1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <linux/sched/isolation.h> 33 #include <uapi/linux/sched/types.h> 34 #include "../time/tick-internal.h" 35 36 #ifdef CONFIG_RCU_BOOST 37 38 #include "../locking/rtmutex_common.h" 39 40 /* 41 * Control variables for per-CPU and per-rcu_node kthreads. These 42 * handle all flavors of RCU. 43 */ 44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 47 DEFINE_PER_CPU(char, rcu_cpu_has_work); 48 49 #else /* #ifdef CONFIG_RCU_BOOST */ 50 51 /* 52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 53 * all uses are in dead code. Provide a definition to keep the compiler 54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 55 * This probably needs to be excluded from -rt builds. 56 */ 57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1) 59 60 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 61 62 #ifdef CONFIG_RCU_NOCB_CPU 63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 64 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 66 67 /* 68 * Check the RCU kernel configuration parameters and print informative 69 * messages about anything out of the ordinary. 70 */ 71 static void __init rcu_bootup_announce_oddness(void) 72 { 73 if (IS_ENABLED(CONFIG_RCU_TRACE)) 74 pr_info("\tRCU event tracing is enabled.\n"); 75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 78 RCU_FANOUT); 79 if (rcu_fanout_exact) 80 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 83 if (IS_ENABLED(CONFIG_PROVE_RCU)) 84 pr_info("\tRCU lockdep checking is enabled.\n"); 85 if (RCU_NUM_LVLS >= 4) 86 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 87 if (RCU_FANOUT_LEAF != 16) 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 89 RCU_FANOUT_LEAF); 90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 92 rcu_fanout_leaf); 93 if (nr_cpu_ids != NR_CPUS) 94 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 95 #ifdef CONFIG_RCU_BOOST 96 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 97 kthread_prio, CONFIG_RCU_BOOST_DELAY); 98 #endif 99 if (blimit != DEFAULT_RCU_BLIMIT) 100 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 101 if (qhimark != DEFAULT_RCU_QHIMARK) 102 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 103 if (qlowmark != DEFAULT_RCU_QLOMARK) 104 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 105 if (jiffies_till_first_fqs != ULONG_MAX) 106 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 107 if (jiffies_till_next_fqs != ULONG_MAX) 108 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 109 if (rcu_kick_kthreads) 110 pr_info("\tKick kthreads if too-long grace period.\n"); 111 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 112 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 113 if (gp_preinit_delay) 114 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 115 if (gp_init_delay) 116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 117 if (gp_cleanup_delay) 118 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 119 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 120 pr_info("\tRCU debug extended QS entry/exit.\n"); 121 rcupdate_announce_bootup_oddness(); 122 } 123 124 #ifdef CONFIG_PREEMPT_RCU 125 126 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 127 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 128 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 129 130 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 131 bool wake); 132 static void rcu_read_unlock_special(struct task_struct *t); 133 134 /* 135 * Tell them what RCU they are running. 136 */ 137 static void __init rcu_bootup_announce(void) 138 { 139 pr_info("Preemptible hierarchical RCU implementation.\n"); 140 rcu_bootup_announce_oddness(); 141 } 142 143 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 144 #define RCU_GP_TASKS 0x8 145 #define RCU_EXP_TASKS 0x4 146 #define RCU_GP_BLKD 0x2 147 #define RCU_EXP_BLKD 0x1 148 149 /* 150 * Queues a task preempted within an RCU-preempt read-side critical 151 * section into the appropriate location within the ->blkd_tasks list, 152 * depending on the states of any ongoing normal and expedited grace 153 * periods. The ->gp_tasks pointer indicates which element the normal 154 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 155 * indicates which element the expedited grace period is waiting on (again, 156 * NULL if none). If a grace period is waiting on a given element in the 157 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 158 * adding a task to the tail of the list blocks any grace period that is 159 * already waiting on one of the elements. In contrast, adding a task 160 * to the head of the list won't block any grace period that is already 161 * waiting on one of the elements. 162 * 163 * This queuing is imprecise, and can sometimes make an ongoing grace 164 * period wait for a task that is not strictly speaking blocking it. 165 * Given the choice, we needlessly block a normal grace period rather than 166 * blocking an expedited grace period. 167 * 168 * Note that an endless sequence of expedited grace periods still cannot 169 * indefinitely postpone a normal grace period. Eventually, all of the 170 * fixed number of preempted tasks blocking the normal grace period that are 171 * not also blocking the expedited grace period will resume and complete 172 * their RCU read-side critical sections. At that point, the ->gp_tasks 173 * pointer will equal the ->exp_tasks pointer, at which point the end of 174 * the corresponding expedited grace period will also be the end of the 175 * normal grace period. 176 */ 177 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 178 __releases(rnp->lock) /* But leaves rrupts disabled. */ 179 { 180 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 181 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 182 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 183 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 184 struct task_struct *t = current; 185 186 raw_lockdep_assert_held_rcu_node(rnp); 187 WARN_ON_ONCE(rdp->mynode != rnp); 188 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 189 /* RCU better not be waiting on newly onlined CPUs! */ 190 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 191 rdp->grpmask); 192 193 /* 194 * Decide where to queue the newly blocked task. In theory, 195 * this could be an if-statement. In practice, when I tried 196 * that, it was quite messy. 197 */ 198 switch (blkd_state) { 199 case 0: 200 case RCU_EXP_TASKS: 201 case RCU_EXP_TASKS + RCU_GP_BLKD: 202 case RCU_GP_TASKS: 203 case RCU_GP_TASKS + RCU_EXP_TASKS: 204 205 /* 206 * Blocking neither GP, or first task blocking the normal 207 * GP but not blocking the already-waiting expedited GP. 208 * Queue at the head of the list to avoid unnecessarily 209 * blocking the already-waiting GPs. 210 */ 211 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 212 break; 213 214 case RCU_EXP_BLKD: 215 case RCU_GP_BLKD: 216 case RCU_GP_BLKD + RCU_EXP_BLKD: 217 case RCU_GP_TASKS + RCU_EXP_BLKD: 218 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 219 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 220 221 /* 222 * First task arriving that blocks either GP, or first task 223 * arriving that blocks the expedited GP (with the normal 224 * GP already waiting), or a task arriving that blocks 225 * both GPs with both GPs already waiting. Queue at the 226 * tail of the list to avoid any GP waiting on any of the 227 * already queued tasks that are not blocking it. 228 */ 229 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 230 break; 231 232 case RCU_EXP_TASKS + RCU_EXP_BLKD: 233 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 234 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 235 236 /* 237 * Second or subsequent task blocking the expedited GP. 238 * The task either does not block the normal GP, or is the 239 * first task blocking the normal GP. Queue just after 240 * the first task blocking the expedited GP. 241 */ 242 list_add(&t->rcu_node_entry, rnp->exp_tasks); 243 break; 244 245 case RCU_GP_TASKS + RCU_GP_BLKD: 246 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 247 248 /* 249 * Second or subsequent task blocking the normal GP. 250 * The task does not block the expedited GP. Queue just 251 * after the first task blocking the normal GP. 252 */ 253 list_add(&t->rcu_node_entry, rnp->gp_tasks); 254 break; 255 256 default: 257 258 /* Yet another exercise in excessive paranoia. */ 259 WARN_ON_ONCE(1); 260 break; 261 } 262 263 /* 264 * We have now queued the task. If it was the first one to 265 * block either grace period, update the ->gp_tasks and/or 266 * ->exp_tasks pointers, respectively, to reference the newly 267 * blocked tasks. 268 */ 269 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 270 rnp->gp_tasks = &t->rcu_node_entry; 271 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 272 } 273 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 274 rnp->exp_tasks = &t->rcu_node_entry; 275 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 276 !(rnp->qsmask & rdp->grpmask)); 277 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 278 !(rnp->expmask & rdp->grpmask)); 279 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 280 281 /* 282 * Report the quiescent state for the expedited GP. This expedited 283 * GP should not be able to end until we report, so there should be 284 * no need to check for a subsequent expedited GP. (Though we are 285 * still in a quiescent state in any case.) 286 */ 287 if (blkd_state & RCU_EXP_BLKD && 288 t->rcu_read_unlock_special.b.exp_need_qs) { 289 t->rcu_read_unlock_special.b.exp_need_qs = false; 290 rcu_report_exp_rdp(rdp->rsp, rdp, true); 291 } else { 292 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 293 } 294 } 295 296 /* 297 * Record a preemptible-RCU quiescent state for the specified CPU. 298 * Note that this does not necessarily mean that the task currently running 299 * on the CPU is in a quiescent state: Instead, it means that the current 300 * grace period need not wait on any RCU read-side critical section that 301 * starts later on this CPU. It also means that if the current task is 302 * in an RCU read-side critical section, it has already added itself to 303 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 304 * current task, there might be any number of other tasks blocked while 305 * in an RCU read-side critical section. 306 * 307 * Callers to this function must disable preemption. 308 */ 309 static void rcu_preempt_qs(void) 310 { 311 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n"); 312 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 313 trace_rcu_grace_period(TPS("rcu_preempt"), 314 __this_cpu_read(rcu_data_p->gp_seq), 315 TPS("cpuqs")); 316 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 317 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 318 current->rcu_read_unlock_special.b.need_qs = false; 319 } 320 } 321 322 /* 323 * We have entered the scheduler, and the current task might soon be 324 * context-switched away from. If this task is in an RCU read-side 325 * critical section, we will no longer be able to rely on the CPU to 326 * record that fact, so we enqueue the task on the blkd_tasks list. 327 * The task will dequeue itself when it exits the outermost enclosing 328 * RCU read-side critical section. Therefore, the current grace period 329 * cannot be permitted to complete until the blkd_tasks list entries 330 * predating the current grace period drain, in other words, until 331 * rnp->gp_tasks becomes NULL. 332 * 333 * Caller must disable interrupts. 334 */ 335 static void rcu_preempt_note_context_switch(bool preempt) 336 { 337 struct task_struct *t = current; 338 struct rcu_data *rdp; 339 struct rcu_node *rnp; 340 341 lockdep_assert_irqs_disabled(); 342 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); 343 if (t->rcu_read_lock_nesting > 0 && 344 !t->rcu_read_unlock_special.b.blocked) { 345 346 /* Possibly blocking in an RCU read-side critical section. */ 347 rdp = this_cpu_ptr(rcu_state_p->rda); 348 rnp = rdp->mynode; 349 raw_spin_lock_rcu_node(rnp); 350 t->rcu_read_unlock_special.b.blocked = true; 351 t->rcu_blocked_node = rnp; 352 353 /* 354 * Verify the CPU's sanity, trace the preemption, and 355 * then queue the task as required based on the states 356 * of any ongoing and expedited grace periods. 357 */ 358 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 359 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 360 trace_rcu_preempt_task(rdp->rsp->name, 361 t->pid, 362 (rnp->qsmask & rdp->grpmask) 363 ? rnp->gp_seq 364 : rcu_seq_snap(&rnp->gp_seq)); 365 rcu_preempt_ctxt_queue(rnp, rdp); 366 } else if (t->rcu_read_lock_nesting < 0 && 367 t->rcu_read_unlock_special.s) { 368 369 /* 370 * Complete exit from RCU read-side critical section on 371 * behalf of preempted instance of __rcu_read_unlock(). 372 */ 373 rcu_read_unlock_special(t); 374 } 375 376 /* 377 * Either we were not in an RCU read-side critical section to 378 * begin with, or we have now recorded that critical section 379 * globally. Either way, we can now note a quiescent state 380 * for this CPU. Again, if we were in an RCU read-side critical 381 * section, and if that critical section was blocking the current 382 * grace period, then the fact that the task has been enqueued 383 * means that we continue to block the current grace period. 384 */ 385 rcu_preempt_qs(); 386 } 387 388 /* 389 * Check for preempted RCU readers blocking the current grace period 390 * for the specified rcu_node structure. If the caller needs a reliable 391 * answer, it must hold the rcu_node's ->lock. 392 */ 393 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 394 { 395 return rnp->gp_tasks != NULL; 396 } 397 398 /* 399 * Preemptible RCU implementation for rcu_read_lock(). 400 * Just increment ->rcu_read_lock_nesting, shared state will be updated 401 * if we block. 402 */ 403 void __rcu_read_lock(void) 404 { 405 current->rcu_read_lock_nesting++; 406 barrier(); /* critical section after entry code. */ 407 } 408 EXPORT_SYMBOL_GPL(__rcu_read_lock); 409 410 /* 411 * Preemptible RCU implementation for rcu_read_unlock(). 412 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 413 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 414 * invoke rcu_read_unlock_special() to clean up after a context switch 415 * in an RCU read-side critical section and other special cases. 416 */ 417 void __rcu_read_unlock(void) 418 { 419 struct task_struct *t = current; 420 421 if (t->rcu_read_lock_nesting != 1) { 422 --t->rcu_read_lock_nesting; 423 } else { 424 barrier(); /* critical section before exit code. */ 425 t->rcu_read_lock_nesting = INT_MIN; 426 barrier(); /* assign before ->rcu_read_unlock_special load */ 427 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 428 rcu_read_unlock_special(t); 429 barrier(); /* ->rcu_read_unlock_special load before assign */ 430 t->rcu_read_lock_nesting = 0; 431 } 432 #ifdef CONFIG_PROVE_LOCKING 433 { 434 int rrln = READ_ONCE(t->rcu_read_lock_nesting); 435 436 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); 437 } 438 #endif /* #ifdef CONFIG_PROVE_LOCKING */ 439 } 440 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 441 442 /* 443 * Advance a ->blkd_tasks-list pointer to the next entry, instead 444 * returning NULL if at the end of the list. 445 */ 446 static struct list_head *rcu_next_node_entry(struct task_struct *t, 447 struct rcu_node *rnp) 448 { 449 struct list_head *np; 450 451 np = t->rcu_node_entry.next; 452 if (np == &rnp->blkd_tasks) 453 np = NULL; 454 return np; 455 } 456 457 /* 458 * Return true if the specified rcu_node structure has tasks that were 459 * preempted within an RCU read-side critical section. 460 */ 461 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 462 { 463 return !list_empty(&rnp->blkd_tasks); 464 } 465 466 /* 467 * Handle special cases during rcu_read_unlock(), such as needing to 468 * notify RCU core processing or task having blocked during the RCU 469 * read-side critical section. 470 */ 471 static void rcu_read_unlock_special(struct task_struct *t) 472 { 473 bool empty_exp; 474 bool empty_norm; 475 bool empty_exp_now; 476 unsigned long flags; 477 struct list_head *np; 478 bool drop_boost_mutex = false; 479 struct rcu_data *rdp; 480 struct rcu_node *rnp; 481 union rcu_special special; 482 483 /* NMI handlers cannot block and cannot safely manipulate state. */ 484 if (in_nmi()) 485 return; 486 487 local_irq_save(flags); 488 489 /* 490 * If RCU core is waiting for this CPU to exit its critical section, 491 * report the fact that it has exited. Because irqs are disabled, 492 * t->rcu_read_unlock_special cannot change. 493 */ 494 special = t->rcu_read_unlock_special; 495 if (special.b.need_qs) { 496 rcu_preempt_qs(); 497 t->rcu_read_unlock_special.b.need_qs = false; 498 if (!t->rcu_read_unlock_special.s) { 499 local_irq_restore(flags); 500 return; 501 } 502 } 503 504 /* 505 * Respond to a request for an expedited grace period, but only if 506 * we were not preempted, meaning that we were running on the same 507 * CPU throughout. If we were preempted, the exp_need_qs flag 508 * would have been cleared at the time of the first preemption, 509 * and the quiescent state would be reported when we were dequeued. 510 */ 511 if (special.b.exp_need_qs) { 512 WARN_ON_ONCE(special.b.blocked); 513 t->rcu_read_unlock_special.b.exp_need_qs = false; 514 rdp = this_cpu_ptr(rcu_state_p->rda); 515 rcu_report_exp_rdp(rcu_state_p, rdp, true); 516 if (!t->rcu_read_unlock_special.s) { 517 local_irq_restore(flags); 518 return; 519 } 520 } 521 522 /* Hardware IRQ handlers cannot block, complain if they get here. */ 523 if (in_irq() || in_serving_softirq()) { 524 lockdep_rcu_suspicious(__FILE__, __LINE__, 525 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 526 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 527 t->rcu_read_unlock_special.s, 528 t->rcu_read_unlock_special.b.blocked, 529 t->rcu_read_unlock_special.b.exp_need_qs, 530 t->rcu_read_unlock_special.b.need_qs); 531 local_irq_restore(flags); 532 return; 533 } 534 535 /* Clean up if blocked during RCU read-side critical section. */ 536 if (special.b.blocked) { 537 t->rcu_read_unlock_special.b.blocked = false; 538 539 /* 540 * Remove this task from the list it blocked on. The task 541 * now remains queued on the rcu_node corresponding to the 542 * CPU it first blocked on, so there is no longer any need 543 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 544 */ 545 rnp = t->rcu_blocked_node; 546 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 547 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 548 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 549 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 550 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 551 (!empty_norm || rnp->qsmask)); 552 empty_exp = sync_rcu_preempt_exp_done(rnp); 553 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 554 np = rcu_next_node_entry(t, rnp); 555 list_del_init(&t->rcu_node_entry); 556 t->rcu_blocked_node = NULL; 557 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 558 rnp->gp_seq, t->pid); 559 if (&t->rcu_node_entry == rnp->gp_tasks) 560 rnp->gp_tasks = np; 561 if (&t->rcu_node_entry == rnp->exp_tasks) 562 rnp->exp_tasks = np; 563 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 564 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 565 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 566 if (&t->rcu_node_entry == rnp->boost_tasks) 567 rnp->boost_tasks = np; 568 } 569 570 /* 571 * If this was the last task on the current list, and if 572 * we aren't waiting on any CPUs, report the quiescent state. 573 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 574 * so we must take a snapshot of the expedited state. 575 */ 576 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 577 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 578 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 579 rnp->gp_seq, 580 0, rnp->qsmask, 581 rnp->level, 582 rnp->grplo, 583 rnp->grphi, 584 !!rnp->gp_tasks); 585 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 586 } else { 587 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 588 } 589 590 /* Unboost if we were boosted. */ 591 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 592 rt_mutex_futex_unlock(&rnp->boost_mtx); 593 594 /* 595 * If this was the last task on the expedited lists, 596 * then we need to report up the rcu_node hierarchy. 597 */ 598 if (!empty_exp && empty_exp_now) 599 rcu_report_exp_rnp(rcu_state_p, rnp, true); 600 } else { 601 local_irq_restore(flags); 602 } 603 } 604 605 /* 606 * Dump detailed information for all tasks blocking the current RCU 607 * grace period on the specified rcu_node structure. 608 */ 609 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 610 { 611 unsigned long flags; 612 struct task_struct *t; 613 614 raw_spin_lock_irqsave_rcu_node(rnp, flags); 615 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 616 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 617 return; 618 } 619 t = list_entry(rnp->gp_tasks->prev, 620 struct task_struct, rcu_node_entry); 621 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 622 /* 623 * We could be printing a lot while holding a spinlock. 624 * Avoid triggering hard lockup. 625 */ 626 touch_nmi_watchdog(); 627 sched_show_task(t); 628 } 629 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 630 } 631 632 /* 633 * Dump detailed information for all tasks blocking the current RCU 634 * grace period. 635 */ 636 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 637 { 638 struct rcu_node *rnp = rcu_get_root(rsp); 639 640 rcu_print_detail_task_stall_rnp(rnp); 641 rcu_for_each_leaf_node(rsp, rnp) 642 rcu_print_detail_task_stall_rnp(rnp); 643 } 644 645 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 646 { 647 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 648 rnp->level, rnp->grplo, rnp->grphi); 649 } 650 651 static void rcu_print_task_stall_end(void) 652 { 653 pr_cont("\n"); 654 } 655 656 /* 657 * Scan the current list of tasks blocked within RCU read-side critical 658 * sections, printing out the tid of each. 659 */ 660 static int rcu_print_task_stall(struct rcu_node *rnp) 661 { 662 struct task_struct *t; 663 int ndetected = 0; 664 665 if (!rcu_preempt_blocked_readers_cgp(rnp)) 666 return 0; 667 rcu_print_task_stall_begin(rnp); 668 t = list_entry(rnp->gp_tasks->prev, 669 struct task_struct, rcu_node_entry); 670 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 671 pr_cont(" P%d", t->pid); 672 ndetected++; 673 } 674 rcu_print_task_stall_end(); 675 return ndetected; 676 } 677 678 /* 679 * Scan the current list of tasks blocked within RCU read-side critical 680 * sections, printing out the tid of each that is blocking the current 681 * expedited grace period. 682 */ 683 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 684 { 685 struct task_struct *t; 686 int ndetected = 0; 687 688 if (!rnp->exp_tasks) 689 return 0; 690 t = list_entry(rnp->exp_tasks->prev, 691 struct task_struct, rcu_node_entry); 692 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 693 pr_cont(" P%d", t->pid); 694 ndetected++; 695 } 696 return ndetected; 697 } 698 699 /* 700 * Check that the list of blocked tasks for the newly completed grace 701 * period is in fact empty. It is a serious bug to complete a grace 702 * period that still has RCU readers blocked! This function must be 703 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock 704 * must be held by the caller. 705 * 706 * Also, if there are blocked tasks on the list, they automatically 707 * block the newly created grace period, so set up ->gp_tasks accordingly. 708 */ 709 static void 710 rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp) 711 { 712 struct task_struct *t; 713 714 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 715 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 716 dump_blkd_tasks(rsp, rnp, 10); 717 if (rcu_preempt_has_tasks(rnp) && 718 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 719 rnp->gp_tasks = rnp->blkd_tasks.next; 720 t = container_of(rnp->gp_tasks, struct task_struct, 721 rcu_node_entry); 722 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 723 rnp->gp_seq, t->pid); 724 } 725 WARN_ON_ONCE(rnp->qsmask); 726 } 727 728 /* 729 * Check for a quiescent state from the current CPU. When a task blocks, 730 * the task is recorded in the corresponding CPU's rcu_node structure, 731 * which is checked elsewhere. 732 * 733 * Caller must disable hard irqs. 734 */ 735 static void rcu_preempt_check_callbacks(void) 736 { 737 struct rcu_state *rsp = &rcu_preempt_state; 738 struct task_struct *t = current; 739 740 if (t->rcu_read_lock_nesting == 0) { 741 rcu_preempt_qs(); 742 return; 743 } 744 if (t->rcu_read_lock_nesting > 0 && 745 __this_cpu_read(rcu_data_p->core_needs_qs) && 746 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm) && 747 !t->rcu_read_unlock_special.b.need_qs && 748 time_after(jiffies, rsp->gp_start + HZ)) 749 t->rcu_read_unlock_special.b.need_qs = true; 750 } 751 752 /** 753 * call_rcu() - Queue an RCU callback for invocation after a grace period. 754 * @head: structure to be used for queueing the RCU updates. 755 * @func: actual callback function to be invoked after the grace period 756 * 757 * The callback function will be invoked some time after a full grace 758 * period elapses, in other words after all pre-existing RCU read-side 759 * critical sections have completed. However, the callback function 760 * might well execute concurrently with RCU read-side critical sections 761 * that started after call_rcu() was invoked. RCU read-side critical 762 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 763 * and may be nested. 764 * 765 * Note that all CPUs must agree that the grace period extended beyond 766 * all pre-existing RCU read-side critical section. On systems with more 767 * than one CPU, this means that when "func()" is invoked, each CPU is 768 * guaranteed to have executed a full memory barrier since the end of its 769 * last RCU read-side critical section whose beginning preceded the call 770 * to call_rcu(). It also means that each CPU executing an RCU read-side 771 * critical section that continues beyond the start of "func()" must have 772 * executed a memory barrier after the call_rcu() but before the beginning 773 * of that RCU read-side critical section. Note that these guarantees 774 * include CPUs that are offline, idle, or executing in user mode, as 775 * well as CPUs that are executing in the kernel. 776 * 777 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 778 * resulting RCU callback function "func()", then both CPU A and CPU B are 779 * guaranteed to execute a full memory barrier during the time interval 780 * between the call to call_rcu() and the invocation of "func()" -- even 781 * if CPU A and CPU B are the same CPU (but again only if the system has 782 * more than one CPU). 783 */ 784 void call_rcu(struct rcu_head *head, rcu_callback_t func) 785 { 786 __call_rcu(head, func, rcu_state_p, -1, 0); 787 } 788 EXPORT_SYMBOL_GPL(call_rcu); 789 790 /** 791 * synchronize_rcu - wait until a grace period has elapsed. 792 * 793 * Control will return to the caller some time after a full grace 794 * period has elapsed, in other words after all currently executing RCU 795 * read-side critical sections have completed. Note, however, that 796 * upon return from synchronize_rcu(), the caller might well be executing 797 * concurrently with new RCU read-side critical sections that began while 798 * synchronize_rcu() was waiting. RCU read-side critical sections are 799 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 800 * 801 * See the description of synchronize_sched() for more detailed 802 * information on memory-ordering guarantees. However, please note 803 * that -only- the memory-ordering guarantees apply. For example, 804 * synchronize_rcu() is -not- guaranteed to wait on things like code 805 * protected by preempt_disable(), instead, synchronize_rcu() is -only- 806 * guaranteed to wait on RCU read-side critical sections, that is, sections 807 * of code protected by rcu_read_lock(). 808 */ 809 void synchronize_rcu(void) 810 { 811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 812 lock_is_held(&rcu_lock_map) || 813 lock_is_held(&rcu_sched_lock_map), 814 "Illegal synchronize_rcu() in RCU read-side critical section"); 815 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 816 return; 817 if (rcu_gp_is_expedited()) 818 synchronize_rcu_expedited(); 819 else 820 wait_rcu_gp(call_rcu); 821 } 822 EXPORT_SYMBOL_GPL(synchronize_rcu); 823 824 /** 825 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 826 * 827 * Note that this primitive does not necessarily wait for an RCU grace period 828 * to complete. For example, if there are no RCU callbacks queued anywhere 829 * in the system, then rcu_barrier() is within its rights to return 830 * immediately, without waiting for anything, much less an RCU grace period. 831 */ 832 void rcu_barrier(void) 833 { 834 _rcu_barrier(rcu_state_p); 835 } 836 EXPORT_SYMBOL_GPL(rcu_barrier); 837 838 /* 839 * Initialize preemptible RCU's state structures. 840 */ 841 static void __init __rcu_init_preempt(void) 842 { 843 rcu_init_one(rcu_state_p); 844 } 845 846 /* 847 * Check for a task exiting while in a preemptible-RCU read-side 848 * critical section, clean up if so. No need to issue warnings, 849 * as debug_check_no_locks_held() already does this if lockdep 850 * is enabled. 851 */ 852 void exit_rcu(void) 853 { 854 struct task_struct *t = current; 855 856 if (likely(list_empty(¤t->rcu_node_entry))) 857 return; 858 t->rcu_read_lock_nesting = 1; 859 barrier(); 860 t->rcu_read_unlock_special.b.blocked = true; 861 __rcu_read_unlock(); 862 } 863 864 /* 865 * Dump the blocked-tasks state, but limit the list dump to the 866 * specified number of elements. 867 */ 868 static void 869 dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck) 870 { 871 int cpu; 872 int i; 873 struct list_head *lhp; 874 bool onl; 875 struct rcu_data *rdp; 876 struct rcu_node *rnp1; 877 878 raw_lockdep_assert_held_rcu_node(rnp); 879 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 880 __func__, rnp->grplo, rnp->grphi, rnp->level, 881 (long)rnp->gp_seq, (long)rnp->completedqs); 882 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 883 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 884 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 885 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 886 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks); 887 pr_info("%s: ->blkd_tasks", __func__); 888 i = 0; 889 list_for_each(lhp, &rnp->blkd_tasks) { 890 pr_cont(" %p", lhp); 891 if (++i >= 10) 892 break; 893 } 894 pr_cont("\n"); 895 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 896 rdp = per_cpu_ptr(rsp->rda, cpu); 897 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 898 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 899 cpu, ".o"[onl], 900 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 901 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 902 } 903 } 904 905 #else /* #ifdef CONFIG_PREEMPT_RCU */ 906 907 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 908 909 /* 910 * Tell them what RCU they are running. 911 */ 912 static void __init rcu_bootup_announce(void) 913 { 914 pr_info("Hierarchical RCU implementation.\n"); 915 rcu_bootup_announce_oddness(); 916 } 917 918 /* 919 * Because preemptible RCU does not exist, we never have to check for 920 * CPUs being in quiescent states. 921 */ 922 static void rcu_preempt_note_context_switch(bool preempt) 923 { 924 } 925 926 /* 927 * Because preemptible RCU does not exist, there are never any preempted 928 * RCU readers. 929 */ 930 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 931 { 932 return 0; 933 } 934 935 /* 936 * Because there is no preemptible RCU, there can be no readers blocked. 937 */ 938 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 939 { 940 return false; 941 } 942 943 /* 944 * Because preemptible RCU does not exist, we never have to check for 945 * tasks blocked within RCU read-side critical sections. 946 */ 947 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 948 { 949 } 950 951 /* 952 * Because preemptible RCU does not exist, we never have to check for 953 * tasks blocked within RCU read-side critical sections. 954 */ 955 static int rcu_print_task_stall(struct rcu_node *rnp) 956 { 957 return 0; 958 } 959 960 /* 961 * Because preemptible RCU does not exist, we never have to check for 962 * tasks blocked within RCU read-side critical sections that are 963 * blocking the current expedited grace period. 964 */ 965 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 966 { 967 return 0; 968 } 969 970 /* 971 * Because there is no preemptible RCU, there can be no readers blocked, 972 * so there is no need to check for blocked tasks. So check only for 973 * bogus qsmask values. 974 */ 975 static void 976 rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp) 977 { 978 WARN_ON_ONCE(rnp->qsmask); 979 } 980 981 /* 982 * Because preemptible RCU does not exist, it never has any callbacks 983 * to check. 984 */ 985 static void rcu_preempt_check_callbacks(void) 986 { 987 } 988 989 /* 990 * Because preemptible RCU does not exist, rcu_barrier() is just 991 * another name for rcu_barrier_sched(). 992 */ 993 void rcu_barrier(void) 994 { 995 rcu_barrier_sched(); 996 } 997 EXPORT_SYMBOL_GPL(rcu_barrier); 998 999 /* 1000 * Because preemptible RCU does not exist, it need not be initialized. 1001 */ 1002 static void __init __rcu_init_preempt(void) 1003 { 1004 } 1005 1006 /* 1007 * Because preemptible RCU does not exist, tasks cannot possibly exit 1008 * while in preemptible RCU read-side critical sections. 1009 */ 1010 void exit_rcu(void) 1011 { 1012 } 1013 1014 /* 1015 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 1016 */ 1017 static void 1018 dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck) 1019 { 1020 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 1021 } 1022 1023 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 1024 1025 #ifdef CONFIG_RCU_BOOST 1026 1027 static void rcu_wake_cond(struct task_struct *t, int status) 1028 { 1029 /* 1030 * If the thread is yielding, only wake it when this 1031 * is invoked from idle 1032 */ 1033 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 1034 wake_up_process(t); 1035 } 1036 1037 /* 1038 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1039 * or ->boost_tasks, advancing the pointer to the next task in the 1040 * ->blkd_tasks list. 1041 * 1042 * Note that irqs must be enabled: boosting the task can block. 1043 * Returns 1 if there are more tasks needing to be boosted. 1044 */ 1045 static int rcu_boost(struct rcu_node *rnp) 1046 { 1047 unsigned long flags; 1048 struct task_struct *t; 1049 struct list_head *tb; 1050 1051 if (READ_ONCE(rnp->exp_tasks) == NULL && 1052 READ_ONCE(rnp->boost_tasks) == NULL) 1053 return 0; /* Nothing left to boost. */ 1054 1055 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1056 1057 /* 1058 * Recheck under the lock: all tasks in need of boosting 1059 * might exit their RCU read-side critical sections on their own. 1060 */ 1061 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1062 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1063 return 0; 1064 } 1065 1066 /* 1067 * Preferentially boost tasks blocking expedited grace periods. 1068 * This cannot starve the normal grace periods because a second 1069 * expedited grace period must boost all blocked tasks, including 1070 * those blocking the pre-existing normal grace period. 1071 */ 1072 if (rnp->exp_tasks != NULL) 1073 tb = rnp->exp_tasks; 1074 else 1075 tb = rnp->boost_tasks; 1076 1077 /* 1078 * We boost task t by manufacturing an rt_mutex that appears to 1079 * be held by task t. We leave a pointer to that rt_mutex where 1080 * task t can find it, and task t will release the mutex when it 1081 * exits its outermost RCU read-side critical section. Then 1082 * simply acquiring this artificial rt_mutex will boost task 1083 * t's priority. (Thanks to tglx for suggesting this approach!) 1084 * 1085 * Note that task t must acquire rnp->lock to remove itself from 1086 * the ->blkd_tasks list, which it will do from exit() if from 1087 * nowhere else. We therefore are guaranteed that task t will 1088 * stay around at least until we drop rnp->lock. Note that 1089 * rnp->lock also resolves races between our priority boosting 1090 * and task t's exiting its outermost RCU read-side critical 1091 * section. 1092 */ 1093 t = container_of(tb, struct task_struct, rcu_node_entry); 1094 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1095 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1096 /* Lock only for side effect: boosts task t's priority. */ 1097 rt_mutex_lock(&rnp->boost_mtx); 1098 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1099 1100 return READ_ONCE(rnp->exp_tasks) != NULL || 1101 READ_ONCE(rnp->boost_tasks) != NULL; 1102 } 1103 1104 /* 1105 * Priority-boosting kthread, one per leaf rcu_node. 1106 */ 1107 static int rcu_boost_kthread(void *arg) 1108 { 1109 struct rcu_node *rnp = (struct rcu_node *)arg; 1110 int spincnt = 0; 1111 int more2boost; 1112 1113 trace_rcu_utilization(TPS("Start boost kthread@init")); 1114 for (;;) { 1115 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1116 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1117 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1118 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1119 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1120 more2boost = rcu_boost(rnp); 1121 if (more2boost) 1122 spincnt++; 1123 else 1124 spincnt = 0; 1125 if (spincnt > 10) { 1126 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1127 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1128 schedule_timeout_interruptible(2); 1129 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1130 spincnt = 0; 1131 } 1132 } 1133 /* NOTREACHED */ 1134 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1135 return 0; 1136 } 1137 1138 /* 1139 * Check to see if it is time to start boosting RCU readers that are 1140 * blocking the current grace period, and, if so, tell the per-rcu_node 1141 * kthread to start boosting them. If there is an expedited grace 1142 * period in progress, it is always time to boost. 1143 * 1144 * The caller must hold rnp->lock, which this function releases. 1145 * The ->boost_kthread_task is immortal, so we don't need to worry 1146 * about it going away. 1147 */ 1148 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1149 __releases(rnp->lock) 1150 { 1151 struct task_struct *t; 1152 1153 raw_lockdep_assert_held_rcu_node(rnp); 1154 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1155 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1156 return; 1157 } 1158 if (rnp->exp_tasks != NULL || 1159 (rnp->gp_tasks != NULL && 1160 rnp->boost_tasks == NULL && 1161 rnp->qsmask == 0 && 1162 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1163 if (rnp->exp_tasks == NULL) 1164 rnp->boost_tasks = rnp->gp_tasks; 1165 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1166 t = rnp->boost_kthread_task; 1167 if (t) 1168 rcu_wake_cond(t, rnp->boost_kthread_status); 1169 } else { 1170 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1171 } 1172 } 1173 1174 /* 1175 * Wake up the per-CPU kthread to invoke RCU callbacks. 1176 */ 1177 static void invoke_rcu_callbacks_kthread(void) 1178 { 1179 unsigned long flags; 1180 1181 local_irq_save(flags); 1182 __this_cpu_write(rcu_cpu_has_work, 1); 1183 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1184 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1185 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1186 __this_cpu_read(rcu_cpu_kthread_status)); 1187 } 1188 local_irq_restore(flags); 1189 } 1190 1191 /* 1192 * Is the current CPU running the RCU-callbacks kthread? 1193 * Caller must have preemption disabled. 1194 */ 1195 static bool rcu_is_callbacks_kthread(void) 1196 { 1197 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1198 } 1199 1200 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1201 1202 /* 1203 * Do priority-boost accounting for the start of a new grace period. 1204 */ 1205 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1206 { 1207 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1208 } 1209 1210 /* 1211 * Create an RCU-boost kthread for the specified node if one does not 1212 * already exist. We only create this kthread for preemptible RCU. 1213 * Returns zero if all is well, a negated errno otherwise. 1214 */ 1215 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1216 struct rcu_node *rnp) 1217 { 1218 int rnp_index = rnp - &rsp->node[0]; 1219 unsigned long flags; 1220 struct sched_param sp; 1221 struct task_struct *t; 1222 1223 if (rcu_state_p != rsp) 1224 return 0; 1225 1226 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1227 return 0; 1228 1229 rsp->boost = 1; 1230 if (rnp->boost_kthread_task != NULL) 1231 return 0; 1232 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1233 "rcub/%d", rnp_index); 1234 if (IS_ERR(t)) 1235 return PTR_ERR(t); 1236 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1237 rnp->boost_kthread_task = t; 1238 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1239 sp.sched_priority = kthread_prio; 1240 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1241 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1242 return 0; 1243 } 1244 1245 static void rcu_kthread_do_work(void) 1246 { 1247 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1248 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1249 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); 1250 } 1251 1252 static void rcu_cpu_kthread_setup(unsigned int cpu) 1253 { 1254 struct sched_param sp; 1255 1256 sp.sched_priority = kthread_prio; 1257 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1258 } 1259 1260 static void rcu_cpu_kthread_park(unsigned int cpu) 1261 { 1262 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1263 } 1264 1265 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1266 { 1267 return __this_cpu_read(rcu_cpu_has_work); 1268 } 1269 1270 /* 1271 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1272 * RCU softirq used in flavors and configurations of RCU that do not 1273 * support RCU priority boosting. 1274 */ 1275 static void rcu_cpu_kthread(unsigned int cpu) 1276 { 1277 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1278 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1279 int spincnt; 1280 1281 for (spincnt = 0; spincnt < 10; spincnt++) { 1282 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1283 local_bh_disable(); 1284 *statusp = RCU_KTHREAD_RUNNING; 1285 this_cpu_inc(rcu_cpu_kthread_loops); 1286 local_irq_disable(); 1287 work = *workp; 1288 *workp = 0; 1289 local_irq_enable(); 1290 if (work) 1291 rcu_kthread_do_work(); 1292 local_bh_enable(); 1293 if (*workp == 0) { 1294 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1295 *statusp = RCU_KTHREAD_WAITING; 1296 return; 1297 } 1298 } 1299 *statusp = RCU_KTHREAD_YIELDING; 1300 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1301 schedule_timeout_interruptible(2); 1302 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1303 *statusp = RCU_KTHREAD_WAITING; 1304 } 1305 1306 /* 1307 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1308 * served by the rcu_node in question. The CPU hotplug lock is still 1309 * held, so the value of rnp->qsmaskinit will be stable. 1310 * 1311 * We don't include outgoingcpu in the affinity set, use -1 if there is 1312 * no outgoing CPU. If there are no CPUs left in the affinity set, 1313 * this function allows the kthread to execute on any CPU. 1314 */ 1315 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1316 { 1317 struct task_struct *t = rnp->boost_kthread_task; 1318 unsigned long mask = rcu_rnp_online_cpus(rnp); 1319 cpumask_var_t cm; 1320 int cpu; 1321 1322 if (!t) 1323 return; 1324 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1325 return; 1326 for_each_leaf_node_possible_cpu(rnp, cpu) 1327 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1328 cpu != outgoingcpu) 1329 cpumask_set_cpu(cpu, cm); 1330 if (cpumask_weight(cm) == 0) 1331 cpumask_setall(cm); 1332 set_cpus_allowed_ptr(t, cm); 1333 free_cpumask_var(cm); 1334 } 1335 1336 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1337 .store = &rcu_cpu_kthread_task, 1338 .thread_should_run = rcu_cpu_kthread_should_run, 1339 .thread_fn = rcu_cpu_kthread, 1340 .thread_comm = "rcuc/%u", 1341 .setup = rcu_cpu_kthread_setup, 1342 .park = rcu_cpu_kthread_park, 1343 }; 1344 1345 /* 1346 * Spawn boost kthreads -- called as soon as the scheduler is running. 1347 */ 1348 static void __init rcu_spawn_boost_kthreads(void) 1349 { 1350 struct rcu_node *rnp; 1351 int cpu; 1352 1353 for_each_possible_cpu(cpu) 1354 per_cpu(rcu_cpu_has_work, cpu) = 0; 1355 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1356 rcu_for_each_leaf_node(rcu_state_p, rnp) 1357 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1358 } 1359 1360 static void rcu_prepare_kthreads(int cpu) 1361 { 1362 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1363 struct rcu_node *rnp = rdp->mynode; 1364 1365 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1366 if (rcu_scheduler_fully_active) 1367 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1368 } 1369 1370 #else /* #ifdef CONFIG_RCU_BOOST */ 1371 1372 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1373 __releases(rnp->lock) 1374 { 1375 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1376 } 1377 1378 static void invoke_rcu_callbacks_kthread(void) 1379 { 1380 WARN_ON_ONCE(1); 1381 } 1382 1383 static bool rcu_is_callbacks_kthread(void) 1384 { 1385 return false; 1386 } 1387 1388 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1389 { 1390 } 1391 1392 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1393 { 1394 } 1395 1396 static void __init rcu_spawn_boost_kthreads(void) 1397 { 1398 } 1399 1400 static void rcu_prepare_kthreads(int cpu) 1401 { 1402 } 1403 1404 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1405 1406 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1407 1408 /* 1409 * Check to see if any future RCU-related work will need to be done 1410 * by the current CPU, even if none need be done immediately, returning 1411 * 1 if so. This function is part of the RCU implementation; it is -not- 1412 * an exported member of the RCU API. 1413 * 1414 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1415 * any flavor of RCU. 1416 */ 1417 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1418 { 1419 *nextevt = KTIME_MAX; 1420 return rcu_cpu_has_callbacks(NULL); 1421 } 1422 1423 /* 1424 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1425 * after it. 1426 */ 1427 static void rcu_cleanup_after_idle(void) 1428 { 1429 } 1430 1431 /* 1432 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1433 * is nothing. 1434 */ 1435 static void rcu_prepare_for_idle(void) 1436 { 1437 } 1438 1439 /* 1440 * Don't bother keeping a running count of the number of RCU callbacks 1441 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1442 */ 1443 static void rcu_idle_count_callbacks_posted(void) 1444 { 1445 } 1446 1447 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1448 1449 /* 1450 * This code is invoked when a CPU goes idle, at which point we want 1451 * to have the CPU do everything required for RCU so that it can enter 1452 * the energy-efficient dyntick-idle mode. This is handled by a 1453 * state machine implemented by rcu_prepare_for_idle() below. 1454 * 1455 * The following three proprocessor symbols control this state machine: 1456 * 1457 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1458 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1459 * is sized to be roughly one RCU grace period. Those energy-efficiency 1460 * benchmarkers who might otherwise be tempted to set this to a large 1461 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1462 * system. And if you are -that- concerned about energy efficiency, 1463 * just power the system down and be done with it! 1464 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1465 * permitted to sleep in dyntick-idle mode with only lazy RCU 1466 * callbacks pending. Setting this too high can OOM your system. 1467 * 1468 * The values below work well in practice. If future workloads require 1469 * adjustment, they can be converted into kernel config parameters, though 1470 * making the state machine smarter might be a better option. 1471 */ 1472 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1473 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1474 1475 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1476 module_param(rcu_idle_gp_delay, int, 0644); 1477 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1478 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1479 1480 /* 1481 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1482 * only if it has been awhile since the last time we did so. Afterwards, 1483 * if there are any callbacks ready for immediate invocation, return true. 1484 */ 1485 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1486 { 1487 bool cbs_ready = false; 1488 struct rcu_data *rdp; 1489 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1490 struct rcu_node *rnp; 1491 struct rcu_state *rsp; 1492 1493 /* Exit early if we advanced recently. */ 1494 if (jiffies == rdtp->last_advance_all) 1495 return false; 1496 rdtp->last_advance_all = jiffies; 1497 1498 for_each_rcu_flavor(rsp) { 1499 rdp = this_cpu_ptr(rsp->rda); 1500 rnp = rdp->mynode; 1501 1502 /* 1503 * Don't bother checking unless a grace period has 1504 * completed since we last checked and there are 1505 * callbacks not yet ready to invoke. 1506 */ 1507 if ((rcu_seq_completed_gp(rdp->gp_seq, 1508 rcu_seq_current(&rnp->gp_seq)) || 1509 unlikely(READ_ONCE(rdp->gpwrap))) && 1510 rcu_segcblist_pend_cbs(&rdp->cblist)) 1511 note_gp_changes(rsp, rdp); 1512 1513 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1514 cbs_ready = true; 1515 } 1516 return cbs_ready; 1517 } 1518 1519 /* 1520 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1521 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1522 * caller to set the timeout based on whether or not there are non-lazy 1523 * callbacks. 1524 * 1525 * The caller must have disabled interrupts. 1526 */ 1527 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1528 { 1529 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1530 unsigned long dj; 1531 1532 lockdep_assert_irqs_disabled(); 1533 1534 /* Snapshot to detect later posting of non-lazy callback. */ 1535 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1536 1537 /* If no callbacks, RCU doesn't need the CPU. */ 1538 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1539 *nextevt = KTIME_MAX; 1540 return 0; 1541 } 1542 1543 /* Attempt to advance callbacks. */ 1544 if (rcu_try_advance_all_cbs()) { 1545 /* Some ready to invoke, so initiate later invocation. */ 1546 invoke_rcu_core(); 1547 return 1; 1548 } 1549 rdtp->last_accelerate = jiffies; 1550 1551 /* Request timer delay depending on laziness, and round. */ 1552 if (!rdtp->all_lazy) { 1553 dj = round_up(rcu_idle_gp_delay + jiffies, 1554 rcu_idle_gp_delay) - jiffies; 1555 } else { 1556 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1557 } 1558 *nextevt = basemono + dj * TICK_NSEC; 1559 return 0; 1560 } 1561 1562 /* 1563 * Prepare a CPU for idle from an RCU perspective. The first major task 1564 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1565 * The second major task is to check to see if a non-lazy callback has 1566 * arrived at a CPU that previously had only lazy callbacks. The third 1567 * major task is to accelerate (that is, assign grace-period numbers to) 1568 * any recently arrived callbacks. 1569 * 1570 * The caller must have disabled interrupts. 1571 */ 1572 static void rcu_prepare_for_idle(void) 1573 { 1574 bool needwake; 1575 struct rcu_data *rdp; 1576 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1577 struct rcu_node *rnp; 1578 struct rcu_state *rsp; 1579 int tne; 1580 1581 lockdep_assert_irqs_disabled(); 1582 if (rcu_is_nocb_cpu(smp_processor_id())) 1583 return; 1584 1585 /* Handle nohz enablement switches conservatively. */ 1586 tne = READ_ONCE(tick_nohz_active); 1587 if (tne != rdtp->tick_nohz_enabled_snap) { 1588 if (rcu_cpu_has_callbacks(NULL)) 1589 invoke_rcu_core(); /* force nohz to see update. */ 1590 rdtp->tick_nohz_enabled_snap = tne; 1591 return; 1592 } 1593 if (!tne) 1594 return; 1595 1596 /* 1597 * If a non-lazy callback arrived at a CPU having only lazy 1598 * callbacks, invoke RCU core for the side-effect of recalculating 1599 * idle duration on re-entry to idle. 1600 */ 1601 if (rdtp->all_lazy && 1602 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1603 rdtp->all_lazy = false; 1604 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1605 invoke_rcu_core(); 1606 return; 1607 } 1608 1609 /* 1610 * If we have not yet accelerated this jiffy, accelerate all 1611 * callbacks on this CPU. 1612 */ 1613 if (rdtp->last_accelerate == jiffies) 1614 return; 1615 rdtp->last_accelerate = jiffies; 1616 for_each_rcu_flavor(rsp) { 1617 rdp = this_cpu_ptr(rsp->rda); 1618 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1619 continue; 1620 rnp = rdp->mynode; 1621 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1622 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1623 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1624 if (needwake) 1625 rcu_gp_kthread_wake(rsp); 1626 } 1627 } 1628 1629 /* 1630 * Clean up for exit from idle. Attempt to advance callbacks based on 1631 * any grace periods that elapsed while the CPU was idle, and if any 1632 * callbacks are now ready to invoke, initiate invocation. 1633 */ 1634 static void rcu_cleanup_after_idle(void) 1635 { 1636 lockdep_assert_irqs_disabled(); 1637 if (rcu_is_nocb_cpu(smp_processor_id())) 1638 return; 1639 if (rcu_try_advance_all_cbs()) 1640 invoke_rcu_core(); 1641 } 1642 1643 /* 1644 * Keep a running count of the number of non-lazy callbacks posted 1645 * on this CPU. This running counter (which is never decremented) allows 1646 * rcu_prepare_for_idle() to detect when something out of the idle loop 1647 * posts a callback, even if an equal number of callbacks are invoked. 1648 * Of course, callbacks should only be posted from within a trace event 1649 * designed to be called from idle or from within RCU_NONIDLE(). 1650 */ 1651 static void rcu_idle_count_callbacks_posted(void) 1652 { 1653 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1654 } 1655 1656 /* 1657 * Data for flushing lazy RCU callbacks at OOM time. 1658 */ 1659 static atomic_t oom_callback_count; 1660 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1661 1662 /* 1663 * RCU OOM callback -- decrement the outstanding count and deliver the 1664 * wake-up if we are the last one. 1665 */ 1666 static void rcu_oom_callback(struct rcu_head *rhp) 1667 { 1668 if (atomic_dec_and_test(&oom_callback_count)) 1669 wake_up(&oom_callback_wq); 1670 } 1671 1672 /* 1673 * Post an rcu_oom_notify callback on the current CPU if it has at 1674 * least one lazy callback. This will unnecessarily post callbacks 1675 * to CPUs that already have a non-lazy callback at the end of their 1676 * callback list, but this is an infrequent operation, so accept some 1677 * extra overhead to keep things simple. 1678 */ 1679 static void rcu_oom_notify_cpu(void *unused) 1680 { 1681 struct rcu_state *rsp; 1682 struct rcu_data *rdp; 1683 1684 for_each_rcu_flavor(rsp) { 1685 rdp = raw_cpu_ptr(rsp->rda); 1686 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { 1687 atomic_inc(&oom_callback_count); 1688 rsp->call(&rdp->oom_head, rcu_oom_callback); 1689 } 1690 } 1691 } 1692 1693 /* 1694 * If low on memory, ensure that each CPU has a non-lazy callback. 1695 * This will wake up CPUs that have only lazy callbacks, in turn 1696 * ensuring that they free up the corresponding memory in a timely manner. 1697 * Because an uncertain amount of memory will be freed in some uncertain 1698 * timeframe, we do not claim to have freed anything. 1699 */ 1700 static int rcu_oom_notify(struct notifier_block *self, 1701 unsigned long notused, void *nfreed) 1702 { 1703 int cpu; 1704 1705 /* Wait for callbacks from earlier instance to complete. */ 1706 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1707 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1708 1709 /* 1710 * Prevent premature wakeup: ensure that all increments happen 1711 * before there is a chance of the counter reaching zero. 1712 */ 1713 atomic_set(&oom_callback_count, 1); 1714 1715 for_each_online_cpu(cpu) { 1716 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1717 cond_resched_tasks_rcu_qs(); 1718 } 1719 1720 /* Unconditionally decrement: no need to wake ourselves up. */ 1721 atomic_dec(&oom_callback_count); 1722 1723 return NOTIFY_OK; 1724 } 1725 1726 static struct notifier_block rcu_oom_nb = { 1727 .notifier_call = rcu_oom_notify 1728 }; 1729 1730 static int __init rcu_register_oom_notifier(void) 1731 { 1732 register_oom_notifier(&rcu_oom_nb); 1733 return 0; 1734 } 1735 early_initcall(rcu_register_oom_notifier); 1736 1737 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1738 1739 #ifdef CONFIG_RCU_FAST_NO_HZ 1740 1741 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1742 { 1743 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1744 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1745 1746 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1747 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1748 ulong2long(nlpd), 1749 rdtp->all_lazy ? 'L' : '.', 1750 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1751 } 1752 1753 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1754 1755 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1756 { 1757 *cp = '\0'; 1758 } 1759 1760 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1761 1762 /* Initiate the stall-info list. */ 1763 static void print_cpu_stall_info_begin(void) 1764 { 1765 pr_cont("\n"); 1766 } 1767 1768 /* 1769 * Print out diagnostic information for the specified stalled CPU. 1770 * 1771 * If the specified CPU is aware of the current RCU grace period 1772 * (flavor specified by rsp), then print the number of scheduling 1773 * clock interrupts the CPU has taken during the time that it has 1774 * been aware. Otherwise, print the number of RCU grace periods 1775 * that this CPU is ignorant of, for example, "1" if the CPU was 1776 * aware of the previous grace period. 1777 * 1778 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1779 */ 1780 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1781 { 1782 unsigned long delta; 1783 char fast_no_hz[72]; 1784 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1785 struct rcu_dynticks *rdtp = rdp->dynticks; 1786 char *ticks_title; 1787 unsigned long ticks_value; 1788 1789 /* 1790 * We could be printing a lot while holding a spinlock. Avoid 1791 * triggering hard lockup. 1792 */ 1793 touch_nmi_watchdog(); 1794 1795 ticks_value = rcu_seq_ctr(rsp->gp_seq - rdp->gp_seq); 1796 if (ticks_value) { 1797 ticks_title = "GPs behind"; 1798 } else { 1799 ticks_title = "ticks this GP"; 1800 ticks_value = rdp->ticks_this_gp; 1801 } 1802 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1803 delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq); 1804 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n", 1805 cpu, 1806 "O."[!!cpu_online(cpu)], 1807 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1808 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1809 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' : 1810 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' : 1811 "!."[!delta], 1812 ticks_value, ticks_title, 1813 rcu_dynticks_snap(rdtp) & 0xfff, 1814 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1815 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1816 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1817 fast_no_hz); 1818 } 1819 1820 /* Terminate the stall-info list. */ 1821 static void print_cpu_stall_info_end(void) 1822 { 1823 pr_err("\t"); 1824 } 1825 1826 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1827 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1828 { 1829 rdp->ticks_this_gp = 0; 1830 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1831 } 1832 1833 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1834 static void increment_cpu_stall_ticks(void) 1835 { 1836 struct rcu_state *rsp; 1837 1838 for_each_rcu_flavor(rsp) 1839 raw_cpu_inc(rsp->rda->ticks_this_gp); 1840 } 1841 1842 #ifdef CONFIG_RCU_NOCB_CPU 1843 1844 /* 1845 * Offload callback processing from the boot-time-specified set of CPUs 1846 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1847 * kthread created that pulls the callbacks from the corresponding CPU, 1848 * waits for a grace period to elapse, and invokes the callbacks. 1849 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1850 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1851 * has been specified, in which case each kthread actively polls its 1852 * CPU. (Which isn't so great for energy efficiency, but which does 1853 * reduce RCU's overhead on that CPU.) 1854 * 1855 * This is intended to be used in conjunction with Frederic Weisbecker's 1856 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1857 * running CPU-bound user-mode computations. 1858 * 1859 * Offloading of callback processing could also in theory be used as 1860 * an energy-efficiency measure because CPUs with no RCU callbacks 1861 * queued are more aggressive about entering dyntick-idle mode. 1862 */ 1863 1864 1865 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1866 static int __init rcu_nocb_setup(char *str) 1867 { 1868 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1869 cpulist_parse(str, rcu_nocb_mask); 1870 return 1; 1871 } 1872 __setup("rcu_nocbs=", rcu_nocb_setup); 1873 1874 static int __init parse_rcu_nocb_poll(char *arg) 1875 { 1876 rcu_nocb_poll = true; 1877 return 0; 1878 } 1879 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1880 1881 /* 1882 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1883 * grace period. 1884 */ 1885 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1886 { 1887 swake_up_all(sq); 1888 } 1889 1890 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1891 { 1892 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 1893 } 1894 1895 static void rcu_init_one_nocb(struct rcu_node *rnp) 1896 { 1897 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1898 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1899 } 1900 1901 /* Is the specified CPU a no-CBs CPU? */ 1902 bool rcu_is_nocb_cpu(int cpu) 1903 { 1904 if (cpumask_available(rcu_nocb_mask)) 1905 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1906 return false; 1907 } 1908 1909 /* 1910 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock 1911 * and this function releases it. 1912 */ 1913 static void __wake_nocb_leader(struct rcu_data *rdp, bool force, 1914 unsigned long flags) 1915 __releases(rdp->nocb_lock) 1916 { 1917 struct rcu_data *rdp_leader = rdp->nocb_leader; 1918 1919 lockdep_assert_held(&rdp->nocb_lock); 1920 if (!READ_ONCE(rdp_leader->nocb_kthread)) { 1921 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1922 return; 1923 } 1924 if (rdp_leader->nocb_leader_sleep || force) { 1925 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1926 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1927 del_timer(&rdp->nocb_timer); 1928 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1929 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */ 1930 swake_up_one(&rdp_leader->nocb_wq); 1931 } else { 1932 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1933 } 1934 } 1935 1936 /* 1937 * Kick the leader kthread for this NOCB group, but caller has not 1938 * acquired locks. 1939 */ 1940 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1941 { 1942 unsigned long flags; 1943 1944 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1945 __wake_nocb_leader(rdp, force, flags); 1946 } 1947 1948 /* 1949 * Arrange to wake the leader kthread for this NOCB group at some 1950 * future time when it is safe to do so. 1951 */ 1952 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, 1953 const char *reason) 1954 { 1955 unsigned long flags; 1956 1957 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1958 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1959 mod_timer(&rdp->nocb_timer, jiffies + 1); 1960 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1961 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason); 1962 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1963 } 1964 1965 /* 1966 * Does the specified CPU need an RCU callback for the specified flavor 1967 * of rcu_barrier()? 1968 */ 1969 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1970 { 1971 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1972 unsigned long ret; 1973 #ifdef CONFIG_PROVE_RCU 1974 struct rcu_head *rhp; 1975 #endif /* #ifdef CONFIG_PROVE_RCU */ 1976 1977 /* 1978 * Check count of all no-CBs callbacks awaiting invocation. 1979 * There needs to be a barrier before this function is called, 1980 * but associated with a prior determination that no more 1981 * callbacks would be posted. In the worst case, the first 1982 * barrier in _rcu_barrier() suffices (but the caller cannot 1983 * necessarily rely on this, not a substitute for the caller 1984 * getting the concurrency design right!). There must also be 1985 * a barrier between the following load an posting of a callback 1986 * (if a callback is in fact needed). This is associated with an 1987 * atomic_inc() in the caller. 1988 */ 1989 ret = atomic_long_read(&rdp->nocb_q_count); 1990 1991 #ifdef CONFIG_PROVE_RCU 1992 rhp = READ_ONCE(rdp->nocb_head); 1993 if (!rhp) 1994 rhp = READ_ONCE(rdp->nocb_gp_head); 1995 if (!rhp) 1996 rhp = READ_ONCE(rdp->nocb_follower_head); 1997 1998 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1999 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 2000 rcu_scheduler_fully_active) { 2001 /* RCU callback enqueued before CPU first came online??? */ 2002 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 2003 cpu, rhp->func); 2004 WARN_ON_ONCE(1); 2005 } 2006 #endif /* #ifdef CONFIG_PROVE_RCU */ 2007 2008 return !!ret; 2009 } 2010 2011 /* 2012 * Enqueue the specified string of rcu_head structures onto the specified 2013 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 2014 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 2015 * counts are supplied by rhcount and rhcount_lazy. 2016 * 2017 * If warranted, also wake up the kthread servicing this CPUs queues. 2018 */ 2019 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 2020 struct rcu_head *rhp, 2021 struct rcu_head **rhtp, 2022 int rhcount, int rhcount_lazy, 2023 unsigned long flags) 2024 { 2025 int len; 2026 struct rcu_head **old_rhpp; 2027 struct task_struct *t; 2028 2029 /* Enqueue the callback on the nocb list and update counts. */ 2030 atomic_long_add(rhcount, &rdp->nocb_q_count); 2031 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 2032 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 2033 WRITE_ONCE(*old_rhpp, rhp); 2034 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 2035 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 2036 2037 /* If we are not being polled and there is a kthread, awaken it ... */ 2038 t = READ_ONCE(rdp->nocb_kthread); 2039 if (rcu_nocb_poll || !t) { 2040 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2041 TPS("WakeNotPoll")); 2042 return; 2043 } 2044 len = atomic_long_read(&rdp->nocb_q_count); 2045 if (old_rhpp == &rdp->nocb_head) { 2046 if (!irqs_disabled_flags(flags)) { 2047 /* ... if queue was empty ... */ 2048 wake_nocb_leader(rdp, false); 2049 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2050 TPS("WakeEmpty")); 2051 } else { 2052 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 2053 TPS("WakeEmptyIsDeferred")); 2054 } 2055 rdp->qlen_last_fqs_check = 0; 2056 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 2057 /* ... or if many callbacks queued. */ 2058 if (!irqs_disabled_flags(flags)) { 2059 wake_nocb_leader(rdp, true); 2060 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2061 TPS("WakeOvf")); 2062 } else { 2063 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE, 2064 TPS("WakeOvfIsDeferred")); 2065 } 2066 rdp->qlen_last_fqs_check = LONG_MAX / 2; 2067 } else { 2068 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 2069 } 2070 return; 2071 } 2072 2073 /* 2074 * This is a helper for __call_rcu(), which invokes this when the normal 2075 * callback queue is inoperable. If this is not a no-CBs CPU, this 2076 * function returns failure back to __call_rcu(), which can complain 2077 * appropriately. 2078 * 2079 * Otherwise, this function queues the callback where the corresponding 2080 * "rcuo" kthread can find it. 2081 */ 2082 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2083 bool lazy, unsigned long flags) 2084 { 2085 2086 if (!rcu_is_nocb_cpu(rdp->cpu)) 2087 return false; 2088 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2089 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2090 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2091 (unsigned long)rhp->func, 2092 -atomic_long_read(&rdp->nocb_q_count_lazy), 2093 -atomic_long_read(&rdp->nocb_q_count)); 2094 else 2095 trace_rcu_callback(rdp->rsp->name, rhp, 2096 -atomic_long_read(&rdp->nocb_q_count_lazy), 2097 -atomic_long_read(&rdp->nocb_q_count)); 2098 2099 /* 2100 * If called from an extended quiescent state with interrupts 2101 * disabled, invoke the RCU core in order to allow the idle-entry 2102 * deferred-wakeup check to function. 2103 */ 2104 if (irqs_disabled_flags(flags) && 2105 !rcu_is_watching() && 2106 cpu_online(smp_processor_id())) 2107 invoke_rcu_core(); 2108 2109 return true; 2110 } 2111 2112 /* 2113 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2114 * not a no-CBs CPU. 2115 */ 2116 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2117 struct rcu_data *rdp, 2118 unsigned long flags) 2119 { 2120 lockdep_assert_irqs_disabled(); 2121 if (!rcu_is_nocb_cpu(smp_processor_id())) 2122 return false; /* Not NOCBs CPU, caller must migrate CBs. */ 2123 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist), 2124 rcu_segcblist_tail(&rdp->cblist), 2125 rcu_segcblist_n_cbs(&rdp->cblist), 2126 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags); 2127 rcu_segcblist_init(&rdp->cblist); 2128 rcu_segcblist_disable(&rdp->cblist); 2129 return true; 2130 } 2131 2132 /* 2133 * If necessary, kick off a new grace period, and either way wait 2134 * for a subsequent grace period to complete. 2135 */ 2136 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2137 { 2138 unsigned long c; 2139 bool d; 2140 unsigned long flags; 2141 bool needwake; 2142 struct rcu_node *rnp = rdp->mynode; 2143 2144 local_irq_save(flags); 2145 c = rcu_seq_snap(&rdp->rsp->gp_seq); 2146 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 2147 local_irq_restore(flags); 2148 } else { 2149 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2150 needwake = rcu_start_this_gp(rnp, rdp, c); 2151 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2152 if (needwake) 2153 rcu_gp_kthread_wake(rdp->rsp); 2154 } 2155 2156 /* 2157 * Wait for the grace period. Do so interruptibly to avoid messing 2158 * up the load average. 2159 */ 2160 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait")); 2161 for (;;) { 2162 swait_event_interruptible_exclusive( 2163 rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1], 2164 (d = rcu_seq_done(&rnp->gp_seq, c))); 2165 if (likely(d)) 2166 break; 2167 WARN_ON(signal_pending(current)); 2168 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait")); 2169 } 2170 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait")); 2171 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2172 } 2173 2174 /* 2175 * Leaders come here to wait for additional callbacks to show up. 2176 * This function does not return until callbacks appear. 2177 */ 2178 static void nocb_leader_wait(struct rcu_data *my_rdp) 2179 { 2180 bool firsttime = true; 2181 unsigned long flags; 2182 bool gotcbs; 2183 struct rcu_data *rdp; 2184 struct rcu_head **tail; 2185 2186 wait_again: 2187 2188 /* Wait for callbacks to appear. */ 2189 if (!rcu_nocb_poll) { 2190 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep")); 2191 swait_event_interruptible_exclusive(my_rdp->nocb_wq, 2192 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2193 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2194 my_rdp->nocb_leader_sleep = true; 2195 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2196 del_timer(&my_rdp->nocb_timer); 2197 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2198 } else if (firsttime) { 2199 firsttime = false; /* Don't drown trace log with "Poll"! */ 2200 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll")); 2201 } 2202 2203 /* 2204 * Each pass through the following loop checks a follower for CBs. 2205 * We are our own first follower. Any CBs found are moved to 2206 * nocb_gp_head, where they await a grace period. 2207 */ 2208 gotcbs = false; 2209 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */ 2210 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2211 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2212 if (!rdp->nocb_gp_head) 2213 continue; /* No CBs here, try next follower. */ 2214 2215 /* Move callbacks to wait-for-GP list, which is empty. */ 2216 WRITE_ONCE(rdp->nocb_head, NULL); 2217 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2218 gotcbs = true; 2219 } 2220 2221 /* No callbacks? Sleep a bit if polling, and go retry. */ 2222 if (unlikely(!gotcbs)) { 2223 WARN_ON(signal_pending(current)); 2224 if (rcu_nocb_poll) { 2225 schedule_timeout_interruptible(1); 2226 } else { 2227 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2228 TPS("WokeEmpty")); 2229 } 2230 goto wait_again; 2231 } 2232 2233 /* Wait for one grace period. */ 2234 rcu_nocb_wait_gp(my_rdp); 2235 2236 /* Each pass through the following loop wakes a follower, if needed. */ 2237 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2238 if (!rcu_nocb_poll && 2239 READ_ONCE(rdp->nocb_head) && 2240 READ_ONCE(my_rdp->nocb_leader_sleep)) { 2241 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2242 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2243 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2244 } 2245 if (!rdp->nocb_gp_head) 2246 continue; /* No CBs, so no need to wake follower. */ 2247 2248 /* Append callbacks to follower's "done" list. */ 2249 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2250 tail = rdp->nocb_follower_tail; 2251 rdp->nocb_follower_tail = rdp->nocb_gp_tail; 2252 *tail = rdp->nocb_gp_head; 2253 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2254 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2255 /* List was empty, so wake up the follower. */ 2256 swake_up_one(&rdp->nocb_wq); 2257 } 2258 } 2259 2260 /* If we (the leader) don't have CBs, go wait some more. */ 2261 if (!my_rdp->nocb_follower_head) 2262 goto wait_again; 2263 } 2264 2265 /* 2266 * Followers come here to wait for additional callbacks to show up. 2267 * This function does not return until callbacks appear. 2268 */ 2269 static void nocb_follower_wait(struct rcu_data *rdp) 2270 { 2271 for (;;) { 2272 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep")); 2273 swait_event_interruptible_exclusive(rdp->nocb_wq, 2274 READ_ONCE(rdp->nocb_follower_head)); 2275 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2276 /* ^^^ Ensure CB invocation follows _head test. */ 2277 return; 2278 } 2279 WARN_ON(signal_pending(current)); 2280 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty")); 2281 } 2282 } 2283 2284 /* 2285 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2286 * callbacks queued by the corresponding no-CBs CPU, however, there is 2287 * an optional leader-follower relationship so that the grace-period 2288 * kthreads don't have to do quite so many wakeups. 2289 */ 2290 static int rcu_nocb_kthread(void *arg) 2291 { 2292 int c, cl; 2293 unsigned long flags; 2294 struct rcu_head *list; 2295 struct rcu_head *next; 2296 struct rcu_head **tail; 2297 struct rcu_data *rdp = arg; 2298 2299 /* Each pass through this loop invokes one batch of callbacks */ 2300 for (;;) { 2301 /* Wait for callbacks. */ 2302 if (rdp->nocb_leader == rdp) 2303 nocb_leader_wait(rdp); 2304 else 2305 nocb_follower_wait(rdp); 2306 2307 /* Pull the ready-to-invoke callbacks onto local list. */ 2308 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2309 list = rdp->nocb_follower_head; 2310 rdp->nocb_follower_head = NULL; 2311 tail = rdp->nocb_follower_tail; 2312 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2313 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2314 BUG_ON(!list); 2315 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty")); 2316 2317 /* Each pass through the following loop invokes a callback. */ 2318 trace_rcu_batch_start(rdp->rsp->name, 2319 atomic_long_read(&rdp->nocb_q_count_lazy), 2320 atomic_long_read(&rdp->nocb_q_count), -1); 2321 c = cl = 0; 2322 while (list) { 2323 next = list->next; 2324 /* Wait for enqueuing to complete, if needed. */ 2325 while (next == NULL && &list->next != tail) { 2326 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2327 TPS("WaitQueue")); 2328 schedule_timeout_interruptible(1); 2329 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2330 TPS("WokeQueue")); 2331 next = list->next; 2332 } 2333 debug_rcu_head_unqueue(list); 2334 local_bh_disable(); 2335 if (__rcu_reclaim(rdp->rsp->name, list)) 2336 cl++; 2337 c++; 2338 local_bh_enable(); 2339 cond_resched_tasks_rcu_qs(); 2340 list = next; 2341 } 2342 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2343 smp_mb__before_atomic(); /* _add after CB invocation. */ 2344 atomic_long_add(-c, &rdp->nocb_q_count); 2345 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2346 } 2347 return 0; 2348 } 2349 2350 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2351 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2352 { 2353 return READ_ONCE(rdp->nocb_defer_wakeup); 2354 } 2355 2356 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2357 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2358 { 2359 unsigned long flags; 2360 int ndw; 2361 2362 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2363 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2364 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2365 return; 2366 } 2367 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2368 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2369 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2370 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2371 } 2372 2373 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2374 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2375 { 2376 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2377 2378 do_nocb_deferred_wakeup_common(rdp); 2379 } 2380 2381 /* 2382 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2383 * This means we do an inexact common-case check. Note that if 2384 * we miss, ->nocb_timer will eventually clean things up. 2385 */ 2386 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2387 { 2388 if (rcu_nocb_need_deferred_wakeup(rdp)) 2389 do_nocb_deferred_wakeup_common(rdp); 2390 } 2391 2392 void __init rcu_init_nohz(void) 2393 { 2394 int cpu; 2395 bool need_rcu_nocb_mask = false; 2396 struct rcu_state *rsp; 2397 2398 #if defined(CONFIG_NO_HZ_FULL) 2399 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2400 need_rcu_nocb_mask = true; 2401 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2402 2403 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2404 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2405 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2406 return; 2407 } 2408 } 2409 if (!cpumask_available(rcu_nocb_mask)) 2410 return; 2411 2412 #if defined(CONFIG_NO_HZ_FULL) 2413 if (tick_nohz_full_running) 2414 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2415 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2416 2417 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2418 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2419 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2420 rcu_nocb_mask); 2421 } 2422 if (cpumask_empty(rcu_nocb_mask)) 2423 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2424 else 2425 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2426 cpumask_pr_args(rcu_nocb_mask)); 2427 if (rcu_nocb_poll) 2428 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2429 2430 for_each_rcu_flavor(rsp) { 2431 for_each_cpu(cpu, rcu_nocb_mask) 2432 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2433 rcu_organize_nocb_kthreads(rsp); 2434 } 2435 } 2436 2437 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2438 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2439 { 2440 rdp->nocb_tail = &rdp->nocb_head; 2441 init_swait_queue_head(&rdp->nocb_wq); 2442 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2443 raw_spin_lock_init(&rdp->nocb_lock); 2444 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2445 } 2446 2447 /* 2448 * If the specified CPU is a no-CBs CPU that does not already have its 2449 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2450 * brought online out of order, this can require re-organizing the 2451 * leader-follower relationships. 2452 */ 2453 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2454 { 2455 struct rcu_data *rdp; 2456 struct rcu_data *rdp_last; 2457 struct rcu_data *rdp_old_leader; 2458 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2459 struct task_struct *t; 2460 2461 /* 2462 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2463 * then nothing to do. 2464 */ 2465 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2466 return; 2467 2468 /* If we didn't spawn the leader first, reorganize! */ 2469 rdp_old_leader = rdp_spawn->nocb_leader; 2470 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2471 rdp_last = NULL; 2472 rdp = rdp_old_leader; 2473 do { 2474 rdp->nocb_leader = rdp_spawn; 2475 if (rdp_last && rdp != rdp_spawn) 2476 rdp_last->nocb_next_follower = rdp; 2477 if (rdp == rdp_spawn) { 2478 rdp = rdp->nocb_next_follower; 2479 } else { 2480 rdp_last = rdp; 2481 rdp = rdp->nocb_next_follower; 2482 rdp_last->nocb_next_follower = NULL; 2483 } 2484 } while (rdp); 2485 rdp_spawn->nocb_next_follower = rdp_old_leader; 2486 } 2487 2488 /* Spawn the kthread for this CPU and RCU flavor. */ 2489 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2490 "rcuo%c/%d", rsp->abbr, cpu); 2491 BUG_ON(IS_ERR(t)); 2492 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2493 } 2494 2495 /* 2496 * If the specified CPU is a no-CBs CPU that does not already have its 2497 * rcuo kthreads, spawn them. 2498 */ 2499 static void rcu_spawn_all_nocb_kthreads(int cpu) 2500 { 2501 struct rcu_state *rsp; 2502 2503 if (rcu_scheduler_fully_active) 2504 for_each_rcu_flavor(rsp) 2505 rcu_spawn_one_nocb_kthread(rsp, cpu); 2506 } 2507 2508 /* 2509 * Once the scheduler is running, spawn rcuo kthreads for all online 2510 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2511 * non-boot CPUs come online -- if this changes, we will need to add 2512 * some mutual exclusion. 2513 */ 2514 static void __init rcu_spawn_nocb_kthreads(void) 2515 { 2516 int cpu; 2517 2518 for_each_online_cpu(cpu) 2519 rcu_spawn_all_nocb_kthreads(cpu); 2520 } 2521 2522 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2523 static int rcu_nocb_leader_stride = -1; 2524 module_param(rcu_nocb_leader_stride, int, 0444); 2525 2526 /* 2527 * Initialize leader-follower relationships for all no-CBs CPU. 2528 */ 2529 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2530 { 2531 int cpu; 2532 int ls = rcu_nocb_leader_stride; 2533 int nl = 0; /* Next leader. */ 2534 struct rcu_data *rdp; 2535 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2536 struct rcu_data *rdp_prev = NULL; 2537 2538 if (!cpumask_available(rcu_nocb_mask)) 2539 return; 2540 if (ls == -1) { 2541 ls = int_sqrt(nr_cpu_ids); 2542 rcu_nocb_leader_stride = ls; 2543 } 2544 2545 /* 2546 * Each pass through this loop sets up one rcu_data structure. 2547 * Should the corresponding CPU come online in the future, then 2548 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2549 */ 2550 for_each_cpu(cpu, rcu_nocb_mask) { 2551 rdp = per_cpu_ptr(rsp->rda, cpu); 2552 if (rdp->cpu >= nl) { 2553 /* New leader, set up for followers & next leader. */ 2554 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2555 rdp->nocb_leader = rdp; 2556 rdp_leader = rdp; 2557 } else { 2558 /* Another follower, link to previous leader. */ 2559 rdp->nocb_leader = rdp_leader; 2560 rdp_prev->nocb_next_follower = rdp; 2561 } 2562 rdp_prev = rdp; 2563 } 2564 } 2565 2566 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2567 static bool init_nocb_callback_list(struct rcu_data *rdp) 2568 { 2569 if (!rcu_is_nocb_cpu(rdp->cpu)) 2570 return false; 2571 2572 /* If there are early-boot callbacks, move them to nocb lists. */ 2573 if (!rcu_segcblist_empty(&rdp->cblist)) { 2574 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2575 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2576 atomic_long_set(&rdp->nocb_q_count, 2577 rcu_segcblist_n_cbs(&rdp->cblist)); 2578 atomic_long_set(&rdp->nocb_q_count_lazy, 2579 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2580 rcu_segcblist_init(&rdp->cblist); 2581 } 2582 rcu_segcblist_disable(&rdp->cblist); 2583 return true; 2584 } 2585 2586 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2587 2588 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2589 { 2590 WARN_ON_ONCE(1); /* Should be dead code. */ 2591 return false; 2592 } 2593 2594 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2595 { 2596 } 2597 2598 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2599 { 2600 return NULL; 2601 } 2602 2603 static void rcu_init_one_nocb(struct rcu_node *rnp) 2604 { 2605 } 2606 2607 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2608 bool lazy, unsigned long flags) 2609 { 2610 return false; 2611 } 2612 2613 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2614 struct rcu_data *rdp, 2615 unsigned long flags) 2616 { 2617 return false; 2618 } 2619 2620 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2621 { 2622 } 2623 2624 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2625 { 2626 return false; 2627 } 2628 2629 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2630 { 2631 } 2632 2633 static void rcu_spawn_all_nocb_kthreads(int cpu) 2634 { 2635 } 2636 2637 static void __init rcu_spawn_nocb_kthreads(void) 2638 { 2639 } 2640 2641 static bool init_nocb_callback_list(struct rcu_data *rdp) 2642 { 2643 return false; 2644 } 2645 2646 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2647 2648 /* 2649 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2650 * grace-period kthread will do force_quiescent_state() processing? 2651 * The idea is to avoid waking up RCU core processing on such a 2652 * CPU unless the grace period has extended for too long. 2653 * 2654 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2655 * CONFIG_RCU_NOCB_CPU CPUs. 2656 */ 2657 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2658 { 2659 #ifdef CONFIG_NO_HZ_FULL 2660 if (tick_nohz_full_cpu(smp_processor_id()) && 2661 (!rcu_gp_in_progress(rsp) || 2662 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2663 return true; 2664 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2665 return false; 2666 } 2667 2668 /* 2669 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2670 */ 2671 static void rcu_bind_gp_kthread(void) 2672 { 2673 if (!tick_nohz_full_enabled()) 2674 return; 2675 housekeeping_affine(current, HK_FLAG_RCU); 2676 } 2677 2678 /* Record the current task on dyntick-idle entry. */ 2679 static void rcu_dynticks_task_enter(void) 2680 { 2681 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2682 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2683 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2684 } 2685 2686 /* Record no current task on dyntick-idle exit. */ 2687 static void rcu_dynticks_task_exit(void) 2688 { 2689 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2690 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2691 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2692 } 2693