xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision e3d786a3)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35 
36 #ifdef CONFIG_RCU_BOOST
37 
38 #include "../locking/rtmutex_common.h"
39 
40 /*
41  * Control variables for per-CPU and per-rcu_node kthreads.
42  */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47 
48 #else /* #ifdef CONFIG_RCU_BOOST */
49 
50 /*
51  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52  * all uses are in dead code.  Provide a definition to keep the compiler
53  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54  * This probably needs to be excluded from -rt builds.
55  */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
58 
59 #endif /* #else #ifdef CONFIG_RCU_BOOST */
60 
61 #ifdef CONFIG_RCU_NOCB_CPU
62 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
63 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65 
66 /*
67  * Check the RCU kernel configuration parameters and print informative
68  * messages about anything out of the ordinary.
69  */
70 static void __init rcu_bootup_announce_oddness(void)
71 {
72 	if (IS_ENABLED(CONFIG_RCU_TRACE))
73 		pr_info("\tRCU event tracing is enabled.\n");
74 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
77 			RCU_FANOUT);
78 	if (rcu_fanout_exact)
79 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 	if (IS_ENABLED(CONFIG_PROVE_RCU))
83 		pr_info("\tRCU lockdep checking is enabled.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
91 			rcu_fanout_leaf);
92 	if (nr_cpu_ids != NR_CPUS)
93 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
96 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
97 #endif
98 	if (blimit != DEFAULT_RCU_BLIMIT)
99 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
100 	if (qhimark != DEFAULT_RCU_QHIMARK)
101 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
102 	if (qlowmark != DEFAULT_RCU_QLOMARK)
103 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
104 	if (jiffies_till_first_fqs != ULONG_MAX)
105 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
106 	if (jiffies_till_next_fqs != ULONG_MAX)
107 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
108 	if (jiffies_till_sched_qs != ULONG_MAX)
109 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
110 	if (rcu_kick_kthreads)
111 		pr_info("\tKick kthreads if too-long grace period.\n");
112 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
113 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
114 	if (gp_preinit_delay)
115 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
116 	if (gp_init_delay)
117 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
118 	if (gp_cleanup_delay)
119 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
120 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
121 		pr_info("\tRCU debug extended QS entry/exit.\n");
122 	rcupdate_announce_bootup_oddness();
123 }
124 
125 #ifdef CONFIG_PREEMPT_RCU
126 
127 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
128 static void rcu_read_unlock_special(struct task_struct *t);
129 
130 /*
131  * Tell them what RCU they are running.
132  */
133 static void __init rcu_bootup_announce(void)
134 {
135 	pr_info("Preemptible hierarchical RCU implementation.\n");
136 	rcu_bootup_announce_oddness();
137 }
138 
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS	0x8
141 #define RCU_EXP_TASKS	0x4
142 #define RCU_GP_BLKD	0x2
143 #define RCU_EXP_BLKD	0x1
144 
145 /*
146  * Queues a task preempted within an RCU-preempt read-side critical
147  * section into the appropriate location within the ->blkd_tasks list,
148  * depending on the states of any ongoing normal and expedited grace
149  * periods.  The ->gp_tasks pointer indicates which element the normal
150  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151  * indicates which element the expedited grace period is waiting on (again,
152  * NULL if none).  If a grace period is waiting on a given element in the
153  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
154  * adding a task to the tail of the list blocks any grace period that is
155  * already waiting on one of the elements.  In contrast, adding a task
156  * to the head of the list won't block any grace period that is already
157  * waiting on one of the elements.
158  *
159  * This queuing is imprecise, and can sometimes make an ongoing grace
160  * period wait for a task that is not strictly speaking blocking it.
161  * Given the choice, we needlessly block a normal grace period rather than
162  * blocking an expedited grace period.
163  *
164  * Note that an endless sequence of expedited grace periods still cannot
165  * indefinitely postpone a normal grace period.  Eventually, all of the
166  * fixed number of preempted tasks blocking the normal grace period that are
167  * not also blocking the expedited grace period will resume and complete
168  * their RCU read-side critical sections.  At that point, the ->gp_tasks
169  * pointer will equal the ->exp_tasks pointer, at which point the end of
170  * the corresponding expedited grace period will also be the end of the
171  * normal grace period.
172  */
173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
174 	__releases(rnp->lock) /* But leaves rrupts disabled. */
175 {
176 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
177 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
178 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
179 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
180 	struct task_struct *t = current;
181 
182 	raw_lockdep_assert_held_rcu_node(rnp);
183 	WARN_ON_ONCE(rdp->mynode != rnp);
184 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
185 	/* RCU better not be waiting on newly onlined CPUs! */
186 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
187 		     rdp->grpmask);
188 
189 	/*
190 	 * Decide where to queue the newly blocked task.  In theory,
191 	 * this could be an if-statement.  In practice, when I tried
192 	 * that, it was quite messy.
193 	 */
194 	switch (blkd_state) {
195 	case 0:
196 	case                RCU_EXP_TASKS:
197 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
198 	case RCU_GP_TASKS:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS:
200 
201 		/*
202 		 * Blocking neither GP, or first task blocking the normal
203 		 * GP but not blocking the already-waiting expedited GP.
204 		 * Queue at the head of the list to avoid unnecessarily
205 		 * blocking the already-waiting GPs.
206 		 */
207 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
208 		break;
209 
210 	case                                              RCU_EXP_BLKD:
211 	case                                RCU_GP_BLKD:
212 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
213 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
214 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
215 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
216 
217 		/*
218 		 * First task arriving that blocks either GP, or first task
219 		 * arriving that blocks the expedited GP (with the normal
220 		 * GP already waiting), or a task arriving that blocks
221 		 * both GPs with both GPs already waiting.  Queue at the
222 		 * tail of the list to avoid any GP waiting on any of the
223 		 * already queued tasks that are not blocking it.
224 		 */
225 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
226 		break;
227 
228 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
229 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
230 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
231 
232 		/*
233 		 * Second or subsequent task blocking the expedited GP.
234 		 * The task either does not block the normal GP, or is the
235 		 * first task blocking the normal GP.  Queue just after
236 		 * the first task blocking the expedited GP.
237 		 */
238 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
239 		break;
240 
241 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
242 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
243 
244 		/*
245 		 * Second or subsequent task blocking the normal GP.
246 		 * The task does not block the expedited GP. Queue just
247 		 * after the first task blocking the normal GP.
248 		 */
249 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
250 		break;
251 
252 	default:
253 
254 		/* Yet another exercise in excessive paranoia. */
255 		WARN_ON_ONCE(1);
256 		break;
257 	}
258 
259 	/*
260 	 * We have now queued the task.  If it was the first one to
261 	 * block either grace period, update the ->gp_tasks and/or
262 	 * ->exp_tasks pointers, respectively, to reference the newly
263 	 * blocked tasks.
264 	 */
265 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
266 		rnp->gp_tasks = &t->rcu_node_entry;
267 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
268 	}
269 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
270 		rnp->exp_tasks = &t->rcu_node_entry;
271 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
272 		     !(rnp->qsmask & rdp->grpmask));
273 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
274 		     !(rnp->expmask & rdp->grpmask));
275 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
276 
277 	/*
278 	 * Report the quiescent state for the expedited GP.  This expedited
279 	 * GP should not be able to end until we report, so there should be
280 	 * no need to check for a subsequent expedited GP.  (Though we are
281 	 * still in a quiescent state in any case.)
282 	 */
283 	if (blkd_state & RCU_EXP_BLKD && rdp->deferred_qs)
284 		rcu_report_exp_rdp(rdp);
285 	else
286 		WARN_ON_ONCE(rdp->deferred_qs);
287 }
288 
289 /*
290  * Record a preemptible-RCU quiescent state for the specified CPU.
291  * Note that this does not necessarily mean that the task currently running
292  * on the CPU is in a quiescent state:  Instead, it means that the current
293  * grace period need not wait on any RCU read-side critical section that
294  * starts later on this CPU.  It also means that if the current task is
295  * in an RCU read-side critical section, it has already added itself to
296  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
297  * current task, there might be any number of other tasks blocked while
298  * in an RCU read-side critical section.
299  *
300  * Callers to this function must disable preemption.
301  */
302 static void rcu_qs(void)
303 {
304 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
305 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
306 		trace_rcu_grace_period(TPS("rcu_preempt"),
307 				       __this_cpu_read(rcu_data.gp_seq),
308 				       TPS("cpuqs"));
309 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
310 		barrier(); /* Coordinate with rcu_flavor_check_callbacks(). */
311 		current->rcu_read_unlock_special.b.need_qs = false;
312 	}
313 }
314 
315 /*
316  * We have entered the scheduler, and the current task might soon be
317  * context-switched away from.  If this task is in an RCU read-side
318  * critical section, we will no longer be able to rely on the CPU to
319  * record that fact, so we enqueue the task on the blkd_tasks list.
320  * The task will dequeue itself when it exits the outermost enclosing
321  * RCU read-side critical section.  Therefore, the current grace period
322  * cannot be permitted to complete until the blkd_tasks list entries
323  * predating the current grace period drain, in other words, until
324  * rnp->gp_tasks becomes NULL.
325  *
326  * Caller must disable interrupts.
327  */
328 void rcu_note_context_switch(bool preempt)
329 {
330 	struct task_struct *t = current;
331 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
332 	struct rcu_node *rnp;
333 
334 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
335 	trace_rcu_utilization(TPS("Start context switch"));
336 	lockdep_assert_irqs_disabled();
337 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
338 	if (t->rcu_read_lock_nesting > 0 &&
339 	    !t->rcu_read_unlock_special.b.blocked) {
340 
341 		/* Possibly blocking in an RCU read-side critical section. */
342 		rnp = rdp->mynode;
343 		raw_spin_lock_rcu_node(rnp);
344 		t->rcu_read_unlock_special.b.blocked = true;
345 		t->rcu_blocked_node = rnp;
346 
347 		/*
348 		 * Verify the CPU's sanity, trace the preemption, and
349 		 * then queue the task as required based on the states
350 		 * of any ongoing and expedited grace periods.
351 		 */
352 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
353 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
354 		trace_rcu_preempt_task(rcu_state.name,
355 				       t->pid,
356 				       (rnp->qsmask & rdp->grpmask)
357 				       ? rnp->gp_seq
358 				       : rcu_seq_snap(&rnp->gp_seq));
359 		rcu_preempt_ctxt_queue(rnp, rdp);
360 	} else if (t->rcu_read_lock_nesting < 0 &&
361 		   t->rcu_read_unlock_special.s) {
362 
363 		/*
364 		 * Complete exit from RCU read-side critical section on
365 		 * behalf of preempted instance of __rcu_read_unlock().
366 		 */
367 		rcu_read_unlock_special(t);
368 		rcu_preempt_deferred_qs(t);
369 	} else {
370 		rcu_preempt_deferred_qs(t);
371 	}
372 
373 	/*
374 	 * Either we were not in an RCU read-side critical section to
375 	 * begin with, or we have now recorded that critical section
376 	 * globally.  Either way, we can now note a quiescent state
377 	 * for this CPU.  Again, if we were in an RCU read-side critical
378 	 * section, and if that critical section was blocking the current
379 	 * grace period, then the fact that the task has been enqueued
380 	 * means that we continue to block the current grace period.
381 	 */
382 	rcu_qs();
383 	if (rdp->deferred_qs)
384 		rcu_report_exp_rdp(rdp);
385 	trace_rcu_utilization(TPS("End context switch"));
386 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
387 }
388 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
389 
390 /*
391  * Check for preempted RCU readers blocking the current grace period
392  * for the specified rcu_node structure.  If the caller needs a reliable
393  * answer, it must hold the rcu_node's ->lock.
394  */
395 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
396 {
397 	return rnp->gp_tasks != NULL;
398 }
399 
400 /*
401  * Preemptible RCU implementation for rcu_read_lock().
402  * Just increment ->rcu_read_lock_nesting, shared state will be updated
403  * if we block.
404  */
405 void __rcu_read_lock(void)
406 {
407 	current->rcu_read_lock_nesting++;
408 	barrier();  /* critical section after entry code. */
409 }
410 EXPORT_SYMBOL_GPL(__rcu_read_lock);
411 
412 /*
413  * Preemptible RCU implementation for rcu_read_unlock().
414  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
415  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
416  * invoke rcu_read_unlock_special() to clean up after a context switch
417  * in an RCU read-side critical section and other special cases.
418  */
419 void __rcu_read_unlock(void)
420 {
421 	struct task_struct *t = current;
422 
423 	if (t->rcu_read_lock_nesting != 1) {
424 		--t->rcu_read_lock_nesting;
425 	} else {
426 		barrier();  /* critical section before exit code. */
427 		t->rcu_read_lock_nesting = INT_MIN;
428 		barrier();  /* assign before ->rcu_read_unlock_special load */
429 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
430 			rcu_read_unlock_special(t);
431 		barrier();  /* ->rcu_read_unlock_special load before assign */
432 		t->rcu_read_lock_nesting = 0;
433 	}
434 #ifdef CONFIG_PROVE_LOCKING
435 	{
436 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
437 
438 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
439 	}
440 #endif /* #ifdef CONFIG_PROVE_LOCKING */
441 }
442 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
443 
444 /*
445  * Advance a ->blkd_tasks-list pointer to the next entry, instead
446  * returning NULL if at the end of the list.
447  */
448 static struct list_head *rcu_next_node_entry(struct task_struct *t,
449 					     struct rcu_node *rnp)
450 {
451 	struct list_head *np;
452 
453 	np = t->rcu_node_entry.next;
454 	if (np == &rnp->blkd_tasks)
455 		np = NULL;
456 	return np;
457 }
458 
459 /*
460  * Return true if the specified rcu_node structure has tasks that were
461  * preempted within an RCU read-side critical section.
462  */
463 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
464 {
465 	return !list_empty(&rnp->blkd_tasks);
466 }
467 
468 /*
469  * Report deferred quiescent states.  The deferral time can
470  * be quite short, for example, in the case of the call from
471  * rcu_read_unlock_special().
472  */
473 static void
474 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
475 {
476 	bool empty_exp;
477 	bool empty_norm;
478 	bool empty_exp_now;
479 	struct list_head *np;
480 	bool drop_boost_mutex = false;
481 	struct rcu_data *rdp;
482 	struct rcu_node *rnp;
483 	union rcu_special special;
484 
485 	/*
486 	 * If RCU core is waiting for this CPU to exit its critical section,
487 	 * report the fact that it has exited.  Because irqs are disabled,
488 	 * t->rcu_read_unlock_special cannot change.
489 	 */
490 	special = t->rcu_read_unlock_special;
491 	rdp = this_cpu_ptr(&rcu_data);
492 	if (!special.s && !rdp->deferred_qs) {
493 		local_irq_restore(flags);
494 		return;
495 	}
496 	if (special.b.need_qs) {
497 		rcu_qs();
498 		t->rcu_read_unlock_special.b.need_qs = false;
499 		if (!t->rcu_read_unlock_special.s && !rdp->deferred_qs) {
500 			local_irq_restore(flags);
501 			return;
502 		}
503 	}
504 
505 	/*
506 	 * Respond to a request by an expedited grace period for a
507 	 * quiescent state from this CPU.  Note that requests from
508 	 * tasks are handled when removing the task from the
509 	 * blocked-tasks list below.
510 	 */
511 	if (rdp->deferred_qs) {
512 		rcu_report_exp_rdp(rdp);
513 		if (!t->rcu_read_unlock_special.s) {
514 			local_irq_restore(flags);
515 			return;
516 		}
517 	}
518 
519 	/* Clean up if blocked during RCU read-side critical section. */
520 	if (special.b.blocked) {
521 		t->rcu_read_unlock_special.b.blocked = false;
522 
523 		/*
524 		 * Remove this task from the list it blocked on.  The task
525 		 * now remains queued on the rcu_node corresponding to the
526 		 * CPU it first blocked on, so there is no longer any need
527 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
528 		 */
529 		rnp = t->rcu_blocked_node;
530 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
531 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
532 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
533 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
534 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
535 			     (!empty_norm || rnp->qsmask));
536 		empty_exp = sync_rcu_preempt_exp_done(rnp);
537 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
538 		np = rcu_next_node_entry(t, rnp);
539 		list_del_init(&t->rcu_node_entry);
540 		t->rcu_blocked_node = NULL;
541 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
542 						rnp->gp_seq, t->pid);
543 		if (&t->rcu_node_entry == rnp->gp_tasks)
544 			rnp->gp_tasks = np;
545 		if (&t->rcu_node_entry == rnp->exp_tasks)
546 			rnp->exp_tasks = np;
547 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
548 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
549 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
550 			if (&t->rcu_node_entry == rnp->boost_tasks)
551 				rnp->boost_tasks = np;
552 		}
553 
554 		/*
555 		 * If this was the last task on the current list, and if
556 		 * we aren't waiting on any CPUs, report the quiescent state.
557 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
558 		 * so we must take a snapshot of the expedited state.
559 		 */
560 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
561 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
562 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
563 							 rnp->gp_seq,
564 							 0, rnp->qsmask,
565 							 rnp->level,
566 							 rnp->grplo,
567 							 rnp->grphi,
568 							 !!rnp->gp_tasks);
569 			rcu_report_unblock_qs_rnp(rnp, flags);
570 		} else {
571 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
572 		}
573 
574 		/* Unboost if we were boosted. */
575 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
576 			rt_mutex_futex_unlock(&rnp->boost_mtx);
577 
578 		/*
579 		 * If this was the last task on the expedited lists,
580 		 * then we need to report up the rcu_node hierarchy.
581 		 */
582 		if (!empty_exp && empty_exp_now)
583 			rcu_report_exp_rnp(rnp, true);
584 	} else {
585 		local_irq_restore(flags);
586 	}
587 }
588 
589 /*
590  * Is a deferred quiescent-state pending, and are we also not in
591  * an RCU read-side critical section?  It is the caller's responsibility
592  * to ensure it is otherwise safe to report any deferred quiescent
593  * states.  The reason for this is that it is safe to report a
594  * quiescent state during context switch even though preemption
595  * is disabled.  This function cannot be expected to understand these
596  * nuances, so the caller must handle them.
597  */
598 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
599 {
600 	return (this_cpu_ptr(&rcu_data)->deferred_qs ||
601 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
602 	       t->rcu_read_lock_nesting <= 0;
603 }
604 
605 /*
606  * Report a deferred quiescent state if needed and safe to do so.
607  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
608  * not being in an RCU read-side critical section.  The caller must
609  * evaluate safety in terms of interrupt, softirq, and preemption
610  * disabling.
611  */
612 static void rcu_preempt_deferred_qs(struct task_struct *t)
613 {
614 	unsigned long flags;
615 	bool couldrecurse = t->rcu_read_lock_nesting >= 0;
616 
617 	if (!rcu_preempt_need_deferred_qs(t))
618 		return;
619 	if (couldrecurse)
620 		t->rcu_read_lock_nesting -= INT_MIN;
621 	local_irq_save(flags);
622 	rcu_preempt_deferred_qs_irqrestore(t, flags);
623 	if (couldrecurse)
624 		t->rcu_read_lock_nesting += INT_MIN;
625 }
626 
627 /*
628  * Handle special cases during rcu_read_unlock(), such as needing to
629  * notify RCU core processing or task having blocked during the RCU
630  * read-side critical section.
631  */
632 static void rcu_read_unlock_special(struct task_struct *t)
633 {
634 	unsigned long flags;
635 	bool preempt_bh_were_disabled =
636 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
637 	bool irqs_were_disabled;
638 
639 	/* NMI handlers cannot block and cannot safely manipulate state. */
640 	if (in_nmi())
641 		return;
642 
643 	local_irq_save(flags);
644 	irqs_were_disabled = irqs_disabled_flags(flags);
645 	if ((preempt_bh_were_disabled || irqs_were_disabled) &&
646 	    t->rcu_read_unlock_special.b.blocked) {
647 		/* Need to defer quiescent state until everything is enabled. */
648 		raise_softirq_irqoff(RCU_SOFTIRQ);
649 		local_irq_restore(flags);
650 		return;
651 	}
652 	rcu_preempt_deferred_qs_irqrestore(t, flags);
653 }
654 
655 /*
656  * Dump detailed information for all tasks blocking the current RCU
657  * grace period on the specified rcu_node structure.
658  */
659 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
660 {
661 	unsigned long flags;
662 	struct task_struct *t;
663 
664 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
665 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
666 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
667 		return;
668 	}
669 	t = list_entry(rnp->gp_tasks->prev,
670 		       struct task_struct, rcu_node_entry);
671 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
672 		/*
673 		 * We could be printing a lot while holding a spinlock.
674 		 * Avoid triggering hard lockup.
675 		 */
676 		touch_nmi_watchdog();
677 		sched_show_task(t);
678 	}
679 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
680 }
681 
682 /*
683  * Dump detailed information for all tasks blocking the current RCU
684  * grace period.
685  */
686 static void rcu_print_detail_task_stall(void)
687 {
688 	struct rcu_node *rnp = rcu_get_root();
689 
690 	rcu_print_detail_task_stall_rnp(rnp);
691 	rcu_for_each_leaf_node(rnp)
692 		rcu_print_detail_task_stall_rnp(rnp);
693 }
694 
695 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
696 {
697 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
698 	       rnp->level, rnp->grplo, rnp->grphi);
699 }
700 
701 static void rcu_print_task_stall_end(void)
702 {
703 	pr_cont("\n");
704 }
705 
706 /*
707  * Scan the current list of tasks blocked within RCU read-side critical
708  * sections, printing out the tid of each.
709  */
710 static int rcu_print_task_stall(struct rcu_node *rnp)
711 {
712 	struct task_struct *t;
713 	int ndetected = 0;
714 
715 	if (!rcu_preempt_blocked_readers_cgp(rnp))
716 		return 0;
717 	rcu_print_task_stall_begin(rnp);
718 	t = list_entry(rnp->gp_tasks->prev,
719 		       struct task_struct, rcu_node_entry);
720 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
721 		pr_cont(" P%d", t->pid);
722 		ndetected++;
723 	}
724 	rcu_print_task_stall_end();
725 	return ndetected;
726 }
727 
728 /*
729  * Scan the current list of tasks blocked within RCU read-side critical
730  * sections, printing out the tid of each that is blocking the current
731  * expedited grace period.
732  */
733 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
734 {
735 	struct task_struct *t;
736 	int ndetected = 0;
737 
738 	if (!rnp->exp_tasks)
739 		return 0;
740 	t = list_entry(rnp->exp_tasks->prev,
741 		       struct task_struct, rcu_node_entry);
742 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
743 		pr_cont(" P%d", t->pid);
744 		ndetected++;
745 	}
746 	return ndetected;
747 }
748 
749 /*
750  * Check that the list of blocked tasks for the newly completed grace
751  * period is in fact empty.  It is a serious bug to complete a grace
752  * period that still has RCU readers blocked!  This function must be
753  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
754  * must be held by the caller.
755  *
756  * Also, if there are blocked tasks on the list, they automatically
757  * block the newly created grace period, so set up ->gp_tasks accordingly.
758  */
759 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
760 {
761 	struct task_struct *t;
762 
763 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
764 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
765 		dump_blkd_tasks(rnp, 10);
766 	if (rcu_preempt_has_tasks(rnp) &&
767 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
768 		rnp->gp_tasks = rnp->blkd_tasks.next;
769 		t = container_of(rnp->gp_tasks, struct task_struct,
770 				 rcu_node_entry);
771 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
772 						rnp->gp_seq, t->pid);
773 	}
774 	WARN_ON_ONCE(rnp->qsmask);
775 }
776 
777 /*
778  * Check for a quiescent state from the current CPU.  When a task blocks,
779  * the task is recorded in the corresponding CPU's rcu_node structure,
780  * which is checked elsewhere.
781  *
782  * Caller must disable hard irqs.
783  */
784 static void rcu_flavor_check_callbacks(int user)
785 {
786 	struct task_struct *t = current;
787 
788 	if (user || rcu_is_cpu_rrupt_from_idle()) {
789 		rcu_note_voluntary_context_switch(current);
790 	}
791 	if (t->rcu_read_lock_nesting > 0 ||
792 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
793 		/* No QS, force context switch if deferred. */
794 		if (rcu_preempt_need_deferred_qs(t)) {
795 			set_tsk_need_resched(t);
796 			set_preempt_need_resched();
797 		}
798 	} else if (rcu_preempt_need_deferred_qs(t)) {
799 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
800 		return;
801 	} else if (!t->rcu_read_lock_nesting) {
802 		rcu_qs(); /* Report immediate QS. */
803 		return;
804 	}
805 
806 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
807 	if (t->rcu_read_lock_nesting > 0 &&
808 	    __this_cpu_read(rcu_data.core_needs_qs) &&
809 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
810 	    !t->rcu_read_unlock_special.b.need_qs &&
811 	    time_after(jiffies, rcu_state.gp_start + HZ))
812 		t->rcu_read_unlock_special.b.need_qs = true;
813 }
814 
815 /**
816  * synchronize_rcu - wait until a grace period has elapsed.
817  *
818  * Control will return to the caller some time after a full grace
819  * period has elapsed, in other words after all currently executing RCU
820  * read-side critical sections have completed.  Note, however, that
821  * upon return from synchronize_rcu(), the caller might well be executing
822  * concurrently with new RCU read-side critical sections that began while
823  * synchronize_rcu() was waiting.  RCU read-side critical sections are
824  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
825  * In addition, regions of code across which interrupts, preemption, or
826  * softirqs have been disabled also serve as RCU read-side critical
827  * sections.  This includes hardware interrupt handlers, softirq handlers,
828  * and NMI handlers.
829  *
830  * Note that this guarantee implies further memory-ordering guarantees.
831  * On systems with more than one CPU, when synchronize_rcu() returns,
832  * each CPU is guaranteed to have executed a full memory barrier since
833  * the end of its last RCU read-side critical section whose beginning
834  * preceded the call to synchronize_rcu().  In addition, each CPU having
835  * an RCU read-side critical section that extends beyond the return from
836  * synchronize_rcu() is guaranteed to have executed a full memory barrier
837  * after the beginning of synchronize_rcu() and before the beginning of
838  * that RCU read-side critical section.  Note that these guarantees include
839  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
840  * that are executing in the kernel.
841  *
842  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
843  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
844  * to have executed a full memory barrier during the execution of
845  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
846  * again only if the system has more than one CPU).
847  */
848 void synchronize_rcu(void)
849 {
850 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
851 			 lock_is_held(&rcu_lock_map) ||
852 			 lock_is_held(&rcu_sched_lock_map),
853 			 "Illegal synchronize_rcu() in RCU read-side critical section");
854 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
855 		return;
856 	if (rcu_gp_is_expedited())
857 		synchronize_rcu_expedited();
858 	else
859 		wait_rcu_gp(call_rcu);
860 }
861 EXPORT_SYMBOL_GPL(synchronize_rcu);
862 
863 /*
864  * Check for a task exiting while in a preemptible-RCU read-side
865  * critical section, clean up if so.  No need to issue warnings,
866  * as debug_check_no_locks_held() already does this if lockdep
867  * is enabled.
868  */
869 void exit_rcu(void)
870 {
871 	struct task_struct *t = current;
872 
873 	if (likely(list_empty(&current->rcu_node_entry)))
874 		return;
875 	t->rcu_read_lock_nesting = 1;
876 	barrier();
877 	t->rcu_read_unlock_special.b.blocked = true;
878 	__rcu_read_unlock();
879 	rcu_preempt_deferred_qs(current);
880 }
881 
882 /*
883  * Dump the blocked-tasks state, but limit the list dump to the
884  * specified number of elements.
885  */
886 static void
887 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
888 {
889 	int cpu;
890 	int i;
891 	struct list_head *lhp;
892 	bool onl;
893 	struct rcu_data *rdp;
894 	struct rcu_node *rnp1;
895 
896 	raw_lockdep_assert_held_rcu_node(rnp);
897 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
898 		__func__, rnp->grplo, rnp->grphi, rnp->level,
899 		(long)rnp->gp_seq, (long)rnp->completedqs);
900 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
901 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
902 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
903 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
904 		__func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
905 	pr_info("%s: ->blkd_tasks", __func__);
906 	i = 0;
907 	list_for_each(lhp, &rnp->blkd_tasks) {
908 		pr_cont(" %p", lhp);
909 		if (++i >= 10)
910 			break;
911 	}
912 	pr_cont("\n");
913 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
914 		rdp = per_cpu_ptr(&rcu_data, cpu);
915 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
916 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
917 			cpu, ".o"[onl],
918 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
919 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
920 	}
921 }
922 
923 #else /* #ifdef CONFIG_PREEMPT_RCU */
924 
925 /*
926  * Tell them what RCU they are running.
927  */
928 static void __init rcu_bootup_announce(void)
929 {
930 	pr_info("Hierarchical RCU implementation.\n");
931 	rcu_bootup_announce_oddness();
932 }
933 
934 /*
935  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
936  * how many quiescent states passed, just if there was at least one since
937  * the start of the grace period, this just sets a flag.  The caller must
938  * have disabled preemption.
939  */
940 static void rcu_qs(void)
941 {
942 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
943 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
944 		return;
945 	trace_rcu_grace_period(TPS("rcu_sched"),
946 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
947 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
948 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
949 		return;
950 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
951 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
952 }
953 
954 /*
955  * Register an urgently needed quiescent state.  If there is an
956  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
957  * dyntick-idle quiescent state visible to other CPUs, which will in
958  * some cases serve for expedited as well as normal grace periods.
959  * Either way, register a lightweight quiescent state.
960  *
961  * The barrier() calls are redundant in the common case when this is
962  * called externally, but just in case this is called from within this
963  * file.
964  *
965  */
966 void rcu_all_qs(void)
967 {
968 	unsigned long flags;
969 
970 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
971 		return;
972 	preempt_disable();
973 	/* Load rcu_urgent_qs before other flags. */
974 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
975 		preempt_enable();
976 		return;
977 	}
978 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
979 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
980 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
981 		local_irq_save(flags);
982 		rcu_momentary_dyntick_idle();
983 		local_irq_restore(flags);
984 	}
985 	rcu_qs();
986 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
987 	preempt_enable();
988 }
989 EXPORT_SYMBOL_GPL(rcu_all_qs);
990 
991 /*
992  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
993  */
994 void rcu_note_context_switch(bool preempt)
995 {
996 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
997 	trace_rcu_utilization(TPS("Start context switch"));
998 	rcu_qs();
999 	/* Load rcu_urgent_qs before other flags. */
1000 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
1001 		goto out;
1002 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
1003 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
1004 		rcu_momentary_dyntick_idle();
1005 	if (!preempt)
1006 		rcu_tasks_qs(current);
1007 out:
1008 	trace_rcu_utilization(TPS("End context switch"));
1009 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
1010 }
1011 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
1012 
1013 /*
1014  * Because preemptible RCU does not exist, there are never any preempted
1015  * RCU readers.
1016  */
1017 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1018 {
1019 	return 0;
1020 }
1021 
1022 /*
1023  * Because there is no preemptible RCU, there can be no readers blocked.
1024  */
1025 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
1026 {
1027 	return false;
1028 }
1029 
1030 /*
1031  * Because there is no preemptible RCU, there can be no deferred quiescent
1032  * states.
1033  */
1034 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
1035 {
1036 	return false;
1037 }
1038 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
1039 
1040 /*
1041  * Because preemptible RCU does not exist, we never have to check for
1042  * tasks blocked within RCU read-side critical sections.
1043  */
1044 static void rcu_print_detail_task_stall(void)
1045 {
1046 }
1047 
1048 /*
1049  * Because preemptible RCU does not exist, we never have to check for
1050  * tasks blocked within RCU read-side critical sections.
1051  */
1052 static int rcu_print_task_stall(struct rcu_node *rnp)
1053 {
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Because preemptible RCU does not exist, we never have to check for
1059  * tasks blocked within RCU read-side critical sections that are
1060  * blocking the current expedited grace period.
1061  */
1062 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
1063 {
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Because there is no preemptible RCU, there can be no readers blocked,
1069  * so there is no need to check for blocked tasks.  So check only for
1070  * bogus qsmask values.
1071  */
1072 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1073 {
1074 	WARN_ON_ONCE(rnp->qsmask);
1075 }
1076 
1077 /*
1078  * Check to see if this CPU is in a non-context-switch quiescent state
1079  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1080  * Also schedule RCU core processing.
1081  *
1082  * This function must be called from hardirq context.  It is normally
1083  * invoked from the scheduling-clock interrupt.
1084  */
1085 static void rcu_flavor_check_callbacks(int user)
1086 {
1087 	if (user || rcu_is_cpu_rrupt_from_idle()) {
1088 
1089 		/*
1090 		 * Get here if this CPU took its interrupt from user
1091 		 * mode or from the idle loop, and if this is not a
1092 		 * nested interrupt.  In this case, the CPU is in
1093 		 * a quiescent state, so note it.
1094 		 *
1095 		 * No memory barrier is required here because rcu_qs()
1096 		 * references only CPU-local variables that other CPUs
1097 		 * neither access nor modify, at least not while the
1098 		 * corresponding CPU is online.
1099 		 */
1100 
1101 		rcu_qs();
1102 	}
1103 }
1104 
1105 /* PREEMPT=n implementation of synchronize_rcu(). */
1106 void synchronize_rcu(void)
1107 {
1108 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
1109 			 lock_is_held(&rcu_lock_map) ||
1110 			 lock_is_held(&rcu_sched_lock_map),
1111 			 "Illegal synchronize_rcu() in RCU read-side critical section");
1112 	if (rcu_blocking_is_gp())
1113 		return;
1114 	if (rcu_gp_is_expedited())
1115 		synchronize_rcu_expedited();
1116 	else
1117 		wait_rcu_gp(call_rcu);
1118 }
1119 EXPORT_SYMBOL_GPL(synchronize_rcu);
1120 
1121 /*
1122  * Because preemptible RCU does not exist, tasks cannot possibly exit
1123  * while in preemptible RCU read-side critical sections.
1124  */
1125 void exit_rcu(void)
1126 {
1127 }
1128 
1129 /*
1130  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1131  */
1132 static void
1133 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1134 {
1135 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1136 }
1137 
1138 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1139 
1140 #ifdef CONFIG_RCU_BOOST
1141 
1142 static void rcu_wake_cond(struct task_struct *t, int status)
1143 {
1144 	/*
1145 	 * If the thread is yielding, only wake it when this
1146 	 * is invoked from idle
1147 	 */
1148 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1149 		wake_up_process(t);
1150 }
1151 
1152 /*
1153  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1154  * or ->boost_tasks, advancing the pointer to the next task in the
1155  * ->blkd_tasks list.
1156  *
1157  * Note that irqs must be enabled: boosting the task can block.
1158  * Returns 1 if there are more tasks needing to be boosted.
1159  */
1160 static int rcu_boost(struct rcu_node *rnp)
1161 {
1162 	unsigned long flags;
1163 	struct task_struct *t;
1164 	struct list_head *tb;
1165 
1166 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1167 	    READ_ONCE(rnp->boost_tasks) == NULL)
1168 		return 0;  /* Nothing left to boost. */
1169 
1170 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1171 
1172 	/*
1173 	 * Recheck under the lock: all tasks in need of boosting
1174 	 * might exit their RCU read-side critical sections on their own.
1175 	 */
1176 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1177 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1178 		return 0;
1179 	}
1180 
1181 	/*
1182 	 * Preferentially boost tasks blocking expedited grace periods.
1183 	 * This cannot starve the normal grace periods because a second
1184 	 * expedited grace period must boost all blocked tasks, including
1185 	 * those blocking the pre-existing normal grace period.
1186 	 */
1187 	if (rnp->exp_tasks != NULL)
1188 		tb = rnp->exp_tasks;
1189 	else
1190 		tb = rnp->boost_tasks;
1191 
1192 	/*
1193 	 * We boost task t by manufacturing an rt_mutex that appears to
1194 	 * be held by task t.  We leave a pointer to that rt_mutex where
1195 	 * task t can find it, and task t will release the mutex when it
1196 	 * exits its outermost RCU read-side critical section.  Then
1197 	 * simply acquiring this artificial rt_mutex will boost task
1198 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1199 	 *
1200 	 * Note that task t must acquire rnp->lock to remove itself from
1201 	 * the ->blkd_tasks list, which it will do from exit() if from
1202 	 * nowhere else.  We therefore are guaranteed that task t will
1203 	 * stay around at least until we drop rnp->lock.  Note that
1204 	 * rnp->lock also resolves races between our priority boosting
1205 	 * and task t's exiting its outermost RCU read-side critical
1206 	 * section.
1207 	 */
1208 	t = container_of(tb, struct task_struct, rcu_node_entry);
1209 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1210 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1211 	/* Lock only for side effect: boosts task t's priority. */
1212 	rt_mutex_lock(&rnp->boost_mtx);
1213 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1214 
1215 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1216 	       READ_ONCE(rnp->boost_tasks) != NULL;
1217 }
1218 
1219 /*
1220  * Priority-boosting kthread, one per leaf rcu_node.
1221  */
1222 static int rcu_boost_kthread(void *arg)
1223 {
1224 	struct rcu_node *rnp = (struct rcu_node *)arg;
1225 	int spincnt = 0;
1226 	int more2boost;
1227 
1228 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1229 	for (;;) {
1230 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1231 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1232 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1233 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1234 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1235 		more2boost = rcu_boost(rnp);
1236 		if (more2boost)
1237 			spincnt++;
1238 		else
1239 			spincnt = 0;
1240 		if (spincnt > 10) {
1241 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1242 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1243 			schedule_timeout_interruptible(2);
1244 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1245 			spincnt = 0;
1246 		}
1247 	}
1248 	/* NOTREACHED */
1249 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1250 	return 0;
1251 }
1252 
1253 /*
1254  * Check to see if it is time to start boosting RCU readers that are
1255  * blocking the current grace period, and, if so, tell the per-rcu_node
1256  * kthread to start boosting them.  If there is an expedited grace
1257  * period in progress, it is always time to boost.
1258  *
1259  * The caller must hold rnp->lock, which this function releases.
1260  * The ->boost_kthread_task is immortal, so we don't need to worry
1261  * about it going away.
1262  */
1263 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1264 	__releases(rnp->lock)
1265 {
1266 	struct task_struct *t;
1267 
1268 	raw_lockdep_assert_held_rcu_node(rnp);
1269 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1270 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1271 		return;
1272 	}
1273 	if (rnp->exp_tasks != NULL ||
1274 	    (rnp->gp_tasks != NULL &&
1275 	     rnp->boost_tasks == NULL &&
1276 	     rnp->qsmask == 0 &&
1277 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1278 		if (rnp->exp_tasks == NULL)
1279 			rnp->boost_tasks = rnp->gp_tasks;
1280 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1281 		t = rnp->boost_kthread_task;
1282 		if (t)
1283 			rcu_wake_cond(t, rnp->boost_kthread_status);
1284 	} else {
1285 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1286 	}
1287 }
1288 
1289 /*
1290  * Wake up the per-CPU kthread to invoke RCU callbacks.
1291  */
1292 static void invoke_rcu_callbacks_kthread(void)
1293 {
1294 	unsigned long flags;
1295 
1296 	local_irq_save(flags);
1297 	__this_cpu_write(rcu_cpu_has_work, 1);
1298 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1299 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1300 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1301 			      __this_cpu_read(rcu_cpu_kthread_status));
1302 	}
1303 	local_irq_restore(flags);
1304 }
1305 
1306 /*
1307  * Is the current CPU running the RCU-callbacks kthread?
1308  * Caller must have preemption disabled.
1309  */
1310 static bool rcu_is_callbacks_kthread(void)
1311 {
1312 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1313 }
1314 
1315 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1316 
1317 /*
1318  * Do priority-boost accounting for the start of a new grace period.
1319  */
1320 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1321 {
1322 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1323 }
1324 
1325 /*
1326  * Create an RCU-boost kthread for the specified node if one does not
1327  * already exist.  We only create this kthread for preemptible RCU.
1328  * Returns zero if all is well, a negated errno otherwise.
1329  */
1330 static int rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1331 {
1332 	int rnp_index = rnp - rcu_get_root();
1333 	unsigned long flags;
1334 	struct sched_param sp;
1335 	struct task_struct *t;
1336 
1337 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1338 		return 0;
1339 
1340 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1341 		return 0;
1342 
1343 	rcu_state.boost = 1;
1344 	if (rnp->boost_kthread_task != NULL)
1345 		return 0;
1346 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1347 			   "rcub/%d", rnp_index);
1348 	if (IS_ERR(t))
1349 		return PTR_ERR(t);
1350 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1351 	rnp->boost_kthread_task = t;
1352 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1353 	sp.sched_priority = kthread_prio;
1354 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1355 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1356 	return 0;
1357 }
1358 
1359 static void rcu_kthread_do_work(void)
1360 {
1361 	rcu_do_batch(this_cpu_ptr(&rcu_data));
1362 }
1363 
1364 static void rcu_cpu_kthread_setup(unsigned int cpu)
1365 {
1366 	struct sched_param sp;
1367 
1368 	sp.sched_priority = kthread_prio;
1369 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1370 }
1371 
1372 static void rcu_cpu_kthread_park(unsigned int cpu)
1373 {
1374 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1375 }
1376 
1377 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1378 {
1379 	return __this_cpu_read(rcu_cpu_has_work);
1380 }
1381 
1382 /*
1383  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
1384  * the RCU softirq used in configurations of RCU that do not support RCU
1385  * priority boosting.
1386  */
1387 static void rcu_cpu_kthread(unsigned int cpu)
1388 {
1389 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1390 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1391 	int spincnt;
1392 
1393 	for (spincnt = 0; spincnt < 10; spincnt++) {
1394 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1395 		local_bh_disable();
1396 		*statusp = RCU_KTHREAD_RUNNING;
1397 		this_cpu_inc(rcu_cpu_kthread_loops);
1398 		local_irq_disable();
1399 		work = *workp;
1400 		*workp = 0;
1401 		local_irq_enable();
1402 		if (work)
1403 			rcu_kthread_do_work();
1404 		local_bh_enable();
1405 		if (*workp == 0) {
1406 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1407 			*statusp = RCU_KTHREAD_WAITING;
1408 			return;
1409 		}
1410 	}
1411 	*statusp = RCU_KTHREAD_YIELDING;
1412 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1413 	schedule_timeout_interruptible(2);
1414 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1415 	*statusp = RCU_KTHREAD_WAITING;
1416 }
1417 
1418 /*
1419  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1420  * served by the rcu_node in question.  The CPU hotplug lock is still
1421  * held, so the value of rnp->qsmaskinit will be stable.
1422  *
1423  * We don't include outgoingcpu in the affinity set, use -1 if there is
1424  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1425  * this function allows the kthread to execute on any CPU.
1426  */
1427 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1428 {
1429 	struct task_struct *t = rnp->boost_kthread_task;
1430 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1431 	cpumask_var_t cm;
1432 	int cpu;
1433 
1434 	if (!t)
1435 		return;
1436 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1437 		return;
1438 	for_each_leaf_node_possible_cpu(rnp, cpu)
1439 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1440 		    cpu != outgoingcpu)
1441 			cpumask_set_cpu(cpu, cm);
1442 	if (cpumask_weight(cm) == 0)
1443 		cpumask_setall(cm);
1444 	set_cpus_allowed_ptr(t, cm);
1445 	free_cpumask_var(cm);
1446 }
1447 
1448 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1449 	.store			= &rcu_cpu_kthread_task,
1450 	.thread_should_run	= rcu_cpu_kthread_should_run,
1451 	.thread_fn		= rcu_cpu_kthread,
1452 	.thread_comm		= "rcuc/%u",
1453 	.setup			= rcu_cpu_kthread_setup,
1454 	.park			= rcu_cpu_kthread_park,
1455 };
1456 
1457 /*
1458  * Spawn boost kthreads -- called as soon as the scheduler is running.
1459  */
1460 static void __init rcu_spawn_boost_kthreads(void)
1461 {
1462 	struct rcu_node *rnp;
1463 	int cpu;
1464 
1465 	for_each_possible_cpu(cpu)
1466 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1467 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1468 	rcu_for_each_leaf_node(rnp)
1469 		(void)rcu_spawn_one_boost_kthread(rnp);
1470 }
1471 
1472 static void rcu_prepare_kthreads(int cpu)
1473 {
1474 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1475 	struct rcu_node *rnp = rdp->mynode;
1476 
1477 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1478 	if (rcu_scheduler_fully_active)
1479 		(void)rcu_spawn_one_boost_kthread(rnp);
1480 }
1481 
1482 #else /* #ifdef CONFIG_RCU_BOOST */
1483 
1484 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1485 	__releases(rnp->lock)
1486 {
1487 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1488 }
1489 
1490 static void invoke_rcu_callbacks_kthread(void)
1491 {
1492 	WARN_ON_ONCE(1);
1493 }
1494 
1495 static bool rcu_is_callbacks_kthread(void)
1496 {
1497 	return false;
1498 }
1499 
1500 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1501 {
1502 }
1503 
1504 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1505 {
1506 }
1507 
1508 static void __init rcu_spawn_boost_kthreads(void)
1509 {
1510 }
1511 
1512 static void rcu_prepare_kthreads(int cpu)
1513 {
1514 }
1515 
1516 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1517 
1518 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1519 
1520 /*
1521  * Check to see if any future RCU-related work will need to be done
1522  * by the current CPU, even if none need be done immediately, returning
1523  * 1 if so.  This function is part of the RCU implementation; it is -not-
1524  * an exported member of the RCU API.
1525  *
1526  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1527  * CPU has RCU callbacks queued.
1528  */
1529 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1530 {
1531 	*nextevt = KTIME_MAX;
1532 	return rcu_cpu_has_callbacks(NULL);
1533 }
1534 
1535 /*
1536  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1537  * after it.
1538  */
1539 static void rcu_cleanup_after_idle(void)
1540 {
1541 }
1542 
1543 /*
1544  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1545  * is nothing.
1546  */
1547 static void rcu_prepare_for_idle(void)
1548 {
1549 }
1550 
1551 /*
1552  * Don't bother keeping a running count of the number of RCU callbacks
1553  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1554  */
1555 static void rcu_idle_count_callbacks_posted(void)
1556 {
1557 }
1558 
1559 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1560 
1561 /*
1562  * This code is invoked when a CPU goes idle, at which point we want
1563  * to have the CPU do everything required for RCU so that it can enter
1564  * the energy-efficient dyntick-idle mode.  This is handled by a
1565  * state machine implemented by rcu_prepare_for_idle() below.
1566  *
1567  * The following three proprocessor symbols control this state machine:
1568  *
1569  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1570  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1571  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1572  *	benchmarkers who might otherwise be tempted to set this to a large
1573  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1574  *	system.  And if you are -that- concerned about energy efficiency,
1575  *	just power the system down and be done with it!
1576  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1577  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1578  *	callbacks pending.  Setting this too high can OOM your system.
1579  *
1580  * The values below work well in practice.  If future workloads require
1581  * adjustment, they can be converted into kernel config parameters, though
1582  * making the state machine smarter might be a better option.
1583  */
1584 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1585 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1586 
1587 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1588 module_param(rcu_idle_gp_delay, int, 0644);
1589 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1590 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1591 
1592 /*
1593  * Try to advance callbacks on the current CPU, but only if it has been
1594  * awhile since the last time we did so.  Afterwards, if there are any
1595  * callbacks ready for immediate invocation, return true.
1596  */
1597 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1598 {
1599 	bool cbs_ready = false;
1600 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1601 	struct rcu_node *rnp;
1602 
1603 	/* Exit early if we advanced recently. */
1604 	if (jiffies == rdp->last_advance_all)
1605 		return false;
1606 	rdp->last_advance_all = jiffies;
1607 
1608 	rnp = rdp->mynode;
1609 
1610 	/*
1611 	 * Don't bother checking unless a grace period has
1612 	 * completed since we last checked and there are
1613 	 * callbacks not yet ready to invoke.
1614 	 */
1615 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1616 				  rcu_seq_current(&rnp->gp_seq)) ||
1617 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1618 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1619 		note_gp_changes(rdp);
1620 
1621 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1622 		cbs_ready = true;
1623 	return cbs_ready;
1624 }
1625 
1626 /*
1627  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1628  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1629  * caller to set the timeout based on whether or not there are non-lazy
1630  * callbacks.
1631  *
1632  * The caller must have disabled interrupts.
1633  */
1634 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1635 {
1636 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1637 	unsigned long dj;
1638 
1639 	lockdep_assert_irqs_disabled();
1640 
1641 	/* Snapshot to detect later posting of non-lazy callback. */
1642 	rdp->nonlazy_posted_snap = rdp->nonlazy_posted;
1643 
1644 	/* If no callbacks, RCU doesn't need the CPU. */
1645 	if (!rcu_cpu_has_callbacks(&rdp->all_lazy)) {
1646 		*nextevt = KTIME_MAX;
1647 		return 0;
1648 	}
1649 
1650 	/* Attempt to advance callbacks. */
1651 	if (rcu_try_advance_all_cbs()) {
1652 		/* Some ready to invoke, so initiate later invocation. */
1653 		invoke_rcu_core();
1654 		return 1;
1655 	}
1656 	rdp->last_accelerate = jiffies;
1657 
1658 	/* Request timer delay depending on laziness, and round. */
1659 	if (!rdp->all_lazy) {
1660 		dj = round_up(rcu_idle_gp_delay + jiffies,
1661 			       rcu_idle_gp_delay) - jiffies;
1662 	} else {
1663 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1664 	}
1665 	*nextevt = basemono + dj * TICK_NSEC;
1666 	return 0;
1667 }
1668 
1669 /*
1670  * Prepare a CPU for idle from an RCU perspective.  The first major task
1671  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1672  * The second major task is to check to see if a non-lazy callback has
1673  * arrived at a CPU that previously had only lazy callbacks.  The third
1674  * major task is to accelerate (that is, assign grace-period numbers to)
1675  * any recently arrived callbacks.
1676  *
1677  * The caller must have disabled interrupts.
1678  */
1679 static void rcu_prepare_for_idle(void)
1680 {
1681 	bool needwake;
1682 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1683 	struct rcu_node *rnp;
1684 	int tne;
1685 
1686 	lockdep_assert_irqs_disabled();
1687 	if (rcu_is_nocb_cpu(smp_processor_id()))
1688 		return;
1689 
1690 	/* Handle nohz enablement switches conservatively. */
1691 	tne = READ_ONCE(tick_nohz_active);
1692 	if (tne != rdp->tick_nohz_enabled_snap) {
1693 		if (rcu_cpu_has_callbacks(NULL))
1694 			invoke_rcu_core(); /* force nohz to see update. */
1695 		rdp->tick_nohz_enabled_snap = tne;
1696 		return;
1697 	}
1698 	if (!tne)
1699 		return;
1700 
1701 	/*
1702 	 * If a non-lazy callback arrived at a CPU having only lazy
1703 	 * callbacks, invoke RCU core for the side-effect of recalculating
1704 	 * idle duration on re-entry to idle.
1705 	 */
1706 	if (rdp->all_lazy &&
1707 	    rdp->nonlazy_posted != rdp->nonlazy_posted_snap) {
1708 		rdp->all_lazy = false;
1709 		rdp->nonlazy_posted_snap = rdp->nonlazy_posted;
1710 		invoke_rcu_core();
1711 		return;
1712 	}
1713 
1714 	/*
1715 	 * If we have not yet accelerated this jiffy, accelerate all
1716 	 * callbacks on this CPU.
1717 	 */
1718 	if (rdp->last_accelerate == jiffies)
1719 		return;
1720 	rdp->last_accelerate = jiffies;
1721 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1722 		rnp = rdp->mynode;
1723 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1724 		needwake = rcu_accelerate_cbs(rnp, rdp);
1725 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1726 		if (needwake)
1727 			rcu_gp_kthread_wake();
1728 	}
1729 }
1730 
1731 /*
1732  * Clean up for exit from idle.  Attempt to advance callbacks based on
1733  * any grace periods that elapsed while the CPU was idle, and if any
1734  * callbacks are now ready to invoke, initiate invocation.
1735  */
1736 static void rcu_cleanup_after_idle(void)
1737 {
1738 	lockdep_assert_irqs_disabled();
1739 	if (rcu_is_nocb_cpu(smp_processor_id()))
1740 		return;
1741 	if (rcu_try_advance_all_cbs())
1742 		invoke_rcu_core();
1743 }
1744 
1745 /*
1746  * Keep a running count of the number of non-lazy callbacks posted
1747  * on this CPU.  This running counter (which is never decremented) allows
1748  * rcu_prepare_for_idle() to detect when something out of the idle loop
1749  * posts a callback, even if an equal number of callbacks are invoked.
1750  * Of course, callbacks should only be posted from within a trace event
1751  * designed to be called from idle or from within RCU_NONIDLE().
1752  */
1753 static void rcu_idle_count_callbacks_posted(void)
1754 {
1755 	__this_cpu_add(rcu_data.nonlazy_posted, 1);
1756 }
1757 
1758 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1759 
1760 #ifdef CONFIG_RCU_FAST_NO_HZ
1761 
1762 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1763 {
1764 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
1765 	unsigned long nlpd = rdp->nonlazy_posted - rdp->nonlazy_posted_snap;
1766 
1767 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1768 		rdp->last_accelerate & 0xffff, jiffies & 0xffff,
1769 		ulong2long(nlpd),
1770 		rdp->all_lazy ? 'L' : '.',
1771 		rdp->tick_nohz_enabled_snap ? '.' : 'D');
1772 }
1773 
1774 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1775 
1776 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1777 {
1778 	*cp = '\0';
1779 }
1780 
1781 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1782 
1783 /* Initiate the stall-info list. */
1784 static void print_cpu_stall_info_begin(void)
1785 {
1786 	pr_cont("\n");
1787 }
1788 
1789 /*
1790  * Print out diagnostic information for the specified stalled CPU.
1791  *
1792  * If the specified CPU is aware of the current RCU grace period, then
1793  * print the number of scheduling clock interrupts the CPU has taken
1794  * during the time that it has been aware.  Otherwise, print the number
1795  * of RCU grace periods that this CPU is ignorant of, for example, "1"
1796  * if the CPU was aware of the previous grace period.
1797  *
1798  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1799  */
1800 static void print_cpu_stall_info(int cpu)
1801 {
1802 	unsigned long delta;
1803 	char fast_no_hz[72];
1804 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1805 	char *ticks_title;
1806 	unsigned long ticks_value;
1807 
1808 	/*
1809 	 * We could be printing a lot while holding a spinlock.  Avoid
1810 	 * triggering hard lockup.
1811 	 */
1812 	touch_nmi_watchdog();
1813 
1814 	ticks_value = rcu_seq_ctr(rcu_state.gp_seq - rdp->gp_seq);
1815 	if (ticks_value) {
1816 		ticks_title = "GPs behind";
1817 	} else {
1818 		ticks_title = "ticks this GP";
1819 		ticks_value = rdp->ticks_this_gp;
1820 	}
1821 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1822 	delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
1823 	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1824 	       cpu,
1825 	       "O."[!!cpu_online(cpu)],
1826 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1827 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1828 	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1829 			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1830 				"!."[!delta],
1831 	       ticks_value, ticks_title,
1832 	       rcu_dynticks_snap(rdp) & 0xfff,
1833 	       rdp->dynticks_nesting, rdp->dynticks_nmi_nesting,
1834 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1835 	       READ_ONCE(rcu_state.n_force_qs) - rcu_state.n_force_qs_gpstart,
1836 	       fast_no_hz);
1837 }
1838 
1839 /* Terminate the stall-info list. */
1840 static void print_cpu_stall_info_end(void)
1841 {
1842 	pr_err("\t");
1843 }
1844 
1845 /* Zero ->ticks_this_gp and snapshot the number of RCU softirq handlers. */
1846 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1847 {
1848 	rdp->ticks_this_gp = 0;
1849 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1850 	WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1851 }
1852 
1853 #ifdef CONFIG_RCU_NOCB_CPU
1854 
1855 /*
1856  * Offload callback processing from the boot-time-specified set of CPUs
1857  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1858  * kthread created that pulls the callbacks from the corresponding CPU,
1859  * waits for a grace period to elapse, and invokes the callbacks.
1860  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1861  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1862  * has been specified, in which case each kthread actively polls its
1863  * CPU.  (Which isn't so great for energy efficiency, but which does
1864  * reduce RCU's overhead on that CPU.)
1865  *
1866  * This is intended to be used in conjunction with Frederic Weisbecker's
1867  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1868  * running CPU-bound user-mode computations.
1869  *
1870  * Offloading of callback processing could also in theory be used as
1871  * an energy-efficiency measure because CPUs with no RCU callbacks
1872  * queued are more aggressive about entering dyntick-idle mode.
1873  */
1874 
1875 
1876 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1877 static int __init rcu_nocb_setup(char *str)
1878 {
1879 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1880 	cpulist_parse(str, rcu_nocb_mask);
1881 	return 1;
1882 }
1883 __setup("rcu_nocbs=", rcu_nocb_setup);
1884 
1885 static int __init parse_rcu_nocb_poll(char *arg)
1886 {
1887 	rcu_nocb_poll = true;
1888 	return 0;
1889 }
1890 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1891 
1892 /*
1893  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1894  * grace period.
1895  */
1896 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1897 {
1898 	swake_up_all(sq);
1899 }
1900 
1901 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1902 {
1903 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1904 }
1905 
1906 static void rcu_init_one_nocb(struct rcu_node *rnp)
1907 {
1908 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1909 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1910 }
1911 
1912 /* Is the specified CPU a no-CBs CPU? */
1913 bool rcu_is_nocb_cpu(int cpu)
1914 {
1915 	if (cpumask_available(rcu_nocb_mask))
1916 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1917 	return false;
1918 }
1919 
1920 /*
1921  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1922  * and this function releases it.
1923  */
1924 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1925 			       unsigned long flags)
1926 	__releases(rdp->nocb_lock)
1927 {
1928 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1929 
1930 	lockdep_assert_held(&rdp->nocb_lock);
1931 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1932 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1933 		return;
1934 	}
1935 	if (rdp_leader->nocb_leader_sleep || force) {
1936 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1937 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1938 		del_timer(&rdp->nocb_timer);
1939 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1940 		smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1941 		swake_up_one(&rdp_leader->nocb_wq);
1942 	} else {
1943 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1944 	}
1945 }
1946 
1947 /*
1948  * Kick the leader kthread for this NOCB group, but caller has not
1949  * acquired locks.
1950  */
1951 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1952 {
1953 	unsigned long flags;
1954 
1955 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1956 	__wake_nocb_leader(rdp, force, flags);
1957 }
1958 
1959 /*
1960  * Arrange to wake the leader kthread for this NOCB group at some
1961  * future time when it is safe to do so.
1962  */
1963 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1964 				   const char *reason)
1965 {
1966 	unsigned long flags;
1967 
1968 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1969 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1970 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1971 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1972 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1973 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1974 }
1975 
1976 /*
1977  * Does the specified CPU need an RCU callback for this invocation
1978  * of rcu_barrier()?
1979  */
1980 static bool rcu_nocb_cpu_needs_barrier(int cpu)
1981 {
1982 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1983 	unsigned long ret;
1984 #ifdef CONFIG_PROVE_RCU
1985 	struct rcu_head *rhp;
1986 #endif /* #ifdef CONFIG_PROVE_RCU */
1987 
1988 	/*
1989 	 * Check count of all no-CBs callbacks awaiting invocation.
1990 	 * There needs to be a barrier before this function is called,
1991 	 * but associated with a prior determination that no more
1992 	 * callbacks would be posted.  In the worst case, the first
1993 	 * barrier in rcu_barrier() suffices (but the caller cannot
1994 	 * necessarily rely on this, not a substitute for the caller
1995 	 * getting the concurrency design right!).  There must also be
1996 	 * a barrier between the following load an posting of a callback
1997 	 * (if a callback is in fact needed).  This is associated with an
1998 	 * atomic_inc() in the caller.
1999 	 */
2000 	ret = atomic_long_read(&rdp->nocb_q_count);
2001 
2002 #ifdef CONFIG_PROVE_RCU
2003 	rhp = READ_ONCE(rdp->nocb_head);
2004 	if (!rhp)
2005 		rhp = READ_ONCE(rdp->nocb_gp_head);
2006 	if (!rhp)
2007 		rhp = READ_ONCE(rdp->nocb_follower_head);
2008 
2009 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
2010 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
2011 	    rcu_scheduler_fully_active) {
2012 		/* RCU callback enqueued before CPU first came online??? */
2013 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2014 		       cpu, rhp->func);
2015 		WARN_ON_ONCE(1);
2016 	}
2017 #endif /* #ifdef CONFIG_PROVE_RCU */
2018 
2019 	return !!ret;
2020 }
2021 
2022 /*
2023  * Enqueue the specified string of rcu_head structures onto the specified
2024  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2025  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2026  * counts are supplied by rhcount and rhcount_lazy.
2027  *
2028  * If warranted, also wake up the kthread servicing this CPUs queues.
2029  */
2030 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2031 				    struct rcu_head *rhp,
2032 				    struct rcu_head **rhtp,
2033 				    int rhcount, int rhcount_lazy,
2034 				    unsigned long flags)
2035 {
2036 	int len;
2037 	struct rcu_head **old_rhpp;
2038 	struct task_struct *t;
2039 
2040 	/* Enqueue the callback on the nocb list and update counts. */
2041 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2042 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
2043 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2044 	WRITE_ONCE(*old_rhpp, rhp);
2045 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2046 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2047 
2048 	/* If we are not being polled and there is a kthread, awaken it ... */
2049 	t = READ_ONCE(rdp->nocb_kthread);
2050 	if (rcu_nocb_poll || !t) {
2051 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2052 				    TPS("WakeNotPoll"));
2053 		return;
2054 	}
2055 	len = atomic_long_read(&rdp->nocb_q_count);
2056 	if (old_rhpp == &rdp->nocb_head) {
2057 		if (!irqs_disabled_flags(flags)) {
2058 			/* ... if queue was empty ... */
2059 			wake_nocb_leader(rdp, false);
2060 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2061 					    TPS("WakeEmpty"));
2062 		} else {
2063 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
2064 					       TPS("WakeEmptyIsDeferred"));
2065 		}
2066 		rdp->qlen_last_fqs_check = 0;
2067 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2068 		/* ... or if many callbacks queued. */
2069 		if (!irqs_disabled_flags(flags)) {
2070 			wake_nocb_leader(rdp, true);
2071 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2072 					    TPS("WakeOvf"));
2073 		} else {
2074 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
2075 					       TPS("WakeOvfIsDeferred"));
2076 		}
2077 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2078 	} else {
2079 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
2080 	}
2081 	return;
2082 }
2083 
2084 /*
2085  * This is a helper for __call_rcu(), which invokes this when the normal
2086  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2087  * function returns failure back to __call_rcu(), which can complain
2088  * appropriately.
2089  *
2090  * Otherwise, this function queues the callback where the corresponding
2091  * "rcuo" kthread can find it.
2092  */
2093 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2094 			    bool lazy, unsigned long flags)
2095 {
2096 
2097 	if (!rcu_is_nocb_cpu(rdp->cpu))
2098 		return false;
2099 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2100 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2101 		trace_rcu_kfree_callback(rcu_state.name, rhp,
2102 					 (unsigned long)rhp->func,
2103 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2104 					 -atomic_long_read(&rdp->nocb_q_count));
2105 	else
2106 		trace_rcu_callback(rcu_state.name, rhp,
2107 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2108 				   -atomic_long_read(&rdp->nocb_q_count));
2109 
2110 	/*
2111 	 * If called from an extended quiescent state with interrupts
2112 	 * disabled, invoke the RCU core in order to allow the idle-entry
2113 	 * deferred-wakeup check to function.
2114 	 */
2115 	if (irqs_disabled_flags(flags) &&
2116 	    !rcu_is_watching() &&
2117 	    cpu_online(smp_processor_id()))
2118 		invoke_rcu_core();
2119 
2120 	return true;
2121 }
2122 
2123 /*
2124  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2125  * not a no-CBs CPU.
2126  */
2127 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2128 						     struct rcu_data *rdp,
2129 						     unsigned long flags)
2130 {
2131 	lockdep_assert_irqs_disabled();
2132 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2133 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2134 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2135 				rcu_segcblist_tail(&rdp->cblist),
2136 				rcu_segcblist_n_cbs(&rdp->cblist),
2137 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2138 	rcu_segcblist_init(&rdp->cblist);
2139 	rcu_segcblist_disable(&rdp->cblist);
2140 	return true;
2141 }
2142 
2143 /*
2144  * If necessary, kick off a new grace period, and either way wait
2145  * for a subsequent grace period to complete.
2146  */
2147 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2148 {
2149 	unsigned long c;
2150 	bool d;
2151 	unsigned long flags;
2152 	bool needwake;
2153 	struct rcu_node *rnp = rdp->mynode;
2154 
2155 	local_irq_save(flags);
2156 	c = rcu_seq_snap(&rcu_state.gp_seq);
2157 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2158 		local_irq_restore(flags);
2159 	} else {
2160 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2161 		needwake = rcu_start_this_gp(rnp, rdp, c);
2162 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2163 		if (needwake)
2164 			rcu_gp_kthread_wake();
2165 	}
2166 
2167 	/*
2168 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2169 	 * up the load average.
2170 	 */
2171 	trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2172 	for (;;) {
2173 		swait_event_interruptible_exclusive(
2174 			rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2175 			(d = rcu_seq_done(&rnp->gp_seq, c)));
2176 		if (likely(d))
2177 			break;
2178 		WARN_ON(signal_pending(current));
2179 		trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2180 	}
2181 	trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2182 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2183 }
2184 
2185 /*
2186  * Leaders come here to wait for additional callbacks to show up.
2187  * This function does not return until callbacks appear.
2188  */
2189 static void nocb_leader_wait(struct rcu_data *my_rdp)
2190 {
2191 	bool firsttime = true;
2192 	unsigned long flags;
2193 	bool gotcbs;
2194 	struct rcu_data *rdp;
2195 	struct rcu_head **tail;
2196 
2197 wait_again:
2198 
2199 	/* Wait for callbacks to appear. */
2200 	if (!rcu_nocb_poll) {
2201 		trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Sleep"));
2202 		swait_event_interruptible_exclusive(my_rdp->nocb_wq,
2203 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2204 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2205 		my_rdp->nocb_leader_sleep = true;
2206 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2207 		del_timer(&my_rdp->nocb_timer);
2208 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2209 	} else if (firsttime) {
2210 		firsttime = false; /* Don't drown trace log with "Poll"! */
2211 		trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Poll"));
2212 	}
2213 
2214 	/*
2215 	 * Each pass through the following loop checks a follower for CBs.
2216 	 * We are our own first follower.  Any CBs found are moved to
2217 	 * nocb_gp_head, where they await a grace period.
2218 	 */
2219 	gotcbs = false;
2220 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2221 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2222 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2223 		if (!rdp->nocb_gp_head)
2224 			continue;  /* No CBs here, try next follower. */
2225 
2226 		/* Move callbacks to wait-for-GP list, which is empty. */
2227 		WRITE_ONCE(rdp->nocb_head, NULL);
2228 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2229 		gotcbs = true;
2230 	}
2231 
2232 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2233 	if (unlikely(!gotcbs)) {
2234 		WARN_ON(signal_pending(current));
2235 		if (rcu_nocb_poll) {
2236 			schedule_timeout_interruptible(1);
2237 		} else {
2238 			trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu,
2239 					    TPS("WokeEmpty"));
2240 		}
2241 		goto wait_again;
2242 	}
2243 
2244 	/* Wait for one grace period. */
2245 	rcu_nocb_wait_gp(my_rdp);
2246 
2247 	/* Each pass through the following loop wakes a follower, if needed. */
2248 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2249 		if (!rcu_nocb_poll &&
2250 		    READ_ONCE(rdp->nocb_head) &&
2251 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2252 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2253 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2254 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2255 		}
2256 		if (!rdp->nocb_gp_head)
2257 			continue; /* No CBs, so no need to wake follower. */
2258 
2259 		/* Append callbacks to follower's "done" list. */
2260 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2261 		tail = rdp->nocb_follower_tail;
2262 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2263 		*tail = rdp->nocb_gp_head;
2264 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2265 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2266 			/* List was empty, so wake up the follower.  */
2267 			swake_up_one(&rdp->nocb_wq);
2268 		}
2269 	}
2270 
2271 	/* If we (the leader) don't have CBs, go wait some more. */
2272 	if (!my_rdp->nocb_follower_head)
2273 		goto wait_again;
2274 }
2275 
2276 /*
2277  * Followers come here to wait for additional callbacks to show up.
2278  * This function does not return until callbacks appear.
2279  */
2280 static void nocb_follower_wait(struct rcu_data *rdp)
2281 {
2282 	for (;;) {
2283 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FollowerSleep"));
2284 		swait_event_interruptible_exclusive(rdp->nocb_wq,
2285 					 READ_ONCE(rdp->nocb_follower_head));
2286 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2287 			/* ^^^ Ensure CB invocation follows _head test. */
2288 			return;
2289 		}
2290 		WARN_ON(signal_pending(current));
2291 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2292 	}
2293 }
2294 
2295 /*
2296  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2297  * callbacks queued by the corresponding no-CBs CPU, however, there is
2298  * an optional leader-follower relationship so that the grace-period
2299  * kthreads don't have to do quite so many wakeups.
2300  */
2301 static int rcu_nocb_kthread(void *arg)
2302 {
2303 	int c, cl;
2304 	unsigned long flags;
2305 	struct rcu_head *list;
2306 	struct rcu_head *next;
2307 	struct rcu_head **tail;
2308 	struct rcu_data *rdp = arg;
2309 
2310 	/* Each pass through this loop invokes one batch of callbacks */
2311 	for (;;) {
2312 		/* Wait for callbacks. */
2313 		if (rdp->nocb_leader == rdp)
2314 			nocb_leader_wait(rdp);
2315 		else
2316 			nocb_follower_wait(rdp);
2317 
2318 		/* Pull the ready-to-invoke callbacks onto local list. */
2319 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2320 		list = rdp->nocb_follower_head;
2321 		rdp->nocb_follower_head = NULL;
2322 		tail = rdp->nocb_follower_tail;
2323 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2324 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2325 		BUG_ON(!list);
2326 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeNonEmpty"));
2327 
2328 		/* Each pass through the following loop invokes a callback. */
2329 		trace_rcu_batch_start(rcu_state.name,
2330 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2331 				      atomic_long_read(&rdp->nocb_q_count), -1);
2332 		c = cl = 0;
2333 		while (list) {
2334 			next = list->next;
2335 			/* Wait for enqueuing to complete, if needed. */
2336 			while (next == NULL && &list->next != tail) {
2337 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2338 						    TPS("WaitQueue"));
2339 				schedule_timeout_interruptible(1);
2340 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2341 						    TPS("WokeQueue"));
2342 				next = list->next;
2343 			}
2344 			debug_rcu_head_unqueue(list);
2345 			local_bh_disable();
2346 			if (__rcu_reclaim(rcu_state.name, list))
2347 				cl++;
2348 			c++;
2349 			local_bh_enable();
2350 			cond_resched_tasks_rcu_qs();
2351 			list = next;
2352 		}
2353 		trace_rcu_batch_end(rcu_state.name, c, !!list, 0, 0, 1);
2354 		smp_mb__before_atomic();  /* _add after CB invocation. */
2355 		atomic_long_add(-c, &rdp->nocb_q_count);
2356 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2357 	}
2358 	return 0;
2359 }
2360 
2361 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2362 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2363 {
2364 	return READ_ONCE(rdp->nocb_defer_wakeup);
2365 }
2366 
2367 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2368 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2369 {
2370 	unsigned long flags;
2371 	int ndw;
2372 
2373 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2374 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2375 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2376 		return;
2377 	}
2378 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2379 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2380 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2381 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2382 }
2383 
2384 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2385 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2386 {
2387 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2388 
2389 	do_nocb_deferred_wakeup_common(rdp);
2390 }
2391 
2392 /*
2393  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2394  * This means we do an inexact common-case check.  Note that if
2395  * we miss, ->nocb_timer will eventually clean things up.
2396  */
2397 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2398 {
2399 	if (rcu_nocb_need_deferred_wakeup(rdp))
2400 		do_nocb_deferred_wakeup_common(rdp);
2401 }
2402 
2403 void __init rcu_init_nohz(void)
2404 {
2405 	int cpu;
2406 	bool need_rcu_nocb_mask = false;
2407 
2408 #if defined(CONFIG_NO_HZ_FULL)
2409 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2410 		need_rcu_nocb_mask = true;
2411 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2412 
2413 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2414 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2415 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2416 			return;
2417 		}
2418 	}
2419 	if (!cpumask_available(rcu_nocb_mask))
2420 		return;
2421 
2422 #if defined(CONFIG_NO_HZ_FULL)
2423 	if (tick_nohz_full_running)
2424 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2425 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2426 
2427 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2428 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2429 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2430 			    rcu_nocb_mask);
2431 	}
2432 	if (cpumask_empty(rcu_nocb_mask))
2433 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2434 	else
2435 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2436 			cpumask_pr_args(rcu_nocb_mask));
2437 	if (rcu_nocb_poll)
2438 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2439 
2440 	for_each_cpu(cpu, rcu_nocb_mask)
2441 		init_nocb_callback_list(per_cpu_ptr(&rcu_data, cpu));
2442 	rcu_organize_nocb_kthreads();
2443 }
2444 
2445 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2446 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2447 {
2448 	rdp->nocb_tail = &rdp->nocb_head;
2449 	init_swait_queue_head(&rdp->nocb_wq);
2450 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2451 	raw_spin_lock_init(&rdp->nocb_lock);
2452 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2453 }
2454 
2455 /*
2456  * If the specified CPU is a no-CBs CPU that does not already have its
2457  * rcuo kthread, spawn it.  If the CPUs are brought online out of order,
2458  * this can require re-organizing the leader-follower relationships.
2459  */
2460 static void rcu_spawn_one_nocb_kthread(int cpu)
2461 {
2462 	struct rcu_data *rdp;
2463 	struct rcu_data *rdp_last;
2464 	struct rcu_data *rdp_old_leader;
2465 	struct rcu_data *rdp_spawn = per_cpu_ptr(&rcu_data, cpu);
2466 	struct task_struct *t;
2467 
2468 	/*
2469 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2470 	 * then nothing to do.
2471 	 */
2472 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2473 		return;
2474 
2475 	/* If we didn't spawn the leader first, reorganize! */
2476 	rdp_old_leader = rdp_spawn->nocb_leader;
2477 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2478 		rdp_last = NULL;
2479 		rdp = rdp_old_leader;
2480 		do {
2481 			rdp->nocb_leader = rdp_spawn;
2482 			if (rdp_last && rdp != rdp_spawn)
2483 				rdp_last->nocb_next_follower = rdp;
2484 			if (rdp == rdp_spawn) {
2485 				rdp = rdp->nocb_next_follower;
2486 			} else {
2487 				rdp_last = rdp;
2488 				rdp = rdp->nocb_next_follower;
2489 				rdp_last->nocb_next_follower = NULL;
2490 			}
2491 		} while (rdp);
2492 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2493 	}
2494 
2495 	/* Spawn the kthread for this CPU. */
2496 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2497 			"rcuo%c/%d", rcu_state.abbr, cpu);
2498 	BUG_ON(IS_ERR(t));
2499 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2500 }
2501 
2502 /*
2503  * If the specified CPU is a no-CBs CPU that does not already have its
2504  * rcuo kthreads, spawn them.
2505  */
2506 static void rcu_spawn_all_nocb_kthreads(int cpu)
2507 {
2508 	if (rcu_scheduler_fully_active)
2509 		rcu_spawn_one_nocb_kthread(cpu);
2510 }
2511 
2512 /*
2513  * Once the scheduler is running, spawn rcuo kthreads for all online
2514  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2515  * non-boot CPUs come online -- if this changes, we will need to add
2516  * some mutual exclusion.
2517  */
2518 static void __init rcu_spawn_nocb_kthreads(void)
2519 {
2520 	int cpu;
2521 
2522 	for_each_online_cpu(cpu)
2523 		rcu_spawn_all_nocb_kthreads(cpu);
2524 }
2525 
2526 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2527 static int rcu_nocb_leader_stride = -1;
2528 module_param(rcu_nocb_leader_stride, int, 0444);
2529 
2530 /*
2531  * Initialize leader-follower relationships for all no-CBs CPU.
2532  */
2533 static void __init rcu_organize_nocb_kthreads(void)
2534 {
2535 	int cpu;
2536 	int ls = rcu_nocb_leader_stride;
2537 	int nl = 0;  /* Next leader. */
2538 	struct rcu_data *rdp;
2539 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2540 	struct rcu_data *rdp_prev = NULL;
2541 
2542 	if (!cpumask_available(rcu_nocb_mask))
2543 		return;
2544 	if (ls == -1) {
2545 		ls = int_sqrt(nr_cpu_ids);
2546 		rcu_nocb_leader_stride = ls;
2547 	}
2548 
2549 	/*
2550 	 * Each pass through this loop sets up one rcu_data structure.
2551 	 * Should the corresponding CPU come online in the future, then
2552 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2553 	 */
2554 	for_each_cpu(cpu, rcu_nocb_mask) {
2555 		rdp = per_cpu_ptr(&rcu_data, cpu);
2556 		if (rdp->cpu >= nl) {
2557 			/* New leader, set up for followers & next leader. */
2558 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2559 			rdp->nocb_leader = rdp;
2560 			rdp_leader = rdp;
2561 		} else {
2562 			/* Another follower, link to previous leader. */
2563 			rdp->nocb_leader = rdp_leader;
2564 			rdp_prev->nocb_next_follower = rdp;
2565 		}
2566 		rdp_prev = rdp;
2567 	}
2568 }
2569 
2570 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2571 static bool init_nocb_callback_list(struct rcu_data *rdp)
2572 {
2573 	if (!rcu_is_nocb_cpu(rdp->cpu))
2574 		return false;
2575 
2576 	/* If there are early-boot callbacks, move them to nocb lists. */
2577 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2578 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2579 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2580 		atomic_long_set(&rdp->nocb_q_count,
2581 				rcu_segcblist_n_cbs(&rdp->cblist));
2582 		atomic_long_set(&rdp->nocb_q_count_lazy,
2583 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2584 		rcu_segcblist_init(&rdp->cblist);
2585 	}
2586 	rcu_segcblist_disable(&rdp->cblist);
2587 	return true;
2588 }
2589 
2590 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2591 
2592 static bool rcu_nocb_cpu_needs_barrier(int cpu)
2593 {
2594 	WARN_ON_ONCE(1); /* Should be dead code. */
2595 	return false;
2596 }
2597 
2598 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2599 {
2600 }
2601 
2602 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2603 {
2604 	return NULL;
2605 }
2606 
2607 static void rcu_init_one_nocb(struct rcu_node *rnp)
2608 {
2609 }
2610 
2611 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2612 			    bool lazy, unsigned long flags)
2613 {
2614 	return false;
2615 }
2616 
2617 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2618 						     struct rcu_data *rdp,
2619 						     unsigned long flags)
2620 {
2621 	return false;
2622 }
2623 
2624 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2625 {
2626 }
2627 
2628 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2629 {
2630 	return false;
2631 }
2632 
2633 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2634 {
2635 }
2636 
2637 static void rcu_spawn_all_nocb_kthreads(int cpu)
2638 {
2639 }
2640 
2641 static void __init rcu_spawn_nocb_kthreads(void)
2642 {
2643 }
2644 
2645 static bool init_nocb_callback_list(struct rcu_data *rdp)
2646 {
2647 	return false;
2648 }
2649 
2650 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2651 
2652 /*
2653  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2654  * grace-period kthread will do force_quiescent_state() processing?
2655  * The idea is to avoid waking up RCU core processing on such a
2656  * CPU unless the grace period has extended for too long.
2657  *
2658  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2659  * CONFIG_RCU_NOCB_CPU CPUs.
2660  */
2661 static bool rcu_nohz_full_cpu(void)
2662 {
2663 #ifdef CONFIG_NO_HZ_FULL
2664 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2665 	    (!rcu_gp_in_progress() ||
2666 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2667 		return true;
2668 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2669 	return false;
2670 }
2671 
2672 /*
2673  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2674  */
2675 static void rcu_bind_gp_kthread(void)
2676 {
2677 	if (!tick_nohz_full_enabled())
2678 		return;
2679 	housekeeping_affine(current, HK_FLAG_RCU);
2680 }
2681 
2682 /* Record the current task on dyntick-idle entry. */
2683 static void rcu_dynticks_task_enter(void)
2684 {
2685 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2686 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2687 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2688 }
2689 
2690 /* Record no current task on dyntick-idle exit. */
2691 static void rcu_dynticks_task_exit(void)
2692 {
2693 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2694 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2695 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2696 }
2697