xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision d2999e1b)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #define RCU_KTHREAD_PRIO 1
34 
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #else
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39 #endif
40 
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
45 static char __initdata nocb_buf[NR_CPUS * 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47 
48 /*
49  * Check the RCU kernel configuration parameters and print informative
50  * messages about anything out of the ordinary.  If you like #ifdef, you
51  * will love this function.
52  */
53 static void __init rcu_bootup_announce_oddness(void)
54 {
55 #ifdef CONFIG_RCU_TRACE
56 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 #endif
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 	       CONFIG_RCU_FANOUT);
61 #endif
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 #endif
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 #endif
68 #ifdef CONFIG_PROVE_RCU
69 	pr_info("\tRCU lockdep checking is enabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 	pr_info("\tRCU torture testing starts during boot.\n");
73 #endif
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 #endif
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 #endif
80 #if NUM_RCU_LVL_4 != 0
81 	pr_info("\tFour-level hierarchy is enabled.\n");
82 #endif
83 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85 	if (nr_cpu_ids != NR_CPUS)
86 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 	if (!have_rcu_nocb_mask) {
90 		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 		have_rcu_nocb_mask = true;
92 	}
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 	cpumask_set_cpu(0, rcu_nocb_mask);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 	pr_info("\tOffload RCU callbacks from all CPUs\n");
99 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 	if (have_rcu_nocb_mask) {
103 		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 				    rcu_nocb_mask);
107 		}
108 		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109 		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110 		if (rcu_nocb_poll)
111 			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112 	}
113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 }
115 
116 #ifdef CONFIG_TREE_PREEMPT_RCU
117 
118 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
120 
121 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122 
123 /*
124  * Tell them what RCU they are running.
125  */
126 static void __init rcu_bootup_announce(void)
127 {
128 	pr_info("Preemptible hierarchical RCU implementation.\n");
129 	rcu_bootup_announce_oddness();
130 }
131 
132 /*
133  * Return the number of RCU-preempt batches processed thus far
134  * for debug and statistics.
135  */
136 long rcu_batches_completed_preempt(void)
137 {
138 	return rcu_preempt_state.completed;
139 }
140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141 
142 /*
143  * Return the number of RCU batches processed thus far for debug & stats.
144  */
145 long rcu_batches_completed(void)
146 {
147 	return rcu_batches_completed_preempt();
148 }
149 EXPORT_SYMBOL_GPL(rcu_batches_completed);
150 
151 /*
152  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
153  * that this just means that the task currently running on the CPU is
154  * not in a quiescent state.  There might be any number of tasks blocked
155  * while in an RCU read-side critical section.
156  *
157  * Unlike the other rcu_*_qs() functions, callers to this function
158  * must disable irqs in order to protect the assignment to
159  * ->rcu_read_unlock_special.
160  */
161 static void rcu_preempt_qs(int cpu)
162 {
163 	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
164 
165 	if (rdp->passed_quiesce == 0)
166 		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
167 	rdp->passed_quiesce = 1;
168 	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
169 }
170 
171 /*
172  * We have entered the scheduler, and the current task might soon be
173  * context-switched away from.  If this task is in an RCU read-side
174  * critical section, we will no longer be able to rely on the CPU to
175  * record that fact, so we enqueue the task on the blkd_tasks list.
176  * The task will dequeue itself when it exits the outermost enclosing
177  * RCU read-side critical section.  Therefore, the current grace period
178  * cannot be permitted to complete until the blkd_tasks list entries
179  * predating the current grace period drain, in other words, until
180  * rnp->gp_tasks becomes NULL.
181  *
182  * Caller must disable preemption.
183  */
184 static void rcu_preempt_note_context_switch(int cpu)
185 {
186 	struct task_struct *t = current;
187 	unsigned long flags;
188 	struct rcu_data *rdp;
189 	struct rcu_node *rnp;
190 
191 	if (t->rcu_read_lock_nesting > 0 &&
192 	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
193 
194 		/* Possibly blocking in an RCU read-side critical section. */
195 		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
196 		rnp = rdp->mynode;
197 		raw_spin_lock_irqsave(&rnp->lock, flags);
198 		smp_mb__after_unlock_lock();
199 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
200 		t->rcu_blocked_node = rnp;
201 
202 		/*
203 		 * If this CPU has already checked in, then this task
204 		 * will hold up the next grace period rather than the
205 		 * current grace period.  Queue the task accordingly.
206 		 * If the task is queued for the current grace period
207 		 * (i.e., this CPU has not yet passed through a quiescent
208 		 * state for the current grace period), then as long
209 		 * as that task remains queued, the current grace period
210 		 * cannot end.  Note that there is some uncertainty as
211 		 * to exactly when the current grace period started.
212 		 * We take a conservative approach, which can result
213 		 * in unnecessarily waiting on tasks that started very
214 		 * slightly after the current grace period began.  C'est
215 		 * la vie!!!
216 		 *
217 		 * But first, note that the current CPU must still be
218 		 * on line!
219 		 */
220 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
221 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
222 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
223 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
224 			rnp->gp_tasks = &t->rcu_node_entry;
225 #ifdef CONFIG_RCU_BOOST
226 			if (rnp->boost_tasks != NULL)
227 				rnp->boost_tasks = rnp->gp_tasks;
228 #endif /* #ifdef CONFIG_RCU_BOOST */
229 		} else {
230 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
231 			if (rnp->qsmask & rdp->grpmask)
232 				rnp->gp_tasks = &t->rcu_node_entry;
233 		}
234 		trace_rcu_preempt_task(rdp->rsp->name,
235 				       t->pid,
236 				       (rnp->qsmask & rdp->grpmask)
237 				       ? rnp->gpnum
238 				       : rnp->gpnum + 1);
239 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
240 	} else if (t->rcu_read_lock_nesting < 0 &&
241 		   t->rcu_read_unlock_special) {
242 
243 		/*
244 		 * Complete exit from RCU read-side critical section on
245 		 * behalf of preempted instance of __rcu_read_unlock().
246 		 */
247 		rcu_read_unlock_special(t);
248 	}
249 
250 	/*
251 	 * Either we were not in an RCU read-side critical section to
252 	 * begin with, or we have now recorded that critical section
253 	 * globally.  Either way, we can now note a quiescent state
254 	 * for this CPU.  Again, if we were in an RCU read-side critical
255 	 * section, and if that critical section was blocking the current
256 	 * grace period, then the fact that the task has been enqueued
257 	 * means that we continue to block the current grace period.
258 	 */
259 	local_irq_save(flags);
260 	rcu_preempt_qs(cpu);
261 	local_irq_restore(flags);
262 }
263 
264 /*
265  * Check for preempted RCU readers blocking the current grace period
266  * for the specified rcu_node structure.  If the caller needs a reliable
267  * answer, it must hold the rcu_node's ->lock.
268  */
269 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
270 {
271 	return rnp->gp_tasks != NULL;
272 }
273 
274 /*
275  * Record a quiescent state for all tasks that were previously queued
276  * on the specified rcu_node structure and that were blocking the current
277  * RCU grace period.  The caller must hold the specified rnp->lock with
278  * irqs disabled, and this lock is released upon return, but irqs remain
279  * disabled.
280  */
281 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
282 	__releases(rnp->lock)
283 {
284 	unsigned long mask;
285 	struct rcu_node *rnp_p;
286 
287 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
288 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
289 		return;  /* Still need more quiescent states! */
290 	}
291 
292 	rnp_p = rnp->parent;
293 	if (rnp_p == NULL) {
294 		/*
295 		 * Either there is only one rcu_node in the tree,
296 		 * or tasks were kicked up to root rcu_node due to
297 		 * CPUs going offline.
298 		 */
299 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
300 		return;
301 	}
302 
303 	/* Report up the rest of the hierarchy. */
304 	mask = rnp->grpmask;
305 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
306 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
307 	smp_mb__after_unlock_lock();
308 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
309 }
310 
311 /*
312  * Advance a ->blkd_tasks-list pointer to the next entry, instead
313  * returning NULL if at the end of the list.
314  */
315 static struct list_head *rcu_next_node_entry(struct task_struct *t,
316 					     struct rcu_node *rnp)
317 {
318 	struct list_head *np;
319 
320 	np = t->rcu_node_entry.next;
321 	if (np == &rnp->blkd_tasks)
322 		np = NULL;
323 	return np;
324 }
325 
326 /*
327  * Handle special cases during rcu_read_unlock(), such as needing to
328  * notify RCU core processing or task having blocked during the RCU
329  * read-side critical section.
330  */
331 void rcu_read_unlock_special(struct task_struct *t)
332 {
333 	int empty;
334 	int empty_exp;
335 	int empty_exp_now;
336 	unsigned long flags;
337 	struct list_head *np;
338 #ifdef CONFIG_RCU_BOOST
339 	struct rt_mutex *rbmp = NULL;
340 #endif /* #ifdef CONFIG_RCU_BOOST */
341 	struct rcu_node *rnp;
342 	int special;
343 
344 	/* NMI handlers cannot block and cannot safely manipulate state. */
345 	if (in_nmi())
346 		return;
347 
348 	local_irq_save(flags);
349 
350 	/*
351 	 * If RCU core is waiting for this CPU to exit critical section,
352 	 * let it know that we have done so.
353 	 */
354 	special = t->rcu_read_unlock_special;
355 	if (special & RCU_READ_UNLOCK_NEED_QS) {
356 		rcu_preempt_qs(smp_processor_id());
357 		if (!t->rcu_read_unlock_special) {
358 			local_irq_restore(flags);
359 			return;
360 		}
361 	}
362 
363 	/* Hardware IRQ handlers cannot block, complain if they get here. */
364 	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
365 		local_irq_restore(flags);
366 		return;
367 	}
368 
369 	/* Clean up if blocked during RCU read-side critical section. */
370 	if (special & RCU_READ_UNLOCK_BLOCKED) {
371 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
372 
373 		/*
374 		 * Remove this task from the list it blocked on.  The
375 		 * task can migrate while we acquire the lock, but at
376 		 * most one time.  So at most two passes through loop.
377 		 */
378 		for (;;) {
379 			rnp = t->rcu_blocked_node;
380 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
381 			smp_mb__after_unlock_lock();
382 			if (rnp == t->rcu_blocked_node)
383 				break;
384 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
385 		}
386 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
387 		empty_exp = !rcu_preempted_readers_exp(rnp);
388 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
389 		np = rcu_next_node_entry(t, rnp);
390 		list_del_init(&t->rcu_node_entry);
391 		t->rcu_blocked_node = NULL;
392 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
393 						rnp->gpnum, t->pid);
394 		if (&t->rcu_node_entry == rnp->gp_tasks)
395 			rnp->gp_tasks = np;
396 		if (&t->rcu_node_entry == rnp->exp_tasks)
397 			rnp->exp_tasks = np;
398 #ifdef CONFIG_RCU_BOOST
399 		if (&t->rcu_node_entry == rnp->boost_tasks)
400 			rnp->boost_tasks = np;
401 		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
402 		if (t->rcu_boost_mutex) {
403 			rbmp = t->rcu_boost_mutex;
404 			t->rcu_boost_mutex = NULL;
405 		}
406 #endif /* #ifdef CONFIG_RCU_BOOST */
407 
408 		/*
409 		 * If this was the last task on the current list, and if
410 		 * we aren't waiting on any CPUs, report the quiescent state.
411 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
412 		 * so we must take a snapshot of the expedited state.
413 		 */
414 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
415 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
416 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
417 							 rnp->gpnum,
418 							 0, rnp->qsmask,
419 							 rnp->level,
420 							 rnp->grplo,
421 							 rnp->grphi,
422 							 !!rnp->gp_tasks);
423 			rcu_report_unblock_qs_rnp(rnp, flags);
424 		} else {
425 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
426 		}
427 
428 #ifdef CONFIG_RCU_BOOST
429 		/* Unboost if we were boosted. */
430 		if (rbmp)
431 			rt_mutex_unlock(rbmp);
432 #endif /* #ifdef CONFIG_RCU_BOOST */
433 
434 		/*
435 		 * If this was the last task on the expedited lists,
436 		 * then we need to report up the rcu_node hierarchy.
437 		 */
438 		if (!empty_exp && empty_exp_now)
439 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
440 	} else {
441 		local_irq_restore(flags);
442 	}
443 }
444 
445 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446 
447 /*
448  * Dump detailed information for all tasks blocking the current RCU
449  * grace period on the specified rcu_node structure.
450  */
451 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452 {
453 	unsigned long flags;
454 	struct task_struct *t;
455 
456 	raw_spin_lock_irqsave(&rnp->lock, flags);
457 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
459 		return;
460 	}
461 	t = list_entry(rnp->gp_tasks,
462 		       struct task_struct, rcu_node_entry);
463 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464 		sched_show_task(t);
465 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
466 }
467 
468 /*
469  * Dump detailed information for all tasks blocking the current RCU
470  * grace period.
471  */
472 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473 {
474 	struct rcu_node *rnp = rcu_get_root(rsp);
475 
476 	rcu_print_detail_task_stall_rnp(rnp);
477 	rcu_for_each_leaf_node(rsp, rnp)
478 		rcu_print_detail_task_stall_rnp(rnp);
479 }
480 
481 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482 
483 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484 {
485 }
486 
487 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488 
489 #ifdef CONFIG_RCU_CPU_STALL_INFO
490 
491 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492 {
493 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
494 	       rnp->level, rnp->grplo, rnp->grphi);
495 }
496 
497 static void rcu_print_task_stall_end(void)
498 {
499 	pr_cont("\n");
500 }
501 
502 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503 
504 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505 {
506 }
507 
508 static void rcu_print_task_stall_end(void)
509 {
510 }
511 
512 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513 
514 /*
515  * Scan the current list of tasks blocked within RCU read-side critical
516  * sections, printing out the tid of each.
517  */
518 static int rcu_print_task_stall(struct rcu_node *rnp)
519 {
520 	struct task_struct *t;
521 	int ndetected = 0;
522 
523 	if (!rcu_preempt_blocked_readers_cgp(rnp))
524 		return 0;
525 	rcu_print_task_stall_begin(rnp);
526 	t = list_entry(rnp->gp_tasks,
527 		       struct task_struct, rcu_node_entry);
528 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
529 		pr_cont(" P%d", t->pid);
530 		ndetected++;
531 	}
532 	rcu_print_task_stall_end();
533 	return ndetected;
534 }
535 
536 /*
537  * Check that the list of blocked tasks for the newly completed grace
538  * period is in fact empty.  It is a serious bug to complete a grace
539  * period that still has RCU readers blocked!  This function must be
540  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541  * must be held by the caller.
542  *
543  * Also, if there are blocked tasks on the list, they automatically
544  * block the newly created grace period, so set up ->gp_tasks accordingly.
545  */
546 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547 {
548 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
549 	if (!list_empty(&rnp->blkd_tasks))
550 		rnp->gp_tasks = rnp->blkd_tasks.next;
551 	WARN_ON_ONCE(rnp->qsmask);
552 }
553 
554 #ifdef CONFIG_HOTPLUG_CPU
555 
556 /*
557  * Handle tasklist migration for case in which all CPUs covered by the
558  * specified rcu_node have gone offline.  Move them up to the root
559  * rcu_node.  The reason for not just moving them to the immediate
560  * parent is to remove the need for rcu_read_unlock_special() to
561  * make more than two attempts to acquire the target rcu_node's lock.
562  * Returns true if there were tasks blocking the current RCU grace
563  * period.
564  *
565  * Returns 1 if there was previously a task blocking the current grace
566  * period on the specified rcu_node structure.
567  *
568  * The caller must hold rnp->lock with irqs disabled.
569  */
570 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571 				     struct rcu_node *rnp,
572 				     struct rcu_data *rdp)
573 {
574 	struct list_head *lp;
575 	struct list_head *lp_root;
576 	int retval = 0;
577 	struct rcu_node *rnp_root = rcu_get_root(rsp);
578 	struct task_struct *t;
579 
580 	if (rnp == rnp_root) {
581 		WARN_ONCE(1, "Last CPU thought to be offlined?");
582 		return 0;  /* Shouldn't happen: at least one CPU online. */
583 	}
584 
585 	/* If we are on an internal node, complain bitterly. */
586 	WARN_ON_ONCE(rnp != rdp->mynode);
587 
588 	/*
589 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
590 	 * this corner-case operation -- just put this node's tasks
591 	 * at the head of the root node's list, and update the root node's
592 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593 	 * if non-NULL.  This might result in waiting for more tasks than
594 	 * absolutely necessary, but this is a good performance/complexity
595 	 * tradeoff.
596 	 */
597 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
598 		retval |= RCU_OFL_TASKS_NORM_GP;
599 	if (rcu_preempted_readers_exp(rnp))
600 		retval |= RCU_OFL_TASKS_EXP_GP;
601 	lp = &rnp->blkd_tasks;
602 	lp_root = &rnp_root->blkd_tasks;
603 	while (!list_empty(lp)) {
604 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
606 		smp_mb__after_unlock_lock();
607 		list_del(&t->rcu_node_entry);
608 		t->rcu_blocked_node = rnp_root;
609 		list_add(&t->rcu_node_entry, lp_root);
610 		if (&t->rcu_node_entry == rnp->gp_tasks)
611 			rnp_root->gp_tasks = rnp->gp_tasks;
612 		if (&t->rcu_node_entry == rnp->exp_tasks)
613 			rnp_root->exp_tasks = rnp->exp_tasks;
614 #ifdef CONFIG_RCU_BOOST
615 		if (&t->rcu_node_entry == rnp->boost_tasks)
616 			rnp_root->boost_tasks = rnp->boost_tasks;
617 #endif /* #ifdef CONFIG_RCU_BOOST */
618 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
619 	}
620 
621 	rnp->gp_tasks = NULL;
622 	rnp->exp_tasks = NULL;
623 #ifdef CONFIG_RCU_BOOST
624 	rnp->boost_tasks = NULL;
625 	/*
626 	 * In case root is being boosted and leaf was not.  Make sure
627 	 * that we boost the tasks blocking the current grace period
628 	 * in this case.
629 	 */
630 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
631 	smp_mb__after_unlock_lock();
632 	if (rnp_root->boost_tasks != NULL &&
633 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
635 		rnp_root->boost_tasks = rnp_root->gp_tasks;
636 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637 #endif /* #ifdef CONFIG_RCU_BOOST */
638 
639 	return retval;
640 }
641 
642 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
643 
644 /*
645  * Check for a quiescent state from the current CPU.  When a task blocks,
646  * the task is recorded in the corresponding CPU's rcu_node structure,
647  * which is checked elsewhere.
648  *
649  * Caller must disable hard irqs.
650  */
651 static void rcu_preempt_check_callbacks(int cpu)
652 {
653 	struct task_struct *t = current;
654 
655 	if (t->rcu_read_lock_nesting == 0) {
656 		rcu_preempt_qs(cpu);
657 		return;
658 	}
659 	if (t->rcu_read_lock_nesting > 0 &&
660 	    per_cpu(rcu_preempt_data, cpu).qs_pending)
661 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662 }
663 
664 #ifdef CONFIG_RCU_BOOST
665 
666 static void rcu_preempt_do_callbacks(void)
667 {
668 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669 }
670 
671 #endif /* #ifdef CONFIG_RCU_BOOST */
672 
673 /*
674  * Queue a preemptible-RCU callback for invocation after a grace period.
675  */
676 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677 {
678 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
679 }
680 EXPORT_SYMBOL_GPL(call_rcu);
681 
682 /**
683  * synchronize_rcu - wait until a grace period has elapsed.
684  *
685  * Control will return to the caller some time after a full grace
686  * period has elapsed, in other words after all currently executing RCU
687  * read-side critical sections have completed.  Note, however, that
688  * upon return from synchronize_rcu(), the caller might well be executing
689  * concurrently with new RCU read-side critical sections that began while
690  * synchronize_rcu() was waiting.  RCU read-side critical sections are
691  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
692  *
693  * See the description of synchronize_sched() for more detailed information
694  * on memory ordering guarantees.
695  */
696 void synchronize_rcu(void)
697 {
698 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699 			   !lock_is_held(&rcu_lock_map) &&
700 			   !lock_is_held(&rcu_sched_lock_map),
701 			   "Illegal synchronize_rcu() in RCU read-side critical section");
702 	if (!rcu_scheduler_active)
703 		return;
704 	if (rcu_expedited)
705 		synchronize_rcu_expedited();
706 	else
707 		wait_rcu_gp(call_rcu);
708 }
709 EXPORT_SYMBOL_GPL(synchronize_rcu);
710 
711 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
712 static unsigned long sync_rcu_preempt_exp_count;
713 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714 
715 /*
716  * Return non-zero if there are any tasks in RCU read-side critical
717  * sections blocking the current preemptible-RCU expedited grace period.
718  * If there is no preemptible-RCU expedited grace period currently in
719  * progress, returns zero unconditionally.
720  */
721 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722 {
723 	return rnp->exp_tasks != NULL;
724 }
725 
726 /*
727  * return non-zero if there is no RCU expedited grace period in progress
728  * for the specified rcu_node structure, in other words, if all CPUs and
729  * tasks covered by the specified rcu_node structure have done their bit
730  * for the current expedited grace period.  Works only for preemptible
731  * RCU -- other RCU implementation use other means.
732  *
733  * Caller must hold sync_rcu_preempt_exp_mutex.
734  */
735 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736 {
737 	return !rcu_preempted_readers_exp(rnp) &&
738 	       ACCESS_ONCE(rnp->expmask) == 0;
739 }
740 
741 /*
742  * Report the exit from RCU read-side critical section for the last task
743  * that queued itself during or before the current expedited preemptible-RCU
744  * grace period.  This event is reported either to the rcu_node structure on
745  * which the task was queued or to one of that rcu_node structure's ancestors,
746  * recursively up the tree.  (Calm down, calm down, we do the recursion
747  * iteratively!)
748  *
749  * Most callers will set the "wake" flag, but the task initiating the
750  * expedited grace period need not wake itself.
751  *
752  * Caller must hold sync_rcu_preempt_exp_mutex.
753  */
754 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755 			       bool wake)
756 {
757 	unsigned long flags;
758 	unsigned long mask;
759 
760 	raw_spin_lock_irqsave(&rnp->lock, flags);
761 	smp_mb__after_unlock_lock();
762 	for (;;) {
763 		if (!sync_rcu_preempt_exp_done(rnp)) {
764 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
765 			break;
766 		}
767 		if (rnp->parent == NULL) {
768 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
769 			if (wake) {
770 				smp_mb(); /* EGP done before wake_up(). */
771 				wake_up(&sync_rcu_preempt_exp_wq);
772 			}
773 			break;
774 		}
775 		mask = rnp->grpmask;
776 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
777 		rnp = rnp->parent;
778 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
779 		smp_mb__after_unlock_lock();
780 		rnp->expmask &= ~mask;
781 	}
782 }
783 
784 /*
785  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786  * grace period for the specified rcu_node structure.  If there are no such
787  * tasks, report it up the rcu_node hierarchy.
788  *
789  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790  * CPU hotplug operations.
791  */
792 static void
793 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794 {
795 	unsigned long flags;
796 	int must_wait = 0;
797 
798 	raw_spin_lock_irqsave(&rnp->lock, flags);
799 	smp_mb__after_unlock_lock();
800 	if (list_empty(&rnp->blkd_tasks)) {
801 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
802 	} else {
803 		rnp->exp_tasks = rnp->blkd_tasks.next;
804 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
805 		must_wait = 1;
806 	}
807 	if (!must_wait)
808 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
809 }
810 
811 /**
812  * synchronize_rcu_expedited - Brute-force RCU grace period
813  *
814  * Wait for an RCU-preempt grace period, but expedite it.  The basic
815  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
817  * significant time on all CPUs and is unfriendly to real-time workloads,
818  * so is thus not recommended for any sort of common-case code.
819  * In fact, if you are using synchronize_rcu_expedited() in a loop,
820  * please restructure your code to batch your updates, and then Use a
821  * single synchronize_rcu() instead.
822  *
823  * Note that it is illegal to call this function while holding any lock
824  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
825  * to call this function from a CPU-hotplug notifier.  Failing to observe
826  * these restriction will result in deadlock.
827  */
828 void synchronize_rcu_expedited(void)
829 {
830 	unsigned long flags;
831 	struct rcu_node *rnp;
832 	struct rcu_state *rsp = &rcu_preempt_state;
833 	unsigned long snap;
834 	int trycount = 0;
835 
836 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
837 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838 	smp_mb(); /* Above access cannot bleed into critical section. */
839 
840 	/*
841 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
842 	 * operation that finds an rcu_node structure with tasks in the
843 	 * process of being boosted will know that all tasks blocking
844 	 * this expedited grace period will already be in the process of
845 	 * being boosted.  This simplifies the process of moving tasks
846 	 * from leaf to root rcu_node structures.
847 	 */
848 	get_online_cpus();
849 
850 	/*
851 	 * Acquire lock, falling back to synchronize_rcu() if too many
852 	 * lock-acquisition failures.  Of course, if someone does the
853 	 * expedited grace period for us, just leave.
854 	 */
855 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
856 		if (ULONG_CMP_LT(snap,
857 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858 			put_online_cpus();
859 			goto mb_ret; /* Others did our work for us. */
860 		}
861 		if (trycount++ < 10) {
862 			udelay(trycount * num_online_cpus());
863 		} else {
864 			put_online_cpus();
865 			wait_rcu_gp(call_rcu);
866 			return;
867 		}
868 	}
869 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870 		put_online_cpus();
871 		goto unlock_mb_ret; /* Others did our work for us. */
872 	}
873 
874 	/* force all RCU readers onto ->blkd_tasks lists. */
875 	synchronize_sched_expedited();
876 
877 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
878 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
879 		raw_spin_lock_irqsave(&rnp->lock, flags);
880 		smp_mb__after_unlock_lock();
881 		rnp->expmask = rnp->qsmaskinit;
882 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
883 	}
884 
885 	/* Snapshot current state of ->blkd_tasks lists. */
886 	rcu_for_each_leaf_node(rsp, rnp)
887 		sync_rcu_preempt_exp_init(rsp, rnp);
888 	if (NUM_RCU_NODES > 1)
889 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890 
891 	put_online_cpus();
892 
893 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
894 	rnp = rcu_get_root(rsp);
895 	wait_event(sync_rcu_preempt_exp_wq,
896 		   sync_rcu_preempt_exp_done(rnp));
897 
898 	/* Clean up and exit. */
899 	smp_mb(); /* ensure expedited GP seen before counter increment. */
900 	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
901 unlock_mb_ret:
902 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
903 mb_ret:
904 	smp_mb(); /* ensure subsequent action seen after grace period. */
905 }
906 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
907 
908 /**
909  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
910  *
911  * Note that this primitive does not necessarily wait for an RCU grace period
912  * to complete.  For example, if there are no RCU callbacks queued anywhere
913  * in the system, then rcu_barrier() is within its rights to return
914  * immediately, without waiting for anything, much less an RCU grace period.
915  */
916 void rcu_barrier(void)
917 {
918 	_rcu_barrier(&rcu_preempt_state);
919 }
920 EXPORT_SYMBOL_GPL(rcu_barrier);
921 
922 /*
923  * Initialize preemptible RCU's state structures.
924  */
925 static void __init __rcu_init_preempt(void)
926 {
927 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
928 }
929 
930 /*
931  * Check for a task exiting while in a preemptible-RCU read-side
932  * critical section, clean up if so.  No need to issue warnings,
933  * as debug_check_no_locks_held() already does this if lockdep
934  * is enabled.
935  */
936 void exit_rcu(void)
937 {
938 	struct task_struct *t = current;
939 
940 	if (likely(list_empty(&current->rcu_node_entry)))
941 		return;
942 	t->rcu_read_lock_nesting = 1;
943 	barrier();
944 	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
945 	__rcu_read_unlock();
946 }
947 
948 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
949 
950 static struct rcu_state *rcu_state_p = &rcu_sched_state;
951 
952 /*
953  * Tell them what RCU they are running.
954  */
955 static void __init rcu_bootup_announce(void)
956 {
957 	pr_info("Hierarchical RCU implementation.\n");
958 	rcu_bootup_announce_oddness();
959 }
960 
961 /*
962  * Return the number of RCU batches processed thus far for debug & stats.
963  */
964 long rcu_batches_completed(void)
965 {
966 	return rcu_batches_completed_sched();
967 }
968 EXPORT_SYMBOL_GPL(rcu_batches_completed);
969 
970 /*
971  * Because preemptible RCU does not exist, we never have to check for
972  * CPUs being in quiescent states.
973  */
974 static void rcu_preempt_note_context_switch(int cpu)
975 {
976 }
977 
978 /*
979  * Because preemptible RCU does not exist, there are never any preempted
980  * RCU readers.
981  */
982 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
983 {
984 	return 0;
985 }
986 
987 #ifdef CONFIG_HOTPLUG_CPU
988 
989 /* Because preemptible RCU does not exist, no quieting of tasks. */
990 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
991 {
992 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
993 }
994 
995 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
996 
997 /*
998  * Because preemptible RCU does not exist, we never have to check for
999  * tasks blocked within RCU read-side critical sections.
1000  */
1001 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1002 {
1003 }
1004 
1005 /*
1006  * Because preemptible RCU does not exist, we never have to check for
1007  * tasks blocked within RCU read-side critical sections.
1008  */
1009 static int rcu_print_task_stall(struct rcu_node *rnp)
1010 {
1011 	return 0;
1012 }
1013 
1014 /*
1015  * Because there is no preemptible RCU, there can be no readers blocked,
1016  * so there is no need to check for blocked tasks.  So check only for
1017  * bogus qsmask values.
1018  */
1019 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1020 {
1021 	WARN_ON_ONCE(rnp->qsmask);
1022 }
1023 
1024 #ifdef CONFIG_HOTPLUG_CPU
1025 
1026 /*
1027  * Because preemptible RCU does not exist, it never needs to migrate
1028  * tasks that were blocked within RCU read-side critical sections, and
1029  * such non-existent tasks cannot possibly have been blocking the current
1030  * grace period.
1031  */
1032 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1033 				     struct rcu_node *rnp,
1034 				     struct rcu_data *rdp)
1035 {
1036 	return 0;
1037 }
1038 
1039 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1040 
1041 /*
1042  * Because preemptible RCU does not exist, it never has any callbacks
1043  * to check.
1044  */
1045 static void rcu_preempt_check_callbacks(int cpu)
1046 {
1047 }
1048 
1049 /*
1050  * Wait for an rcu-preempt grace period, but make it happen quickly.
1051  * But because preemptible RCU does not exist, map to rcu-sched.
1052  */
1053 void synchronize_rcu_expedited(void)
1054 {
1055 	synchronize_sched_expedited();
1056 }
1057 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1058 
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 
1061 /*
1062  * Because preemptible RCU does not exist, there is never any need to
1063  * report on tasks preempted in RCU read-side critical sections during
1064  * expedited RCU grace periods.
1065  */
1066 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1067 			       bool wake)
1068 {
1069 }
1070 
1071 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1072 
1073 /*
1074  * Because preemptible RCU does not exist, rcu_barrier() is just
1075  * another name for rcu_barrier_sched().
1076  */
1077 void rcu_barrier(void)
1078 {
1079 	rcu_barrier_sched();
1080 }
1081 EXPORT_SYMBOL_GPL(rcu_barrier);
1082 
1083 /*
1084  * Because preemptible RCU does not exist, it need not be initialized.
1085  */
1086 static void __init __rcu_init_preempt(void)
1087 {
1088 }
1089 
1090 /*
1091  * Because preemptible RCU does not exist, tasks cannot possibly exit
1092  * while in preemptible RCU read-side critical sections.
1093  */
1094 void exit_rcu(void)
1095 {
1096 }
1097 
1098 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1099 
1100 #ifdef CONFIG_RCU_BOOST
1101 
1102 #include "../locking/rtmutex_common.h"
1103 
1104 #ifdef CONFIG_RCU_TRACE
1105 
1106 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1107 {
1108 	if (list_empty(&rnp->blkd_tasks))
1109 		rnp->n_balk_blkd_tasks++;
1110 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1111 		rnp->n_balk_exp_gp_tasks++;
1112 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1113 		rnp->n_balk_boost_tasks++;
1114 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1115 		rnp->n_balk_notblocked++;
1116 	else if (rnp->gp_tasks != NULL &&
1117 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1118 		rnp->n_balk_notyet++;
1119 	else
1120 		rnp->n_balk_nos++;
1121 }
1122 
1123 #else /* #ifdef CONFIG_RCU_TRACE */
1124 
1125 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1126 {
1127 }
1128 
1129 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1130 
1131 static void rcu_wake_cond(struct task_struct *t, int status)
1132 {
1133 	/*
1134 	 * If the thread is yielding, only wake it when this
1135 	 * is invoked from idle
1136 	 */
1137 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1138 		wake_up_process(t);
1139 }
1140 
1141 /*
1142  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1143  * or ->boost_tasks, advancing the pointer to the next task in the
1144  * ->blkd_tasks list.
1145  *
1146  * Note that irqs must be enabled: boosting the task can block.
1147  * Returns 1 if there are more tasks needing to be boosted.
1148  */
1149 static int rcu_boost(struct rcu_node *rnp)
1150 {
1151 	unsigned long flags;
1152 	struct rt_mutex mtx;
1153 	struct task_struct *t;
1154 	struct list_head *tb;
1155 
1156 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1157 		return 0;  /* Nothing left to boost. */
1158 
1159 	raw_spin_lock_irqsave(&rnp->lock, flags);
1160 	smp_mb__after_unlock_lock();
1161 
1162 	/*
1163 	 * Recheck under the lock: all tasks in need of boosting
1164 	 * might exit their RCU read-side critical sections on their own.
1165 	 */
1166 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1167 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1168 		return 0;
1169 	}
1170 
1171 	/*
1172 	 * Preferentially boost tasks blocking expedited grace periods.
1173 	 * This cannot starve the normal grace periods because a second
1174 	 * expedited grace period must boost all blocked tasks, including
1175 	 * those blocking the pre-existing normal grace period.
1176 	 */
1177 	if (rnp->exp_tasks != NULL) {
1178 		tb = rnp->exp_tasks;
1179 		rnp->n_exp_boosts++;
1180 	} else {
1181 		tb = rnp->boost_tasks;
1182 		rnp->n_normal_boosts++;
1183 	}
1184 	rnp->n_tasks_boosted++;
1185 
1186 	/*
1187 	 * We boost task t by manufacturing an rt_mutex that appears to
1188 	 * be held by task t.  We leave a pointer to that rt_mutex where
1189 	 * task t can find it, and task t will release the mutex when it
1190 	 * exits its outermost RCU read-side critical section.  Then
1191 	 * simply acquiring this artificial rt_mutex will boost task
1192 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1193 	 *
1194 	 * Note that task t must acquire rnp->lock to remove itself from
1195 	 * the ->blkd_tasks list, which it will do from exit() if from
1196 	 * nowhere else.  We therefore are guaranteed that task t will
1197 	 * stay around at least until we drop rnp->lock.  Note that
1198 	 * rnp->lock also resolves races between our priority boosting
1199 	 * and task t's exiting its outermost RCU read-side critical
1200 	 * section.
1201 	 */
1202 	t = container_of(tb, struct task_struct, rcu_node_entry);
1203 	rt_mutex_init_proxy_locked(&mtx, t);
1204 	t->rcu_boost_mutex = &mtx;
1205 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206 	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1207 	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1208 
1209 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1210 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1211 }
1212 
1213 /*
1214  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1215  * root rcu_node.
1216  */
1217 static int rcu_boost_kthread(void *arg)
1218 {
1219 	struct rcu_node *rnp = (struct rcu_node *)arg;
1220 	int spincnt = 0;
1221 	int more2boost;
1222 
1223 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1224 	for (;;) {
1225 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1226 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1227 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1228 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1229 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1230 		more2boost = rcu_boost(rnp);
1231 		if (more2boost)
1232 			spincnt++;
1233 		else
1234 			spincnt = 0;
1235 		if (spincnt > 10) {
1236 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1237 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1238 			schedule_timeout_interruptible(2);
1239 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1240 			spincnt = 0;
1241 		}
1242 	}
1243 	/* NOTREACHED */
1244 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1245 	return 0;
1246 }
1247 
1248 /*
1249  * Check to see if it is time to start boosting RCU readers that are
1250  * blocking the current grace period, and, if so, tell the per-rcu_node
1251  * kthread to start boosting them.  If there is an expedited grace
1252  * period in progress, it is always time to boost.
1253  *
1254  * The caller must hold rnp->lock, which this function releases.
1255  * The ->boost_kthread_task is immortal, so we don't need to worry
1256  * about it going away.
1257  */
1258 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1259 {
1260 	struct task_struct *t;
1261 
1262 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1263 		rnp->n_balk_exp_gp_tasks++;
1264 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1265 		return;
1266 	}
1267 	if (rnp->exp_tasks != NULL ||
1268 	    (rnp->gp_tasks != NULL &&
1269 	     rnp->boost_tasks == NULL &&
1270 	     rnp->qsmask == 0 &&
1271 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1272 		if (rnp->exp_tasks == NULL)
1273 			rnp->boost_tasks = rnp->gp_tasks;
1274 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1275 		t = rnp->boost_kthread_task;
1276 		if (t)
1277 			rcu_wake_cond(t, rnp->boost_kthread_status);
1278 	} else {
1279 		rcu_initiate_boost_trace(rnp);
1280 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1281 	}
1282 }
1283 
1284 /*
1285  * Wake up the per-CPU kthread to invoke RCU callbacks.
1286  */
1287 static void invoke_rcu_callbacks_kthread(void)
1288 {
1289 	unsigned long flags;
1290 
1291 	local_irq_save(flags);
1292 	__this_cpu_write(rcu_cpu_has_work, 1);
1293 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1294 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1295 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1296 			      __this_cpu_read(rcu_cpu_kthread_status));
1297 	}
1298 	local_irq_restore(flags);
1299 }
1300 
1301 /*
1302  * Is the current CPU running the RCU-callbacks kthread?
1303  * Caller must have preemption disabled.
1304  */
1305 static bool rcu_is_callbacks_kthread(void)
1306 {
1307 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1308 }
1309 
1310 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1311 
1312 /*
1313  * Do priority-boost accounting for the start of a new grace period.
1314  */
1315 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1316 {
1317 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1318 }
1319 
1320 /*
1321  * Create an RCU-boost kthread for the specified node if one does not
1322  * already exist.  We only create this kthread for preemptible RCU.
1323  * Returns zero if all is well, a negated errno otherwise.
1324  */
1325 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1326 						 struct rcu_node *rnp)
1327 {
1328 	int rnp_index = rnp - &rsp->node[0];
1329 	unsigned long flags;
1330 	struct sched_param sp;
1331 	struct task_struct *t;
1332 
1333 	if (&rcu_preempt_state != rsp)
1334 		return 0;
1335 
1336 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1337 		return 0;
1338 
1339 	rsp->boost = 1;
1340 	if (rnp->boost_kthread_task != NULL)
1341 		return 0;
1342 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1343 			   "rcub/%d", rnp_index);
1344 	if (IS_ERR(t))
1345 		return PTR_ERR(t);
1346 	raw_spin_lock_irqsave(&rnp->lock, flags);
1347 	smp_mb__after_unlock_lock();
1348 	rnp->boost_kthread_task = t;
1349 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1350 	sp.sched_priority = RCU_BOOST_PRIO;
1351 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1352 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1353 	return 0;
1354 }
1355 
1356 static void rcu_kthread_do_work(void)
1357 {
1358 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1359 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1360 	rcu_preempt_do_callbacks();
1361 }
1362 
1363 static void rcu_cpu_kthread_setup(unsigned int cpu)
1364 {
1365 	struct sched_param sp;
1366 
1367 	sp.sched_priority = RCU_KTHREAD_PRIO;
1368 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1369 }
1370 
1371 static void rcu_cpu_kthread_park(unsigned int cpu)
1372 {
1373 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1374 }
1375 
1376 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1377 {
1378 	return __this_cpu_read(rcu_cpu_has_work);
1379 }
1380 
1381 /*
1382  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1383  * RCU softirq used in flavors and configurations of RCU that do not
1384  * support RCU priority boosting.
1385  */
1386 static void rcu_cpu_kthread(unsigned int cpu)
1387 {
1388 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1389 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1390 	int spincnt;
1391 
1392 	for (spincnt = 0; spincnt < 10; spincnt++) {
1393 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1394 		local_bh_disable();
1395 		*statusp = RCU_KTHREAD_RUNNING;
1396 		this_cpu_inc(rcu_cpu_kthread_loops);
1397 		local_irq_disable();
1398 		work = *workp;
1399 		*workp = 0;
1400 		local_irq_enable();
1401 		if (work)
1402 			rcu_kthread_do_work();
1403 		local_bh_enable();
1404 		if (*workp == 0) {
1405 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1406 			*statusp = RCU_KTHREAD_WAITING;
1407 			return;
1408 		}
1409 	}
1410 	*statusp = RCU_KTHREAD_YIELDING;
1411 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1412 	schedule_timeout_interruptible(2);
1413 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1414 	*statusp = RCU_KTHREAD_WAITING;
1415 }
1416 
1417 /*
1418  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1419  * served by the rcu_node in question.  The CPU hotplug lock is still
1420  * held, so the value of rnp->qsmaskinit will be stable.
1421  *
1422  * We don't include outgoingcpu in the affinity set, use -1 if there is
1423  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1424  * this function allows the kthread to execute on any CPU.
1425  */
1426 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1427 {
1428 	struct task_struct *t = rnp->boost_kthread_task;
1429 	unsigned long mask = rnp->qsmaskinit;
1430 	cpumask_var_t cm;
1431 	int cpu;
1432 
1433 	if (!t)
1434 		return;
1435 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1436 		return;
1437 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1438 		if ((mask & 0x1) && cpu != outgoingcpu)
1439 			cpumask_set_cpu(cpu, cm);
1440 	if (cpumask_weight(cm) == 0) {
1441 		cpumask_setall(cm);
1442 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1443 			cpumask_clear_cpu(cpu, cm);
1444 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1445 	}
1446 	set_cpus_allowed_ptr(t, cm);
1447 	free_cpumask_var(cm);
1448 }
1449 
1450 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1451 	.store			= &rcu_cpu_kthread_task,
1452 	.thread_should_run	= rcu_cpu_kthread_should_run,
1453 	.thread_fn		= rcu_cpu_kthread,
1454 	.thread_comm		= "rcuc/%u",
1455 	.setup			= rcu_cpu_kthread_setup,
1456 	.park			= rcu_cpu_kthread_park,
1457 };
1458 
1459 /*
1460  * Spawn all kthreads -- called as soon as the scheduler is running.
1461  */
1462 static int __init rcu_spawn_kthreads(void)
1463 {
1464 	struct rcu_node *rnp;
1465 	int cpu;
1466 
1467 	rcu_scheduler_fully_active = 1;
1468 	for_each_possible_cpu(cpu)
1469 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1470 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1471 	rnp = rcu_get_root(rcu_state_p);
1472 	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1473 	if (NUM_RCU_NODES > 1) {
1474 		rcu_for_each_leaf_node(rcu_state_p, rnp)
1475 			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1476 	}
1477 	return 0;
1478 }
1479 early_initcall(rcu_spawn_kthreads);
1480 
1481 static void rcu_prepare_kthreads(int cpu)
1482 {
1483 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1484 	struct rcu_node *rnp = rdp->mynode;
1485 
1486 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1487 	if (rcu_scheduler_fully_active)
1488 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1489 }
1490 
1491 #else /* #ifdef CONFIG_RCU_BOOST */
1492 
1493 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1494 {
1495 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1496 }
1497 
1498 static void invoke_rcu_callbacks_kthread(void)
1499 {
1500 	WARN_ON_ONCE(1);
1501 }
1502 
1503 static bool rcu_is_callbacks_kthread(void)
1504 {
1505 	return false;
1506 }
1507 
1508 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1509 {
1510 }
1511 
1512 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1513 {
1514 }
1515 
1516 static int __init rcu_scheduler_really_started(void)
1517 {
1518 	rcu_scheduler_fully_active = 1;
1519 	return 0;
1520 }
1521 early_initcall(rcu_scheduler_really_started);
1522 
1523 static void rcu_prepare_kthreads(int cpu)
1524 {
1525 }
1526 
1527 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1528 
1529 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1530 
1531 /*
1532  * Check to see if any future RCU-related work will need to be done
1533  * by the current CPU, even if none need be done immediately, returning
1534  * 1 if so.  This function is part of the RCU implementation; it is -not-
1535  * an exported member of the RCU API.
1536  *
1537  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1538  * any flavor of RCU.
1539  */
1540 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1541 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1542 {
1543 	*delta_jiffies = ULONG_MAX;
1544 	return rcu_cpu_has_callbacks(cpu, NULL);
1545 }
1546 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1547 
1548 /*
1549  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1550  * after it.
1551  */
1552 static void rcu_cleanup_after_idle(int cpu)
1553 {
1554 }
1555 
1556 /*
1557  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1558  * is nothing.
1559  */
1560 static void rcu_prepare_for_idle(int cpu)
1561 {
1562 }
1563 
1564 /*
1565  * Don't bother keeping a running count of the number of RCU callbacks
1566  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1567  */
1568 static void rcu_idle_count_callbacks_posted(void)
1569 {
1570 }
1571 
1572 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1573 
1574 /*
1575  * This code is invoked when a CPU goes idle, at which point we want
1576  * to have the CPU do everything required for RCU so that it can enter
1577  * the energy-efficient dyntick-idle mode.  This is handled by a
1578  * state machine implemented by rcu_prepare_for_idle() below.
1579  *
1580  * The following three proprocessor symbols control this state machine:
1581  *
1582  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1583  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1584  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1585  *	benchmarkers who might otherwise be tempted to set this to a large
1586  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1587  *	system.  And if you are -that- concerned about energy efficiency,
1588  *	just power the system down and be done with it!
1589  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1590  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1591  *	callbacks pending.  Setting this too high can OOM your system.
1592  *
1593  * The values below work well in practice.  If future workloads require
1594  * adjustment, they can be converted into kernel config parameters, though
1595  * making the state machine smarter might be a better option.
1596  */
1597 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1598 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1599 
1600 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1601 module_param(rcu_idle_gp_delay, int, 0644);
1602 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1603 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1604 
1605 extern int tick_nohz_active;
1606 
1607 /*
1608  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1609  * only if it has been awhile since the last time we did so.  Afterwards,
1610  * if there are any callbacks ready for immediate invocation, return true.
1611  */
1612 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1613 {
1614 	bool cbs_ready = false;
1615 	struct rcu_data *rdp;
1616 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1617 	struct rcu_node *rnp;
1618 	struct rcu_state *rsp;
1619 
1620 	/* Exit early if we advanced recently. */
1621 	if (jiffies == rdtp->last_advance_all)
1622 		return 0;
1623 	rdtp->last_advance_all = jiffies;
1624 
1625 	for_each_rcu_flavor(rsp) {
1626 		rdp = this_cpu_ptr(rsp->rda);
1627 		rnp = rdp->mynode;
1628 
1629 		/*
1630 		 * Don't bother checking unless a grace period has
1631 		 * completed since we last checked and there are
1632 		 * callbacks not yet ready to invoke.
1633 		 */
1634 		if (rdp->completed != rnp->completed &&
1635 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1636 			note_gp_changes(rsp, rdp);
1637 
1638 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1639 			cbs_ready = true;
1640 	}
1641 	return cbs_ready;
1642 }
1643 
1644 /*
1645  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1646  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1647  * caller to set the timeout based on whether or not there are non-lazy
1648  * callbacks.
1649  *
1650  * The caller must have disabled interrupts.
1651  */
1652 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1653 int rcu_needs_cpu(int cpu, unsigned long *dj)
1654 {
1655 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1656 
1657 	/* Snapshot to detect later posting of non-lazy callback. */
1658 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1659 
1660 	/* If no callbacks, RCU doesn't need the CPU. */
1661 	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1662 		*dj = ULONG_MAX;
1663 		return 0;
1664 	}
1665 
1666 	/* Attempt to advance callbacks. */
1667 	if (rcu_try_advance_all_cbs()) {
1668 		/* Some ready to invoke, so initiate later invocation. */
1669 		invoke_rcu_core();
1670 		return 1;
1671 	}
1672 	rdtp->last_accelerate = jiffies;
1673 
1674 	/* Request timer delay depending on laziness, and round. */
1675 	if (!rdtp->all_lazy) {
1676 		*dj = round_up(rcu_idle_gp_delay + jiffies,
1677 			       rcu_idle_gp_delay) - jiffies;
1678 	} else {
1679 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1680 	}
1681 	return 0;
1682 }
1683 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1684 
1685 /*
1686  * Prepare a CPU for idle from an RCU perspective.  The first major task
1687  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1688  * The second major task is to check to see if a non-lazy callback has
1689  * arrived at a CPU that previously had only lazy callbacks.  The third
1690  * major task is to accelerate (that is, assign grace-period numbers to)
1691  * any recently arrived callbacks.
1692  *
1693  * The caller must have disabled interrupts.
1694  */
1695 static void rcu_prepare_for_idle(int cpu)
1696 {
1697 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1698 	bool needwake;
1699 	struct rcu_data *rdp;
1700 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1701 	struct rcu_node *rnp;
1702 	struct rcu_state *rsp;
1703 	int tne;
1704 
1705 	/* Handle nohz enablement switches conservatively. */
1706 	tne = ACCESS_ONCE(tick_nohz_active);
1707 	if (tne != rdtp->tick_nohz_enabled_snap) {
1708 		if (rcu_cpu_has_callbacks(cpu, NULL))
1709 			invoke_rcu_core(); /* force nohz to see update. */
1710 		rdtp->tick_nohz_enabled_snap = tne;
1711 		return;
1712 	}
1713 	if (!tne)
1714 		return;
1715 
1716 	/* If this is a no-CBs CPU, no callbacks, just return. */
1717 	if (rcu_is_nocb_cpu(cpu))
1718 		return;
1719 
1720 	/*
1721 	 * If a non-lazy callback arrived at a CPU having only lazy
1722 	 * callbacks, invoke RCU core for the side-effect of recalculating
1723 	 * idle duration on re-entry to idle.
1724 	 */
1725 	if (rdtp->all_lazy &&
1726 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1727 		rdtp->all_lazy = false;
1728 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1729 		invoke_rcu_core();
1730 		return;
1731 	}
1732 
1733 	/*
1734 	 * If we have not yet accelerated this jiffy, accelerate all
1735 	 * callbacks on this CPU.
1736 	 */
1737 	if (rdtp->last_accelerate == jiffies)
1738 		return;
1739 	rdtp->last_accelerate = jiffies;
1740 	for_each_rcu_flavor(rsp) {
1741 		rdp = per_cpu_ptr(rsp->rda, cpu);
1742 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1743 			continue;
1744 		rnp = rdp->mynode;
1745 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1746 		smp_mb__after_unlock_lock();
1747 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1748 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1749 		if (needwake)
1750 			rcu_gp_kthread_wake(rsp);
1751 	}
1752 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1753 }
1754 
1755 /*
1756  * Clean up for exit from idle.  Attempt to advance callbacks based on
1757  * any grace periods that elapsed while the CPU was idle, and if any
1758  * callbacks are now ready to invoke, initiate invocation.
1759  */
1760 static void rcu_cleanup_after_idle(int cpu)
1761 {
1762 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1763 	if (rcu_is_nocb_cpu(cpu))
1764 		return;
1765 	if (rcu_try_advance_all_cbs())
1766 		invoke_rcu_core();
1767 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1768 }
1769 
1770 /*
1771  * Keep a running count of the number of non-lazy callbacks posted
1772  * on this CPU.  This running counter (which is never decremented) allows
1773  * rcu_prepare_for_idle() to detect when something out of the idle loop
1774  * posts a callback, even if an equal number of callbacks are invoked.
1775  * Of course, callbacks should only be posted from within a trace event
1776  * designed to be called from idle or from within RCU_NONIDLE().
1777  */
1778 static void rcu_idle_count_callbacks_posted(void)
1779 {
1780 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1781 }
1782 
1783 /*
1784  * Data for flushing lazy RCU callbacks at OOM time.
1785  */
1786 static atomic_t oom_callback_count;
1787 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1788 
1789 /*
1790  * RCU OOM callback -- decrement the outstanding count and deliver the
1791  * wake-up if we are the last one.
1792  */
1793 static void rcu_oom_callback(struct rcu_head *rhp)
1794 {
1795 	if (atomic_dec_and_test(&oom_callback_count))
1796 		wake_up(&oom_callback_wq);
1797 }
1798 
1799 /*
1800  * Post an rcu_oom_notify callback on the current CPU if it has at
1801  * least one lazy callback.  This will unnecessarily post callbacks
1802  * to CPUs that already have a non-lazy callback at the end of their
1803  * callback list, but this is an infrequent operation, so accept some
1804  * extra overhead to keep things simple.
1805  */
1806 static void rcu_oom_notify_cpu(void *unused)
1807 {
1808 	struct rcu_state *rsp;
1809 	struct rcu_data *rdp;
1810 
1811 	for_each_rcu_flavor(rsp) {
1812 		rdp = raw_cpu_ptr(rsp->rda);
1813 		if (rdp->qlen_lazy != 0) {
1814 			atomic_inc(&oom_callback_count);
1815 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1816 		}
1817 	}
1818 }
1819 
1820 /*
1821  * If low on memory, ensure that each CPU has a non-lazy callback.
1822  * This will wake up CPUs that have only lazy callbacks, in turn
1823  * ensuring that they free up the corresponding memory in a timely manner.
1824  * Because an uncertain amount of memory will be freed in some uncertain
1825  * timeframe, we do not claim to have freed anything.
1826  */
1827 static int rcu_oom_notify(struct notifier_block *self,
1828 			  unsigned long notused, void *nfreed)
1829 {
1830 	int cpu;
1831 
1832 	/* Wait for callbacks from earlier instance to complete. */
1833 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1834 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1835 
1836 	/*
1837 	 * Prevent premature wakeup: ensure that all increments happen
1838 	 * before there is a chance of the counter reaching zero.
1839 	 */
1840 	atomic_set(&oom_callback_count, 1);
1841 
1842 	get_online_cpus();
1843 	for_each_online_cpu(cpu) {
1844 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1845 		cond_resched();
1846 	}
1847 	put_online_cpus();
1848 
1849 	/* Unconditionally decrement: no need to wake ourselves up. */
1850 	atomic_dec(&oom_callback_count);
1851 
1852 	return NOTIFY_OK;
1853 }
1854 
1855 static struct notifier_block rcu_oom_nb = {
1856 	.notifier_call = rcu_oom_notify
1857 };
1858 
1859 static int __init rcu_register_oom_notifier(void)
1860 {
1861 	register_oom_notifier(&rcu_oom_nb);
1862 	return 0;
1863 }
1864 early_initcall(rcu_register_oom_notifier);
1865 
1866 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1867 
1868 #ifdef CONFIG_RCU_CPU_STALL_INFO
1869 
1870 #ifdef CONFIG_RCU_FAST_NO_HZ
1871 
1872 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1873 {
1874 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1875 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1876 
1877 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1878 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1879 		ulong2long(nlpd),
1880 		rdtp->all_lazy ? 'L' : '.',
1881 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1882 }
1883 
1884 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1885 
1886 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1887 {
1888 	*cp = '\0';
1889 }
1890 
1891 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1892 
1893 /* Initiate the stall-info list. */
1894 static void print_cpu_stall_info_begin(void)
1895 {
1896 	pr_cont("\n");
1897 }
1898 
1899 /*
1900  * Print out diagnostic information for the specified stalled CPU.
1901  *
1902  * If the specified CPU is aware of the current RCU grace period
1903  * (flavor specified by rsp), then print the number of scheduling
1904  * clock interrupts the CPU has taken during the time that it has
1905  * been aware.  Otherwise, print the number of RCU grace periods
1906  * that this CPU is ignorant of, for example, "1" if the CPU was
1907  * aware of the previous grace period.
1908  *
1909  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1910  */
1911 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1912 {
1913 	char fast_no_hz[72];
1914 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1915 	struct rcu_dynticks *rdtp = rdp->dynticks;
1916 	char *ticks_title;
1917 	unsigned long ticks_value;
1918 
1919 	if (rsp->gpnum == rdp->gpnum) {
1920 		ticks_title = "ticks this GP";
1921 		ticks_value = rdp->ticks_this_gp;
1922 	} else {
1923 		ticks_title = "GPs behind";
1924 		ticks_value = rsp->gpnum - rdp->gpnum;
1925 	}
1926 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1927 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1928 	       cpu, ticks_value, ticks_title,
1929 	       atomic_read(&rdtp->dynticks) & 0xfff,
1930 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1931 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1932 	       fast_no_hz);
1933 }
1934 
1935 /* Terminate the stall-info list. */
1936 static void print_cpu_stall_info_end(void)
1937 {
1938 	pr_err("\t");
1939 }
1940 
1941 /* Zero ->ticks_this_gp for all flavors of RCU. */
1942 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1943 {
1944 	rdp->ticks_this_gp = 0;
1945 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1946 }
1947 
1948 /* Increment ->ticks_this_gp for all flavors of RCU. */
1949 static void increment_cpu_stall_ticks(void)
1950 {
1951 	struct rcu_state *rsp;
1952 
1953 	for_each_rcu_flavor(rsp)
1954 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1955 }
1956 
1957 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1958 
1959 static void print_cpu_stall_info_begin(void)
1960 {
1961 	pr_cont(" {");
1962 }
1963 
1964 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1965 {
1966 	pr_cont(" %d", cpu);
1967 }
1968 
1969 static void print_cpu_stall_info_end(void)
1970 {
1971 	pr_cont("} ");
1972 }
1973 
1974 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1975 {
1976 }
1977 
1978 static void increment_cpu_stall_ticks(void)
1979 {
1980 }
1981 
1982 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1983 
1984 #ifdef CONFIG_RCU_NOCB_CPU
1985 
1986 /*
1987  * Offload callback processing from the boot-time-specified set of CPUs
1988  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1989  * kthread created that pulls the callbacks from the corresponding CPU,
1990  * waits for a grace period to elapse, and invokes the callbacks.
1991  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1992  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1993  * has been specified, in which case each kthread actively polls its
1994  * CPU.  (Which isn't so great for energy efficiency, but which does
1995  * reduce RCU's overhead on that CPU.)
1996  *
1997  * This is intended to be used in conjunction with Frederic Weisbecker's
1998  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1999  * running CPU-bound user-mode computations.
2000  *
2001  * Offloading of callback processing could also in theory be used as
2002  * an energy-efficiency measure because CPUs with no RCU callbacks
2003  * queued are more aggressive about entering dyntick-idle mode.
2004  */
2005 
2006 
2007 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2008 static int __init rcu_nocb_setup(char *str)
2009 {
2010 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2011 	have_rcu_nocb_mask = true;
2012 	cpulist_parse(str, rcu_nocb_mask);
2013 	return 1;
2014 }
2015 __setup("rcu_nocbs=", rcu_nocb_setup);
2016 
2017 static int __init parse_rcu_nocb_poll(char *arg)
2018 {
2019 	rcu_nocb_poll = 1;
2020 	return 0;
2021 }
2022 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2023 
2024 /*
2025  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2026  * grace period.
2027  */
2028 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2029 {
2030 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2031 }
2032 
2033 /*
2034  * Set the root rcu_node structure's ->need_future_gp field
2035  * based on the sum of those of all rcu_node structures.  This does
2036  * double-count the root rcu_node structure's requests, but this
2037  * is necessary to handle the possibility of a rcu_nocb_kthread()
2038  * having awakened during the time that the rcu_node structures
2039  * were being updated for the end of the previous grace period.
2040  */
2041 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2042 {
2043 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2044 }
2045 
2046 static void rcu_init_one_nocb(struct rcu_node *rnp)
2047 {
2048 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2049 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2050 }
2051 
2052 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2053 /* Is the specified CPU a no-CBs CPU? */
2054 bool rcu_is_nocb_cpu(int cpu)
2055 {
2056 	if (have_rcu_nocb_mask)
2057 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2058 	return false;
2059 }
2060 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2061 
2062 /*
2063  * Enqueue the specified string of rcu_head structures onto the specified
2064  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2065  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2066  * counts are supplied by rhcount and rhcount_lazy.
2067  *
2068  * If warranted, also wake up the kthread servicing this CPUs queues.
2069  */
2070 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2071 				    struct rcu_head *rhp,
2072 				    struct rcu_head **rhtp,
2073 				    int rhcount, int rhcount_lazy,
2074 				    unsigned long flags)
2075 {
2076 	int len;
2077 	struct rcu_head **old_rhpp;
2078 	struct task_struct *t;
2079 
2080 	/* Enqueue the callback on the nocb list and update counts. */
2081 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2082 	ACCESS_ONCE(*old_rhpp) = rhp;
2083 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2084 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2085 
2086 	/* If we are not being polled and there is a kthread, awaken it ... */
2087 	t = ACCESS_ONCE(rdp->nocb_kthread);
2088 	if (rcu_nocb_poll || !t) {
2089 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2090 				    TPS("WakeNotPoll"));
2091 		return;
2092 	}
2093 	len = atomic_long_read(&rdp->nocb_q_count);
2094 	if (old_rhpp == &rdp->nocb_head) {
2095 		if (!irqs_disabled_flags(flags)) {
2096 			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2097 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2098 					    TPS("WakeEmpty"));
2099 		} else {
2100 			rdp->nocb_defer_wakeup = true;
2101 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2102 					    TPS("WakeEmptyIsDeferred"));
2103 		}
2104 		rdp->qlen_last_fqs_check = 0;
2105 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2106 		wake_up_process(t); /* ... or if many callbacks queued. */
2107 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2108 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2109 	} else {
2110 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2111 	}
2112 	return;
2113 }
2114 
2115 /*
2116  * This is a helper for __call_rcu(), which invokes this when the normal
2117  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2118  * function returns failure back to __call_rcu(), which can complain
2119  * appropriately.
2120  *
2121  * Otherwise, this function queues the callback where the corresponding
2122  * "rcuo" kthread can find it.
2123  */
2124 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2125 			    bool lazy, unsigned long flags)
2126 {
2127 
2128 	if (!rcu_is_nocb_cpu(rdp->cpu))
2129 		return 0;
2130 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2131 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2132 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2133 					 (unsigned long)rhp->func,
2134 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2135 					 -atomic_long_read(&rdp->nocb_q_count));
2136 	else
2137 		trace_rcu_callback(rdp->rsp->name, rhp,
2138 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2139 				   -atomic_long_read(&rdp->nocb_q_count));
2140 	return 1;
2141 }
2142 
2143 /*
2144  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2145  * not a no-CBs CPU.
2146  */
2147 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2148 						     struct rcu_data *rdp,
2149 						     unsigned long flags)
2150 {
2151 	long ql = rsp->qlen;
2152 	long qll = rsp->qlen_lazy;
2153 
2154 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2155 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2156 		return 0;
2157 	rsp->qlen = 0;
2158 	rsp->qlen_lazy = 0;
2159 
2160 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2161 	if (rsp->orphan_donelist != NULL) {
2162 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2163 					rsp->orphan_donetail, ql, qll, flags);
2164 		ql = qll = 0;
2165 		rsp->orphan_donelist = NULL;
2166 		rsp->orphan_donetail = &rsp->orphan_donelist;
2167 	}
2168 	if (rsp->orphan_nxtlist != NULL) {
2169 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2170 					rsp->orphan_nxttail, ql, qll, flags);
2171 		ql = qll = 0;
2172 		rsp->orphan_nxtlist = NULL;
2173 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2174 	}
2175 	return 1;
2176 }
2177 
2178 /*
2179  * If necessary, kick off a new grace period, and either way wait
2180  * for a subsequent grace period to complete.
2181  */
2182 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2183 {
2184 	unsigned long c;
2185 	bool d;
2186 	unsigned long flags;
2187 	bool needwake;
2188 	struct rcu_node *rnp = rdp->mynode;
2189 
2190 	raw_spin_lock_irqsave(&rnp->lock, flags);
2191 	smp_mb__after_unlock_lock();
2192 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2193 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2194 	if (needwake)
2195 		rcu_gp_kthread_wake(rdp->rsp);
2196 
2197 	/*
2198 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2199 	 * up the load average.
2200 	 */
2201 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2202 	for (;;) {
2203 		wait_event_interruptible(
2204 			rnp->nocb_gp_wq[c & 0x1],
2205 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2206 		if (likely(d))
2207 			break;
2208 		flush_signals(current);
2209 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2210 	}
2211 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2212 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2213 }
2214 
2215 /*
2216  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2217  * callbacks queued by the corresponding no-CBs CPU.
2218  */
2219 static int rcu_nocb_kthread(void *arg)
2220 {
2221 	int c, cl;
2222 	bool firsttime = 1;
2223 	struct rcu_head *list;
2224 	struct rcu_head *next;
2225 	struct rcu_head **tail;
2226 	struct rcu_data *rdp = arg;
2227 
2228 	/* Each pass through this loop invokes one batch of callbacks */
2229 	for (;;) {
2230 		/* If not polling, wait for next batch of callbacks. */
2231 		if (!rcu_nocb_poll) {
2232 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2233 					    TPS("Sleep"));
2234 			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2235 			/* Memory barrier provide by xchg() below. */
2236 		} else if (firsttime) {
2237 			firsttime = 0;
2238 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2239 					    TPS("Poll"));
2240 		}
2241 		list = ACCESS_ONCE(rdp->nocb_head);
2242 		if (!list) {
2243 			if (!rcu_nocb_poll)
2244 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2245 						    TPS("WokeEmpty"));
2246 			schedule_timeout_interruptible(1);
2247 			flush_signals(current);
2248 			continue;
2249 		}
2250 		firsttime = 1;
2251 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2252 				    TPS("WokeNonEmpty"));
2253 
2254 		/*
2255 		 * Extract queued callbacks, update counts, and wait
2256 		 * for a grace period to elapse.
2257 		 */
2258 		ACCESS_ONCE(rdp->nocb_head) = NULL;
2259 		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2260 		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2261 		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2262 		ACCESS_ONCE(rdp->nocb_p_count) += c;
2263 		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2264 		rcu_nocb_wait_gp(rdp);
2265 
2266 		/* Each pass through the following loop invokes a callback. */
2267 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2268 		c = cl = 0;
2269 		while (list) {
2270 			next = list->next;
2271 			/* Wait for enqueuing to complete, if needed. */
2272 			while (next == NULL && &list->next != tail) {
2273 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2274 						    TPS("WaitQueue"));
2275 				schedule_timeout_interruptible(1);
2276 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2277 						    TPS("WokeQueue"));
2278 				next = list->next;
2279 			}
2280 			debug_rcu_head_unqueue(list);
2281 			local_bh_disable();
2282 			if (__rcu_reclaim(rdp->rsp->name, list))
2283 				cl++;
2284 			c++;
2285 			local_bh_enable();
2286 			list = next;
2287 		}
2288 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2289 		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2290 		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2291 		rdp->n_nocbs_invoked += c;
2292 	}
2293 	return 0;
2294 }
2295 
2296 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2297 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2298 {
2299 	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2300 }
2301 
2302 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2303 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2304 {
2305 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2306 		return;
2307 	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2308 	wake_up(&rdp->nocb_wq);
2309 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2310 }
2311 
2312 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2313 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2314 {
2315 	rdp->nocb_tail = &rdp->nocb_head;
2316 	init_waitqueue_head(&rdp->nocb_wq);
2317 }
2318 
2319 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2320 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2321 {
2322 	int cpu;
2323 	struct rcu_data *rdp;
2324 	struct task_struct *t;
2325 
2326 	if (rcu_nocb_mask == NULL)
2327 		return;
2328 	for_each_cpu(cpu, rcu_nocb_mask) {
2329 		rdp = per_cpu_ptr(rsp->rda, cpu);
2330 		t = kthread_run(rcu_nocb_kthread, rdp,
2331 				"rcuo%c/%d", rsp->abbr, cpu);
2332 		BUG_ON(IS_ERR(t));
2333 		ACCESS_ONCE(rdp->nocb_kthread) = t;
2334 	}
2335 }
2336 
2337 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2338 static bool init_nocb_callback_list(struct rcu_data *rdp)
2339 {
2340 	if (rcu_nocb_mask == NULL ||
2341 	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2342 		return false;
2343 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2344 	return true;
2345 }
2346 
2347 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2348 
2349 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2350 {
2351 }
2352 
2353 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2354 {
2355 }
2356 
2357 static void rcu_init_one_nocb(struct rcu_node *rnp)
2358 {
2359 }
2360 
2361 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2362 			    bool lazy, unsigned long flags)
2363 {
2364 	return 0;
2365 }
2366 
2367 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2368 						     struct rcu_data *rdp,
2369 						     unsigned long flags)
2370 {
2371 	return 0;
2372 }
2373 
2374 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2375 {
2376 }
2377 
2378 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2379 {
2380 	return false;
2381 }
2382 
2383 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2384 {
2385 }
2386 
2387 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2388 {
2389 }
2390 
2391 static bool init_nocb_callback_list(struct rcu_data *rdp)
2392 {
2393 	return false;
2394 }
2395 
2396 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2397 
2398 /*
2399  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2400  * arbitrarily long period of time with the scheduling-clock tick turned
2401  * off.  RCU will be paying attention to this CPU because it is in the
2402  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2403  * machine because the scheduling-clock tick has been disabled.  Therefore,
2404  * if an adaptive-ticks CPU is failing to respond to the current grace
2405  * period and has not be idle from an RCU perspective, kick it.
2406  */
2407 static void rcu_kick_nohz_cpu(int cpu)
2408 {
2409 #ifdef CONFIG_NO_HZ_FULL
2410 	if (tick_nohz_full_cpu(cpu))
2411 		smp_send_reschedule(cpu);
2412 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2413 }
2414 
2415 
2416 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2417 
2418 /*
2419  * Define RCU flavor that holds sysidle state.  This needs to be the
2420  * most active flavor of RCU.
2421  */
2422 #ifdef CONFIG_PREEMPT_RCU
2423 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2424 #else /* #ifdef CONFIG_PREEMPT_RCU */
2425 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2426 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2427 
2428 static int full_sysidle_state;		/* Current system-idle state. */
2429 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2430 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2431 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2432 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2433 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2434 
2435 /*
2436  * Invoked to note exit from irq or task transition to idle.  Note that
2437  * usermode execution does -not- count as idle here!  After all, we want
2438  * to detect full-system idle states, not RCU quiescent states and grace
2439  * periods.  The caller must have disabled interrupts.
2440  */
2441 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2442 {
2443 	unsigned long j;
2444 
2445 	/* Adjust nesting, check for fully idle. */
2446 	if (irq) {
2447 		rdtp->dynticks_idle_nesting--;
2448 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2449 		if (rdtp->dynticks_idle_nesting != 0)
2450 			return;  /* Still not fully idle. */
2451 	} else {
2452 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2453 		    DYNTICK_TASK_NEST_VALUE) {
2454 			rdtp->dynticks_idle_nesting = 0;
2455 		} else {
2456 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2457 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2458 			return;  /* Still not fully idle. */
2459 		}
2460 	}
2461 
2462 	/* Record start of fully idle period. */
2463 	j = jiffies;
2464 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2465 	smp_mb__before_atomic();
2466 	atomic_inc(&rdtp->dynticks_idle);
2467 	smp_mb__after_atomic();
2468 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2469 }
2470 
2471 /*
2472  * Unconditionally force exit from full system-idle state.  This is
2473  * invoked when a normal CPU exits idle, but must be called separately
2474  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2475  * is that the timekeeping CPU is permitted to take scheduling-clock
2476  * interrupts while the system is in system-idle state, and of course
2477  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2478  * interrupt from any other type of interrupt.
2479  */
2480 void rcu_sysidle_force_exit(void)
2481 {
2482 	int oldstate = ACCESS_ONCE(full_sysidle_state);
2483 	int newoldstate;
2484 
2485 	/*
2486 	 * Each pass through the following loop attempts to exit full
2487 	 * system-idle state.  If contention proves to be a problem,
2488 	 * a trylock-based contention tree could be used here.
2489 	 */
2490 	while (oldstate > RCU_SYSIDLE_SHORT) {
2491 		newoldstate = cmpxchg(&full_sysidle_state,
2492 				      oldstate, RCU_SYSIDLE_NOT);
2493 		if (oldstate == newoldstate &&
2494 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2495 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2496 			return; /* We cleared it, done! */
2497 		}
2498 		oldstate = newoldstate;
2499 	}
2500 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2501 }
2502 
2503 /*
2504  * Invoked to note entry to irq or task transition from idle.  Note that
2505  * usermode execution does -not- count as idle here!  The caller must
2506  * have disabled interrupts.
2507  */
2508 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2509 {
2510 	/* Adjust nesting, check for already non-idle. */
2511 	if (irq) {
2512 		rdtp->dynticks_idle_nesting++;
2513 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2514 		if (rdtp->dynticks_idle_nesting != 1)
2515 			return; /* Already non-idle. */
2516 	} else {
2517 		/*
2518 		 * Allow for irq misnesting.  Yes, it really is possible
2519 		 * to enter an irq handler then never leave it, and maybe
2520 		 * also vice versa.  Handle both possibilities.
2521 		 */
2522 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2523 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2524 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2525 			return; /* Already non-idle. */
2526 		} else {
2527 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2528 		}
2529 	}
2530 
2531 	/* Record end of idle period. */
2532 	smp_mb__before_atomic();
2533 	atomic_inc(&rdtp->dynticks_idle);
2534 	smp_mb__after_atomic();
2535 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2536 
2537 	/*
2538 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2539 	 * during a system-idle state.  This must be the case, because
2540 	 * the timekeeping CPU has to take scheduling-clock interrupts
2541 	 * during the time that the system is transitioning to full
2542 	 * system-idle state.  This means that the timekeeping CPU must
2543 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2544 	 * more than take a scheduling-clock interrupt.
2545 	 */
2546 	if (smp_processor_id() == tick_do_timer_cpu)
2547 		return;
2548 
2549 	/* Update system-idle state: We are clearly no longer fully idle! */
2550 	rcu_sysidle_force_exit();
2551 }
2552 
2553 /*
2554  * Check to see if the current CPU is idle.  Note that usermode execution
2555  * does not count as idle.  The caller must have disabled interrupts.
2556  */
2557 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2558 				  unsigned long *maxj)
2559 {
2560 	int cur;
2561 	unsigned long j;
2562 	struct rcu_dynticks *rdtp = rdp->dynticks;
2563 
2564 	/*
2565 	 * If some other CPU has already reported non-idle, if this is
2566 	 * not the flavor of RCU that tracks sysidle state, or if this
2567 	 * is an offline or the timekeeping CPU, nothing to do.
2568 	 */
2569 	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2570 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2571 		return;
2572 	if (rcu_gp_in_progress(rdp->rsp))
2573 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2574 
2575 	/* Pick up current idle and NMI-nesting counter and check. */
2576 	cur = atomic_read(&rdtp->dynticks_idle);
2577 	if (cur & 0x1) {
2578 		*isidle = false; /* We are not idle! */
2579 		return;
2580 	}
2581 	smp_mb(); /* Read counters before timestamps. */
2582 
2583 	/* Pick up timestamps. */
2584 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2585 	/* If this CPU entered idle more recently, update maxj timestamp. */
2586 	if (ULONG_CMP_LT(*maxj, j))
2587 		*maxj = j;
2588 }
2589 
2590 /*
2591  * Is this the flavor of RCU that is handling full-system idle?
2592  */
2593 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2594 {
2595 	return rsp == rcu_sysidle_state;
2596 }
2597 
2598 /*
2599  * Return a delay in jiffies based on the number of CPUs, rcu_node
2600  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2601  * systems more time to transition to full-idle state in order to
2602  * avoid the cache thrashing that otherwise occur on the state variable.
2603  * Really small systems (less than a couple of tens of CPUs) should
2604  * instead use a single global atomically incremented counter, and later
2605  * versions of this will automatically reconfigure themselves accordingly.
2606  */
2607 static unsigned long rcu_sysidle_delay(void)
2608 {
2609 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2610 		return 0;
2611 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2612 }
2613 
2614 /*
2615  * Advance the full-system-idle state.  This is invoked when all of
2616  * the non-timekeeping CPUs are idle.
2617  */
2618 static void rcu_sysidle(unsigned long j)
2619 {
2620 	/* Check the current state. */
2621 	switch (ACCESS_ONCE(full_sysidle_state)) {
2622 	case RCU_SYSIDLE_NOT:
2623 
2624 		/* First time all are idle, so note a short idle period. */
2625 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2626 		break;
2627 
2628 	case RCU_SYSIDLE_SHORT:
2629 
2630 		/*
2631 		 * Idle for a bit, time to advance to next state?
2632 		 * cmpxchg failure means race with non-idle, let them win.
2633 		 */
2634 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2635 			(void)cmpxchg(&full_sysidle_state,
2636 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2637 		break;
2638 
2639 	case RCU_SYSIDLE_LONG:
2640 
2641 		/*
2642 		 * Do an additional check pass before advancing to full.
2643 		 * cmpxchg failure means race with non-idle, let them win.
2644 		 */
2645 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2646 			(void)cmpxchg(&full_sysidle_state,
2647 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2648 		break;
2649 
2650 	default:
2651 		break;
2652 	}
2653 }
2654 
2655 /*
2656  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2657  * back to the beginning.
2658  */
2659 static void rcu_sysidle_cancel(void)
2660 {
2661 	smp_mb();
2662 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2663 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2664 }
2665 
2666 /*
2667  * Update the sysidle state based on the results of a force-quiescent-state
2668  * scan of the CPUs' dyntick-idle state.
2669  */
2670 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2671 			       unsigned long maxj, bool gpkt)
2672 {
2673 	if (rsp != rcu_sysidle_state)
2674 		return;  /* Wrong flavor, ignore. */
2675 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2676 		return;  /* Running state machine from timekeeping CPU. */
2677 	if (isidle)
2678 		rcu_sysidle(maxj);    /* More idle! */
2679 	else
2680 		rcu_sysidle_cancel(); /* Idle is over. */
2681 }
2682 
2683 /*
2684  * Wrapper for rcu_sysidle_report() when called from the grace-period
2685  * kthread's context.
2686  */
2687 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2688 				  unsigned long maxj)
2689 {
2690 	rcu_sysidle_report(rsp, isidle, maxj, true);
2691 }
2692 
2693 /* Callback and function for forcing an RCU grace period. */
2694 struct rcu_sysidle_head {
2695 	struct rcu_head rh;
2696 	int inuse;
2697 };
2698 
2699 static void rcu_sysidle_cb(struct rcu_head *rhp)
2700 {
2701 	struct rcu_sysidle_head *rshp;
2702 
2703 	/*
2704 	 * The following memory barrier is needed to replace the
2705 	 * memory barriers that would normally be in the memory
2706 	 * allocator.
2707 	 */
2708 	smp_mb();  /* grace period precedes setting inuse. */
2709 
2710 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2711 	ACCESS_ONCE(rshp->inuse) = 0;
2712 }
2713 
2714 /*
2715  * Check to see if the system is fully idle, other than the timekeeping CPU.
2716  * The caller must have disabled interrupts.
2717  */
2718 bool rcu_sys_is_idle(void)
2719 {
2720 	static struct rcu_sysidle_head rsh;
2721 	int rss = ACCESS_ONCE(full_sysidle_state);
2722 
2723 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2724 		return false;
2725 
2726 	/* Handle small-system case by doing a full scan of CPUs. */
2727 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2728 		int oldrss = rss - 1;
2729 
2730 		/*
2731 		 * One pass to advance to each state up to _FULL.
2732 		 * Give up if any pass fails to advance the state.
2733 		 */
2734 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2735 			int cpu;
2736 			bool isidle = true;
2737 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2738 			struct rcu_data *rdp;
2739 
2740 			/* Scan all the CPUs looking for nonidle CPUs. */
2741 			for_each_possible_cpu(cpu) {
2742 				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2743 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2744 				if (!isidle)
2745 					break;
2746 			}
2747 			rcu_sysidle_report(rcu_sysidle_state,
2748 					   isidle, maxj, false);
2749 			oldrss = rss;
2750 			rss = ACCESS_ONCE(full_sysidle_state);
2751 		}
2752 	}
2753 
2754 	/* If this is the first observation of an idle period, record it. */
2755 	if (rss == RCU_SYSIDLE_FULL) {
2756 		rss = cmpxchg(&full_sysidle_state,
2757 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2758 		return rss == RCU_SYSIDLE_FULL;
2759 	}
2760 
2761 	smp_mb(); /* ensure rss load happens before later caller actions. */
2762 
2763 	/* If already fully idle, tell the caller (in case of races). */
2764 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2765 		return true;
2766 
2767 	/*
2768 	 * If we aren't there yet, and a grace period is not in flight,
2769 	 * initiate a grace period.  Either way, tell the caller that
2770 	 * we are not there yet.  We use an xchg() rather than an assignment
2771 	 * to make up for the memory barriers that would otherwise be
2772 	 * provided by the memory allocator.
2773 	 */
2774 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2775 	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2776 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2777 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2778 	return false;
2779 }
2780 
2781 /*
2782  * Initialize dynticks sysidle state for CPUs coming online.
2783  */
2784 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2785 {
2786 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2787 }
2788 
2789 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2790 
2791 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2792 {
2793 }
2794 
2795 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2796 {
2797 }
2798 
2799 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2800 				  unsigned long *maxj)
2801 {
2802 }
2803 
2804 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2805 {
2806 	return false;
2807 }
2808 
2809 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2810 				  unsigned long maxj)
2811 {
2812 }
2813 
2814 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2815 {
2816 }
2817 
2818 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2819 
2820 /*
2821  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2822  * grace-period kthread will do force_quiescent_state() processing?
2823  * The idea is to avoid waking up RCU core processing on such a
2824  * CPU unless the grace period has extended for too long.
2825  *
2826  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2827  * CONFIG_RCU_NOCB_CPU CPUs.
2828  */
2829 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2830 {
2831 #ifdef CONFIG_NO_HZ_FULL
2832 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2833 	    (!rcu_gp_in_progress(rsp) ||
2834 	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
2835 		return 1;
2836 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2837 	return 0;
2838 }
2839 
2840 /*
2841  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2842  * timekeeping CPU.
2843  */
2844 static void rcu_bind_gp_kthread(void)
2845 {
2846 #ifdef CONFIG_NO_HZ_FULL
2847 	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2848 
2849 	if (cpu < 0 || cpu >= nr_cpu_ids)
2850 		return;
2851 	if (raw_smp_processor_id() != cpu)
2852 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2853 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2854 }
2855