1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <linux/sched/isolation.h> 33 #include <uapi/linux/sched/types.h> 34 #include "../time/tick-internal.h" 35 36 #ifdef CONFIG_RCU_BOOST 37 38 #include "../locking/rtmutex_common.h" 39 40 /* 41 * Control variables for per-CPU and per-rcu_node kthreads. These 42 * handle all flavors of RCU. 43 */ 44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 47 DEFINE_PER_CPU(char, rcu_cpu_has_work); 48 49 #else /* #ifdef CONFIG_RCU_BOOST */ 50 51 /* 52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 53 * all uses are in dead code. Provide a definition to keep the compiler 54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 55 * This probably needs to be excluded from -rt builds. 56 */ 57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1) 59 60 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 61 62 #ifdef CONFIG_RCU_NOCB_CPU 63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 64 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 66 67 /* 68 * Check the RCU kernel configuration parameters and print informative 69 * messages about anything out of the ordinary. 70 */ 71 static void __init rcu_bootup_announce_oddness(void) 72 { 73 if (IS_ENABLED(CONFIG_RCU_TRACE)) 74 pr_info("\tRCU event tracing is enabled.\n"); 75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 78 RCU_FANOUT); 79 if (rcu_fanout_exact) 80 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 83 if (IS_ENABLED(CONFIG_PROVE_RCU)) 84 pr_info("\tRCU lockdep checking is enabled.\n"); 85 if (RCU_NUM_LVLS >= 4) 86 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 87 if (RCU_FANOUT_LEAF != 16) 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 89 RCU_FANOUT_LEAF); 90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 92 if (nr_cpu_ids != NR_CPUS) 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 94 #ifdef CONFIG_RCU_BOOST 95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY); 96 #endif 97 if (blimit != DEFAULT_RCU_BLIMIT) 98 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 99 if (qhimark != DEFAULT_RCU_QHIMARK) 100 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 101 if (qlowmark != DEFAULT_RCU_QLOMARK) 102 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 103 if (jiffies_till_first_fqs != ULONG_MAX) 104 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 105 if (jiffies_till_next_fqs != ULONG_MAX) 106 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 107 if (rcu_kick_kthreads) 108 pr_info("\tKick kthreads if too-long grace period.\n"); 109 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 110 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 111 if (gp_preinit_delay) 112 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 113 if (gp_init_delay) 114 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 115 if (gp_cleanup_delay) 116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 117 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 118 pr_info("\tRCU debug extended QS entry/exit.\n"); 119 rcupdate_announce_bootup_oddness(); 120 } 121 122 #ifdef CONFIG_PREEMPT_RCU 123 124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 127 128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 129 bool wake); 130 131 /* 132 * Tell them what RCU they are running. 133 */ 134 static void __init rcu_bootup_announce(void) 135 { 136 pr_info("Preemptible hierarchical RCU implementation.\n"); 137 rcu_bootup_announce_oddness(); 138 } 139 140 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 141 #define RCU_GP_TASKS 0x8 142 #define RCU_EXP_TASKS 0x4 143 #define RCU_GP_BLKD 0x2 144 #define RCU_EXP_BLKD 0x1 145 146 /* 147 * Queues a task preempted within an RCU-preempt read-side critical 148 * section into the appropriate location within the ->blkd_tasks list, 149 * depending on the states of any ongoing normal and expedited grace 150 * periods. The ->gp_tasks pointer indicates which element the normal 151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 152 * indicates which element the expedited grace period is waiting on (again, 153 * NULL if none). If a grace period is waiting on a given element in the 154 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 155 * adding a task to the tail of the list blocks any grace period that is 156 * already waiting on one of the elements. In contrast, adding a task 157 * to the head of the list won't block any grace period that is already 158 * waiting on one of the elements. 159 * 160 * This queuing is imprecise, and can sometimes make an ongoing grace 161 * period wait for a task that is not strictly speaking blocking it. 162 * Given the choice, we needlessly block a normal grace period rather than 163 * blocking an expedited grace period. 164 * 165 * Note that an endless sequence of expedited grace periods still cannot 166 * indefinitely postpone a normal grace period. Eventually, all of the 167 * fixed number of preempted tasks blocking the normal grace period that are 168 * not also blocking the expedited grace period will resume and complete 169 * their RCU read-side critical sections. At that point, the ->gp_tasks 170 * pointer will equal the ->exp_tasks pointer, at which point the end of 171 * the corresponding expedited grace period will also be the end of the 172 * normal grace period. 173 */ 174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 175 __releases(rnp->lock) /* But leaves rrupts disabled. */ 176 { 177 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 178 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 179 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 180 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 181 struct task_struct *t = current; 182 183 raw_lockdep_assert_held_rcu_node(rnp); 184 WARN_ON_ONCE(rdp->mynode != rnp); 185 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1); 186 187 /* 188 * Decide where to queue the newly blocked task. In theory, 189 * this could be an if-statement. In practice, when I tried 190 * that, it was quite messy. 191 */ 192 switch (blkd_state) { 193 case 0: 194 case RCU_EXP_TASKS: 195 case RCU_EXP_TASKS + RCU_GP_BLKD: 196 case RCU_GP_TASKS: 197 case RCU_GP_TASKS + RCU_EXP_TASKS: 198 199 /* 200 * Blocking neither GP, or first task blocking the normal 201 * GP but not blocking the already-waiting expedited GP. 202 * Queue at the head of the list to avoid unnecessarily 203 * blocking the already-waiting GPs. 204 */ 205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 206 break; 207 208 case RCU_EXP_BLKD: 209 case RCU_GP_BLKD: 210 case RCU_GP_BLKD + RCU_EXP_BLKD: 211 case RCU_GP_TASKS + RCU_EXP_BLKD: 212 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 213 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 214 215 /* 216 * First task arriving that blocks either GP, or first task 217 * arriving that blocks the expedited GP (with the normal 218 * GP already waiting), or a task arriving that blocks 219 * both GPs with both GPs already waiting. Queue at the 220 * tail of the list to avoid any GP waiting on any of the 221 * already queued tasks that are not blocking it. 222 */ 223 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 224 break; 225 226 case RCU_EXP_TASKS + RCU_EXP_BLKD: 227 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 228 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 229 230 /* 231 * Second or subsequent task blocking the expedited GP. 232 * The task either does not block the normal GP, or is the 233 * first task blocking the normal GP. Queue just after 234 * the first task blocking the expedited GP. 235 */ 236 list_add(&t->rcu_node_entry, rnp->exp_tasks); 237 break; 238 239 case RCU_GP_TASKS + RCU_GP_BLKD: 240 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 241 242 /* 243 * Second or subsequent task blocking the normal GP. 244 * The task does not block the expedited GP. Queue just 245 * after the first task blocking the normal GP. 246 */ 247 list_add(&t->rcu_node_entry, rnp->gp_tasks); 248 break; 249 250 default: 251 252 /* Yet another exercise in excessive paranoia. */ 253 WARN_ON_ONCE(1); 254 break; 255 } 256 257 /* 258 * We have now queued the task. If it was the first one to 259 * block either grace period, update the ->gp_tasks and/or 260 * ->exp_tasks pointers, respectively, to reference the newly 261 * blocked tasks. 262 */ 263 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 264 rnp->gp_tasks = &t->rcu_node_entry; 265 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 266 rnp->exp_tasks = &t->rcu_node_entry; 267 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 268 !(rnp->qsmask & rdp->grpmask)); 269 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 270 !(rnp->expmask & rdp->grpmask)); 271 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 272 273 /* 274 * Report the quiescent state for the expedited GP. This expedited 275 * GP should not be able to end until we report, so there should be 276 * no need to check for a subsequent expedited GP. (Though we are 277 * still in a quiescent state in any case.) 278 */ 279 if (blkd_state & RCU_EXP_BLKD && 280 t->rcu_read_unlock_special.b.exp_need_qs) { 281 t->rcu_read_unlock_special.b.exp_need_qs = false; 282 rcu_report_exp_rdp(rdp->rsp, rdp, true); 283 } else { 284 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 285 } 286 } 287 288 /* 289 * Record a preemptible-RCU quiescent state for the specified CPU. Note 290 * that this just means that the task currently running on the CPU is 291 * not in a quiescent state. There might be any number of tasks blocked 292 * while in an RCU read-side critical section. 293 * 294 * As with the other rcu_*_qs() functions, callers to this function 295 * must disable preemption. 296 */ 297 static void rcu_preempt_qs(void) 298 { 299 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n"); 300 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 301 trace_rcu_grace_period(TPS("rcu_preempt"), 302 __this_cpu_read(rcu_data_p->gpnum), 303 TPS("cpuqs")); 304 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 305 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 306 current->rcu_read_unlock_special.b.need_qs = false; 307 } 308 } 309 310 /* 311 * We have entered the scheduler, and the current task might soon be 312 * context-switched away from. If this task is in an RCU read-side 313 * critical section, we will no longer be able to rely on the CPU to 314 * record that fact, so we enqueue the task on the blkd_tasks list. 315 * The task will dequeue itself when it exits the outermost enclosing 316 * RCU read-side critical section. Therefore, the current grace period 317 * cannot be permitted to complete until the blkd_tasks list entries 318 * predating the current grace period drain, in other words, until 319 * rnp->gp_tasks becomes NULL. 320 * 321 * Caller must disable interrupts. 322 */ 323 static void rcu_preempt_note_context_switch(bool preempt) 324 { 325 struct task_struct *t = current; 326 struct rcu_data *rdp; 327 struct rcu_node *rnp; 328 329 lockdep_assert_irqs_disabled(); 330 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); 331 if (t->rcu_read_lock_nesting > 0 && 332 !t->rcu_read_unlock_special.b.blocked) { 333 334 /* Possibly blocking in an RCU read-side critical section. */ 335 rdp = this_cpu_ptr(rcu_state_p->rda); 336 rnp = rdp->mynode; 337 raw_spin_lock_rcu_node(rnp); 338 t->rcu_read_unlock_special.b.blocked = true; 339 t->rcu_blocked_node = rnp; 340 341 /* 342 * Verify the CPU's sanity, trace the preemption, and 343 * then queue the task as required based on the states 344 * of any ongoing and expedited grace periods. 345 */ 346 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 347 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 348 trace_rcu_preempt_task(rdp->rsp->name, 349 t->pid, 350 (rnp->qsmask & rdp->grpmask) 351 ? rnp->gpnum 352 : rnp->gpnum + 1); 353 rcu_preempt_ctxt_queue(rnp, rdp); 354 } else if (t->rcu_read_lock_nesting < 0 && 355 t->rcu_read_unlock_special.s) { 356 357 /* 358 * Complete exit from RCU read-side critical section on 359 * behalf of preempted instance of __rcu_read_unlock(). 360 */ 361 rcu_read_unlock_special(t); 362 } 363 364 /* 365 * Either we were not in an RCU read-side critical section to 366 * begin with, or we have now recorded that critical section 367 * globally. Either way, we can now note a quiescent state 368 * for this CPU. Again, if we were in an RCU read-side critical 369 * section, and if that critical section was blocking the current 370 * grace period, then the fact that the task has been enqueued 371 * means that we continue to block the current grace period. 372 */ 373 rcu_preempt_qs(); 374 } 375 376 /* 377 * Check for preempted RCU readers blocking the current grace period 378 * for the specified rcu_node structure. If the caller needs a reliable 379 * answer, it must hold the rcu_node's ->lock. 380 */ 381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 382 { 383 return rnp->gp_tasks != NULL; 384 } 385 386 /* 387 * Advance a ->blkd_tasks-list pointer to the next entry, instead 388 * returning NULL if at the end of the list. 389 */ 390 static struct list_head *rcu_next_node_entry(struct task_struct *t, 391 struct rcu_node *rnp) 392 { 393 struct list_head *np; 394 395 np = t->rcu_node_entry.next; 396 if (np == &rnp->blkd_tasks) 397 np = NULL; 398 return np; 399 } 400 401 /* 402 * Return true if the specified rcu_node structure has tasks that were 403 * preempted within an RCU read-side critical section. 404 */ 405 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 406 { 407 return !list_empty(&rnp->blkd_tasks); 408 } 409 410 /* 411 * Handle special cases during rcu_read_unlock(), such as needing to 412 * notify RCU core processing or task having blocked during the RCU 413 * read-side critical section. 414 */ 415 void rcu_read_unlock_special(struct task_struct *t) 416 { 417 bool empty_exp; 418 bool empty_norm; 419 bool empty_exp_now; 420 unsigned long flags; 421 struct list_head *np; 422 bool drop_boost_mutex = false; 423 struct rcu_data *rdp; 424 struct rcu_node *rnp; 425 union rcu_special special; 426 427 /* NMI handlers cannot block and cannot safely manipulate state. */ 428 if (in_nmi()) 429 return; 430 431 local_irq_save(flags); 432 433 /* 434 * If RCU core is waiting for this CPU to exit its critical section, 435 * report the fact that it has exited. Because irqs are disabled, 436 * t->rcu_read_unlock_special cannot change. 437 */ 438 special = t->rcu_read_unlock_special; 439 if (special.b.need_qs) { 440 rcu_preempt_qs(); 441 t->rcu_read_unlock_special.b.need_qs = false; 442 if (!t->rcu_read_unlock_special.s) { 443 local_irq_restore(flags); 444 return; 445 } 446 } 447 448 /* 449 * Respond to a request for an expedited grace period, but only if 450 * we were not preempted, meaning that we were running on the same 451 * CPU throughout. If we were preempted, the exp_need_qs flag 452 * would have been cleared at the time of the first preemption, 453 * and the quiescent state would be reported when we were dequeued. 454 */ 455 if (special.b.exp_need_qs) { 456 WARN_ON_ONCE(special.b.blocked); 457 t->rcu_read_unlock_special.b.exp_need_qs = false; 458 rdp = this_cpu_ptr(rcu_state_p->rda); 459 rcu_report_exp_rdp(rcu_state_p, rdp, true); 460 if (!t->rcu_read_unlock_special.s) { 461 local_irq_restore(flags); 462 return; 463 } 464 } 465 466 /* Hardware IRQ handlers cannot block, complain if they get here. */ 467 if (in_irq() || in_serving_softirq()) { 468 lockdep_rcu_suspicious(__FILE__, __LINE__, 469 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 470 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 471 t->rcu_read_unlock_special.s, 472 t->rcu_read_unlock_special.b.blocked, 473 t->rcu_read_unlock_special.b.exp_need_qs, 474 t->rcu_read_unlock_special.b.need_qs); 475 local_irq_restore(flags); 476 return; 477 } 478 479 /* Clean up if blocked during RCU read-side critical section. */ 480 if (special.b.blocked) { 481 t->rcu_read_unlock_special.b.blocked = false; 482 483 /* 484 * Remove this task from the list it blocked on. The task 485 * now remains queued on the rcu_node corresponding to the 486 * CPU it first blocked on, so there is no longer any need 487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 488 */ 489 rnp = t->rcu_blocked_node; 490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 491 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 492 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1); 493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 494 empty_exp = sync_rcu_preempt_exp_done(rnp); 495 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 496 np = rcu_next_node_entry(t, rnp); 497 list_del_init(&t->rcu_node_entry); 498 t->rcu_blocked_node = NULL; 499 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 500 rnp->gpnum, t->pid); 501 if (&t->rcu_node_entry == rnp->gp_tasks) 502 rnp->gp_tasks = np; 503 if (&t->rcu_node_entry == rnp->exp_tasks) 504 rnp->exp_tasks = np; 505 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 506 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 507 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 508 if (&t->rcu_node_entry == rnp->boost_tasks) 509 rnp->boost_tasks = np; 510 } 511 512 /* 513 * If this was the last task on the current list, and if 514 * we aren't waiting on any CPUs, report the quiescent state. 515 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 516 * so we must take a snapshot of the expedited state. 517 */ 518 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 519 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 520 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 521 rnp->gpnum, 522 0, rnp->qsmask, 523 rnp->level, 524 rnp->grplo, 525 rnp->grphi, 526 !!rnp->gp_tasks); 527 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 528 } else { 529 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 530 } 531 532 /* Unboost if we were boosted. */ 533 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 534 rt_mutex_futex_unlock(&rnp->boost_mtx); 535 536 /* 537 * If this was the last task on the expedited lists, 538 * then we need to report up the rcu_node hierarchy. 539 */ 540 if (!empty_exp && empty_exp_now) 541 rcu_report_exp_rnp(rcu_state_p, rnp, true); 542 } else { 543 local_irq_restore(flags); 544 } 545 } 546 547 /* 548 * Dump detailed information for all tasks blocking the current RCU 549 * grace period on the specified rcu_node structure. 550 */ 551 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 552 { 553 unsigned long flags; 554 struct task_struct *t; 555 556 raw_spin_lock_irqsave_rcu_node(rnp, flags); 557 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 558 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 559 return; 560 } 561 t = list_entry(rnp->gp_tasks->prev, 562 struct task_struct, rcu_node_entry); 563 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 564 /* 565 * We could be printing a lot while holding a spinlock. 566 * Avoid triggering hard lockup. 567 */ 568 touch_nmi_watchdog(); 569 sched_show_task(t); 570 } 571 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 572 } 573 574 /* 575 * Dump detailed information for all tasks blocking the current RCU 576 * grace period. 577 */ 578 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 579 { 580 struct rcu_node *rnp = rcu_get_root(rsp); 581 582 rcu_print_detail_task_stall_rnp(rnp); 583 rcu_for_each_leaf_node(rsp, rnp) 584 rcu_print_detail_task_stall_rnp(rnp); 585 } 586 587 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 588 { 589 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 590 rnp->level, rnp->grplo, rnp->grphi); 591 } 592 593 static void rcu_print_task_stall_end(void) 594 { 595 pr_cont("\n"); 596 } 597 598 /* 599 * Scan the current list of tasks blocked within RCU read-side critical 600 * sections, printing out the tid of each. 601 */ 602 static int rcu_print_task_stall(struct rcu_node *rnp) 603 { 604 struct task_struct *t; 605 int ndetected = 0; 606 607 if (!rcu_preempt_blocked_readers_cgp(rnp)) 608 return 0; 609 rcu_print_task_stall_begin(rnp); 610 t = list_entry(rnp->gp_tasks->prev, 611 struct task_struct, rcu_node_entry); 612 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 613 pr_cont(" P%d", t->pid); 614 ndetected++; 615 } 616 rcu_print_task_stall_end(); 617 return ndetected; 618 } 619 620 /* 621 * Scan the current list of tasks blocked within RCU read-side critical 622 * sections, printing out the tid of each that is blocking the current 623 * expedited grace period. 624 */ 625 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 626 { 627 struct task_struct *t; 628 int ndetected = 0; 629 630 if (!rnp->exp_tasks) 631 return 0; 632 t = list_entry(rnp->exp_tasks->prev, 633 struct task_struct, rcu_node_entry); 634 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 635 pr_cont(" P%d", t->pid); 636 ndetected++; 637 } 638 return ndetected; 639 } 640 641 /* 642 * Check that the list of blocked tasks for the newly completed grace 643 * period is in fact empty. It is a serious bug to complete a grace 644 * period that still has RCU readers blocked! This function must be 645 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 646 * must be held by the caller. 647 * 648 * Also, if there are blocked tasks on the list, they automatically 649 * block the newly created grace period, so set up ->gp_tasks accordingly. 650 */ 651 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 652 { 653 struct task_struct *t; 654 655 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 656 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 657 if (rcu_preempt_has_tasks(rnp)) { 658 rnp->gp_tasks = rnp->blkd_tasks.next; 659 t = container_of(rnp->gp_tasks, struct task_struct, 660 rcu_node_entry); 661 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 662 rnp->gpnum, t->pid); 663 } 664 WARN_ON_ONCE(rnp->qsmask); 665 } 666 667 /* 668 * Check for a quiescent state from the current CPU. When a task blocks, 669 * the task is recorded in the corresponding CPU's rcu_node structure, 670 * which is checked elsewhere. 671 * 672 * Caller must disable hard irqs. 673 */ 674 static void rcu_preempt_check_callbacks(void) 675 { 676 struct task_struct *t = current; 677 678 if (t->rcu_read_lock_nesting == 0) { 679 rcu_preempt_qs(); 680 return; 681 } 682 if (t->rcu_read_lock_nesting > 0 && 683 __this_cpu_read(rcu_data_p->core_needs_qs) && 684 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 685 t->rcu_read_unlock_special.b.need_qs = true; 686 } 687 688 #ifdef CONFIG_RCU_BOOST 689 690 static void rcu_preempt_do_callbacks(void) 691 { 692 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 693 } 694 695 #endif /* #ifdef CONFIG_RCU_BOOST */ 696 697 /** 698 * call_rcu() - Queue an RCU callback for invocation after a grace period. 699 * @head: structure to be used for queueing the RCU updates. 700 * @func: actual callback function to be invoked after the grace period 701 * 702 * The callback function will be invoked some time after a full grace 703 * period elapses, in other words after all pre-existing RCU read-side 704 * critical sections have completed. However, the callback function 705 * might well execute concurrently with RCU read-side critical sections 706 * that started after call_rcu() was invoked. RCU read-side critical 707 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 708 * and may be nested. 709 * 710 * Note that all CPUs must agree that the grace period extended beyond 711 * all pre-existing RCU read-side critical section. On systems with more 712 * than one CPU, this means that when "func()" is invoked, each CPU is 713 * guaranteed to have executed a full memory barrier since the end of its 714 * last RCU read-side critical section whose beginning preceded the call 715 * to call_rcu(). It also means that each CPU executing an RCU read-side 716 * critical section that continues beyond the start of "func()" must have 717 * executed a memory barrier after the call_rcu() but before the beginning 718 * of that RCU read-side critical section. Note that these guarantees 719 * include CPUs that are offline, idle, or executing in user mode, as 720 * well as CPUs that are executing in the kernel. 721 * 722 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 723 * resulting RCU callback function "func()", then both CPU A and CPU B are 724 * guaranteed to execute a full memory barrier during the time interval 725 * between the call to call_rcu() and the invocation of "func()" -- even 726 * if CPU A and CPU B are the same CPU (but again only if the system has 727 * more than one CPU). 728 */ 729 void call_rcu(struct rcu_head *head, rcu_callback_t func) 730 { 731 __call_rcu(head, func, rcu_state_p, -1, 0); 732 } 733 EXPORT_SYMBOL_GPL(call_rcu); 734 735 /** 736 * synchronize_rcu - wait until a grace period has elapsed. 737 * 738 * Control will return to the caller some time after a full grace 739 * period has elapsed, in other words after all currently executing RCU 740 * read-side critical sections have completed. Note, however, that 741 * upon return from synchronize_rcu(), the caller might well be executing 742 * concurrently with new RCU read-side critical sections that began while 743 * synchronize_rcu() was waiting. RCU read-side critical sections are 744 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 745 * 746 * See the description of synchronize_sched() for more detailed 747 * information on memory-ordering guarantees. However, please note 748 * that -only- the memory-ordering guarantees apply. For example, 749 * synchronize_rcu() is -not- guaranteed to wait on things like code 750 * protected by preempt_disable(), instead, synchronize_rcu() is -only- 751 * guaranteed to wait on RCU read-side critical sections, that is, sections 752 * of code protected by rcu_read_lock(). 753 */ 754 void synchronize_rcu(void) 755 { 756 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 757 lock_is_held(&rcu_lock_map) || 758 lock_is_held(&rcu_sched_lock_map), 759 "Illegal synchronize_rcu() in RCU read-side critical section"); 760 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 761 return; 762 if (rcu_gp_is_expedited()) 763 synchronize_rcu_expedited(); 764 else 765 wait_rcu_gp(call_rcu); 766 } 767 EXPORT_SYMBOL_GPL(synchronize_rcu); 768 769 /** 770 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 771 * 772 * Note that this primitive does not necessarily wait for an RCU grace period 773 * to complete. For example, if there are no RCU callbacks queued anywhere 774 * in the system, then rcu_barrier() is within its rights to return 775 * immediately, without waiting for anything, much less an RCU grace period. 776 */ 777 void rcu_barrier(void) 778 { 779 _rcu_barrier(rcu_state_p); 780 } 781 EXPORT_SYMBOL_GPL(rcu_barrier); 782 783 /* 784 * Initialize preemptible RCU's state structures. 785 */ 786 static void __init __rcu_init_preempt(void) 787 { 788 rcu_init_one(rcu_state_p); 789 } 790 791 /* 792 * Check for a task exiting while in a preemptible-RCU read-side 793 * critical section, clean up if so. No need to issue warnings, 794 * as debug_check_no_locks_held() already does this if lockdep 795 * is enabled. 796 */ 797 void exit_rcu(void) 798 { 799 struct task_struct *t = current; 800 801 if (likely(list_empty(¤t->rcu_node_entry))) 802 return; 803 t->rcu_read_lock_nesting = 1; 804 barrier(); 805 t->rcu_read_unlock_special.b.blocked = true; 806 __rcu_read_unlock(); 807 } 808 809 #else /* #ifdef CONFIG_PREEMPT_RCU */ 810 811 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 812 813 /* 814 * Tell them what RCU they are running. 815 */ 816 static void __init rcu_bootup_announce(void) 817 { 818 pr_info("Hierarchical RCU implementation.\n"); 819 rcu_bootup_announce_oddness(); 820 } 821 822 /* 823 * Because preemptible RCU does not exist, we never have to check for 824 * CPUs being in quiescent states. 825 */ 826 static void rcu_preempt_note_context_switch(bool preempt) 827 { 828 } 829 830 /* 831 * Because preemptible RCU does not exist, there are never any preempted 832 * RCU readers. 833 */ 834 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 835 { 836 return 0; 837 } 838 839 /* 840 * Because there is no preemptible RCU, there can be no readers blocked. 841 */ 842 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 843 { 844 return false; 845 } 846 847 /* 848 * Because preemptible RCU does not exist, we never have to check for 849 * tasks blocked within RCU read-side critical sections. 850 */ 851 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 852 { 853 } 854 855 /* 856 * Because preemptible RCU does not exist, we never have to check for 857 * tasks blocked within RCU read-side critical sections. 858 */ 859 static int rcu_print_task_stall(struct rcu_node *rnp) 860 { 861 return 0; 862 } 863 864 /* 865 * Because preemptible RCU does not exist, we never have to check for 866 * tasks blocked within RCU read-side critical sections that are 867 * blocking the current expedited grace period. 868 */ 869 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 870 { 871 return 0; 872 } 873 874 /* 875 * Because there is no preemptible RCU, there can be no readers blocked, 876 * so there is no need to check for blocked tasks. So check only for 877 * bogus qsmask values. 878 */ 879 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 880 { 881 WARN_ON_ONCE(rnp->qsmask); 882 } 883 884 /* 885 * Because preemptible RCU does not exist, it never has any callbacks 886 * to check. 887 */ 888 static void rcu_preempt_check_callbacks(void) 889 { 890 } 891 892 /* 893 * Because preemptible RCU does not exist, rcu_barrier() is just 894 * another name for rcu_barrier_sched(). 895 */ 896 void rcu_barrier(void) 897 { 898 rcu_barrier_sched(); 899 } 900 EXPORT_SYMBOL_GPL(rcu_barrier); 901 902 /* 903 * Because preemptible RCU does not exist, it need not be initialized. 904 */ 905 static void __init __rcu_init_preempt(void) 906 { 907 } 908 909 /* 910 * Because preemptible RCU does not exist, tasks cannot possibly exit 911 * while in preemptible RCU read-side critical sections. 912 */ 913 void exit_rcu(void) 914 { 915 } 916 917 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 918 919 #ifdef CONFIG_RCU_BOOST 920 921 static void rcu_wake_cond(struct task_struct *t, int status) 922 { 923 /* 924 * If the thread is yielding, only wake it when this 925 * is invoked from idle 926 */ 927 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 928 wake_up_process(t); 929 } 930 931 /* 932 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 933 * or ->boost_tasks, advancing the pointer to the next task in the 934 * ->blkd_tasks list. 935 * 936 * Note that irqs must be enabled: boosting the task can block. 937 * Returns 1 if there are more tasks needing to be boosted. 938 */ 939 static int rcu_boost(struct rcu_node *rnp) 940 { 941 unsigned long flags; 942 struct task_struct *t; 943 struct list_head *tb; 944 945 if (READ_ONCE(rnp->exp_tasks) == NULL && 946 READ_ONCE(rnp->boost_tasks) == NULL) 947 return 0; /* Nothing left to boost. */ 948 949 raw_spin_lock_irqsave_rcu_node(rnp, flags); 950 951 /* 952 * Recheck under the lock: all tasks in need of boosting 953 * might exit their RCU read-side critical sections on their own. 954 */ 955 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 956 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 957 return 0; 958 } 959 960 /* 961 * Preferentially boost tasks blocking expedited grace periods. 962 * This cannot starve the normal grace periods because a second 963 * expedited grace period must boost all blocked tasks, including 964 * those blocking the pre-existing normal grace period. 965 */ 966 if (rnp->exp_tasks != NULL) 967 tb = rnp->exp_tasks; 968 else 969 tb = rnp->boost_tasks; 970 971 /* 972 * We boost task t by manufacturing an rt_mutex that appears to 973 * be held by task t. We leave a pointer to that rt_mutex where 974 * task t can find it, and task t will release the mutex when it 975 * exits its outermost RCU read-side critical section. Then 976 * simply acquiring this artificial rt_mutex will boost task 977 * t's priority. (Thanks to tglx for suggesting this approach!) 978 * 979 * Note that task t must acquire rnp->lock to remove itself from 980 * the ->blkd_tasks list, which it will do from exit() if from 981 * nowhere else. We therefore are guaranteed that task t will 982 * stay around at least until we drop rnp->lock. Note that 983 * rnp->lock also resolves races between our priority boosting 984 * and task t's exiting its outermost RCU read-side critical 985 * section. 986 */ 987 t = container_of(tb, struct task_struct, rcu_node_entry); 988 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 989 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 990 /* Lock only for side effect: boosts task t's priority. */ 991 rt_mutex_lock(&rnp->boost_mtx); 992 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 993 994 return READ_ONCE(rnp->exp_tasks) != NULL || 995 READ_ONCE(rnp->boost_tasks) != NULL; 996 } 997 998 /* 999 * Priority-boosting kthread, one per leaf rcu_node. 1000 */ 1001 static int rcu_boost_kthread(void *arg) 1002 { 1003 struct rcu_node *rnp = (struct rcu_node *)arg; 1004 int spincnt = 0; 1005 int more2boost; 1006 1007 trace_rcu_utilization(TPS("Start boost kthread@init")); 1008 for (;;) { 1009 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1010 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1011 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1012 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1013 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1014 more2boost = rcu_boost(rnp); 1015 if (more2boost) 1016 spincnt++; 1017 else 1018 spincnt = 0; 1019 if (spincnt > 10) { 1020 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1021 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1022 schedule_timeout_interruptible(2); 1023 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1024 spincnt = 0; 1025 } 1026 } 1027 /* NOTREACHED */ 1028 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1029 return 0; 1030 } 1031 1032 /* 1033 * Check to see if it is time to start boosting RCU readers that are 1034 * blocking the current grace period, and, if so, tell the per-rcu_node 1035 * kthread to start boosting them. If there is an expedited grace 1036 * period in progress, it is always time to boost. 1037 * 1038 * The caller must hold rnp->lock, which this function releases. 1039 * The ->boost_kthread_task is immortal, so we don't need to worry 1040 * about it going away. 1041 */ 1042 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1043 __releases(rnp->lock) 1044 { 1045 struct task_struct *t; 1046 1047 raw_lockdep_assert_held_rcu_node(rnp); 1048 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1049 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1050 return; 1051 } 1052 if (rnp->exp_tasks != NULL || 1053 (rnp->gp_tasks != NULL && 1054 rnp->boost_tasks == NULL && 1055 rnp->qsmask == 0 && 1056 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1057 if (rnp->exp_tasks == NULL) 1058 rnp->boost_tasks = rnp->gp_tasks; 1059 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1060 t = rnp->boost_kthread_task; 1061 if (t) 1062 rcu_wake_cond(t, rnp->boost_kthread_status); 1063 } else { 1064 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1065 } 1066 } 1067 1068 /* 1069 * Wake up the per-CPU kthread to invoke RCU callbacks. 1070 */ 1071 static void invoke_rcu_callbacks_kthread(void) 1072 { 1073 unsigned long flags; 1074 1075 local_irq_save(flags); 1076 __this_cpu_write(rcu_cpu_has_work, 1); 1077 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1078 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1079 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1080 __this_cpu_read(rcu_cpu_kthread_status)); 1081 } 1082 local_irq_restore(flags); 1083 } 1084 1085 /* 1086 * Is the current CPU running the RCU-callbacks kthread? 1087 * Caller must have preemption disabled. 1088 */ 1089 static bool rcu_is_callbacks_kthread(void) 1090 { 1091 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1092 } 1093 1094 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1095 1096 /* 1097 * Do priority-boost accounting for the start of a new grace period. 1098 */ 1099 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1100 { 1101 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1102 } 1103 1104 /* 1105 * Create an RCU-boost kthread for the specified node if one does not 1106 * already exist. We only create this kthread for preemptible RCU. 1107 * Returns zero if all is well, a negated errno otherwise. 1108 */ 1109 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1110 struct rcu_node *rnp) 1111 { 1112 int rnp_index = rnp - &rsp->node[0]; 1113 unsigned long flags; 1114 struct sched_param sp; 1115 struct task_struct *t; 1116 1117 if (rcu_state_p != rsp) 1118 return 0; 1119 1120 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1121 return 0; 1122 1123 rsp->boost = 1; 1124 if (rnp->boost_kthread_task != NULL) 1125 return 0; 1126 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1127 "rcub/%d", rnp_index); 1128 if (IS_ERR(t)) 1129 return PTR_ERR(t); 1130 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1131 rnp->boost_kthread_task = t; 1132 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1133 sp.sched_priority = kthread_prio; 1134 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1135 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1136 return 0; 1137 } 1138 1139 static void rcu_kthread_do_work(void) 1140 { 1141 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1142 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1143 rcu_preempt_do_callbacks(); 1144 } 1145 1146 static void rcu_cpu_kthread_setup(unsigned int cpu) 1147 { 1148 struct sched_param sp; 1149 1150 sp.sched_priority = kthread_prio; 1151 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1152 } 1153 1154 static void rcu_cpu_kthread_park(unsigned int cpu) 1155 { 1156 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1157 } 1158 1159 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1160 { 1161 return __this_cpu_read(rcu_cpu_has_work); 1162 } 1163 1164 /* 1165 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1166 * RCU softirq used in flavors and configurations of RCU that do not 1167 * support RCU priority boosting. 1168 */ 1169 static void rcu_cpu_kthread(unsigned int cpu) 1170 { 1171 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1172 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1173 int spincnt; 1174 1175 for (spincnt = 0; spincnt < 10; spincnt++) { 1176 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1177 local_bh_disable(); 1178 *statusp = RCU_KTHREAD_RUNNING; 1179 this_cpu_inc(rcu_cpu_kthread_loops); 1180 local_irq_disable(); 1181 work = *workp; 1182 *workp = 0; 1183 local_irq_enable(); 1184 if (work) 1185 rcu_kthread_do_work(); 1186 local_bh_enable(); 1187 if (*workp == 0) { 1188 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1189 *statusp = RCU_KTHREAD_WAITING; 1190 return; 1191 } 1192 } 1193 *statusp = RCU_KTHREAD_YIELDING; 1194 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1195 schedule_timeout_interruptible(2); 1196 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1197 *statusp = RCU_KTHREAD_WAITING; 1198 } 1199 1200 /* 1201 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1202 * served by the rcu_node in question. The CPU hotplug lock is still 1203 * held, so the value of rnp->qsmaskinit will be stable. 1204 * 1205 * We don't include outgoingcpu in the affinity set, use -1 if there is 1206 * no outgoing CPU. If there are no CPUs left in the affinity set, 1207 * this function allows the kthread to execute on any CPU. 1208 */ 1209 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1210 { 1211 struct task_struct *t = rnp->boost_kthread_task; 1212 unsigned long mask = rcu_rnp_online_cpus(rnp); 1213 cpumask_var_t cm; 1214 int cpu; 1215 1216 if (!t) 1217 return; 1218 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1219 return; 1220 for_each_leaf_node_possible_cpu(rnp, cpu) 1221 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1222 cpu != outgoingcpu) 1223 cpumask_set_cpu(cpu, cm); 1224 if (cpumask_weight(cm) == 0) 1225 cpumask_setall(cm); 1226 set_cpus_allowed_ptr(t, cm); 1227 free_cpumask_var(cm); 1228 } 1229 1230 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1231 .store = &rcu_cpu_kthread_task, 1232 .thread_should_run = rcu_cpu_kthread_should_run, 1233 .thread_fn = rcu_cpu_kthread, 1234 .thread_comm = "rcuc/%u", 1235 .setup = rcu_cpu_kthread_setup, 1236 .park = rcu_cpu_kthread_park, 1237 }; 1238 1239 /* 1240 * Spawn boost kthreads -- called as soon as the scheduler is running. 1241 */ 1242 static void __init rcu_spawn_boost_kthreads(void) 1243 { 1244 struct rcu_node *rnp; 1245 int cpu; 1246 1247 for_each_possible_cpu(cpu) 1248 per_cpu(rcu_cpu_has_work, cpu) = 0; 1249 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1250 rcu_for_each_leaf_node(rcu_state_p, rnp) 1251 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1252 } 1253 1254 static void rcu_prepare_kthreads(int cpu) 1255 { 1256 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1257 struct rcu_node *rnp = rdp->mynode; 1258 1259 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1260 if (rcu_scheduler_fully_active) 1261 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1262 } 1263 1264 #else /* #ifdef CONFIG_RCU_BOOST */ 1265 1266 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1267 __releases(rnp->lock) 1268 { 1269 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1270 } 1271 1272 static void invoke_rcu_callbacks_kthread(void) 1273 { 1274 WARN_ON_ONCE(1); 1275 } 1276 1277 static bool rcu_is_callbacks_kthread(void) 1278 { 1279 return false; 1280 } 1281 1282 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1283 { 1284 } 1285 1286 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1287 { 1288 } 1289 1290 static void __init rcu_spawn_boost_kthreads(void) 1291 { 1292 } 1293 1294 static void rcu_prepare_kthreads(int cpu) 1295 { 1296 } 1297 1298 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1299 1300 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1301 1302 /* 1303 * Check to see if any future RCU-related work will need to be done 1304 * by the current CPU, even if none need be done immediately, returning 1305 * 1 if so. This function is part of the RCU implementation; it is -not- 1306 * an exported member of the RCU API. 1307 * 1308 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1309 * any flavor of RCU. 1310 */ 1311 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1312 { 1313 *nextevt = KTIME_MAX; 1314 return rcu_cpu_has_callbacks(NULL); 1315 } 1316 1317 /* 1318 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1319 * after it. 1320 */ 1321 static void rcu_cleanup_after_idle(void) 1322 { 1323 } 1324 1325 /* 1326 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1327 * is nothing. 1328 */ 1329 static void rcu_prepare_for_idle(void) 1330 { 1331 } 1332 1333 /* 1334 * Don't bother keeping a running count of the number of RCU callbacks 1335 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1336 */ 1337 static void rcu_idle_count_callbacks_posted(void) 1338 { 1339 } 1340 1341 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1342 1343 /* 1344 * This code is invoked when a CPU goes idle, at which point we want 1345 * to have the CPU do everything required for RCU so that it can enter 1346 * the energy-efficient dyntick-idle mode. This is handled by a 1347 * state machine implemented by rcu_prepare_for_idle() below. 1348 * 1349 * The following three proprocessor symbols control this state machine: 1350 * 1351 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1352 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1353 * is sized to be roughly one RCU grace period. Those energy-efficiency 1354 * benchmarkers who might otherwise be tempted to set this to a large 1355 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1356 * system. And if you are -that- concerned about energy efficiency, 1357 * just power the system down and be done with it! 1358 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1359 * permitted to sleep in dyntick-idle mode with only lazy RCU 1360 * callbacks pending. Setting this too high can OOM your system. 1361 * 1362 * The values below work well in practice. If future workloads require 1363 * adjustment, they can be converted into kernel config parameters, though 1364 * making the state machine smarter might be a better option. 1365 */ 1366 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1367 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1368 1369 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1370 module_param(rcu_idle_gp_delay, int, 0644); 1371 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1372 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1373 1374 /* 1375 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1376 * only if it has been awhile since the last time we did so. Afterwards, 1377 * if there are any callbacks ready for immediate invocation, return true. 1378 */ 1379 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1380 { 1381 bool cbs_ready = false; 1382 struct rcu_data *rdp; 1383 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1384 struct rcu_node *rnp; 1385 struct rcu_state *rsp; 1386 1387 /* Exit early if we advanced recently. */ 1388 if (jiffies == rdtp->last_advance_all) 1389 return false; 1390 rdtp->last_advance_all = jiffies; 1391 1392 for_each_rcu_flavor(rsp) { 1393 rdp = this_cpu_ptr(rsp->rda); 1394 rnp = rdp->mynode; 1395 1396 /* 1397 * Don't bother checking unless a grace period has 1398 * completed since we last checked and there are 1399 * callbacks not yet ready to invoke. 1400 */ 1401 if ((rdp->completed != rnp->completed || 1402 unlikely(READ_ONCE(rdp->gpwrap))) && 1403 rcu_segcblist_pend_cbs(&rdp->cblist)) 1404 note_gp_changes(rsp, rdp); 1405 1406 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1407 cbs_ready = true; 1408 } 1409 return cbs_ready; 1410 } 1411 1412 /* 1413 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1414 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1415 * caller to set the timeout based on whether or not there are non-lazy 1416 * callbacks. 1417 * 1418 * The caller must have disabled interrupts. 1419 */ 1420 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1421 { 1422 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1423 unsigned long dj; 1424 1425 lockdep_assert_irqs_disabled(); 1426 1427 /* Snapshot to detect later posting of non-lazy callback. */ 1428 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1429 1430 /* If no callbacks, RCU doesn't need the CPU. */ 1431 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1432 *nextevt = KTIME_MAX; 1433 return 0; 1434 } 1435 1436 /* Attempt to advance callbacks. */ 1437 if (rcu_try_advance_all_cbs()) { 1438 /* Some ready to invoke, so initiate later invocation. */ 1439 invoke_rcu_core(); 1440 return 1; 1441 } 1442 rdtp->last_accelerate = jiffies; 1443 1444 /* Request timer delay depending on laziness, and round. */ 1445 if (!rdtp->all_lazy) { 1446 dj = round_up(rcu_idle_gp_delay + jiffies, 1447 rcu_idle_gp_delay) - jiffies; 1448 } else { 1449 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1450 } 1451 *nextevt = basemono + dj * TICK_NSEC; 1452 return 0; 1453 } 1454 1455 /* 1456 * Prepare a CPU for idle from an RCU perspective. The first major task 1457 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1458 * The second major task is to check to see if a non-lazy callback has 1459 * arrived at a CPU that previously had only lazy callbacks. The third 1460 * major task is to accelerate (that is, assign grace-period numbers to) 1461 * any recently arrived callbacks. 1462 * 1463 * The caller must have disabled interrupts. 1464 */ 1465 static void rcu_prepare_for_idle(void) 1466 { 1467 bool needwake; 1468 struct rcu_data *rdp; 1469 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1470 struct rcu_node *rnp; 1471 struct rcu_state *rsp; 1472 int tne; 1473 1474 lockdep_assert_irqs_disabled(); 1475 if (rcu_is_nocb_cpu(smp_processor_id())) 1476 return; 1477 1478 /* Handle nohz enablement switches conservatively. */ 1479 tne = READ_ONCE(tick_nohz_active); 1480 if (tne != rdtp->tick_nohz_enabled_snap) { 1481 if (rcu_cpu_has_callbacks(NULL)) 1482 invoke_rcu_core(); /* force nohz to see update. */ 1483 rdtp->tick_nohz_enabled_snap = tne; 1484 return; 1485 } 1486 if (!tne) 1487 return; 1488 1489 /* 1490 * If a non-lazy callback arrived at a CPU having only lazy 1491 * callbacks, invoke RCU core for the side-effect of recalculating 1492 * idle duration on re-entry to idle. 1493 */ 1494 if (rdtp->all_lazy && 1495 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1496 rdtp->all_lazy = false; 1497 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1498 invoke_rcu_core(); 1499 return; 1500 } 1501 1502 /* 1503 * If we have not yet accelerated this jiffy, accelerate all 1504 * callbacks on this CPU. 1505 */ 1506 if (rdtp->last_accelerate == jiffies) 1507 return; 1508 rdtp->last_accelerate = jiffies; 1509 for_each_rcu_flavor(rsp) { 1510 rdp = this_cpu_ptr(rsp->rda); 1511 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1512 continue; 1513 rnp = rdp->mynode; 1514 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1515 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1516 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1517 if (needwake) 1518 rcu_gp_kthread_wake(rsp); 1519 } 1520 } 1521 1522 /* 1523 * Clean up for exit from idle. Attempt to advance callbacks based on 1524 * any grace periods that elapsed while the CPU was idle, and if any 1525 * callbacks are now ready to invoke, initiate invocation. 1526 */ 1527 static void rcu_cleanup_after_idle(void) 1528 { 1529 lockdep_assert_irqs_disabled(); 1530 if (rcu_is_nocb_cpu(smp_processor_id())) 1531 return; 1532 if (rcu_try_advance_all_cbs()) 1533 invoke_rcu_core(); 1534 } 1535 1536 /* 1537 * Keep a running count of the number of non-lazy callbacks posted 1538 * on this CPU. This running counter (which is never decremented) allows 1539 * rcu_prepare_for_idle() to detect when something out of the idle loop 1540 * posts a callback, even if an equal number of callbacks are invoked. 1541 * Of course, callbacks should only be posted from within a trace event 1542 * designed to be called from idle or from within RCU_NONIDLE(). 1543 */ 1544 static void rcu_idle_count_callbacks_posted(void) 1545 { 1546 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1547 } 1548 1549 /* 1550 * Data for flushing lazy RCU callbacks at OOM time. 1551 */ 1552 static atomic_t oom_callback_count; 1553 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1554 1555 /* 1556 * RCU OOM callback -- decrement the outstanding count and deliver the 1557 * wake-up if we are the last one. 1558 */ 1559 static void rcu_oom_callback(struct rcu_head *rhp) 1560 { 1561 if (atomic_dec_and_test(&oom_callback_count)) 1562 wake_up(&oom_callback_wq); 1563 } 1564 1565 /* 1566 * Post an rcu_oom_notify callback on the current CPU if it has at 1567 * least one lazy callback. This will unnecessarily post callbacks 1568 * to CPUs that already have a non-lazy callback at the end of their 1569 * callback list, but this is an infrequent operation, so accept some 1570 * extra overhead to keep things simple. 1571 */ 1572 static void rcu_oom_notify_cpu(void *unused) 1573 { 1574 struct rcu_state *rsp; 1575 struct rcu_data *rdp; 1576 1577 for_each_rcu_flavor(rsp) { 1578 rdp = raw_cpu_ptr(rsp->rda); 1579 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { 1580 atomic_inc(&oom_callback_count); 1581 rsp->call(&rdp->oom_head, rcu_oom_callback); 1582 } 1583 } 1584 } 1585 1586 /* 1587 * If low on memory, ensure that each CPU has a non-lazy callback. 1588 * This will wake up CPUs that have only lazy callbacks, in turn 1589 * ensuring that they free up the corresponding memory in a timely manner. 1590 * Because an uncertain amount of memory will be freed in some uncertain 1591 * timeframe, we do not claim to have freed anything. 1592 */ 1593 static int rcu_oom_notify(struct notifier_block *self, 1594 unsigned long notused, void *nfreed) 1595 { 1596 int cpu; 1597 1598 /* Wait for callbacks from earlier instance to complete. */ 1599 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1600 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1601 1602 /* 1603 * Prevent premature wakeup: ensure that all increments happen 1604 * before there is a chance of the counter reaching zero. 1605 */ 1606 atomic_set(&oom_callback_count, 1); 1607 1608 for_each_online_cpu(cpu) { 1609 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1610 cond_resched_rcu_qs(); 1611 } 1612 1613 /* Unconditionally decrement: no need to wake ourselves up. */ 1614 atomic_dec(&oom_callback_count); 1615 1616 return NOTIFY_OK; 1617 } 1618 1619 static struct notifier_block rcu_oom_nb = { 1620 .notifier_call = rcu_oom_notify 1621 }; 1622 1623 static int __init rcu_register_oom_notifier(void) 1624 { 1625 register_oom_notifier(&rcu_oom_nb); 1626 return 0; 1627 } 1628 early_initcall(rcu_register_oom_notifier); 1629 1630 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1631 1632 #ifdef CONFIG_RCU_FAST_NO_HZ 1633 1634 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1635 { 1636 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1637 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1638 1639 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1640 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1641 ulong2long(nlpd), 1642 rdtp->all_lazy ? 'L' : '.', 1643 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1644 } 1645 1646 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1647 1648 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1649 { 1650 *cp = '\0'; 1651 } 1652 1653 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1654 1655 /* Initiate the stall-info list. */ 1656 static void print_cpu_stall_info_begin(void) 1657 { 1658 pr_cont("\n"); 1659 } 1660 1661 /* 1662 * Print out diagnostic information for the specified stalled CPU. 1663 * 1664 * If the specified CPU is aware of the current RCU grace period 1665 * (flavor specified by rsp), then print the number of scheduling 1666 * clock interrupts the CPU has taken during the time that it has 1667 * been aware. Otherwise, print the number of RCU grace periods 1668 * that this CPU is ignorant of, for example, "1" if the CPU was 1669 * aware of the previous grace period. 1670 * 1671 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1672 */ 1673 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1674 { 1675 unsigned long delta; 1676 char fast_no_hz[72]; 1677 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1678 struct rcu_dynticks *rdtp = rdp->dynticks; 1679 char *ticks_title; 1680 unsigned long ticks_value; 1681 1682 /* 1683 * We could be printing a lot while holding a spinlock. Avoid 1684 * triggering hard lockup. 1685 */ 1686 touch_nmi_watchdog(); 1687 1688 if (rsp->gpnum == rdp->gpnum) { 1689 ticks_title = "ticks this GP"; 1690 ticks_value = rdp->ticks_this_gp; 1691 } else { 1692 ticks_title = "GPs behind"; 1693 ticks_value = rsp->gpnum - rdp->gpnum; 1694 } 1695 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1696 delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum; 1697 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n", 1698 cpu, 1699 "O."[!!cpu_online(cpu)], 1700 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1701 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1702 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' : 1703 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' : 1704 "!."[!delta], 1705 ticks_value, ticks_title, 1706 rcu_dynticks_snap(rdtp) & 0xfff, 1707 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1708 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1709 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1710 fast_no_hz); 1711 } 1712 1713 /* Terminate the stall-info list. */ 1714 static void print_cpu_stall_info_end(void) 1715 { 1716 pr_err("\t"); 1717 } 1718 1719 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1720 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1721 { 1722 rdp->ticks_this_gp = 0; 1723 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1724 } 1725 1726 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1727 static void increment_cpu_stall_ticks(void) 1728 { 1729 struct rcu_state *rsp; 1730 1731 for_each_rcu_flavor(rsp) 1732 raw_cpu_inc(rsp->rda->ticks_this_gp); 1733 } 1734 1735 #ifdef CONFIG_RCU_NOCB_CPU 1736 1737 /* 1738 * Offload callback processing from the boot-time-specified set of CPUs 1739 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1740 * kthread created that pulls the callbacks from the corresponding CPU, 1741 * waits for a grace period to elapse, and invokes the callbacks. 1742 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1743 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1744 * has been specified, in which case each kthread actively polls its 1745 * CPU. (Which isn't so great for energy efficiency, but which does 1746 * reduce RCU's overhead on that CPU.) 1747 * 1748 * This is intended to be used in conjunction with Frederic Weisbecker's 1749 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1750 * running CPU-bound user-mode computations. 1751 * 1752 * Offloading of callback processing could also in theory be used as 1753 * an energy-efficiency measure because CPUs with no RCU callbacks 1754 * queued are more aggressive about entering dyntick-idle mode. 1755 */ 1756 1757 1758 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1759 static int __init rcu_nocb_setup(char *str) 1760 { 1761 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1762 cpulist_parse(str, rcu_nocb_mask); 1763 return 1; 1764 } 1765 __setup("rcu_nocbs=", rcu_nocb_setup); 1766 1767 static int __init parse_rcu_nocb_poll(char *arg) 1768 { 1769 rcu_nocb_poll = true; 1770 return 0; 1771 } 1772 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1773 1774 /* 1775 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1776 * grace period. 1777 */ 1778 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1779 { 1780 swake_up_all(sq); 1781 } 1782 1783 /* 1784 * Set the root rcu_node structure's ->need_future_gp field 1785 * based on the sum of those of all rcu_node structures. This does 1786 * double-count the root rcu_node structure's requests, but this 1787 * is necessary to handle the possibility of a rcu_nocb_kthread() 1788 * having awakened during the time that the rcu_node structures 1789 * were being updated for the end of the previous grace period. 1790 */ 1791 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1792 { 1793 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1794 } 1795 1796 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1797 { 1798 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1799 } 1800 1801 static void rcu_init_one_nocb(struct rcu_node *rnp) 1802 { 1803 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1804 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1805 } 1806 1807 /* Is the specified CPU a no-CBs CPU? */ 1808 bool rcu_is_nocb_cpu(int cpu) 1809 { 1810 if (cpumask_available(rcu_nocb_mask)) 1811 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1812 return false; 1813 } 1814 1815 /* 1816 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock 1817 * and this function releases it. 1818 */ 1819 static void __wake_nocb_leader(struct rcu_data *rdp, bool force, 1820 unsigned long flags) 1821 __releases(rdp->nocb_lock) 1822 { 1823 struct rcu_data *rdp_leader = rdp->nocb_leader; 1824 1825 lockdep_assert_held(&rdp->nocb_lock); 1826 if (!READ_ONCE(rdp_leader->nocb_kthread)) { 1827 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1828 return; 1829 } 1830 if (rdp_leader->nocb_leader_sleep || force) { 1831 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1832 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1833 del_timer(&rdp->nocb_timer); 1834 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1835 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */ 1836 swake_up(&rdp_leader->nocb_wq); 1837 } else { 1838 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1839 } 1840 } 1841 1842 /* 1843 * Kick the leader kthread for this NOCB group, but caller has not 1844 * acquired locks. 1845 */ 1846 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1847 { 1848 unsigned long flags; 1849 1850 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1851 __wake_nocb_leader(rdp, force, flags); 1852 } 1853 1854 /* 1855 * Arrange to wake the leader kthread for this NOCB group at some 1856 * future time when it is safe to do so. 1857 */ 1858 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, 1859 const char *reason) 1860 { 1861 unsigned long flags; 1862 1863 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1864 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1865 mod_timer(&rdp->nocb_timer, jiffies + 1); 1866 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1867 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason); 1868 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1869 } 1870 1871 /* 1872 * Does the specified CPU need an RCU callback for the specified flavor 1873 * of rcu_barrier()? 1874 */ 1875 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1876 { 1877 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1878 unsigned long ret; 1879 #ifdef CONFIG_PROVE_RCU 1880 struct rcu_head *rhp; 1881 #endif /* #ifdef CONFIG_PROVE_RCU */ 1882 1883 /* 1884 * Check count of all no-CBs callbacks awaiting invocation. 1885 * There needs to be a barrier before this function is called, 1886 * but associated with a prior determination that no more 1887 * callbacks would be posted. In the worst case, the first 1888 * barrier in _rcu_barrier() suffices (but the caller cannot 1889 * necessarily rely on this, not a substitute for the caller 1890 * getting the concurrency design right!). There must also be 1891 * a barrier between the following load an posting of a callback 1892 * (if a callback is in fact needed). This is associated with an 1893 * atomic_inc() in the caller. 1894 */ 1895 ret = atomic_long_read(&rdp->nocb_q_count); 1896 1897 #ifdef CONFIG_PROVE_RCU 1898 rhp = READ_ONCE(rdp->nocb_head); 1899 if (!rhp) 1900 rhp = READ_ONCE(rdp->nocb_gp_head); 1901 if (!rhp) 1902 rhp = READ_ONCE(rdp->nocb_follower_head); 1903 1904 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1905 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1906 rcu_scheduler_fully_active) { 1907 /* RCU callback enqueued before CPU first came online??? */ 1908 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1909 cpu, rhp->func); 1910 WARN_ON_ONCE(1); 1911 } 1912 #endif /* #ifdef CONFIG_PROVE_RCU */ 1913 1914 return !!ret; 1915 } 1916 1917 /* 1918 * Enqueue the specified string of rcu_head structures onto the specified 1919 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1920 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1921 * counts are supplied by rhcount and rhcount_lazy. 1922 * 1923 * If warranted, also wake up the kthread servicing this CPUs queues. 1924 */ 1925 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1926 struct rcu_head *rhp, 1927 struct rcu_head **rhtp, 1928 int rhcount, int rhcount_lazy, 1929 unsigned long flags) 1930 { 1931 int len; 1932 struct rcu_head **old_rhpp; 1933 struct task_struct *t; 1934 1935 /* Enqueue the callback on the nocb list and update counts. */ 1936 atomic_long_add(rhcount, &rdp->nocb_q_count); 1937 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1938 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1939 WRITE_ONCE(*old_rhpp, rhp); 1940 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1941 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1942 1943 /* If we are not being polled and there is a kthread, awaken it ... */ 1944 t = READ_ONCE(rdp->nocb_kthread); 1945 if (rcu_nocb_poll || !t) { 1946 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1947 TPS("WakeNotPoll")); 1948 return; 1949 } 1950 len = atomic_long_read(&rdp->nocb_q_count); 1951 if (old_rhpp == &rdp->nocb_head) { 1952 if (!irqs_disabled_flags(flags)) { 1953 /* ... if queue was empty ... */ 1954 wake_nocb_leader(rdp, false); 1955 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1956 TPS("WakeEmpty")); 1957 } else { 1958 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 1959 TPS("WakeEmptyIsDeferred")); 1960 } 1961 rdp->qlen_last_fqs_check = 0; 1962 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1963 /* ... or if many callbacks queued. */ 1964 if (!irqs_disabled_flags(flags)) { 1965 wake_nocb_leader(rdp, true); 1966 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1967 TPS("WakeOvf")); 1968 } else { 1969 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 1970 TPS("WakeOvfIsDeferred")); 1971 } 1972 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1973 } else { 1974 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1975 } 1976 return; 1977 } 1978 1979 /* 1980 * This is a helper for __call_rcu(), which invokes this when the normal 1981 * callback queue is inoperable. If this is not a no-CBs CPU, this 1982 * function returns failure back to __call_rcu(), which can complain 1983 * appropriately. 1984 * 1985 * Otherwise, this function queues the callback where the corresponding 1986 * "rcuo" kthread can find it. 1987 */ 1988 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1989 bool lazy, unsigned long flags) 1990 { 1991 1992 if (!rcu_is_nocb_cpu(rdp->cpu)) 1993 return false; 1994 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1995 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1996 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1997 (unsigned long)rhp->func, 1998 -atomic_long_read(&rdp->nocb_q_count_lazy), 1999 -atomic_long_read(&rdp->nocb_q_count)); 2000 else 2001 trace_rcu_callback(rdp->rsp->name, rhp, 2002 -atomic_long_read(&rdp->nocb_q_count_lazy), 2003 -atomic_long_read(&rdp->nocb_q_count)); 2004 2005 /* 2006 * If called from an extended quiescent state with interrupts 2007 * disabled, invoke the RCU core in order to allow the idle-entry 2008 * deferred-wakeup check to function. 2009 */ 2010 if (irqs_disabled_flags(flags) && 2011 !rcu_is_watching() && 2012 cpu_online(smp_processor_id())) 2013 invoke_rcu_core(); 2014 2015 return true; 2016 } 2017 2018 /* 2019 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2020 * not a no-CBs CPU. 2021 */ 2022 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2023 struct rcu_data *rdp, 2024 unsigned long flags) 2025 { 2026 lockdep_assert_irqs_disabled(); 2027 if (!rcu_is_nocb_cpu(smp_processor_id())) 2028 return false; /* Not NOCBs CPU, caller must migrate CBs. */ 2029 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist), 2030 rcu_segcblist_tail(&rdp->cblist), 2031 rcu_segcblist_n_cbs(&rdp->cblist), 2032 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags); 2033 rcu_segcblist_init(&rdp->cblist); 2034 rcu_segcblist_disable(&rdp->cblist); 2035 return true; 2036 } 2037 2038 /* 2039 * If necessary, kick off a new grace period, and either way wait 2040 * for a subsequent grace period to complete. 2041 */ 2042 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2043 { 2044 unsigned long c; 2045 bool d; 2046 unsigned long flags; 2047 bool needwake; 2048 struct rcu_node *rnp = rdp->mynode; 2049 2050 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2051 needwake = rcu_start_future_gp(rnp, rdp, &c); 2052 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2053 if (needwake) 2054 rcu_gp_kthread_wake(rdp->rsp); 2055 2056 /* 2057 * Wait for the grace period. Do so interruptibly to avoid messing 2058 * up the load average. 2059 */ 2060 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2061 for (;;) { 2062 swait_event_interruptible( 2063 rnp->nocb_gp_wq[c & 0x1], 2064 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2065 if (likely(d)) 2066 break; 2067 WARN_ON(signal_pending(current)); 2068 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2069 } 2070 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2071 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2072 } 2073 2074 /* 2075 * Leaders come here to wait for additional callbacks to show up. 2076 * This function does not return until callbacks appear. 2077 */ 2078 static void nocb_leader_wait(struct rcu_data *my_rdp) 2079 { 2080 bool firsttime = true; 2081 unsigned long flags; 2082 bool gotcbs; 2083 struct rcu_data *rdp; 2084 struct rcu_head **tail; 2085 2086 wait_again: 2087 2088 /* Wait for callbacks to appear. */ 2089 if (!rcu_nocb_poll) { 2090 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep")); 2091 swait_event_interruptible(my_rdp->nocb_wq, 2092 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2093 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2094 my_rdp->nocb_leader_sleep = true; 2095 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2096 del_timer(&my_rdp->nocb_timer); 2097 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2098 } else if (firsttime) { 2099 firsttime = false; /* Don't drown trace log with "Poll"! */ 2100 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll")); 2101 } 2102 2103 /* 2104 * Each pass through the following loop checks a follower for CBs. 2105 * We are our own first follower. Any CBs found are moved to 2106 * nocb_gp_head, where they await a grace period. 2107 */ 2108 gotcbs = false; 2109 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */ 2110 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2111 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2112 if (!rdp->nocb_gp_head) 2113 continue; /* No CBs here, try next follower. */ 2114 2115 /* Move callbacks to wait-for-GP list, which is empty. */ 2116 WRITE_ONCE(rdp->nocb_head, NULL); 2117 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2118 gotcbs = true; 2119 } 2120 2121 /* No callbacks? Sleep a bit if polling, and go retry. */ 2122 if (unlikely(!gotcbs)) { 2123 WARN_ON(signal_pending(current)); 2124 if (rcu_nocb_poll) { 2125 schedule_timeout_interruptible(1); 2126 } else { 2127 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2128 TPS("WokeEmpty")); 2129 } 2130 goto wait_again; 2131 } 2132 2133 /* Wait for one grace period. */ 2134 rcu_nocb_wait_gp(my_rdp); 2135 2136 /* Each pass through the following loop wakes a follower, if needed. */ 2137 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2138 if (!rcu_nocb_poll && 2139 READ_ONCE(rdp->nocb_head) && 2140 READ_ONCE(my_rdp->nocb_leader_sleep)) { 2141 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2142 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2143 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2144 } 2145 if (!rdp->nocb_gp_head) 2146 continue; /* No CBs, so no need to wake follower. */ 2147 2148 /* Append callbacks to follower's "done" list. */ 2149 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2150 tail = rdp->nocb_follower_tail; 2151 rdp->nocb_follower_tail = rdp->nocb_gp_tail; 2152 *tail = rdp->nocb_gp_head; 2153 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2154 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2155 /* List was empty, so wake up the follower. */ 2156 swake_up(&rdp->nocb_wq); 2157 } 2158 } 2159 2160 /* If we (the leader) don't have CBs, go wait some more. */ 2161 if (!my_rdp->nocb_follower_head) 2162 goto wait_again; 2163 } 2164 2165 /* 2166 * Followers come here to wait for additional callbacks to show up. 2167 * This function does not return until callbacks appear. 2168 */ 2169 static void nocb_follower_wait(struct rcu_data *rdp) 2170 { 2171 for (;;) { 2172 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep")); 2173 swait_event_interruptible(rdp->nocb_wq, 2174 READ_ONCE(rdp->nocb_follower_head)); 2175 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2176 /* ^^^ Ensure CB invocation follows _head test. */ 2177 return; 2178 } 2179 WARN_ON(signal_pending(current)); 2180 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty")); 2181 } 2182 } 2183 2184 /* 2185 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2186 * callbacks queued by the corresponding no-CBs CPU, however, there is 2187 * an optional leader-follower relationship so that the grace-period 2188 * kthreads don't have to do quite so many wakeups. 2189 */ 2190 static int rcu_nocb_kthread(void *arg) 2191 { 2192 int c, cl; 2193 unsigned long flags; 2194 struct rcu_head *list; 2195 struct rcu_head *next; 2196 struct rcu_head **tail; 2197 struct rcu_data *rdp = arg; 2198 2199 /* Each pass through this loop invokes one batch of callbacks */ 2200 for (;;) { 2201 /* Wait for callbacks. */ 2202 if (rdp->nocb_leader == rdp) 2203 nocb_leader_wait(rdp); 2204 else 2205 nocb_follower_wait(rdp); 2206 2207 /* Pull the ready-to-invoke callbacks onto local list. */ 2208 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2209 list = rdp->nocb_follower_head; 2210 rdp->nocb_follower_head = NULL; 2211 tail = rdp->nocb_follower_tail; 2212 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2213 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2214 BUG_ON(!list); 2215 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty")); 2216 2217 /* Each pass through the following loop invokes a callback. */ 2218 trace_rcu_batch_start(rdp->rsp->name, 2219 atomic_long_read(&rdp->nocb_q_count_lazy), 2220 atomic_long_read(&rdp->nocb_q_count), -1); 2221 c = cl = 0; 2222 while (list) { 2223 next = list->next; 2224 /* Wait for enqueuing to complete, if needed. */ 2225 while (next == NULL && &list->next != tail) { 2226 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2227 TPS("WaitQueue")); 2228 schedule_timeout_interruptible(1); 2229 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2230 TPS("WokeQueue")); 2231 next = list->next; 2232 } 2233 debug_rcu_head_unqueue(list); 2234 local_bh_disable(); 2235 if (__rcu_reclaim(rdp->rsp->name, list)) 2236 cl++; 2237 c++; 2238 local_bh_enable(); 2239 cond_resched_rcu_qs(); 2240 list = next; 2241 } 2242 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2243 smp_mb__before_atomic(); /* _add after CB invocation. */ 2244 atomic_long_add(-c, &rdp->nocb_q_count); 2245 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2246 } 2247 return 0; 2248 } 2249 2250 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2251 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2252 { 2253 return READ_ONCE(rdp->nocb_defer_wakeup); 2254 } 2255 2256 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2257 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2258 { 2259 unsigned long flags; 2260 int ndw; 2261 2262 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2263 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2264 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2265 return; 2266 } 2267 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2268 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2269 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2270 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2271 } 2272 2273 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2274 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2275 { 2276 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2277 2278 do_nocb_deferred_wakeup_common(rdp); 2279 } 2280 2281 /* 2282 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2283 * This means we do an inexact common-case check. Note that if 2284 * we miss, ->nocb_timer will eventually clean things up. 2285 */ 2286 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2287 { 2288 if (rcu_nocb_need_deferred_wakeup(rdp)) 2289 do_nocb_deferred_wakeup_common(rdp); 2290 } 2291 2292 void __init rcu_init_nohz(void) 2293 { 2294 int cpu; 2295 bool need_rcu_nocb_mask = true; 2296 struct rcu_state *rsp; 2297 2298 #if defined(CONFIG_NO_HZ_FULL) 2299 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2300 need_rcu_nocb_mask = true; 2301 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2302 2303 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2304 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2305 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2306 return; 2307 } 2308 } 2309 if (!cpumask_available(rcu_nocb_mask)) 2310 return; 2311 2312 #if defined(CONFIG_NO_HZ_FULL) 2313 if (tick_nohz_full_running) 2314 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2315 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2316 2317 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2318 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2319 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2320 rcu_nocb_mask); 2321 } 2322 if (cpumask_empty(rcu_nocb_mask)) 2323 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2324 else 2325 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2326 cpumask_pr_args(rcu_nocb_mask)); 2327 if (rcu_nocb_poll) 2328 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2329 2330 for_each_rcu_flavor(rsp) { 2331 for_each_cpu(cpu, rcu_nocb_mask) 2332 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2333 rcu_organize_nocb_kthreads(rsp); 2334 } 2335 } 2336 2337 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2338 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2339 { 2340 rdp->nocb_tail = &rdp->nocb_head; 2341 init_swait_queue_head(&rdp->nocb_wq); 2342 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2343 raw_spin_lock_init(&rdp->nocb_lock); 2344 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2345 } 2346 2347 /* 2348 * If the specified CPU is a no-CBs CPU that does not already have its 2349 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2350 * brought online out of order, this can require re-organizing the 2351 * leader-follower relationships. 2352 */ 2353 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2354 { 2355 struct rcu_data *rdp; 2356 struct rcu_data *rdp_last; 2357 struct rcu_data *rdp_old_leader; 2358 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2359 struct task_struct *t; 2360 2361 /* 2362 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2363 * then nothing to do. 2364 */ 2365 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2366 return; 2367 2368 /* If we didn't spawn the leader first, reorganize! */ 2369 rdp_old_leader = rdp_spawn->nocb_leader; 2370 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2371 rdp_last = NULL; 2372 rdp = rdp_old_leader; 2373 do { 2374 rdp->nocb_leader = rdp_spawn; 2375 if (rdp_last && rdp != rdp_spawn) 2376 rdp_last->nocb_next_follower = rdp; 2377 if (rdp == rdp_spawn) { 2378 rdp = rdp->nocb_next_follower; 2379 } else { 2380 rdp_last = rdp; 2381 rdp = rdp->nocb_next_follower; 2382 rdp_last->nocb_next_follower = NULL; 2383 } 2384 } while (rdp); 2385 rdp_spawn->nocb_next_follower = rdp_old_leader; 2386 } 2387 2388 /* Spawn the kthread for this CPU and RCU flavor. */ 2389 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2390 "rcuo%c/%d", rsp->abbr, cpu); 2391 BUG_ON(IS_ERR(t)); 2392 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2393 } 2394 2395 /* 2396 * If the specified CPU is a no-CBs CPU that does not already have its 2397 * rcuo kthreads, spawn them. 2398 */ 2399 static void rcu_spawn_all_nocb_kthreads(int cpu) 2400 { 2401 struct rcu_state *rsp; 2402 2403 if (rcu_scheduler_fully_active) 2404 for_each_rcu_flavor(rsp) 2405 rcu_spawn_one_nocb_kthread(rsp, cpu); 2406 } 2407 2408 /* 2409 * Once the scheduler is running, spawn rcuo kthreads for all online 2410 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2411 * non-boot CPUs come online -- if this changes, we will need to add 2412 * some mutual exclusion. 2413 */ 2414 static void __init rcu_spawn_nocb_kthreads(void) 2415 { 2416 int cpu; 2417 2418 for_each_online_cpu(cpu) 2419 rcu_spawn_all_nocb_kthreads(cpu); 2420 } 2421 2422 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2423 static int rcu_nocb_leader_stride = -1; 2424 module_param(rcu_nocb_leader_stride, int, 0444); 2425 2426 /* 2427 * Initialize leader-follower relationships for all no-CBs CPU. 2428 */ 2429 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2430 { 2431 int cpu; 2432 int ls = rcu_nocb_leader_stride; 2433 int nl = 0; /* Next leader. */ 2434 struct rcu_data *rdp; 2435 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2436 struct rcu_data *rdp_prev = NULL; 2437 2438 if (!cpumask_available(rcu_nocb_mask)) 2439 return; 2440 if (ls == -1) { 2441 ls = int_sqrt(nr_cpu_ids); 2442 rcu_nocb_leader_stride = ls; 2443 } 2444 2445 /* 2446 * Each pass through this loop sets up one rcu_data structure. 2447 * Should the corresponding CPU come online in the future, then 2448 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2449 */ 2450 for_each_cpu(cpu, rcu_nocb_mask) { 2451 rdp = per_cpu_ptr(rsp->rda, cpu); 2452 if (rdp->cpu >= nl) { 2453 /* New leader, set up for followers & next leader. */ 2454 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2455 rdp->nocb_leader = rdp; 2456 rdp_leader = rdp; 2457 } else { 2458 /* Another follower, link to previous leader. */ 2459 rdp->nocb_leader = rdp_leader; 2460 rdp_prev->nocb_next_follower = rdp; 2461 } 2462 rdp_prev = rdp; 2463 } 2464 } 2465 2466 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2467 static bool init_nocb_callback_list(struct rcu_data *rdp) 2468 { 2469 if (!rcu_is_nocb_cpu(rdp->cpu)) 2470 return false; 2471 2472 /* If there are early-boot callbacks, move them to nocb lists. */ 2473 if (!rcu_segcblist_empty(&rdp->cblist)) { 2474 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2475 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2476 atomic_long_set(&rdp->nocb_q_count, 2477 rcu_segcblist_n_cbs(&rdp->cblist)); 2478 atomic_long_set(&rdp->nocb_q_count_lazy, 2479 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2480 rcu_segcblist_init(&rdp->cblist); 2481 } 2482 rcu_segcblist_disable(&rdp->cblist); 2483 return true; 2484 } 2485 2486 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2487 2488 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2489 { 2490 WARN_ON_ONCE(1); /* Should be dead code. */ 2491 return false; 2492 } 2493 2494 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2495 { 2496 } 2497 2498 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2499 { 2500 } 2501 2502 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2503 { 2504 return NULL; 2505 } 2506 2507 static void rcu_init_one_nocb(struct rcu_node *rnp) 2508 { 2509 } 2510 2511 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2512 bool lazy, unsigned long flags) 2513 { 2514 return false; 2515 } 2516 2517 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2518 struct rcu_data *rdp, 2519 unsigned long flags) 2520 { 2521 return false; 2522 } 2523 2524 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2525 { 2526 } 2527 2528 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2529 { 2530 return false; 2531 } 2532 2533 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2534 { 2535 } 2536 2537 static void rcu_spawn_all_nocb_kthreads(int cpu) 2538 { 2539 } 2540 2541 static void __init rcu_spawn_nocb_kthreads(void) 2542 { 2543 } 2544 2545 static bool init_nocb_callback_list(struct rcu_data *rdp) 2546 { 2547 return false; 2548 } 2549 2550 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2551 2552 /* 2553 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2554 * arbitrarily long period of time with the scheduling-clock tick turned 2555 * off. RCU will be paying attention to this CPU because it is in the 2556 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2557 * machine because the scheduling-clock tick has been disabled. Therefore, 2558 * if an adaptive-ticks CPU is failing to respond to the current grace 2559 * period and has not be idle from an RCU perspective, kick it. 2560 */ 2561 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2562 { 2563 #ifdef CONFIG_NO_HZ_FULL 2564 if (tick_nohz_full_cpu(cpu)) 2565 smp_send_reschedule(cpu); 2566 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2567 } 2568 2569 /* 2570 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2571 * grace-period kthread will do force_quiescent_state() processing? 2572 * The idea is to avoid waking up RCU core processing on such a 2573 * CPU unless the grace period has extended for too long. 2574 * 2575 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2576 * CONFIG_RCU_NOCB_CPU CPUs. 2577 */ 2578 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2579 { 2580 #ifdef CONFIG_NO_HZ_FULL 2581 if (tick_nohz_full_cpu(smp_processor_id()) && 2582 (!rcu_gp_in_progress(rsp) || 2583 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2584 return true; 2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2586 return false; 2587 } 2588 2589 /* 2590 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2591 * timekeeping CPU. 2592 */ 2593 static void rcu_bind_gp_kthread(void) 2594 { 2595 int __maybe_unused cpu; 2596 2597 if (!tick_nohz_full_enabled()) 2598 return; 2599 housekeeping_affine(current, HK_FLAG_RCU); 2600 } 2601 2602 /* Record the current task on dyntick-idle entry. */ 2603 static void rcu_dynticks_task_enter(void) 2604 { 2605 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2606 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2607 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2608 } 2609 2610 /* Record no current task on dyntick-idle exit. */ 2611 static void rcu_dynticks_task_exit(void) 2612 { 2613 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2614 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2615 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2616 } 2617