1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #ifdef CONFIG_RCU_BOOST 34 35 #include "../locking/rtmutex_common.h" 36 37 /* 38 * Control variables for per-CPU and per-rcu_node kthreads. These 39 * handle all flavors of RCU. 40 */ 41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 44 DEFINE_PER_CPU(char, rcu_cpu_has_work); 45 46 #else /* #ifdef CONFIG_RCU_BOOST */ 47 48 /* 49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 50 * all uses are in dead code. Provide a definition to keep the compiler 51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 52 * This probably needs to be excluded from -rt builds. 53 */ 54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 55 56 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 57 58 #ifdef CONFIG_RCU_NOCB_CPU 59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 63 64 /* 65 * Check the RCU kernel configuration parameters and print informative 66 * messages about anything out of the ordinary. If you like #ifdef, you 67 * will love this function. 68 */ 69 static void __init rcu_bootup_announce_oddness(void) 70 { 71 if (IS_ENABLED(CONFIG_RCU_TRACE)) 72 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 76 RCU_FANOUT); 77 if (rcu_fanout_exact) 78 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 81 if (IS_ENABLED(CONFIG_PROVE_RCU)) 82 pr_info("\tRCU lockdep checking is enabled.\n"); 83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE)) 84 pr_info("\tRCU torture testing starts during boot.\n"); 85 if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO)) 86 pr_info("\tAdditional per-CPU info printed with stalls.\n"); 87 if (NUM_RCU_LVL_4 != 0) 88 pr_info("\tFour-level hierarchy is enabled.\n"); 89 if (RCU_FANOUT_LEAF != 16) 90 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 91 RCU_FANOUT_LEAF); 92 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 93 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 94 if (nr_cpu_ids != NR_CPUS) 95 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 96 if (IS_ENABLED(CONFIG_RCU_BOOST)) 97 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 98 } 99 100 #ifdef CONFIG_PREEMPT_RCU 101 102 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 103 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 104 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 105 106 static int rcu_preempted_readers_exp(struct rcu_node *rnp); 107 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 108 bool wake); 109 110 /* 111 * Tell them what RCU they are running. 112 */ 113 static void __init rcu_bootup_announce(void) 114 { 115 pr_info("Preemptible hierarchical RCU implementation.\n"); 116 rcu_bootup_announce_oddness(); 117 } 118 119 /* 120 * Record a preemptible-RCU quiescent state for the specified CPU. Note 121 * that this just means that the task currently running on the CPU is 122 * not in a quiescent state. There might be any number of tasks blocked 123 * while in an RCU read-side critical section. 124 * 125 * As with the other rcu_*_qs() functions, callers to this function 126 * must disable preemption. 127 */ 128 static void rcu_preempt_qs(void) 129 { 130 if (!__this_cpu_read(rcu_data_p->passed_quiesce)) { 131 trace_rcu_grace_period(TPS("rcu_preempt"), 132 __this_cpu_read(rcu_data_p->gpnum), 133 TPS("cpuqs")); 134 __this_cpu_write(rcu_data_p->passed_quiesce, 1); 135 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 136 current->rcu_read_unlock_special.b.need_qs = false; 137 } 138 } 139 140 /* 141 * We have entered the scheduler, and the current task might soon be 142 * context-switched away from. If this task is in an RCU read-side 143 * critical section, we will no longer be able to rely on the CPU to 144 * record that fact, so we enqueue the task on the blkd_tasks list. 145 * The task will dequeue itself when it exits the outermost enclosing 146 * RCU read-side critical section. Therefore, the current grace period 147 * cannot be permitted to complete until the blkd_tasks list entries 148 * predating the current grace period drain, in other words, until 149 * rnp->gp_tasks becomes NULL. 150 * 151 * Caller must disable preemption. 152 */ 153 static void rcu_preempt_note_context_switch(void) 154 { 155 struct task_struct *t = current; 156 unsigned long flags; 157 struct rcu_data *rdp; 158 struct rcu_node *rnp; 159 160 if (t->rcu_read_lock_nesting > 0 && 161 !t->rcu_read_unlock_special.b.blocked) { 162 163 /* Possibly blocking in an RCU read-side critical section. */ 164 rdp = this_cpu_ptr(rcu_state_p->rda); 165 rnp = rdp->mynode; 166 raw_spin_lock_irqsave(&rnp->lock, flags); 167 smp_mb__after_unlock_lock(); 168 t->rcu_read_unlock_special.b.blocked = true; 169 t->rcu_blocked_node = rnp; 170 171 /* 172 * If this CPU has already checked in, then this task 173 * will hold up the next grace period rather than the 174 * current grace period. Queue the task accordingly. 175 * If the task is queued for the current grace period 176 * (i.e., this CPU has not yet passed through a quiescent 177 * state for the current grace period), then as long 178 * as that task remains queued, the current grace period 179 * cannot end. Note that there is some uncertainty as 180 * to exactly when the current grace period started. 181 * We take a conservative approach, which can result 182 * in unnecessarily waiting on tasks that started very 183 * slightly after the current grace period began. C'est 184 * la vie!!! 185 * 186 * But first, note that the current CPU must still be 187 * on line! 188 */ 189 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 190 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 191 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { 192 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); 193 rnp->gp_tasks = &t->rcu_node_entry; 194 if (IS_ENABLED(CONFIG_RCU_BOOST) && 195 rnp->boost_tasks != NULL) 196 rnp->boost_tasks = rnp->gp_tasks; 197 } else { 198 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 199 if (rnp->qsmask & rdp->grpmask) 200 rnp->gp_tasks = &t->rcu_node_entry; 201 } 202 trace_rcu_preempt_task(rdp->rsp->name, 203 t->pid, 204 (rnp->qsmask & rdp->grpmask) 205 ? rnp->gpnum 206 : rnp->gpnum + 1); 207 raw_spin_unlock_irqrestore(&rnp->lock, flags); 208 } else if (t->rcu_read_lock_nesting < 0 && 209 t->rcu_read_unlock_special.s) { 210 211 /* 212 * Complete exit from RCU read-side critical section on 213 * behalf of preempted instance of __rcu_read_unlock(). 214 */ 215 rcu_read_unlock_special(t); 216 } 217 218 /* 219 * Either we were not in an RCU read-side critical section to 220 * begin with, or we have now recorded that critical section 221 * globally. Either way, we can now note a quiescent state 222 * for this CPU. Again, if we were in an RCU read-side critical 223 * section, and if that critical section was blocking the current 224 * grace period, then the fact that the task has been enqueued 225 * means that we continue to block the current grace period. 226 */ 227 rcu_preempt_qs(); 228 } 229 230 /* 231 * Check for preempted RCU readers blocking the current grace period 232 * for the specified rcu_node structure. If the caller needs a reliable 233 * answer, it must hold the rcu_node's ->lock. 234 */ 235 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 236 { 237 return rnp->gp_tasks != NULL; 238 } 239 240 /* 241 * Advance a ->blkd_tasks-list pointer to the next entry, instead 242 * returning NULL if at the end of the list. 243 */ 244 static struct list_head *rcu_next_node_entry(struct task_struct *t, 245 struct rcu_node *rnp) 246 { 247 struct list_head *np; 248 249 np = t->rcu_node_entry.next; 250 if (np == &rnp->blkd_tasks) 251 np = NULL; 252 return np; 253 } 254 255 /* 256 * Return true if the specified rcu_node structure has tasks that were 257 * preempted within an RCU read-side critical section. 258 */ 259 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 260 { 261 return !list_empty(&rnp->blkd_tasks); 262 } 263 264 /* 265 * Handle special cases during rcu_read_unlock(), such as needing to 266 * notify RCU core processing or task having blocked during the RCU 267 * read-side critical section. 268 */ 269 void rcu_read_unlock_special(struct task_struct *t) 270 { 271 bool empty_exp; 272 bool empty_norm; 273 bool empty_exp_now; 274 unsigned long flags; 275 struct list_head *np; 276 bool drop_boost_mutex = false; 277 struct rcu_node *rnp; 278 union rcu_special special; 279 280 /* NMI handlers cannot block and cannot safely manipulate state. */ 281 if (in_nmi()) 282 return; 283 284 local_irq_save(flags); 285 286 /* 287 * If RCU core is waiting for this CPU to exit critical section, 288 * let it know that we have done so. Because irqs are disabled, 289 * t->rcu_read_unlock_special cannot change. 290 */ 291 special = t->rcu_read_unlock_special; 292 if (special.b.need_qs) { 293 rcu_preempt_qs(); 294 t->rcu_read_unlock_special.b.need_qs = false; 295 if (!t->rcu_read_unlock_special.s) { 296 local_irq_restore(flags); 297 return; 298 } 299 } 300 301 /* Hardware IRQ handlers cannot block, complain if they get here. */ 302 if (in_irq() || in_serving_softirq()) { 303 lockdep_rcu_suspicious(__FILE__, __LINE__, 304 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 305 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n", 306 t->rcu_read_unlock_special.s, 307 t->rcu_read_unlock_special.b.blocked, 308 t->rcu_read_unlock_special.b.need_qs); 309 local_irq_restore(flags); 310 return; 311 } 312 313 /* Clean up if blocked during RCU read-side critical section. */ 314 if (special.b.blocked) { 315 t->rcu_read_unlock_special.b.blocked = false; 316 317 /* 318 * Remove this task from the list it blocked on. The task 319 * now remains queued on the rcu_node corresponding to 320 * the CPU it first blocked on, so the first attempt to 321 * acquire the task's rcu_node's ->lock will succeed. 322 * Keep the loop and add a WARN_ON() out of sheer paranoia. 323 */ 324 for (;;) { 325 rnp = t->rcu_blocked_node; 326 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 327 smp_mb__after_unlock_lock(); 328 if (rnp == t->rcu_blocked_node) 329 break; 330 WARN_ON_ONCE(1); 331 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 332 } 333 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 334 empty_exp = !rcu_preempted_readers_exp(rnp); 335 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 336 np = rcu_next_node_entry(t, rnp); 337 list_del_init(&t->rcu_node_entry); 338 t->rcu_blocked_node = NULL; 339 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 340 rnp->gpnum, t->pid); 341 if (&t->rcu_node_entry == rnp->gp_tasks) 342 rnp->gp_tasks = np; 343 if (&t->rcu_node_entry == rnp->exp_tasks) 344 rnp->exp_tasks = np; 345 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 346 if (&t->rcu_node_entry == rnp->boost_tasks) 347 rnp->boost_tasks = np; 348 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 349 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 350 } 351 352 /* 353 * If this was the last task on the current list, and if 354 * we aren't waiting on any CPUs, report the quiescent state. 355 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 356 * so we must take a snapshot of the expedited state. 357 */ 358 empty_exp_now = !rcu_preempted_readers_exp(rnp); 359 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 360 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 361 rnp->gpnum, 362 0, rnp->qsmask, 363 rnp->level, 364 rnp->grplo, 365 rnp->grphi, 366 !!rnp->gp_tasks); 367 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 368 } else { 369 raw_spin_unlock_irqrestore(&rnp->lock, flags); 370 } 371 372 /* Unboost if we were boosted. */ 373 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 374 rt_mutex_unlock(&rnp->boost_mtx); 375 376 /* 377 * If this was the last task on the expedited lists, 378 * then we need to report up the rcu_node hierarchy. 379 */ 380 if (!empty_exp && empty_exp_now) 381 rcu_report_exp_rnp(rcu_state_p, rnp, true); 382 } else { 383 local_irq_restore(flags); 384 } 385 } 386 387 /* 388 * Dump detailed information for all tasks blocking the current RCU 389 * grace period on the specified rcu_node structure. 390 */ 391 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 392 { 393 unsigned long flags; 394 struct task_struct *t; 395 396 raw_spin_lock_irqsave(&rnp->lock, flags); 397 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 398 raw_spin_unlock_irqrestore(&rnp->lock, flags); 399 return; 400 } 401 t = list_entry(rnp->gp_tasks->prev, 402 struct task_struct, rcu_node_entry); 403 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 404 sched_show_task(t); 405 raw_spin_unlock_irqrestore(&rnp->lock, flags); 406 } 407 408 /* 409 * Dump detailed information for all tasks blocking the current RCU 410 * grace period. 411 */ 412 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 413 { 414 struct rcu_node *rnp = rcu_get_root(rsp); 415 416 rcu_print_detail_task_stall_rnp(rnp); 417 rcu_for_each_leaf_node(rsp, rnp) 418 rcu_print_detail_task_stall_rnp(rnp); 419 } 420 421 #ifdef CONFIG_RCU_CPU_STALL_INFO 422 423 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 424 { 425 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 426 rnp->level, rnp->grplo, rnp->grphi); 427 } 428 429 static void rcu_print_task_stall_end(void) 430 { 431 pr_cont("\n"); 432 } 433 434 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 435 436 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 437 { 438 } 439 440 static void rcu_print_task_stall_end(void) 441 { 442 } 443 444 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 445 446 /* 447 * Scan the current list of tasks blocked within RCU read-side critical 448 * sections, printing out the tid of each. 449 */ 450 static int rcu_print_task_stall(struct rcu_node *rnp) 451 { 452 struct task_struct *t; 453 int ndetected = 0; 454 455 if (!rcu_preempt_blocked_readers_cgp(rnp)) 456 return 0; 457 rcu_print_task_stall_begin(rnp); 458 t = list_entry(rnp->gp_tasks->prev, 459 struct task_struct, rcu_node_entry); 460 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 461 pr_cont(" P%d", t->pid); 462 ndetected++; 463 } 464 rcu_print_task_stall_end(); 465 return ndetected; 466 } 467 468 /* 469 * Check that the list of blocked tasks for the newly completed grace 470 * period is in fact empty. It is a serious bug to complete a grace 471 * period that still has RCU readers blocked! This function must be 472 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 473 * must be held by the caller. 474 * 475 * Also, if there are blocked tasks on the list, they automatically 476 * block the newly created grace period, so set up ->gp_tasks accordingly. 477 */ 478 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 479 { 480 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 481 if (rcu_preempt_has_tasks(rnp)) 482 rnp->gp_tasks = rnp->blkd_tasks.next; 483 WARN_ON_ONCE(rnp->qsmask); 484 } 485 486 /* 487 * Check for a quiescent state from the current CPU. When a task blocks, 488 * the task is recorded in the corresponding CPU's rcu_node structure, 489 * which is checked elsewhere. 490 * 491 * Caller must disable hard irqs. 492 */ 493 static void rcu_preempt_check_callbacks(void) 494 { 495 struct task_struct *t = current; 496 497 if (t->rcu_read_lock_nesting == 0) { 498 rcu_preempt_qs(); 499 return; 500 } 501 if (t->rcu_read_lock_nesting > 0 && 502 __this_cpu_read(rcu_data_p->qs_pending) && 503 !__this_cpu_read(rcu_data_p->passed_quiesce)) 504 t->rcu_read_unlock_special.b.need_qs = true; 505 } 506 507 #ifdef CONFIG_RCU_BOOST 508 509 static void rcu_preempt_do_callbacks(void) 510 { 511 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 512 } 513 514 #endif /* #ifdef CONFIG_RCU_BOOST */ 515 516 /* 517 * Queue a preemptible-RCU callback for invocation after a grace period. 518 */ 519 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 520 { 521 __call_rcu(head, func, rcu_state_p, -1, 0); 522 } 523 EXPORT_SYMBOL_GPL(call_rcu); 524 525 /** 526 * synchronize_rcu - wait until a grace period has elapsed. 527 * 528 * Control will return to the caller some time after a full grace 529 * period has elapsed, in other words after all currently executing RCU 530 * read-side critical sections have completed. Note, however, that 531 * upon return from synchronize_rcu(), the caller might well be executing 532 * concurrently with new RCU read-side critical sections that began while 533 * synchronize_rcu() was waiting. RCU read-side critical sections are 534 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 535 * 536 * See the description of synchronize_sched() for more detailed information 537 * on memory ordering guarantees. 538 */ 539 void synchronize_rcu(void) 540 { 541 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 542 !lock_is_held(&rcu_lock_map) && 543 !lock_is_held(&rcu_sched_lock_map), 544 "Illegal synchronize_rcu() in RCU read-side critical section"); 545 if (!rcu_scheduler_active) 546 return; 547 if (rcu_gp_is_expedited()) 548 synchronize_rcu_expedited(); 549 else 550 wait_rcu_gp(call_rcu); 551 } 552 EXPORT_SYMBOL_GPL(synchronize_rcu); 553 554 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); 555 static unsigned long sync_rcu_preempt_exp_count; 556 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); 557 558 /* 559 * Return non-zero if there are any tasks in RCU read-side critical 560 * sections blocking the current preemptible-RCU expedited grace period. 561 * If there is no preemptible-RCU expedited grace period currently in 562 * progress, returns zero unconditionally. 563 */ 564 static int rcu_preempted_readers_exp(struct rcu_node *rnp) 565 { 566 return rnp->exp_tasks != NULL; 567 } 568 569 /* 570 * return non-zero if there is no RCU expedited grace period in progress 571 * for the specified rcu_node structure, in other words, if all CPUs and 572 * tasks covered by the specified rcu_node structure have done their bit 573 * for the current expedited grace period. Works only for preemptible 574 * RCU -- other RCU implementation use other means. 575 * 576 * Caller must hold sync_rcu_preempt_exp_mutex. 577 */ 578 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 579 { 580 return !rcu_preempted_readers_exp(rnp) && 581 READ_ONCE(rnp->expmask) == 0; 582 } 583 584 /* 585 * Report the exit from RCU read-side critical section for the last task 586 * that queued itself during or before the current expedited preemptible-RCU 587 * grace period. This event is reported either to the rcu_node structure on 588 * which the task was queued or to one of that rcu_node structure's ancestors, 589 * recursively up the tree. (Calm down, calm down, we do the recursion 590 * iteratively!) 591 * 592 * Caller must hold sync_rcu_preempt_exp_mutex. 593 */ 594 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 595 bool wake) 596 { 597 unsigned long flags; 598 unsigned long mask; 599 600 raw_spin_lock_irqsave(&rnp->lock, flags); 601 smp_mb__after_unlock_lock(); 602 for (;;) { 603 if (!sync_rcu_preempt_exp_done(rnp)) { 604 raw_spin_unlock_irqrestore(&rnp->lock, flags); 605 break; 606 } 607 if (rnp->parent == NULL) { 608 raw_spin_unlock_irqrestore(&rnp->lock, flags); 609 if (wake) { 610 smp_mb(); /* EGP done before wake_up(). */ 611 wake_up(&sync_rcu_preempt_exp_wq); 612 } 613 break; 614 } 615 mask = rnp->grpmask; 616 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 617 rnp = rnp->parent; 618 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 619 smp_mb__after_unlock_lock(); 620 rnp->expmask &= ~mask; 621 } 622 } 623 624 /* 625 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 626 * grace period for the specified rcu_node structure, phase 1. If there 627 * are such tasks, set the ->expmask bits up the rcu_node tree and also 628 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2 629 * that work is needed here. 630 * 631 * Caller must hold sync_rcu_preempt_exp_mutex. 632 */ 633 static void 634 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp) 635 { 636 unsigned long flags; 637 unsigned long mask; 638 struct rcu_node *rnp_up; 639 640 raw_spin_lock_irqsave(&rnp->lock, flags); 641 smp_mb__after_unlock_lock(); 642 WARN_ON_ONCE(rnp->expmask); 643 WARN_ON_ONCE(rnp->exp_tasks); 644 if (!rcu_preempt_has_tasks(rnp)) { 645 /* No blocked tasks, nothing to do. */ 646 raw_spin_unlock_irqrestore(&rnp->lock, flags); 647 return; 648 } 649 /* Call for Phase 2 and propagate ->expmask bits up the tree. */ 650 rnp->expmask = 1; 651 rnp_up = rnp; 652 while (rnp_up->parent) { 653 mask = rnp_up->grpmask; 654 rnp_up = rnp_up->parent; 655 if (rnp_up->expmask & mask) 656 break; 657 raw_spin_lock(&rnp_up->lock); /* irqs already off */ 658 smp_mb__after_unlock_lock(); 659 rnp_up->expmask |= mask; 660 raw_spin_unlock(&rnp_up->lock); /* irqs still off */ 661 } 662 raw_spin_unlock_irqrestore(&rnp->lock, flags); 663 } 664 665 /* 666 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 667 * grace period for the specified rcu_node structure, phase 2. If the 668 * leaf rcu_node structure has its ->expmask field set, check for tasks. 669 * If there are some, clear ->expmask and set ->exp_tasks accordingly, 670 * then initiate RCU priority boosting. Otherwise, clear ->expmask and 671 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits, 672 * enabling rcu_read_unlock_special() to do the bit-clearing. 673 * 674 * Caller must hold sync_rcu_preempt_exp_mutex. 675 */ 676 static void 677 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp) 678 { 679 unsigned long flags; 680 681 raw_spin_lock_irqsave(&rnp->lock, flags); 682 smp_mb__after_unlock_lock(); 683 if (!rnp->expmask) { 684 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */ 685 raw_spin_unlock_irqrestore(&rnp->lock, flags); 686 return; 687 } 688 689 /* Phase 1 is over. */ 690 rnp->expmask = 0; 691 692 /* 693 * If there are still blocked tasks, set up ->exp_tasks so that 694 * rcu_read_unlock_special() will wake us and then boost them. 695 */ 696 if (rcu_preempt_has_tasks(rnp)) { 697 rnp->exp_tasks = rnp->blkd_tasks.next; 698 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 699 return; 700 } 701 702 /* No longer any blocked tasks, so undo bit setting. */ 703 raw_spin_unlock_irqrestore(&rnp->lock, flags); 704 rcu_report_exp_rnp(rsp, rnp, false); 705 } 706 707 /** 708 * synchronize_rcu_expedited - Brute-force RCU grace period 709 * 710 * Wait for an RCU-preempt grace period, but expedite it. The basic 711 * idea is to invoke synchronize_sched_expedited() to push all the tasks to 712 * the ->blkd_tasks lists and wait for this list to drain. This consumes 713 * significant time on all CPUs and is unfriendly to real-time workloads, 714 * so is thus not recommended for any sort of common-case code. 715 * In fact, if you are using synchronize_rcu_expedited() in a loop, 716 * please restructure your code to batch your updates, and then Use a 717 * single synchronize_rcu() instead. 718 */ 719 void synchronize_rcu_expedited(void) 720 { 721 struct rcu_node *rnp; 722 struct rcu_state *rsp = rcu_state_p; 723 unsigned long snap; 724 int trycount = 0; 725 726 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 727 snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1; 728 smp_mb(); /* Above access cannot bleed into critical section. */ 729 730 /* 731 * Block CPU-hotplug operations. This means that any CPU-hotplug 732 * operation that finds an rcu_node structure with tasks in the 733 * process of being boosted will know that all tasks blocking 734 * this expedited grace period will already be in the process of 735 * being boosted. This simplifies the process of moving tasks 736 * from leaf to root rcu_node structures. 737 */ 738 if (!try_get_online_cpus()) { 739 /* CPU-hotplug operation in flight, fall back to normal GP. */ 740 wait_rcu_gp(call_rcu); 741 return; 742 } 743 744 /* 745 * Acquire lock, falling back to synchronize_rcu() if too many 746 * lock-acquisition failures. Of course, if someone does the 747 * expedited grace period for us, just leave. 748 */ 749 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { 750 if (ULONG_CMP_LT(snap, 751 READ_ONCE(sync_rcu_preempt_exp_count))) { 752 put_online_cpus(); 753 goto mb_ret; /* Others did our work for us. */ 754 } 755 if (trycount++ < 10) { 756 udelay(trycount * num_online_cpus()); 757 } else { 758 put_online_cpus(); 759 wait_rcu_gp(call_rcu); 760 return; 761 } 762 } 763 if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) { 764 put_online_cpus(); 765 goto unlock_mb_ret; /* Others did our work for us. */ 766 } 767 768 /* force all RCU readers onto ->blkd_tasks lists. */ 769 synchronize_sched_expedited(); 770 771 /* 772 * Snapshot current state of ->blkd_tasks lists into ->expmask. 773 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special() 774 * to start clearing them. Doing this in one phase leads to 775 * strange races between setting and clearing bits, so just say "no"! 776 */ 777 rcu_for_each_leaf_node(rsp, rnp) 778 sync_rcu_preempt_exp_init1(rsp, rnp); 779 rcu_for_each_leaf_node(rsp, rnp) 780 sync_rcu_preempt_exp_init2(rsp, rnp); 781 782 put_online_cpus(); 783 784 /* Wait for snapshotted ->blkd_tasks lists to drain. */ 785 rnp = rcu_get_root(rsp); 786 wait_event(sync_rcu_preempt_exp_wq, 787 sync_rcu_preempt_exp_done(rnp)); 788 789 /* Clean up and exit. */ 790 smp_mb(); /* ensure expedited GP seen before counter increment. */ 791 WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1); 792 unlock_mb_ret: 793 mutex_unlock(&sync_rcu_preempt_exp_mutex); 794 mb_ret: 795 smp_mb(); /* ensure subsequent action seen after grace period. */ 796 } 797 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 798 799 /** 800 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 801 * 802 * Note that this primitive does not necessarily wait for an RCU grace period 803 * to complete. For example, if there are no RCU callbacks queued anywhere 804 * in the system, then rcu_barrier() is within its rights to return 805 * immediately, without waiting for anything, much less an RCU grace period. 806 */ 807 void rcu_barrier(void) 808 { 809 _rcu_barrier(rcu_state_p); 810 } 811 EXPORT_SYMBOL_GPL(rcu_barrier); 812 813 /* 814 * Initialize preemptible RCU's state structures. 815 */ 816 static void __init __rcu_init_preempt(void) 817 { 818 rcu_init_one(rcu_state_p, rcu_data_p); 819 } 820 821 /* 822 * Check for a task exiting while in a preemptible-RCU read-side 823 * critical section, clean up if so. No need to issue warnings, 824 * as debug_check_no_locks_held() already does this if lockdep 825 * is enabled. 826 */ 827 void exit_rcu(void) 828 { 829 struct task_struct *t = current; 830 831 if (likely(list_empty(¤t->rcu_node_entry))) 832 return; 833 t->rcu_read_lock_nesting = 1; 834 barrier(); 835 t->rcu_read_unlock_special.b.blocked = true; 836 __rcu_read_unlock(); 837 } 838 839 #else /* #ifdef CONFIG_PREEMPT_RCU */ 840 841 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 842 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data; 843 844 /* 845 * Tell them what RCU they are running. 846 */ 847 static void __init rcu_bootup_announce(void) 848 { 849 pr_info("Hierarchical RCU implementation.\n"); 850 rcu_bootup_announce_oddness(); 851 } 852 853 /* 854 * Because preemptible RCU does not exist, we never have to check for 855 * CPUs being in quiescent states. 856 */ 857 static void rcu_preempt_note_context_switch(void) 858 { 859 } 860 861 /* 862 * Because preemptible RCU does not exist, there are never any preempted 863 * RCU readers. 864 */ 865 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 866 { 867 return 0; 868 } 869 870 /* 871 * Because there is no preemptible RCU, there can be no readers blocked. 872 */ 873 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 874 { 875 return false; 876 } 877 878 /* 879 * Because preemptible RCU does not exist, we never have to check for 880 * tasks blocked within RCU read-side critical sections. 881 */ 882 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 883 { 884 } 885 886 /* 887 * Because preemptible RCU does not exist, we never have to check for 888 * tasks blocked within RCU read-side critical sections. 889 */ 890 static int rcu_print_task_stall(struct rcu_node *rnp) 891 { 892 return 0; 893 } 894 895 /* 896 * Because there is no preemptible RCU, there can be no readers blocked, 897 * so there is no need to check for blocked tasks. So check only for 898 * bogus qsmask values. 899 */ 900 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 901 { 902 WARN_ON_ONCE(rnp->qsmask); 903 } 904 905 /* 906 * Because preemptible RCU does not exist, it never has any callbacks 907 * to check. 908 */ 909 static void rcu_preempt_check_callbacks(void) 910 { 911 } 912 913 /* 914 * Wait for an rcu-preempt grace period, but make it happen quickly. 915 * But because preemptible RCU does not exist, map to rcu-sched. 916 */ 917 void synchronize_rcu_expedited(void) 918 { 919 synchronize_sched_expedited(); 920 } 921 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 922 923 /* 924 * Because preemptible RCU does not exist, rcu_barrier() is just 925 * another name for rcu_barrier_sched(). 926 */ 927 void rcu_barrier(void) 928 { 929 rcu_barrier_sched(); 930 } 931 EXPORT_SYMBOL_GPL(rcu_barrier); 932 933 /* 934 * Because preemptible RCU does not exist, it need not be initialized. 935 */ 936 static void __init __rcu_init_preempt(void) 937 { 938 } 939 940 /* 941 * Because preemptible RCU does not exist, tasks cannot possibly exit 942 * while in preemptible RCU read-side critical sections. 943 */ 944 void exit_rcu(void) 945 { 946 } 947 948 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 949 950 #ifdef CONFIG_RCU_BOOST 951 952 #include "../locking/rtmutex_common.h" 953 954 #ifdef CONFIG_RCU_TRACE 955 956 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 957 { 958 if (!rcu_preempt_has_tasks(rnp)) 959 rnp->n_balk_blkd_tasks++; 960 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 961 rnp->n_balk_exp_gp_tasks++; 962 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 963 rnp->n_balk_boost_tasks++; 964 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 965 rnp->n_balk_notblocked++; 966 else if (rnp->gp_tasks != NULL && 967 ULONG_CMP_LT(jiffies, rnp->boost_time)) 968 rnp->n_balk_notyet++; 969 else 970 rnp->n_balk_nos++; 971 } 972 973 #else /* #ifdef CONFIG_RCU_TRACE */ 974 975 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 976 { 977 } 978 979 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 980 981 static void rcu_wake_cond(struct task_struct *t, int status) 982 { 983 /* 984 * If the thread is yielding, only wake it when this 985 * is invoked from idle 986 */ 987 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 988 wake_up_process(t); 989 } 990 991 /* 992 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 993 * or ->boost_tasks, advancing the pointer to the next task in the 994 * ->blkd_tasks list. 995 * 996 * Note that irqs must be enabled: boosting the task can block. 997 * Returns 1 if there are more tasks needing to be boosted. 998 */ 999 static int rcu_boost(struct rcu_node *rnp) 1000 { 1001 unsigned long flags; 1002 struct task_struct *t; 1003 struct list_head *tb; 1004 1005 if (READ_ONCE(rnp->exp_tasks) == NULL && 1006 READ_ONCE(rnp->boost_tasks) == NULL) 1007 return 0; /* Nothing left to boost. */ 1008 1009 raw_spin_lock_irqsave(&rnp->lock, flags); 1010 smp_mb__after_unlock_lock(); 1011 1012 /* 1013 * Recheck under the lock: all tasks in need of boosting 1014 * might exit their RCU read-side critical sections on their own. 1015 */ 1016 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1017 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1018 return 0; 1019 } 1020 1021 /* 1022 * Preferentially boost tasks blocking expedited grace periods. 1023 * This cannot starve the normal grace periods because a second 1024 * expedited grace period must boost all blocked tasks, including 1025 * those blocking the pre-existing normal grace period. 1026 */ 1027 if (rnp->exp_tasks != NULL) { 1028 tb = rnp->exp_tasks; 1029 rnp->n_exp_boosts++; 1030 } else { 1031 tb = rnp->boost_tasks; 1032 rnp->n_normal_boosts++; 1033 } 1034 rnp->n_tasks_boosted++; 1035 1036 /* 1037 * We boost task t by manufacturing an rt_mutex that appears to 1038 * be held by task t. We leave a pointer to that rt_mutex where 1039 * task t can find it, and task t will release the mutex when it 1040 * exits its outermost RCU read-side critical section. Then 1041 * simply acquiring this artificial rt_mutex will boost task 1042 * t's priority. (Thanks to tglx for suggesting this approach!) 1043 * 1044 * Note that task t must acquire rnp->lock to remove itself from 1045 * the ->blkd_tasks list, which it will do from exit() if from 1046 * nowhere else. We therefore are guaranteed that task t will 1047 * stay around at least until we drop rnp->lock. Note that 1048 * rnp->lock also resolves races between our priority boosting 1049 * and task t's exiting its outermost RCU read-side critical 1050 * section. 1051 */ 1052 t = container_of(tb, struct task_struct, rcu_node_entry); 1053 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1054 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1055 /* Lock only for side effect: boosts task t's priority. */ 1056 rt_mutex_lock(&rnp->boost_mtx); 1057 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1058 1059 return READ_ONCE(rnp->exp_tasks) != NULL || 1060 READ_ONCE(rnp->boost_tasks) != NULL; 1061 } 1062 1063 /* 1064 * Priority-boosting kthread. One per leaf rcu_node and one for the 1065 * root rcu_node. 1066 */ 1067 static int rcu_boost_kthread(void *arg) 1068 { 1069 struct rcu_node *rnp = (struct rcu_node *)arg; 1070 int spincnt = 0; 1071 int more2boost; 1072 1073 trace_rcu_utilization(TPS("Start boost kthread@init")); 1074 for (;;) { 1075 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1076 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1077 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1078 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1079 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1080 more2boost = rcu_boost(rnp); 1081 if (more2boost) 1082 spincnt++; 1083 else 1084 spincnt = 0; 1085 if (spincnt > 10) { 1086 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1087 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1088 schedule_timeout_interruptible(2); 1089 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1090 spincnt = 0; 1091 } 1092 } 1093 /* NOTREACHED */ 1094 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1095 return 0; 1096 } 1097 1098 /* 1099 * Check to see if it is time to start boosting RCU readers that are 1100 * blocking the current grace period, and, if so, tell the per-rcu_node 1101 * kthread to start boosting them. If there is an expedited grace 1102 * period in progress, it is always time to boost. 1103 * 1104 * The caller must hold rnp->lock, which this function releases. 1105 * The ->boost_kthread_task is immortal, so we don't need to worry 1106 * about it going away. 1107 */ 1108 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1109 __releases(rnp->lock) 1110 { 1111 struct task_struct *t; 1112 1113 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1114 rnp->n_balk_exp_gp_tasks++; 1115 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1116 return; 1117 } 1118 if (rnp->exp_tasks != NULL || 1119 (rnp->gp_tasks != NULL && 1120 rnp->boost_tasks == NULL && 1121 rnp->qsmask == 0 && 1122 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1123 if (rnp->exp_tasks == NULL) 1124 rnp->boost_tasks = rnp->gp_tasks; 1125 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1126 t = rnp->boost_kthread_task; 1127 if (t) 1128 rcu_wake_cond(t, rnp->boost_kthread_status); 1129 } else { 1130 rcu_initiate_boost_trace(rnp); 1131 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1132 } 1133 } 1134 1135 /* 1136 * Wake up the per-CPU kthread to invoke RCU callbacks. 1137 */ 1138 static void invoke_rcu_callbacks_kthread(void) 1139 { 1140 unsigned long flags; 1141 1142 local_irq_save(flags); 1143 __this_cpu_write(rcu_cpu_has_work, 1); 1144 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1145 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1146 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1147 __this_cpu_read(rcu_cpu_kthread_status)); 1148 } 1149 local_irq_restore(flags); 1150 } 1151 1152 /* 1153 * Is the current CPU running the RCU-callbacks kthread? 1154 * Caller must have preemption disabled. 1155 */ 1156 static bool rcu_is_callbacks_kthread(void) 1157 { 1158 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1159 } 1160 1161 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1162 1163 /* 1164 * Do priority-boost accounting for the start of a new grace period. 1165 */ 1166 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1167 { 1168 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1169 } 1170 1171 /* 1172 * Create an RCU-boost kthread for the specified node if one does not 1173 * already exist. We only create this kthread for preemptible RCU. 1174 * Returns zero if all is well, a negated errno otherwise. 1175 */ 1176 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1177 struct rcu_node *rnp) 1178 { 1179 int rnp_index = rnp - &rsp->node[0]; 1180 unsigned long flags; 1181 struct sched_param sp; 1182 struct task_struct *t; 1183 1184 if (rcu_state_p != rsp) 1185 return 0; 1186 1187 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1188 return 0; 1189 1190 rsp->boost = 1; 1191 if (rnp->boost_kthread_task != NULL) 1192 return 0; 1193 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1194 "rcub/%d", rnp_index); 1195 if (IS_ERR(t)) 1196 return PTR_ERR(t); 1197 raw_spin_lock_irqsave(&rnp->lock, flags); 1198 smp_mb__after_unlock_lock(); 1199 rnp->boost_kthread_task = t; 1200 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1201 sp.sched_priority = kthread_prio; 1202 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1203 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1204 return 0; 1205 } 1206 1207 static void rcu_kthread_do_work(void) 1208 { 1209 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1210 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1211 rcu_preempt_do_callbacks(); 1212 } 1213 1214 static void rcu_cpu_kthread_setup(unsigned int cpu) 1215 { 1216 struct sched_param sp; 1217 1218 sp.sched_priority = kthread_prio; 1219 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1220 } 1221 1222 static void rcu_cpu_kthread_park(unsigned int cpu) 1223 { 1224 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1225 } 1226 1227 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1228 { 1229 return __this_cpu_read(rcu_cpu_has_work); 1230 } 1231 1232 /* 1233 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1234 * RCU softirq used in flavors and configurations of RCU that do not 1235 * support RCU priority boosting. 1236 */ 1237 static void rcu_cpu_kthread(unsigned int cpu) 1238 { 1239 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1240 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1241 int spincnt; 1242 1243 for (spincnt = 0; spincnt < 10; spincnt++) { 1244 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1245 local_bh_disable(); 1246 *statusp = RCU_KTHREAD_RUNNING; 1247 this_cpu_inc(rcu_cpu_kthread_loops); 1248 local_irq_disable(); 1249 work = *workp; 1250 *workp = 0; 1251 local_irq_enable(); 1252 if (work) 1253 rcu_kthread_do_work(); 1254 local_bh_enable(); 1255 if (*workp == 0) { 1256 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1257 *statusp = RCU_KTHREAD_WAITING; 1258 return; 1259 } 1260 } 1261 *statusp = RCU_KTHREAD_YIELDING; 1262 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1263 schedule_timeout_interruptible(2); 1264 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1265 *statusp = RCU_KTHREAD_WAITING; 1266 } 1267 1268 /* 1269 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1270 * served by the rcu_node in question. The CPU hotplug lock is still 1271 * held, so the value of rnp->qsmaskinit will be stable. 1272 * 1273 * We don't include outgoingcpu in the affinity set, use -1 if there is 1274 * no outgoing CPU. If there are no CPUs left in the affinity set, 1275 * this function allows the kthread to execute on any CPU. 1276 */ 1277 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1278 { 1279 struct task_struct *t = rnp->boost_kthread_task; 1280 unsigned long mask = rcu_rnp_online_cpus(rnp); 1281 cpumask_var_t cm; 1282 int cpu; 1283 1284 if (!t) 1285 return; 1286 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1287 return; 1288 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1289 if ((mask & 0x1) && cpu != outgoingcpu) 1290 cpumask_set_cpu(cpu, cm); 1291 if (cpumask_weight(cm) == 0) 1292 cpumask_setall(cm); 1293 set_cpus_allowed_ptr(t, cm); 1294 free_cpumask_var(cm); 1295 } 1296 1297 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1298 .store = &rcu_cpu_kthread_task, 1299 .thread_should_run = rcu_cpu_kthread_should_run, 1300 .thread_fn = rcu_cpu_kthread, 1301 .thread_comm = "rcuc/%u", 1302 .setup = rcu_cpu_kthread_setup, 1303 .park = rcu_cpu_kthread_park, 1304 }; 1305 1306 /* 1307 * Spawn boost kthreads -- called as soon as the scheduler is running. 1308 */ 1309 static void __init rcu_spawn_boost_kthreads(void) 1310 { 1311 struct rcu_node *rnp; 1312 int cpu; 1313 1314 for_each_possible_cpu(cpu) 1315 per_cpu(rcu_cpu_has_work, cpu) = 0; 1316 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1317 rcu_for_each_leaf_node(rcu_state_p, rnp) 1318 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1319 } 1320 1321 static void rcu_prepare_kthreads(int cpu) 1322 { 1323 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1324 struct rcu_node *rnp = rdp->mynode; 1325 1326 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1327 if (rcu_scheduler_fully_active) 1328 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1329 } 1330 1331 #else /* #ifdef CONFIG_RCU_BOOST */ 1332 1333 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1334 __releases(rnp->lock) 1335 { 1336 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1337 } 1338 1339 static void invoke_rcu_callbacks_kthread(void) 1340 { 1341 WARN_ON_ONCE(1); 1342 } 1343 1344 static bool rcu_is_callbacks_kthread(void) 1345 { 1346 return false; 1347 } 1348 1349 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1350 { 1351 } 1352 1353 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1354 { 1355 } 1356 1357 static void __init rcu_spawn_boost_kthreads(void) 1358 { 1359 } 1360 1361 static void rcu_prepare_kthreads(int cpu) 1362 { 1363 } 1364 1365 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1366 1367 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1368 1369 /* 1370 * Check to see if any future RCU-related work will need to be done 1371 * by the current CPU, even if none need be done immediately, returning 1372 * 1 if so. This function is part of the RCU implementation; it is -not- 1373 * an exported member of the RCU API. 1374 * 1375 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1376 * any flavor of RCU. 1377 */ 1378 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1379 { 1380 *nextevt = KTIME_MAX; 1381 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) 1382 ? 0 : rcu_cpu_has_callbacks(NULL); 1383 } 1384 1385 /* 1386 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1387 * after it. 1388 */ 1389 static void rcu_cleanup_after_idle(void) 1390 { 1391 } 1392 1393 /* 1394 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1395 * is nothing. 1396 */ 1397 static void rcu_prepare_for_idle(void) 1398 { 1399 } 1400 1401 /* 1402 * Don't bother keeping a running count of the number of RCU callbacks 1403 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1404 */ 1405 static void rcu_idle_count_callbacks_posted(void) 1406 { 1407 } 1408 1409 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1410 1411 /* 1412 * This code is invoked when a CPU goes idle, at which point we want 1413 * to have the CPU do everything required for RCU so that it can enter 1414 * the energy-efficient dyntick-idle mode. This is handled by a 1415 * state machine implemented by rcu_prepare_for_idle() below. 1416 * 1417 * The following three proprocessor symbols control this state machine: 1418 * 1419 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1420 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1421 * is sized to be roughly one RCU grace period. Those energy-efficiency 1422 * benchmarkers who might otherwise be tempted to set this to a large 1423 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1424 * system. And if you are -that- concerned about energy efficiency, 1425 * just power the system down and be done with it! 1426 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1427 * permitted to sleep in dyntick-idle mode with only lazy RCU 1428 * callbacks pending. Setting this too high can OOM your system. 1429 * 1430 * The values below work well in practice. If future workloads require 1431 * adjustment, they can be converted into kernel config parameters, though 1432 * making the state machine smarter might be a better option. 1433 */ 1434 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1435 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1436 1437 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1438 module_param(rcu_idle_gp_delay, int, 0644); 1439 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1440 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1441 1442 /* 1443 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1444 * only if it has been awhile since the last time we did so. Afterwards, 1445 * if there are any callbacks ready for immediate invocation, return true. 1446 */ 1447 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1448 { 1449 bool cbs_ready = false; 1450 struct rcu_data *rdp; 1451 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1452 struct rcu_node *rnp; 1453 struct rcu_state *rsp; 1454 1455 /* Exit early if we advanced recently. */ 1456 if (jiffies == rdtp->last_advance_all) 1457 return false; 1458 rdtp->last_advance_all = jiffies; 1459 1460 for_each_rcu_flavor(rsp) { 1461 rdp = this_cpu_ptr(rsp->rda); 1462 rnp = rdp->mynode; 1463 1464 /* 1465 * Don't bother checking unless a grace period has 1466 * completed since we last checked and there are 1467 * callbacks not yet ready to invoke. 1468 */ 1469 if ((rdp->completed != rnp->completed || 1470 unlikely(READ_ONCE(rdp->gpwrap))) && 1471 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1472 note_gp_changes(rsp, rdp); 1473 1474 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1475 cbs_ready = true; 1476 } 1477 return cbs_ready; 1478 } 1479 1480 /* 1481 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1482 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1483 * caller to set the timeout based on whether or not there are non-lazy 1484 * callbacks. 1485 * 1486 * The caller must have disabled interrupts. 1487 */ 1488 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1489 { 1490 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1491 unsigned long dj; 1492 1493 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { 1494 *nextevt = KTIME_MAX; 1495 return 0; 1496 } 1497 1498 /* Snapshot to detect later posting of non-lazy callback. */ 1499 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1500 1501 /* If no callbacks, RCU doesn't need the CPU. */ 1502 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1503 *nextevt = KTIME_MAX; 1504 return 0; 1505 } 1506 1507 /* Attempt to advance callbacks. */ 1508 if (rcu_try_advance_all_cbs()) { 1509 /* Some ready to invoke, so initiate later invocation. */ 1510 invoke_rcu_core(); 1511 return 1; 1512 } 1513 rdtp->last_accelerate = jiffies; 1514 1515 /* Request timer delay depending on laziness, and round. */ 1516 if (!rdtp->all_lazy) { 1517 dj = round_up(rcu_idle_gp_delay + jiffies, 1518 rcu_idle_gp_delay) - jiffies; 1519 } else { 1520 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1521 } 1522 *nextevt = basemono + dj * TICK_NSEC; 1523 return 0; 1524 } 1525 1526 /* 1527 * Prepare a CPU for idle from an RCU perspective. The first major task 1528 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1529 * The second major task is to check to see if a non-lazy callback has 1530 * arrived at a CPU that previously had only lazy callbacks. The third 1531 * major task is to accelerate (that is, assign grace-period numbers to) 1532 * any recently arrived callbacks. 1533 * 1534 * The caller must have disabled interrupts. 1535 */ 1536 static void rcu_prepare_for_idle(void) 1537 { 1538 bool needwake; 1539 struct rcu_data *rdp; 1540 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1541 struct rcu_node *rnp; 1542 struct rcu_state *rsp; 1543 int tne; 1544 1545 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) 1546 return; 1547 1548 /* Handle nohz enablement switches conservatively. */ 1549 tne = READ_ONCE(tick_nohz_active); 1550 if (tne != rdtp->tick_nohz_enabled_snap) { 1551 if (rcu_cpu_has_callbacks(NULL)) 1552 invoke_rcu_core(); /* force nohz to see update. */ 1553 rdtp->tick_nohz_enabled_snap = tne; 1554 return; 1555 } 1556 if (!tne) 1557 return; 1558 1559 /* If this is a no-CBs CPU, no callbacks, just return. */ 1560 if (rcu_is_nocb_cpu(smp_processor_id())) 1561 return; 1562 1563 /* 1564 * If a non-lazy callback arrived at a CPU having only lazy 1565 * callbacks, invoke RCU core for the side-effect of recalculating 1566 * idle duration on re-entry to idle. 1567 */ 1568 if (rdtp->all_lazy && 1569 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1570 rdtp->all_lazy = false; 1571 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1572 invoke_rcu_core(); 1573 return; 1574 } 1575 1576 /* 1577 * If we have not yet accelerated this jiffy, accelerate all 1578 * callbacks on this CPU. 1579 */ 1580 if (rdtp->last_accelerate == jiffies) 1581 return; 1582 rdtp->last_accelerate = jiffies; 1583 for_each_rcu_flavor(rsp) { 1584 rdp = this_cpu_ptr(rsp->rda); 1585 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1586 continue; 1587 rnp = rdp->mynode; 1588 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1589 smp_mb__after_unlock_lock(); 1590 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1591 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1592 if (needwake) 1593 rcu_gp_kthread_wake(rsp); 1594 } 1595 } 1596 1597 /* 1598 * Clean up for exit from idle. Attempt to advance callbacks based on 1599 * any grace periods that elapsed while the CPU was idle, and if any 1600 * callbacks are now ready to invoke, initiate invocation. 1601 */ 1602 static void rcu_cleanup_after_idle(void) 1603 { 1604 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1605 rcu_is_nocb_cpu(smp_processor_id())) 1606 return; 1607 if (rcu_try_advance_all_cbs()) 1608 invoke_rcu_core(); 1609 } 1610 1611 /* 1612 * Keep a running count of the number of non-lazy callbacks posted 1613 * on this CPU. This running counter (which is never decremented) allows 1614 * rcu_prepare_for_idle() to detect when something out of the idle loop 1615 * posts a callback, even if an equal number of callbacks are invoked. 1616 * Of course, callbacks should only be posted from within a trace event 1617 * designed to be called from idle or from within RCU_NONIDLE(). 1618 */ 1619 static void rcu_idle_count_callbacks_posted(void) 1620 { 1621 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1622 } 1623 1624 /* 1625 * Data for flushing lazy RCU callbacks at OOM time. 1626 */ 1627 static atomic_t oom_callback_count; 1628 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1629 1630 /* 1631 * RCU OOM callback -- decrement the outstanding count and deliver the 1632 * wake-up if we are the last one. 1633 */ 1634 static void rcu_oom_callback(struct rcu_head *rhp) 1635 { 1636 if (atomic_dec_and_test(&oom_callback_count)) 1637 wake_up(&oom_callback_wq); 1638 } 1639 1640 /* 1641 * Post an rcu_oom_notify callback on the current CPU if it has at 1642 * least one lazy callback. This will unnecessarily post callbacks 1643 * to CPUs that already have a non-lazy callback at the end of their 1644 * callback list, but this is an infrequent operation, so accept some 1645 * extra overhead to keep things simple. 1646 */ 1647 static void rcu_oom_notify_cpu(void *unused) 1648 { 1649 struct rcu_state *rsp; 1650 struct rcu_data *rdp; 1651 1652 for_each_rcu_flavor(rsp) { 1653 rdp = raw_cpu_ptr(rsp->rda); 1654 if (rdp->qlen_lazy != 0) { 1655 atomic_inc(&oom_callback_count); 1656 rsp->call(&rdp->oom_head, rcu_oom_callback); 1657 } 1658 } 1659 } 1660 1661 /* 1662 * If low on memory, ensure that each CPU has a non-lazy callback. 1663 * This will wake up CPUs that have only lazy callbacks, in turn 1664 * ensuring that they free up the corresponding memory in a timely manner. 1665 * Because an uncertain amount of memory will be freed in some uncertain 1666 * timeframe, we do not claim to have freed anything. 1667 */ 1668 static int rcu_oom_notify(struct notifier_block *self, 1669 unsigned long notused, void *nfreed) 1670 { 1671 int cpu; 1672 1673 /* Wait for callbacks from earlier instance to complete. */ 1674 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1675 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1676 1677 /* 1678 * Prevent premature wakeup: ensure that all increments happen 1679 * before there is a chance of the counter reaching zero. 1680 */ 1681 atomic_set(&oom_callback_count, 1); 1682 1683 get_online_cpus(); 1684 for_each_online_cpu(cpu) { 1685 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1686 cond_resched_rcu_qs(); 1687 } 1688 put_online_cpus(); 1689 1690 /* Unconditionally decrement: no need to wake ourselves up. */ 1691 atomic_dec(&oom_callback_count); 1692 1693 return NOTIFY_OK; 1694 } 1695 1696 static struct notifier_block rcu_oom_nb = { 1697 .notifier_call = rcu_oom_notify 1698 }; 1699 1700 static int __init rcu_register_oom_notifier(void) 1701 { 1702 register_oom_notifier(&rcu_oom_nb); 1703 return 0; 1704 } 1705 early_initcall(rcu_register_oom_notifier); 1706 1707 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1708 1709 #ifdef CONFIG_RCU_CPU_STALL_INFO 1710 1711 #ifdef CONFIG_RCU_FAST_NO_HZ 1712 1713 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1714 { 1715 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1716 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1717 1718 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1719 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1720 ulong2long(nlpd), 1721 rdtp->all_lazy ? 'L' : '.', 1722 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1723 } 1724 1725 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1726 1727 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1728 { 1729 *cp = '\0'; 1730 } 1731 1732 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1733 1734 /* Initiate the stall-info list. */ 1735 static void print_cpu_stall_info_begin(void) 1736 { 1737 pr_cont("\n"); 1738 } 1739 1740 /* 1741 * Print out diagnostic information for the specified stalled CPU. 1742 * 1743 * If the specified CPU is aware of the current RCU grace period 1744 * (flavor specified by rsp), then print the number of scheduling 1745 * clock interrupts the CPU has taken during the time that it has 1746 * been aware. Otherwise, print the number of RCU grace periods 1747 * that this CPU is ignorant of, for example, "1" if the CPU was 1748 * aware of the previous grace period. 1749 * 1750 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1751 */ 1752 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1753 { 1754 char fast_no_hz[72]; 1755 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1756 struct rcu_dynticks *rdtp = rdp->dynticks; 1757 char *ticks_title; 1758 unsigned long ticks_value; 1759 1760 if (rsp->gpnum == rdp->gpnum) { 1761 ticks_title = "ticks this GP"; 1762 ticks_value = rdp->ticks_this_gp; 1763 } else { 1764 ticks_title = "GPs behind"; 1765 ticks_value = rsp->gpnum - rdp->gpnum; 1766 } 1767 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1768 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1769 cpu, ticks_value, ticks_title, 1770 atomic_read(&rdtp->dynticks) & 0xfff, 1771 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1772 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1773 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1774 fast_no_hz); 1775 } 1776 1777 /* Terminate the stall-info list. */ 1778 static void print_cpu_stall_info_end(void) 1779 { 1780 pr_err("\t"); 1781 } 1782 1783 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1784 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1785 { 1786 rdp->ticks_this_gp = 0; 1787 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1788 } 1789 1790 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1791 static void increment_cpu_stall_ticks(void) 1792 { 1793 struct rcu_state *rsp; 1794 1795 for_each_rcu_flavor(rsp) 1796 raw_cpu_inc(rsp->rda->ticks_this_gp); 1797 } 1798 1799 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1800 1801 static void print_cpu_stall_info_begin(void) 1802 { 1803 pr_cont(" {"); 1804 } 1805 1806 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1807 { 1808 pr_cont(" %d", cpu); 1809 } 1810 1811 static void print_cpu_stall_info_end(void) 1812 { 1813 pr_cont("} "); 1814 } 1815 1816 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1817 { 1818 } 1819 1820 static void increment_cpu_stall_ticks(void) 1821 { 1822 } 1823 1824 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1825 1826 #ifdef CONFIG_RCU_NOCB_CPU 1827 1828 /* 1829 * Offload callback processing from the boot-time-specified set of CPUs 1830 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1831 * kthread created that pulls the callbacks from the corresponding CPU, 1832 * waits for a grace period to elapse, and invokes the callbacks. 1833 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1834 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1835 * has been specified, in which case each kthread actively polls its 1836 * CPU. (Which isn't so great for energy efficiency, but which does 1837 * reduce RCU's overhead on that CPU.) 1838 * 1839 * This is intended to be used in conjunction with Frederic Weisbecker's 1840 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1841 * running CPU-bound user-mode computations. 1842 * 1843 * Offloading of callback processing could also in theory be used as 1844 * an energy-efficiency measure because CPUs with no RCU callbacks 1845 * queued are more aggressive about entering dyntick-idle mode. 1846 */ 1847 1848 1849 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1850 static int __init rcu_nocb_setup(char *str) 1851 { 1852 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1853 have_rcu_nocb_mask = true; 1854 cpulist_parse(str, rcu_nocb_mask); 1855 return 1; 1856 } 1857 __setup("rcu_nocbs=", rcu_nocb_setup); 1858 1859 static int __init parse_rcu_nocb_poll(char *arg) 1860 { 1861 rcu_nocb_poll = 1; 1862 return 0; 1863 } 1864 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1865 1866 /* 1867 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1868 * grace period. 1869 */ 1870 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1871 { 1872 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); 1873 } 1874 1875 /* 1876 * Set the root rcu_node structure's ->need_future_gp field 1877 * based on the sum of those of all rcu_node structures. This does 1878 * double-count the root rcu_node structure's requests, but this 1879 * is necessary to handle the possibility of a rcu_nocb_kthread() 1880 * having awakened during the time that the rcu_node structures 1881 * were being updated for the end of the previous grace period. 1882 */ 1883 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1884 { 1885 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1886 } 1887 1888 static void rcu_init_one_nocb(struct rcu_node *rnp) 1889 { 1890 init_waitqueue_head(&rnp->nocb_gp_wq[0]); 1891 init_waitqueue_head(&rnp->nocb_gp_wq[1]); 1892 } 1893 1894 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1895 /* Is the specified CPU a no-CBs CPU? */ 1896 bool rcu_is_nocb_cpu(int cpu) 1897 { 1898 if (have_rcu_nocb_mask) 1899 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1900 return false; 1901 } 1902 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1903 1904 /* 1905 * Kick the leader kthread for this NOCB group. 1906 */ 1907 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1908 { 1909 struct rcu_data *rdp_leader = rdp->nocb_leader; 1910 1911 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1912 return; 1913 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1914 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1915 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1916 wake_up(&rdp_leader->nocb_wq); 1917 } 1918 } 1919 1920 /* 1921 * Does the specified CPU need an RCU callback for the specified flavor 1922 * of rcu_barrier()? 1923 */ 1924 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1925 { 1926 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1927 unsigned long ret; 1928 #ifdef CONFIG_PROVE_RCU 1929 struct rcu_head *rhp; 1930 #endif /* #ifdef CONFIG_PROVE_RCU */ 1931 1932 /* 1933 * Check count of all no-CBs callbacks awaiting invocation. 1934 * There needs to be a barrier before this function is called, 1935 * but associated with a prior determination that no more 1936 * callbacks would be posted. In the worst case, the first 1937 * barrier in _rcu_barrier() suffices (but the caller cannot 1938 * necessarily rely on this, not a substitute for the caller 1939 * getting the concurrency design right!). There must also be 1940 * a barrier between the following load an posting of a callback 1941 * (if a callback is in fact needed). This is associated with an 1942 * atomic_inc() in the caller. 1943 */ 1944 ret = atomic_long_read(&rdp->nocb_q_count); 1945 1946 #ifdef CONFIG_PROVE_RCU 1947 rhp = READ_ONCE(rdp->nocb_head); 1948 if (!rhp) 1949 rhp = READ_ONCE(rdp->nocb_gp_head); 1950 if (!rhp) 1951 rhp = READ_ONCE(rdp->nocb_follower_head); 1952 1953 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1954 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1955 rcu_scheduler_fully_active) { 1956 /* RCU callback enqueued before CPU first came online??? */ 1957 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1958 cpu, rhp->func); 1959 WARN_ON_ONCE(1); 1960 } 1961 #endif /* #ifdef CONFIG_PROVE_RCU */ 1962 1963 return !!ret; 1964 } 1965 1966 /* 1967 * Enqueue the specified string of rcu_head structures onto the specified 1968 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1969 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1970 * counts are supplied by rhcount and rhcount_lazy. 1971 * 1972 * If warranted, also wake up the kthread servicing this CPUs queues. 1973 */ 1974 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1975 struct rcu_head *rhp, 1976 struct rcu_head **rhtp, 1977 int rhcount, int rhcount_lazy, 1978 unsigned long flags) 1979 { 1980 int len; 1981 struct rcu_head **old_rhpp; 1982 struct task_struct *t; 1983 1984 /* Enqueue the callback on the nocb list and update counts. */ 1985 atomic_long_add(rhcount, &rdp->nocb_q_count); 1986 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1987 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1988 WRITE_ONCE(*old_rhpp, rhp); 1989 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1990 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1991 1992 /* If we are not being polled and there is a kthread, awaken it ... */ 1993 t = READ_ONCE(rdp->nocb_kthread); 1994 if (rcu_nocb_poll || !t) { 1995 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1996 TPS("WakeNotPoll")); 1997 return; 1998 } 1999 len = atomic_long_read(&rdp->nocb_q_count); 2000 if (old_rhpp == &rdp->nocb_head) { 2001 if (!irqs_disabled_flags(flags)) { 2002 /* ... if queue was empty ... */ 2003 wake_nocb_leader(rdp, false); 2004 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2005 TPS("WakeEmpty")); 2006 } else { 2007 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 2008 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2009 TPS("WakeEmptyIsDeferred")); 2010 } 2011 rdp->qlen_last_fqs_check = 0; 2012 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 2013 /* ... or if many callbacks queued. */ 2014 if (!irqs_disabled_flags(flags)) { 2015 wake_nocb_leader(rdp, true); 2016 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2017 TPS("WakeOvf")); 2018 } else { 2019 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 2020 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2021 TPS("WakeOvfIsDeferred")); 2022 } 2023 rdp->qlen_last_fqs_check = LONG_MAX / 2; 2024 } else { 2025 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 2026 } 2027 return; 2028 } 2029 2030 /* 2031 * This is a helper for __call_rcu(), which invokes this when the normal 2032 * callback queue is inoperable. If this is not a no-CBs CPU, this 2033 * function returns failure back to __call_rcu(), which can complain 2034 * appropriately. 2035 * 2036 * Otherwise, this function queues the callback where the corresponding 2037 * "rcuo" kthread can find it. 2038 */ 2039 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2040 bool lazy, unsigned long flags) 2041 { 2042 2043 if (!rcu_is_nocb_cpu(rdp->cpu)) 2044 return false; 2045 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2046 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2047 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2048 (unsigned long)rhp->func, 2049 -atomic_long_read(&rdp->nocb_q_count_lazy), 2050 -atomic_long_read(&rdp->nocb_q_count)); 2051 else 2052 trace_rcu_callback(rdp->rsp->name, rhp, 2053 -atomic_long_read(&rdp->nocb_q_count_lazy), 2054 -atomic_long_read(&rdp->nocb_q_count)); 2055 2056 /* 2057 * If called from an extended quiescent state with interrupts 2058 * disabled, invoke the RCU core in order to allow the idle-entry 2059 * deferred-wakeup check to function. 2060 */ 2061 if (irqs_disabled_flags(flags) && 2062 !rcu_is_watching() && 2063 cpu_online(smp_processor_id())) 2064 invoke_rcu_core(); 2065 2066 return true; 2067 } 2068 2069 /* 2070 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2071 * not a no-CBs CPU. 2072 */ 2073 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2074 struct rcu_data *rdp, 2075 unsigned long flags) 2076 { 2077 long ql = rsp->qlen; 2078 long qll = rsp->qlen_lazy; 2079 2080 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 2081 if (!rcu_is_nocb_cpu(smp_processor_id())) 2082 return false; 2083 rsp->qlen = 0; 2084 rsp->qlen_lazy = 0; 2085 2086 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 2087 if (rsp->orphan_donelist != NULL) { 2088 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 2089 rsp->orphan_donetail, ql, qll, flags); 2090 ql = qll = 0; 2091 rsp->orphan_donelist = NULL; 2092 rsp->orphan_donetail = &rsp->orphan_donelist; 2093 } 2094 if (rsp->orphan_nxtlist != NULL) { 2095 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2096 rsp->orphan_nxttail, ql, qll, flags); 2097 ql = qll = 0; 2098 rsp->orphan_nxtlist = NULL; 2099 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2100 } 2101 return true; 2102 } 2103 2104 /* 2105 * If necessary, kick off a new grace period, and either way wait 2106 * for a subsequent grace period to complete. 2107 */ 2108 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2109 { 2110 unsigned long c; 2111 bool d; 2112 unsigned long flags; 2113 bool needwake; 2114 struct rcu_node *rnp = rdp->mynode; 2115 2116 raw_spin_lock_irqsave(&rnp->lock, flags); 2117 smp_mb__after_unlock_lock(); 2118 needwake = rcu_start_future_gp(rnp, rdp, &c); 2119 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2120 if (needwake) 2121 rcu_gp_kthread_wake(rdp->rsp); 2122 2123 /* 2124 * Wait for the grace period. Do so interruptibly to avoid messing 2125 * up the load average. 2126 */ 2127 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2128 for (;;) { 2129 wait_event_interruptible( 2130 rnp->nocb_gp_wq[c & 0x1], 2131 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2132 if (likely(d)) 2133 break; 2134 WARN_ON(signal_pending(current)); 2135 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2136 } 2137 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2138 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2139 } 2140 2141 /* 2142 * Leaders come here to wait for additional callbacks to show up. 2143 * This function does not return until callbacks appear. 2144 */ 2145 static void nocb_leader_wait(struct rcu_data *my_rdp) 2146 { 2147 bool firsttime = true; 2148 bool gotcbs; 2149 struct rcu_data *rdp; 2150 struct rcu_head **tail; 2151 2152 wait_again: 2153 2154 /* Wait for callbacks to appear. */ 2155 if (!rcu_nocb_poll) { 2156 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2157 wait_event_interruptible(my_rdp->nocb_wq, 2158 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2159 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2160 } else if (firsttime) { 2161 firsttime = false; /* Don't drown trace log with "Poll"! */ 2162 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2163 } 2164 2165 /* 2166 * Each pass through the following loop checks a follower for CBs. 2167 * We are our own first follower. Any CBs found are moved to 2168 * nocb_gp_head, where they await a grace period. 2169 */ 2170 gotcbs = false; 2171 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2172 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2173 if (!rdp->nocb_gp_head) 2174 continue; /* No CBs here, try next follower. */ 2175 2176 /* Move callbacks to wait-for-GP list, which is empty. */ 2177 WRITE_ONCE(rdp->nocb_head, NULL); 2178 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2179 gotcbs = true; 2180 } 2181 2182 /* 2183 * If there were no callbacks, sleep a bit, rescan after a 2184 * memory barrier, and go retry. 2185 */ 2186 if (unlikely(!gotcbs)) { 2187 if (!rcu_nocb_poll) 2188 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2189 "WokeEmpty"); 2190 WARN_ON(signal_pending(current)); 2191 schedule_timeout_interruptible(1); 2192 2193 /* Rescan in case we were a victim of memory ordering. */ 2194 my_rdp->nocb_leader_sleep = true; 2195 smp_mb(); /* Ensure _sleep true before scan. */ 2196 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2197 if (READ_ONCE(rdp->nocb_head)) { 2198 /* Found CB, so short-circuit next wait. */ 2199 my_rdp->nocb_leader_sleep = false; 2200 break; 2201 } 2202 goto wait_again; 2203 } 2204 2205 /* Wait for one grace period. */ 2206 rcu_nocb_wait_gp(my_rdp); 2207 2208 /* 2209 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2210 * We set it now, but recheck for new callbacks while 2211 * traversing our follower list. 2212 */ 2213 my_rdp->nocb_leader_sleep = true; 2214 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2215 2216 /* Each pass through the following loop wakes a follower, if needed. */ 2217 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2218 if (READ_ONCE(rdp->nocb_head)) 2219 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2220 if (!rdp->nocb_gp_head) 2221 continue; /* No CBs, so no need to wake follower. */ 2222 2223 /* Append callbacks to follower's "done" list. */ 2224 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2225 *tail = rdp->nocb_gp_head; 2226 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2227 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2228 /* 2229 * List was empty, wake up the follower. 2230 * Memory barriers supplied by atomic_long_add(). 2231 */ 2232 wake_up(&rdp->nocb_wq); 2233 } 2234 } 2235 2236 /* If we (the leader) don't have CBs, go wait some more. */ 2237 if (!my_rdp->nocb_follower_head) 2238 goto wait_again; 2239 } 2240 2241 /* 2242 * Followers come here to wait for additional callbacks to show up. 2243 * This function does not return until callbacks appear. 2244 */ 2245 static void nocb_follower_wait(struct rcu_data *rdp) 2246 { 2247 bool firsttime = true; 2248 2249 for (;;) { 2250 if (!rcu_nocb_poll) { 2251 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2252 "FollowerSleep"); 2253 wait_event_interruptible(rdp->nocb_wq, 2254 READ_ONCE(rdp->nocb_follower_head)); 2255 } else if (firsttime) { 2256 /* Don't drown trace log with "Poll"! */ 2257 firsttime = false; 2258 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2259 } 2260 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2261 /* ^^^ Ensure CB invocation follows _head test. */ 2262 return; 2263 } 2264 if (!rcu_nocb_poll) 2265 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2266 "WokeEmpty"); 2267 WARN_ON(signal_pending(current)); 2268 schedule_timeout_interruptible(1); 2269 } 2270 } 2271 2272 /* 2273 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2274 * callbacks queued by the corresponding no-CBs CPU, however, there is 2275 * an optional leader-follower relationship so that the grace-period 2276 * kthreads don't have to do quite so many wakeups. 2277 */ 2278 static int rcu_nocb_kthread(void *arg) 2279 { 2280 int c, cl; 2281 struct rcu_head *list; 2282 struct rcu_head *next; 2283 struct rcu_head **tail; 2284 struct rcu_data *rdp = arg; 2285 2286 /* Each pass through this loop invokes one batch of callbacks */ 2287 for (;;) { 2288 /* Wait for callbacks. */ 2289 if (rdp->nocb_leader == rdp) 2290 nocb_leader_wait(rdp); 2291 else 2292 nocb_follower_wait(rdp); 2293 2294 /* Pull the ready-to-invoke callbacks onto local list. */ 2295 list = READ_ONCE(rdp->nocb_follower_head); 2296 BUG_ON(!list); 2297 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2298 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2299 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2300 2301 /* Each pass through the following loop invokes a callback. */ 2302 trace_rcu_batch_start(rdp->rsp->name, 2303 atomic_long_read(&rdp->nocb_q_count_lazy), 2304 atomic_long_read(&rdp->nocb_q_count), -1); 2305 c = cl = 0; 2306 while (list) { 2307 next = list->next; 2308 /* Wait for enqueuing to complete, if needed. */ 2309 while (next == NULL && &list->next != tail) { 2310 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2311 TPS("WaitQueue")); 2312 schedule_timeout_interruptible(1); 2313 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2314 TPS("WokeQueue")); 2315 next = list->next; 2316 } 2317 debug_rcu_head_unqueue(list); 2318 local_bh_disable(); 2319 if (__rcu_reclaim(rdp->rsp->name, list)) 2320 cl++; 2321 c++; 2322 local_bh_enable(); 2323 list = next; 2324 } 2325 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2326 smp_mb__before_atomic(); /* _add after CB invocation. */ 2327 atomic_long_add(-c, &rdp->nocb_q_count); 2328 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2329 rdp->n_nocbs_invoked += c; 2330 } 2331 return 0; 2332 } 2333 2334 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2335 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2336 { 2337 return READ_ONCE(rdp->nocb_defer_wakeup); 2338 } 2339 2340 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2341 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2342 { 2343 int ndw; 2344 2345 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2346 return; 2347 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2348 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); 2349 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2350 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2351 } 2352 2353 void __init rcu_init_nohz(void) 2354 { 2355 int cpu; 2356 bool need_rcu_nocb_mask = true; 2357 struct rcu_state *rsp; 2358 2359 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2360 need_rcu_nocb_mask = false; 2361 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2362 2363 #if defined(CONFIG_NO_HZ_FULL) 2364 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2365 need_rcu_nocb_mask = true; 2366 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2367 2368 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2369 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2370 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2371 return; 2372 } 2373 have_rcu_nocb_mask = true; 2374 } 2375 if (!have_rcu_nocb_mask) 2376 return; 2377 2378 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2379 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2380 cpumask_set_cpu(0, rcu_nocb_mask); 2381 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2382 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2383 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2384 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2385 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2386 #if defined(CONFIG_NO_HZ_FULL) 2387 if (tick_nohz_full_running) 2388 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2389 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2390 2391 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2392 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2393 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2394 rcu_nocb_mask); 2395 } 2396 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2397 cpumask_pr_args(rcu_nocb_mask)); 2398 if (rcu_nocb_poll) 2399 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2400 2401 for_each_rcu_flavor(rsp) { 2402 for_each_cpu(cpu, rcu_nocb_mask) 2403 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2404 rcu_organize_nocb_kthreads(rsp); 2405 } 2406 } 2407 2408 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2409 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2410 { 2411 rdp->nocb_tail = &rdp->nocb_head; 2412 init_waitqueue_head(&rdp->nocb_wq); 2413 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2414 } 2415 2416 /* 2417 * If the specified CPU is a no-CBs CPU that does not already have its 2418 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2419 * brought online out of order, this can require re-organizing the 2420 * leader-follower relationships. 2421 */ 2422 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2423 { 2424 struct rcu_data *rdp; 2425 struct rcu_data *rdp_last; 2426 struct rcu_data *rdp_old_leader; 2427 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2428 struct task_struct *t; 2429 2430 /* 2431 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2432 * then nothing to do. 2433 */ 2434 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2435 return; 2436 2437 /* If we didn't spawn the leader first, reorganize! */ 2438 rdp_old_leader = rdp_spawn->nocb_leader; 2439 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2440 rdp_last = NULL; 2441 rdp = rdp_old_leader; 2442 do { 2443 rdp->nocb_leader = rdp_spawn; 2444 if (rdp_last && rdp != rdp_spawn) 2445 rdp_last->nocb_next_follower = rdp; 2446 if (rdp == rdp_spawn) { 2447 rdp = rdp->nocb_next_follower; 2448 } else { 2449 rdp_last = rdp; 2450 rdp = rdp->nocb_next_follower; 2451 rdp_last->nocb_next_follower = NULL; 2452 } 2453 } while (rdp); 2454 rdp_spawn->nocb_next_follower = rdp_old_leader; 2455 } 2456 2457 /* Spawn the kthread for this CPU and RCU flavor. */ 2458 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2459 "rcuo%c/%d", rsp->abbr, cpu); 2460 BUG_ON(IS_ERR(t)); 2461 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2462 } 2463 2464 /* 2465 * If the specified CPU is a no-CBs CPU that does not already have its 2466 * rcuo kthreads, spawn them. 2467 */ 2468 static void rcu_spawn_all_nocb_kthreads(int cpu) 2469 { 2470 struct rcu_state *rsp; 2471 2472 if (rcu_scheduler_fully_active) 2473 for_each_rcu_flavor(rsp) 2474 rcu_spawn_one_nocb_kthread(rsp, cpu); 2475 } 2476 2477 /* 2478 * Once the scheduler is running, spawn rcuo kthreads for all online 2479 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2480 * non-boot CPUs come online -- if this changes, we will need to add 2481 * some mutual exclusion. 2482 */ 2483 static void __init rcu_spawn_nocb_kthreads(void) 2484 { 2485 int cpu; 2486 2487 for_each_online_cpu(cpu) 2488 rcu_spawn_all_nocb_kthreads(cpu); 2489 } 2490 2491 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2492 static int rcu_nocb_leader_stride = -1; 2493 module_param(rcu_nocb_leader_stride, int, 0444); 2494 2495 /* 2496 * Initialize leader-follower relationships for all no-CBs CPU. 2497 */ 2498 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2499 { 2500 int cpu; 2501 int ls = rcu_nocb_leader_stride; 2502 int nl = 0; /* Next leader. */ 2503 struct rcu_data *rdp; 2504 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2505 struct rcu_data *rdp_prev = NULL; 2506 2507 if (!have_rcu_nocb_mask) 2508 return; 2509 if (ls == -1) { 2510 ls = int_sqrt(nr_cpu_ids); 2511 rcu_nocb_leader_stride = ls; 2512 } 2513 2514 /* 2515 * Each pass through this loop sets up one rcu_data structure and 2516 * spawns one rcu_nocb_kthread(). 2517 */ 2518 for_each_cpu(cpu, rcu_nocb_mask) { 2519 rdp = per_cpu_ptr(rsp->rda, cpu); 2520 if (rdp->cpu >= nl) { 2521 /* New leader, set up for followers & next leader. */ 2522 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2523 rdp->nocb_leader = rdp; 2524 rdp_leader = rdp; 2525 } else { 2526 /* Another follower, link to previous leader. */ 2527 rdp->nocb_leader = rdp_leader; 2528 rdp_prev->nocb_next_follower = rdp; 2529 } 2530 rdp_prev = rdp; 2531 } 2532 } 2533 2534 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2535 static bool init_nocb_callback_list(struct rcu_data *rdp) 2536 { 2537 if (!rcu_is_nocb_cpu(rdp->cpu)) 2538 return false; 2539 2540 /* If there are early-boot callbacks, move them to nocb lists. */ 2541 if (rdp->nxtlist) { 2542 rdp->nocb_head = rdp->nxtlist; 2543 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; 2544 atomic_long_set(&rdp->nocb_q_count, rdp->qlen); 2545 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); 2546 rdp->nxtlist = NULL; 2547 rdp->qlen = 0; 2548 rdp->qlen_lazy = 0; 2549 } 2550 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2551 return true; 2552 } 2553 2554 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2555 2556 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2557 { 2558 WARN_ON_ONCE(1); /* Should be dead code. */ 2559 return false; 2560 } 2561 2562 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2563 { 2564 } 2565 2566 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2567 { 2568 } 2569 2570 static void rcu_init_one_nocb(struct rcu_node *rnp) 2571 { 2572 } 2573 2574 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2575 bool lazy, unsigned long flags) 2576 { 2577 return false; 2578 } 2579 2580 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2581 struct rcu_data *rdp, 2582 unsigned long flags) 2583 { 2584 return false; 2585 } 2586 2587 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2588 { 2589 } 2590 2591 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2592 { 2593 return false; 2594 } 2595 2596 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2597 { 2598 } 2599 2600 static void rcu_spawn_all_nocb_kthreads(int cpu) 2601 { 2602 } 2603 2604 static void __init rcu_spawn_nocb_kthreads(void) 2605 { 2606 } 2607 2608 static bool init_nocb_callback_list(struct rcu_data *rdp) 2609 { 2610 return false; 2611 } 2612 2613 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2614 2615 /* 2616 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2617 * arbitrarily long period of time with the scheduling-clock tick turned 2618 * off. RCU will be paying attention to this CPU because it is in the 2619 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2620 * machine because the scheduling-clock tick has been disabled. Therefore, 2621 * if an adaptive-ticks CPU is failing to respond to the current grace 2622 * period and has not be idle from an RCU perspective, kick it. 2623 */ 2624 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2625 { 2626 #ifdef CONFIG_NO_HZ_FULL 2627 if (tick_nohz_full_cpu(cpu)) 2628 smp_send_reschedule(cpu); 2629 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2630 } 2631 2632 2633 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2634 2635 static int full_sysidle_state; /* Current system-idle state. */ 2636 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2637 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2638 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2639 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2640 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2641 2642 /* 2643 * Invoked to note exit from irq or task transition to idle. Note that 2644 * usermode execution does -not- count as idle here! After all, we want 2645 * to detect full-system idle states, not RCU quiescent states and grace 2646 * periods. The caller must have disabled interrupts. 2647 */ 2648 static void rcu_sysidle_enter(int irq) 2649 { 2650 unsigned long j; 2651 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2652 2653 /* If there are no nohz_full= CPUs, no need to track this. */ 2654 if (!tick_nohz_full_enabled()) 2655 return; 2656 2657 /* Adjust nesting, check for fully idle. */ 2658 if (irq) { 2659 rdtp->dynticks_idle_nesting--; 2660 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2661 if (rdtp->dynticks_idle_nesting != 0) 2662 return; /* Still not fully idle. */ 2663 } else { 2664 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2665 DYNTICK_TASK_NEST_VALUE) { 2666 rdtp->dynticks_idle_nesting = 0; 2667 } else { 2668 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2669 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2670 return; /* Still not fully idle. */ 2671 } 2672 } 2673 2674 /* Record start of fully idle period. */ 2675 j = jiffies; 2676 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); 2677 smp_mb__before_atomic(); 2678 atomic_inc(&rdtp->dynticks_idle); 2679 smp_mb__after_atomic(); 2680 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2681 } 2682 2683 /* 2684 * Unconditionally force exit from full system-idle state. This is 2685 * invoked when a normal CPU exits idle, but must be called separately 2686 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2687 * is that the timekeeping CPU is permitted to take scheduling-clock 2688 * interrupts while the system is in system-idle state, and of course 2689 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2690 * interrupt from any other type of interrupt. 2691 */ 2692 void rcu_sysidle_force_exit(void) 2693 { 2694 int oldstate = READ_ONCE(full_sysidle_state); 2695 int newoldstate; 2696 2697 /* 2698 * Each pass through the following loop attempts to exit full 2699 * system-idle state. If contention proves to be a problem, 2700 * a trylock-based contention tree could be used here. 2701 */ 2702 while (oldstate > RCU_SYSIDLE_SHORT) { 2703 newoldstate = cmpxchg(&full_sysidle_state, 2704 oldstate, RCU_SYSIDLE_NOT); 2705 if (oldstate == newoldstate && 2706 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2707 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2708 return; /* We cleared it, done! */ 2709 } 2710 oldstate = newoldstate; 2711 } 2712 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2713 } 2714 2715 /* 2716 * Invoked to note entry to irq or task transition from idle. Note that 2717 * usermode execution does -not- count as idle here! The caller must 2718 * have disabled interrupts. 2719 */ 2720 static void rcu_sysidle_exit(int irq) 2721 { 2722 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2723 2724 /* If there are no nohz_full= CPUs, no need to track this. */ 2725 if (!tick_nohz_full_enabled()) 2726 return; 2727 2728 /* Adjust nesting, check for already non-idle. */ 2729 if (irq) { 2730 rdtp->dynticks_idle_nesting++; 2731 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2732 if (rdtp->dynticks_idle_nesting != 1) 2733 return; /* Already non-idle. */ 2734 } else { 2735 /* 2736 * Allow for irq misnesting. Yes, it really is possible 2737 * to enter an irq handler then never leave it, and maybe 2738 * also vice versa. Handle both possibilities. 2739 */ 2740 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2741 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2742 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2743 return; /* Already non-idle. */ 2744 } else { 2745 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2746 } 2747 } 2748 2749 /* Record end of idle period. */ 2750 smp_mb__before_atomic(); 2751 atomic_inc(&rdtp->dynticks_idle); 2752 smp_mb__after_atomic(); 2753 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2754 2755 /* 2756 * If we are the timekeeping CPU, we are permitted to be non-idle 2757 * during a system-idle state. This must be the case, because 2758 * the timekeeping CPU has to take scheduling-clock interrupts 2759 * during the time that the system is transitioning to full 2760 * system-idle state. This means that the timekeeping CPU must 2761 * invoke rcu_sysidle_force_exit() directly if it does anything 2762 * more than take a scheduling-clock interrupt. 2763 */ 2764 if (smp_processor_id() == tick_do_timer_cpu) 2765 return; 2766 2767 /* Update system-idle state: We are clearly no longer fully idle! */ 2768 rcu_sysidle_force_exit(); 2769 } 2770 2771 /* 2772 * Check to see if the current CPU is idle. Note that usermode execution 2773 * does not count as idle. The caller must have disabled interrupts, 2774 * and must be running on tick_do_timer_cpu. 2775 */ 2776 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2777 unsigned long *maxj) 2778 { 2779 int cur; 2780 unsigned long j; 2781 struct rcu_dynticks *rdtp = rdp->dynticks; 2782 2783 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2784 if (!tick_nohz_full_enabled()) 2785 return; 2786 2787 /* 2788 * If some other CPU has already reported non-idle, if this is 2789 * not the flavor of RCU that tracks sysidle state, or if this 2790 * is an offline or the timekeeping CPU, nothing to do. 2791 */ 2792 if (!*isidle || rdp->rsp != rcu_state_p || 2793 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2794 return; 2795 /* Verify affinity of current kthread. */ 2796 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2797 2798 /* Pick up current idle and NMI-nesting counter and check. */ 2799 cur = atomic_read(&rdtp->dynticks_idle); 2800 if (cur & 0x1) { 2801 *isidle = false; /* We are not idle! */ 2802 return; 2803 } 2804 smp_mb(); /* Read counters before timestamps. */ 2805 2806 /* Pick up timestamps. */ 2807 j = READ_ONCE(rdtp->dynticks_idle_jiffies); 2808 /* If this CPU entered idle more recently, update maxj timestamp. */ 2809 if (ULONG_CMP_LT(*maxj, j)) 2810 *maxj = j; 2811 } 2812 2813 /* 2814 * Is this the flavor of RCU that is handling full-system idle? 2815 */ 2816 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2817 { 2818 return rsp == rcu_state_p; 2819 } 2820 2821 /* 2822 * Return a delay in jiffies based on the number of CPUs, rcu_node 2823 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2824 * systems more time to transition to full-idle state in order to 2825 * avoid the cache thrashing that otherwise occur on the state variable. 2826 * Really small systems (less than a couple of tens of CPUs) should 2827 * instead use a single global atomically incremented counter, and later 2828 * versions of this will automatically reconfigure themselves accordingly. 2829 */ 2830 static unsigned long rcu_sysidle_delay(void) 2831 { 2832 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2833 return 0; 2834 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2835 } 2836 2837 /* 2838 * Advance the full-system-idle state. This is invoked when all of 2839 * the non-timekeeping CPUs are idle. 2840 */ 2841 static void rcu_sysidle(unsigned long j) 2842 { 2843 /* Check the current state. */ 2844 switch (READ_ONCE(full_sysidle_state)) { 2845 case RCU_SYSIDLE_NOT: 2846 2847 /* First time all are idle, so note a short idle period. */ 2848 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); 2849 break; 2850 2851 case RCU_SYSIDLE_SHORT: 2852 2853 /* 2854 * Idle for a bit, time to advance to next state? 2855 * cmpxchg failure means race with non-idle, let them win. 2856 */ 2857 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2858 (void)cmpxchg(&full_sysidle_state, 2859 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2860 break; 2861 2862 case RCU_SYSIDLE_LONG: 2863 2864 /* 2865 * Do an additional check pass before advancing to full. 2866 * cmpxchg failure means race with non-idle, let them win. 2867 */ 2868 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2869 (void)cmpxchg(&full_sysidle_state, 2870 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2871 break; 2872 2873 default: 2874 break; 2875 } 2876 } 2877 2878 /* 2879 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2880 * back to the beginning. 2881 */ 2882 static void rcu_sysidle_cancel(void) 2883 { 2884 smp_mb(); 2885 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2886 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); 2887 } 2888 2889 /* 2890 * Update the sysidle state based on the results of a force-quiescent-state 2891 * scan of the CPUs' dyntick-idle state. 2892 */ 2893 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2894 unsigned long maxj, bool gpkt) 2895 { 2896 if (rsp != rcu_state_p) 2897 return; /* Wrong flavor, ignore. */ 2898 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2899 return; /* Running state machine from timekeeping CPU. */ 2900 if (isidle) 2901 rcu_sysidle(maxj); /* More idle! */ 2902 else 2903 rcu_sysidle_cancel(); /* Idle is over. */ 2904 } 2905 2906 /* 2907 * Wrapper for rcu_sysidle_report() when called from the grace-period 2908 * kthread's context. 2909 */ 2910 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2911 unsigned long maxj) 2912 { 2913 /* If there are no nohz_full= CPUs, no need to track this. */ 2914 if (!tick_nohz_full_enabled()) 2915 return; 2916 2917 rcu_sysidle_report(rsp, isidle, maxj, true); 2918 } 2919 2920 /* Callback and function for forcing an RCU grace period. */ 2921 struct rcu_sysidle_head { 2922 struct rcu_head rh; 2923 int inuse; 2924 }; 2925 2926 static void rcu_sysidle_cb(struct rcu_head *rhp) 2927 { 2928 struct rcu_sysidle_head *rshp; 2929 2930 /* 2931 * The following memory barrier is needed to replace the 2932 * memory barriers that would normally be in the memory 2933 * allocator. 2934 */ 2935 smp_mb(); /* grace period precedes setting inuse. */ 2936 2937 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2938 WRITE_ONCE(rshp->inuse, 0); 2939 } 2940 2941 /* 2942 * Check to see if the system is fully idle, other than the timekeeping CPU. 2943 * The caller must have disabled interrupts. This is not intended to be 2944 * called unless tick_nohz_full_enabled(). 2945 */ 2946 bool rcu_sys_is_idle(void) 2947 { 2948 static struct rcu_sysidle_head rsh; 2949 int rss = READ_ONCE(full_sysidle_state); 2950 2951 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2952 return false; 2953 2954 /* Handle small-system case by doing a full scan of CPUs. */ 2955 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2956 int oldrss = rss - 1; 2957 2958 /* 2959 * One pass to advance to each state up to _FULL. 2960 * Give up if any pass fails to advance the state. 2961 */ 2962 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2963 int cpu; 2964 bool isidle = true; 2965 unsigned long maxj = jiffies - ULONG_MAX / 4; 2966 struct rcu_data *rdp; 2967 2968 /* Scan all the CPUs looking for nonidle CPUs. */ 2969 for_each_possible_cpu(cpu) { 2970 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2971 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2972 if (!isidle) 2973 break; 2974 } 2975 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2976 oldrss = rss; 2977 rss = READ_ONCE(full_sysidle_state); 2978 } 2979 } 2980 2981 /* If this is the first observation of an idle period, record it. */ 2982 if (rss == RCU_SYSIDLE_FULL) { 2983 rss = cmpxchg(&full_sysidle_state, 2984 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2985 return rss == RCU_SYSIDLE_FULL; 2986 } 2987 2988 smp_mb(); /* ensure rss load happens before later caller actions. */ 2989 2990 /* If already fully idle, tell the caller (in case of races). */ 2991 if (rss == RCU_SYSIDLE_FULL_NOTED) 2992 return true; 2993 2994 /* 2995 * If we aren't there yet, and a grace period is not in flight, 2996 * initiate a grace period. Either way, tell the caller that 2997 * we are not there yet. We use an xchg() rather than an assignment 2998 * to make up for the memory barriers that would otherwise be 2999 * provided by the memory allocator. 3000 */ 3001 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 3002 !rcu_gp_in_progress(rcu_state_p) && 3003 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 3004 call_rcu(&rsh.rh, rcu_sysidle_cb); 3005 return false; 3006 } 3007 3008 /* 3009 * Initialize dynticks sysidle state for CPUs coming online. 3010 */ 3011 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3012 { 3013 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 3014 } 3015 3016 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3017 3018 static void rcu_sysidle_enter(int irq) 3019 { 3020 } 3021 3022 static void rcu_sysidle_exit(int irq) 3023 { 3024 } 3025 3026 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 3027 unsigned long *maxj) 3028 { 3029 } 3030 3031 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 3032 { 3033 return false; 3034 } 3035 3036 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 3037 unsigned long maxj) 3038 { 3039 } 3040 3041 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3042 { 3043 } 3044 3045 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3046 3047 /* 3048 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 3049 * grace-period kthread will do force_quiescent_state() processing? 3050 * The idea is to avoid waking up RCU core processing on such a 3051 * CPU unless the grace period has extended for too long. 3052 * 3053 * This code relies on the fact that all NO_HZ_FULL CPUs are also 3054 * CONFIG_RCU_NOCB_CPU CPUs. 3055 */ 3056 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 3057 { 3058 #ifdef CONFIG_NO_HZ_FULL 3059 if (tick_nohz_full_cpu(smp_processor_id()) && 3060 (!rcu_gp_in_progress(rsp) || 3061 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 3062 return true; 3063 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 3064 return false; 3065 } 3066 3067 /* 3068 * Bind the grace-period kthread for the sysidle flavor of RCU to the 3069 * timekeeping CPU. 3070 */ 3071 static void rcu_bind_gp_kthread(void) 3072 { 3073 int __maybe_unused cpu; 3074 3075 if (!tick_nohz_full_enabled()) 3076 return; 3077 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 3078 cpu = tick_do_timer_cpu; 3079 if (cpu >= 0 && cpu < nr_cpu_ids) 3080 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 3081 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3082 housekeeping_affine(current); 3083 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3084 } 3085 3086 /* Record the current task on dyntick-idle entry. */ 3087 static void rcu_dynticks_task_enter(void) 3088 { 3089 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3090 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 3091 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3092 } 3093 3094 /* Record no current task on dyntick-idle exit. */ 3095 static void rcu_dynticks_task_exit(void) 3096 { 3097 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3098 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 3099 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3100 } 3101