2753 		}
2754 	}
2755 
2756 	/* Record start of fully idle period. */
2757 	j = jiffies;
2758 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2759 	smp_mb__before_atomic();
2760 	atomic_inc(&rdtp->dynticks_idle);
2761 	smp_mb__after_atomic();
2762 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2763 }
2764 
2765 /*
2766  * Unconditionally force exit from full system-idle state.  This is
2767  * invoked when a normal CPU exits idle, but must be called separately
2768  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2769  * is that the timekeeping CPU is permitted to take scheduling-clock
2770  * interrupts while the system is in system-idle state, and of course
2771  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2772  * interrupt from any other type of interrupt.
2773  */
2774 void rcu_sysidle_force_exit(void)
2775 {
2776 	int oldstate = ACCESS_ONCE(full_sysidle_state);
2777 	int newoldstate;
2778 
2779 	/*
2780 	 * Each pass through the following loop attempts to exit full
2781 	 * system-idle state.  If contention proves to be a problem,
2782 	 * a trylock-based contention tree could be used here.
2783 	 */
2784 	while (oldstate > RCU_SYSIDLE_SHORT) {
2785 		newoldstate = cmpxchg(&full_sysidle_state,
2786 				      oldstate, RCU_SYSIDLE_NOT);
2787 		if (oldstate == newoldstate &&
2788 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2789 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2790 			return; /* We cleared it, done! */
2791 		}
2792 		oldstate = newoldstate;
2793 	}
2794 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2795 }
2796 
2797 /*
2798  * Invoked to note entry to irq or task transition from idle.  Note that
2799  * usermode execution does -not- count as idle here!  The caller must
2800  * have disabled interrupts.
2801  */
2802 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2803 {
2804 	/* If there are no nohz_full= CPUs, no need to track this. */
2805 	if (!tick_nohz_full_enabled())
2806 		return;
2807 
2808 	/* Adjust nesting, check for already non-idle. */
2809 	if (irq) {
2810 		rdtp->dynticks_idle_nesting++;
2811 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2812 		if (rdtp->dynticks_idle_nesting != 1)
2813 			return; /* Already non-idle. */
2814 	} else {
2815 		/*
2816 		 * Allow for irq misnesting.  Yes, it really is possible
2817 		 * to enter an irq handler then never leave it, and maybe
2818 		 * also vice versa.  Handle both possibilities.
2819 		 */
2820 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2821 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2822 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2823 			return; /* Already non-idle. */
2824 		} else {
2825 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2826 		}
2827 	}
2828 
2829 	/* Record end of idle period. */
2830 	smp_mb__before_atomic();
2831 	atomic_inc(&rdtp->dynticks_idle);
2832 	smp_mb__after_atomic();
2833 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2834 
2835 	/*
2836 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2837 	 * during a system-idle state.  This must be the case, because
2838 	 * the timekeeping CPU has to take scheduling-clock interrupts
2839 	 * during the time that the system is transitioning to full
2840 	 * system-idle state.  This means that the timekeeping CPU must
2841 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2842 	 * more than take a scheduling-clock interrupt.
2843 	 */
2844 	if (smp_processor_id() == tick_do_timer_cpu)
2845 		return;
2846 
2847 	/* Update system-idle state: We are clearly no longer fully idle! */
2848 	rcu_sysidle_force_exit();
2849 }
2850 
2851 /*
2852  * Check to see if the current CPU is idle.  Note that usermode execution
2853  * does not count as idle.  The caller must have disabled interrupts.
2854  */
2855 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2856 				  unsigned long *maxj)
2857 {
2858 	int cur;
2859 	unsigned long j;
2860 	struct rcu_dynticks *rdtp = rdp->dynticks;
2861 
2862 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2863 	if (!tick_nohz_full_enabled())
2864 		return;
2865 
2866 	/*
2867 	 * If some other CPU has already reported non-idle, if this is
2868 	 * not the flavor of RCU that tracks sysidle state, or if this
2869 	 * is an offline or the timekeeping CPU, nothing to do.
2870 	 */
2871 	if (!*isidle || rdp->rsp != rcu_state_p ||
2872 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2873 		return;
2874 	if (rcu_gp_in_progress(rdp->rsp))
2875 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2876 
2877 	/* Pick up current idle and NMI-nesting counter and check. */
2878 	cur = atomic_read(&rdtp->dynticks_idle);
2879 	if (cur & 0x1) {
2880 		*isidle = false; /* We are not idle! */
2881 		return;
2882 	}
2883 	smp_mb(); /* Read counters before timestamps. */
2884 
2885 	/* Pick up timestamps. */
2886 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2887 	/* If this CPU entered idle more recently, update maxj timestamp. */
2888 	if (ULONG_CMP_LT(*maxj, j))
2889 		*maxj = j;
2890 }
2891 
2892 /*
2893  * Is this the flavor of RCU that is handling full-system idle?
2894  */
2895 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2896 {
2897 	return rsp == rcu_state_p;
2898 }
2899 
2900 /*
2901  * Return a delay in jiffies based on the number of CPUs, rcu_node
2902  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2903  * systems more time to transition to full-idle state in order to
2904  * avoid the cache thrashing that otherwise occur on the state variable.
2905  * Really small systems (less than a couple of tens of CPUs) should
2906  * instead use a single global atomically incremented counter, and later
2907  * versions of this will automatically reconfigure themselves accordingly.
2908  */
2909 static unsigned long rcu_sysidle_delay(void)
2910 {
2911 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2912 		return 0;
2913 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2914 }
2915 
2916 /*
2917  * Advance the full-system-idle state.  This is invoked when all of
2918  * the non-timekeeping CPUs are idle.
2919  */
2920 static void rcu_sysidle(unsigned long j)
2921 {
2922 	/* Check the current state. */
2923 	switch (ACCESS_ONCE(full_sysidle_state)) {
2924 	case RCU_SYSIDLE_NOT:
2925 
2926 		/* First time all are idle, so note a short idle period. */
2927 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2928 		break;
2929 
2930 	case RCU_SYSIDLE_SHORT:
2931 
2932 		/*
2933 		 * Idle for a bit, time to advance to next state?
2934 		 * cmpxchg failure means race with non-idle, let them win.
2935 		 */
2936 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2937 			(void)cmpxchg(&full_sysidle_state,
2938 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2939 		break;
2940 
2941 	case RCU_SYSIDLE_LONG:
2942 
2943 		/*
2944 		 * Do an additional check pass before advancing to full.
2945 		 * cmpxchg failure means race with non-idle, let them win.
2946 		 */
2947 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2948 			(void)cmpxchg(&full_sysidle_state,
2949 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2950 		break;
2951 
2952 	default:
2953 		break;
2954 	}
2955 }
2956 
2957 /*
2958  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2959  * back to the beginning.
2960  */
2961 static void rcu_sysidle_cancel(void)
2962 {
2963 	smp_mb();
2964 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2965 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2966 }
2967 
2968 /*
2969  * Update the sysidle state based on the results of a force-quiescent-state
2970  * scan of the CPUs' dyntick-idle state.
2971  */
2972 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2973 			       unsigned long maxj, bool gpkt)
2974 {
2975 	if (rsp != rcu_state_p)
2976 		return;  /* Wrong flavor, ignore. */
2977 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2978 		return;  /* Running state machine from timekeeping CPU. */
2979 	if (isidle)
2980 		rcu_sysidle(maxj);    /* More idle! */
2981 	else
2982 		rcu_sysidle_cancel(); /* Idle is over. */
2983 }
2984 
2985 /*
2986  * Wrapper for rcu_sysidle_report() when called from the grace-period
2987  * kthread's context.
2988  */
2989 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2990 				  unsigned long maxj)
2991 {
2992 	/* If there are no nohz_full= CPUs, no need to track this. */
2993 	if (!tick_nohz_full_enabled())
2994 		return;
2995 
2996 	rcu_sysidle_report(rsp, isidle, maxj, true);
2997 }
2998 
2999 /* Callback and function for forcing an RCU grace period. */
3000 struct rcu_sysidle_head {
3001 	struct rcu_head rh;
3002 	int inuse;
3003 };
3004 
3005 static void rcu_sysidle_cb(struct rcu_head *rhp)
3006 {
3007 	struct rcu_sysidle_head *rshp;
3008 
3009 	/*
3010 	 * The following memory barrier is needed to replace the
3011 	 * memory barriers that would normally be in the memory
3012 	 * allocator.
3013 	 */
3014 	smp_mb();  /* grace period precedes setting inuse. */
3015 
3016 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3017 	ACCESS_ONCE(rshp->inuse) = 0;
3018 }
3019 
3020 /*
3021  * Check to see if the system is fully idle, other than the timekeeping CPU.
3022  * The caller must have disabled interrupts.  This is not intended to be
3023  * called unless tick_nohz_full_enabled().
3024  */
3025 bool rcu_sys_is_idle(void)
3026 {
3027 	static struct rcu_sysidle_head rsh;
3028 	int rss = ACCESS_ONCE(full_sysidle_state);
3029 
3030 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3031 		return false;
3032 
3033 	/* Handle small-system case by doing a full scan of CPUs. */
3034 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3035 		int oldrss = rss - 1;
3036 
3037 		/*
3038 		 * One pass to advance to each state up to _FULL.
3039 		 * Give up if any pass fails to advance the state.
3040 		 */
3041 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3042 			int cpu;
3043 			bool isidle = true;
3044 			unsigned long maxj = jiffies - ULONG_MAX / 4;
3045 			struct rcu_data *rdp;
3046 
3047 			/* Scan all the CPUs looking for nonidle CPUs. */
3048 			for_each_possible_cpu(cpu) {
3049 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3050 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3051 				if (!isidle)
3052 					break;
3053 			}
3054 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3055 			oldrss = rss;
3056 			rss = ACCESS_ONCE(full_sysidle_state);
3057 		}
3058 	}
3059 
3060 	/* If this is the first observation of an idle period, record it. */
3061 	if (rss == RCU_SYSIDLE_FULL) {
3062 		rss = cmpxchg(&full_sysidle_state,
3063 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3064 		return rss == RCU_SYSIDLE_FULL;
3065 	}
3066 
3067 	smp_mb(); /* ensure rss load happens before later caller actions. */
3068 
3069 	/* If already fully idle, tell the caller (in case of races). */
3070 	if (rss == RCU_SYSIDLE_FULL_NOTED)
3071 		return true;
3072 
3073 	/*
3074 	 * If we aren't there yet, and a grace period is not in flight,
3075 	 * initiate a grace period.  Either way, tell the caller that
3076 	 * we are not there yet.  We use an xchg() rather than an assignment
3077 	 * to make up for the memory barriers that would otherwise be
3078 	 * provided by the memory allocator.
3079 	 */
3080 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3081 	    !rcu_gp_in_progress(rcu_state_p) &&
3082 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3083 		call_rcu(&rsh.rh, rcu_sysidle_cb);
3084 	return false;
3085 }
3086 
3087 /*
3088  * Initialize dynticks sysidle state for CPUs coming online.
3089  */
3090 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3091 {
3092 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3093 }
3094 
3095 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3096 
3097 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3098 {
3099 }
3100 
3101 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3102 {
3103 }
3104 
3105 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3106 				  unsigned long *maxj)
3107 {
3108 }
3109 
3110 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3111 {
3112 	return false;
3113 }
3114 
3115 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3116 				  unsigned long maxj)
3117 {
3118 }
3119 
3120 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3121 {
3122 }
3123 
3124 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3125 
3126 /*
3127  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3128  * grace-period kthread will do force_quiescent_state() processing?
3129  * The idea is to avoid waking up RCU core processing on such a
3130  * CPU unless the grace period has extended for too long.
3131  *
3132  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3133  * CONFIG_RCU_NOCB_CPU CPUs.
3134  */
3135 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3136 {
3137 #ifdef CONFIG_NO_HZ_FULL
3138 	if (tick_nohz_full_cpu(smp_processor_id()) &&
3139 	    (!rcu_gp_in_progress(rsp) ||
3140 	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3141 		return 1;
3142 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3143 	return 0;
3144 }
3145 
3146 /*
3147  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3148  * timekeeping CPU.
3149  */
3150 static void rcu_bind_gp_kthread(void)
3151 {
3152 	int __maybe_unused cpu;
3153 
3154 	if (!tick_nohz_full_enabled())
3155 		return;
3156 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3157 	cpu = tick_do_timer_cpu;
3158 	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3159 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3160 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3161 	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3162 		housekeeping_affine(current);
3163 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3164 }
3165 
3166 /* Record the current task on dyntick-idle entry. */
3167 static void rcu_dynticks_task_enter(void)
3168 {
3169 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3170 	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3171 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3172 }
3173 
3174 /* Record no current task on dyntick-idle exit. */
3175 static void rcu_dynticks_task_exit(void)
3176 {
3177 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3178 	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3179 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3180 }
3181