1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #define RCU_KTHREAD_PRIO 1 34 35 #ifdef CONFIG_RCU_BOOST 36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO 37 #else 38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO 39 #endif 40 41 #ifdef CONFIG_RCU_NOCB_CPU 42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 43 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 44 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 45 static char __initdata nocb_buf[NR_CPUS * 5]; 46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 47 48 /* 49 * Check the RCU kernel configuration parameters and print informative 50 * messages about anything out of the ordinary. If you like #ifdef, you 51 * will love this function. 52 */ 53 static void __init rcu_bootup_announce_oddness(void) 54 { 55 #ifdef CONFIG_RCU_TRACE 56 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 57 #endif 58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) 59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 60 CONFIG_RCU_FANOUT); 61 #endif 62 #ifdef CONFIG_RCU_FANOUT_EXACT 63 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 64 #endif 65 #ifdef CONFIG_RCU_FAST_NO_HZ 66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 67 #endif 68 #ifdef CONFIG_PROVE_RCU 69 pr_info("\tRCU lockdep checking is enabled.\n"); 70 #endif 71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE 72 pr_info("\tRCU torture testing starts during boot.\n"); 73 #endif 74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE) 75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n"); 76 #endif 77 #if defined(CONFIG_RCU_CPU_STALL_INFO) 78 pr_info("\tAdditional per-CPU info printed with stalls.\n"); 79 #endif 80 #if NUM_RCU_LVL_4 != 0 81 pr_info("\tFour-level hierarchy is enabled.\n"); 82 #endif 83 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) 84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 85 if (nr_cpu_ids != NR_CPUS) 86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 87 #ifdef CONFIG_RCU_NOCB_CPU 88 #ifndef CONFIG_RCU_NOCB_CPU_NONE 89 if (!have_rcu_nocb_mask) { 90 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL); 91 have_rcu_nocb_mask = true; 92 } 93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 94 pr_info("\tOffload RCU callbacks from CPU 0\n"); 95 cpumask_set_cpu(0, rcu_nocb_mask); 96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 97 #ifdef CONFIG_RCU_NOCB_CPU_ALL 98 pr_info("\tOffload RCU callbacks from all CPUs\n"); 99 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 102 if (have_rcu_nocb_mask) { 103 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 104 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 105 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 106 rcu_nocb_mask); 107 } 108 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask); 109 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf); 110 if (rcu_nocb_poll) 111 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 112 } 113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 114 } 115 116 #ifdef CONFIG_TREE_PREEMPT_RCU 117 118 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 119 static struct rcu_state *rcu_state_p = &rcu_preempt_state; 120 121 static int rcu_preempted_readers_exp(struct rcu_node *rnp); 122 123 /* 124 * Tell them what RCU they are running. 125 */ 126 static void __init rcu_bootup_announce(void) 127 { 128 pr_info("Preemptible hierarchical RCU implementation.\n"); 129 rcu_bootup_announce_oddness(); 130 } 131 132 /* 133 * Return the number of RCU-preempt batches processed thus far 134 * for debug and statistics. 135 */ 136 long rcu_batches_completed_preempt(void) 137 { 138 return rcu_preempt_state.completed; 139 } 140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); 141 142 /* 143 * Return the number of RCU batches processed thus far for debug & stats. 144 */ 145 long rcu_batches_completed(void) 146 { 147 return rcu_batches_completed_preempt(); 148 } 149 EXPORT_SYMBOL_GPL(rcu_batches_completed); 150 151 /* 152 * Record a preemptible-RCU quiescent state for the specified CPU. Note 153 * that this just means that the task currently running on the CPU is 154 * not in a quiescent state. There might be any number of tasks blocked 155 * while in an RCU read-side critical section. 156 * 157 * Unlike the other rcu_*_qs() functions, callers to this function 158 * must disable irqs in order to protect the assignment to 159 * ->rcu_read_unlock_special. 160 */ 161 static void rcu_preempt_qs(int cpu) 162 { 163 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); 164 165 if (rdp->passed_quiesce == 0) 166 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs")); 167 rdp->passed_quiesce = 1; 168 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; 169 } 170 171 /* 172 * We have entered the scheduler, and the current task might soon be 173 * context-switched away from. If this task is in an RCU read-side 174 * critical section, we will no longer be able to rely on the CPU to 175 * record that fact, so we enqueue the task on the blkd_tasks list. 176 * The task will dequeue itself when it exits the outermost enclosing 177 * RCU read-side critical section. Therefore, the current grace period 178 * cannot be permitted to complete until the blkd_tasks list entries 179 * predating the current grace period drain, in other words, until 180 * rnp->gp_tasks becomes NULL. 181 * 182 * Caller must disable preemption. 183 */ 184 static void rcu_preempt_note_context_switch(int cpu) 185 { 186 struct task_struct *t = current; 187 unsigned long flags; 188 struct rcu_data *rdp; 189 struct rcu_node *rnp; 190 191 if (t->rcu_read_lock_nesting > 0 && 192 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { 193 194 /* Possibly blocking in an RCU read-side critical section. */ 195 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu); 196 rnp = rdp->mynode; 197 raw_spin_lock_irqsave(&rnp->lock, flags); 198 smp_mb__after_unlock_lock(); 199 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; 200 t->rcu_blocked_node = rnp; 201 202 /* 203 * If this CPU has already checked in, then this task 204 * will hold up the next grace period rather than the 205 * current grace period. Queue the task accordingly. 206 * If the task is queued for the current grace period 207 * (i.e., this CPU has not yet passed through a quiescent 208 * state for the current grace period), then as long 209 * as that task remains queued, the current grace period 210 * cannot end. Note that there is some uncertainty as 211 * to exactly when the current grace period started. 212 * We take a conservative approach, which can result 213 * in unnecessarily waiting on tasks that started very 214 * slightly after the current grace period began. C'est 215 * la vie!!! 216 * 217 * But first, note that the current CPU must still be 218 * on line! 219 */ 220 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); 221 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 222 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { 223 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); 224 rnp->gp_tasks = &t->rcu_node_entry; 225 #ifdef CONFIG_RCU_BOOST 226 if (rnp->boost_tasks != NULL) 227 rnp->boost_tasks = rnp->gp_tasks; 228 #endif /* #ifdef CONFIG_RCU_BOOST */ 229 } else { 230 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 231 if (rnp->qsmask & rdp->grpmask) 232 rnp->gp_tasks = &t->rcu_node_entry; 233 } 234 trace_rcu_preempt_task(rdp->rsp->name, 235 t->pid, 236 (rnp->qsmask & rdp->grpmask) 237 ? rnp->gpnum 238 : rnp->gpnum + 1); 239 raw_spin_unlock_irqrestore(&rnp->lock, flags); 240 } else if (t->rcu_read_lock_nesting < 0 && 241 t->rcu_read_unlock_special) { 242 243 /* 244 * Complete exit from RCU read-side critical section on 245 * behalf of preempted instance of __rcu_read_unlock(). 246 */ 247 rcu_read_unlock_special(t); 248 } 249 250 /* 251 * Either we were not in an RCU read-side critical section to 252 * begin with, or we have now recorded that critical section 253 * globally. Either way, we can now note a quiescent state 254 * for this CPU. Again, if we were in an RCU read-side critical 255 * section, and if that critical section was blocking the current 256 * grace period, then the fact that the task has been enqueued 257 * means that we continue to block the current grace period. 258 */ 259 local_irq_save(flags); 260 rcu_preempt_qs(cpu); 261 local_irq_restore(flags); 262 } 263 264 /* 265 * Check for preempted RCU readers blocking the current grace period 266 * for the specified rcu_node structure. If the caller needs a reliable 267 * answer, it must hold the rcu_node's ->lock. 268 */ 269 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 270 { 271 return rnp->gp_tasks != NULL; 272 } 273 274 /* 275 * Record a quiescent state for all tasks that were previously queued 276 * on the specified rcu_node structure and that were blocking the current 277 * RCU grace period. The caller must hold the specified rnp->lock with 278 * irqs disabled, and this lock is released upon return, but irqs remain 279 * disabled. 280 */ 281 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 282 __releases(rnp->lock) 283 { 284 unsigned long mask; 285 struct rcu_node *rnp_p; 286 287 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 288 raw_spin_unlock_irqrestore(&rnp->lock, flags); 289 return; /* Still need more quiescent states! */ 290 } 291 292 rnp_p = rnp->parent; 293 if (rnp_p == NULL) { 294 /* 295 * Either there is only one rcu_node in the tree, 296 * or tasks were kicked up to root rcu_node due to 297 * CPUs going offline. 298 */ 299 rcu_report_qs_rsp(&rcu_preempt_state, flags); 300 return; 301 } 302 303 /* Report up the rest of the hierarchy. */ 304 mask = rnp->grpmask; 305 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 306 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ 307 smp_mb__after_unlock_lock(); 308 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); 309 } 310 311 /* 312 * Advance a ->blkd_tasks-list pointer to the next entry, instead 313 * returning NULL if at the end of the list. 314 */ 315 static struct list_head *rcu_next_node_entry(struct task_struct *t, 316 struct rcu_node *rnp) 317 { 318 struct list_head *np; 319 320 np = t->rcu_node_entry.next; 321 if (np == &rnp->blkd_tasks) 322 np = NULL; 323 return np; 324 } 325 326 /* 327 * Handle special cases during rcu_read_unlock(), such as needing to 328 * notify RCU core processing or task having blocked during the RCU 329 * read-side critical section. 330 */ 331 void rcu_read_unlock_special(struct task_struct *t) 332 { 333 int empty; 334 int empty_exp; 335 int empty_exp_now; 336 unsigned long flags; 337 struct list_head *np; 338 #ifdef CONFIG_RCU_BOOST 339 struct rt_mutex *rbmp = NULL; 340 #endif /* #ifdef CONFIG_RCU_BOOST */ 341 struct rcu_node *rnp; 342 int special; 343 344 /* NMI handlers cannot block and cannot safely manipulate state. */ 345 if (in_nmi()) 346 return; 347 348 local_irq_save(flags); 349 350 /* 351 * If RCU core is waiting for this CPU to exit critical section, 352 * let it know that we have done so. 353 */ 354 special = t->rcu_read_unlock_special; 355 if (special & RCU_READ_UNLOCK_NEED_QS) { 356 rcu_preempt_qs(smp_processor_id()); 357 if (!t->rcu_read_unlock_special) { 358 local_irq_restore(flags); 359 return; 360 } 361 } 362 363 /* Hardware IRQ handlers cannot block, complain if they get here. */ 364 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) { 365 local_irq_restore(flags); 366 return; 367 } 368 369 /* Clean up if blocked during RCU read-side critical section. */ 370 if (special & RCU_READ_UNLOCK_BLOCKED) { 371 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; 372 373 /* 374 * Remove this task from the list it blocked on. The 375 * task can migrate while we acquire the lock, but at 376 * most one time. So at most two passes through loop. 377 */ 378 for (;;) { 379 rnp = t->rcu_blocked_node; 380 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 381 smp_mb__after_unlock_lock(); 382 if (rnp == t->rcu_blocked_node) 383 break; 384 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 385 } 386 empty = !rcu_preempt_blocked_readers_cgp(rnp); 387 empty_exp = !rcu_preempted_readers_exp(rnp); 388 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 389 np = rcu_next_node_entry(t, rnp); 390 list_del_init(&t->rcu_node_entry); 391 t->rcu_blocked_node = NULL; 392 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 393 rnp->gpnum, t->pid); 394 if (&t->rcu_node_entry == rnp->gp_tasks) 395 rnp->gp_tasks = np; 396 if (&t->rcu_node_entry == rnp->exp_tasks) 397 rnp->exp_tasks = np; 398 #ifdef CONFIG_RCU_BOOST 399 if (&t->rcu_node_entry == rnp->boost_tasks) 400 rnp->boost_tasks = np; 401 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */ 402 if (t->rcu_boost_mutex) { 403 rbmp = t->rcu_boost_mutex; 404 t->rcu_boost_mutex = NULL; 405 } 406 #endif /* #ifdef CONFIG_RCU_BOOST */ 407 408 /* 409 * If this was the last task on the current list, and if 410 * we aren't waiting on any CPUs, report the quiescent state. 411 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 412 * so we must take a snapshot of the expedited state. 413 */ 414 empty_exp_now = !rcu_preempted_readers_exp(rnp); 415 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) { 416 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 417 rnp->gpnum, 418 0, rnp->qsmask, 419 rnp->level, 420 rnp->grplo, 421 rnp->grphi, 422 !!rnp->gp_tasks); 423 rcu_report_unblock_qs_rnp(rnp, flags); 424 } else { 425 raw_spin_unlock_irqrestore(&rnp->lock, flags); 426 } 427 428 #ifdef CONFIG_RCU_BOOST 429 /* Unboost if we were boosted. */ 430 if (rbmp) 431 rt_mutex_unlock(rbmp); 432 #endif /* #ifdef CONFIG_RCU_BOOST */ 433 434 /* 435 * If this was the last task on the expedited lists, 436 * then we need to report up the rcu_node hierarchy. 437 */ 438 if (!empty_exp && empty_exp_now) 439 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); 440 } else { 441 local_irq_restore(flags); 442 } 443 } 444 445 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE 446 447 /* 448 * Dump detailed information for all tasks blocking the current RCU 449 * grace period on the specified rcu_node structure. 450 */ 451 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 452 { 453 unsigned long flags; 454 struct task_struct *t; 455 456 raw_spin_lock_irqsave(&rnp->lock, flags); 457 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 458 raw_spin_unlock_irqrestore(&rnp->lock, flags); 459 return; 460 } 461 t = list_entry(rnp->gp_tasks, 462 struct task_struct, rcu_node_entry); 463 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 464 sched_show_task(t); 465 raw_spin_unlock_irqrestore(&rnp->lock, flags); 466 } 467 468 /* 469 * Dump detailed information for all tasks blocking the current RCU 470 * grace period. 471 */ 472 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 473 { 474 struct rcu_node *rnp = rcu_get_root(rsp); 475 476 rcu_print_detail_task_stall_rnp(rnp); 477 rcu_for_each_leaf_node(rsp, rnp) 478 rcu_print_detail_task_stall_rnp(rnp); 479 } 480 481 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ 482 483 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 484 { 485 } 486 487 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ 488 489 #ifdef CONFIG_RCU_CPU_STALL_INFO 490 491 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 492 { 493 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 494 rnp->level, rnp->grplo, rnp->grphi); 495 } 496 497 static void rcu_print_task_stall_end(void) 498 { 499 pr_cont("\n"); 500 } 501 502 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 503 504 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 505 { 506 } 507 508 static void rcu_print_task_stall_end(void) 509 { 510 } 511 512 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 513 514 /* 515 * Scan the current list of tasks blocked within RCU read-side critical 516 * sections, printing out the tid of each. 517 */ 518 static int rcu_print_task_stall(struct rcu_node *rnp) 519 { 520 struct task_struct *t; 521 int ndetected = 0; 522 523 if (!rcu_preempt_blocked_readers_cgp(rnp)) 524 return 0; 525 rcu_print_task_stall_begin(rnp); 526 t = list_entry(rnp->gp_tasks, 527 struct task_struct, rcu_node_entry); 528 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 529 pr_cont(" P%d", t->pid); 530 ndetected++; 531 } 532 rcu_print_task_stall_end(); 533 return ndetected; 534 } 535 536 /* 537 * Check that the list of blocked tasks for the newly completed grace 538 * period is in fact empty. It is a serious bug to complete a grace 539 * period that still has RCU readers blocked! This function must be 540 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 541 * must be held by the caller. 542 * 543 * Also, if there are blocked tasks on the list, they automatically 544 * block the newly created grace period, so set up ->gp_tasks accordingly. 545 */ 546 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 547 { 548 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 549 if (!list_empty(&rnp->blkd_tasks)) 550 rnp->gp_tasks = rnp->blkd_tasks.next; 551 WARN_ON_ONCE(rnp->qsmask); 552 } 553 554 #ifdef CONFIG_HOTPLUG_CPU 555 556 /* 557 * Handle tasklist migration for case in which all CPUs covered by the 558 * specified rcu_node have gone offline. Move them up to the root 559 * rcu_node. The reason for not just moving them to the immediate 560 * parent is to remove the need for rcu_read_unlock_special() to 561 * make more than two attempts to acquire the target rcu_node's lock. 562 * Returns true if there were tasks blocking the current RCU grace 563 * period. 564 * 565 * Returns 1 if there was previously a task blocking the current grace 566 * period on the specified rcu_node structure. 567 * 568 * The caller must hold rnp->lock with irqs disabled. 569 */ 570 static int rcu_preempt_offline_tasks(struct rcu_state *rsp, 571 struct rcu_node *rnp, 572 struct rcu_data *rdp) 573 { 574 struct list_head *lp; 575 struct list_head *lp_root; 576 int retval = 0; 577 struct rcu_node *rnp_root = rcu_get_root(rsp); 578 struct task_struct *t; 579 580 if (rnp == rnp_root) { 581 WARN_ONCE(1, "Last CPU thought to be offlined?"); 582 return 0; /* Shouldn't happen: at least one CPU online. */ 583 } 584 585 /* If we are on an internal node, complain bitterly. */ 586 WARN_ON_ONCE(rnp != rdp->mynode); 587 588 /* 589 * Move tasks up to root rcu_node. Don't try to get fancy for 590 * this corner-case operation -- just put this node's tasks 591 * at the head of the root node's list, and update the root node's 592 * ->gp_tasks and ->exp_tasks pointers to those of this node's, 593 * if non-NULL. This might result in waiting for more tasks than 594 * absolutely necessary, but this is a good performance/complexity 595 * tradeoff. 596 */ 597 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0) 598 retval |= RCU_OFL_TASKS_NORM_GP; 599 if (rcu_preempted_readers_exp(rnp)) 600 retval |= RCU_OFL_TASKS_EXP_GP; 601 lp = &rnp->blkd_tasks; 602 lp_root = &rnp_root->blkd_tasks; 603 while (!list_empty(lp)) { 604 t = list_entry(lp->next, typeof(*t), rcu_node_entry); 605 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ 606 smp_mb__after_unlock_lock(); 607 list_del(&t->rcu_node_entry); 608 t->rcu_blocked_node = rnp_root; 609 list_add(&t->rcu_node_entry, lp_root); 610 if (&t->rcu_node_entry == rnp->gp_tasks) 611 rnp_root->gp_tasks = rnp->gp_tasks; 612 if (&t->rcu_node_entry == rnp->exp_tasks) 613 rnp_root->exp_tasks = rnp->exp_tasks; 614 #ifdef CONFIG_RCU_BOOST 615 if (&t->rcu_node_entry == rnp->boost_tasks) 616 rnp_root->boost_tasks = rnp->boost_tasks; 617 #endif /* #ifdef CONFIG_RCU_BOOST */ 618 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ 619 } 620 621 rnp->gp_tasks = NULL; 622 rnp->exp_tasks = NULL; 623 #ifdef CONFIG_RCU_BOOST 624 rnp->boost_tasks = NULL; 625 /* 626 * In case root is being boosted and leaf was not. Make sure 627 * that we boost the tasks blocking the current grace period 628 * in this case. 629 */ 630 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ 631 smp_mb__after_unlock_lock(); 632 if (rnp_root->boost_tasks != NULL && 633 rnp_root->boost_tasks != rnp_root->gp_tasks && 634 rnp_root->boost_tasks != rnp_root->exp_tasks) 635 rnp_root->boost_tasks = rnp_root->gp_tasks; 636 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ 637 #endif /* #ifdef CONFIG_RCU_BOOST */ 638 639 return retval; 640 } 641 642 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 643 644 /* 645 * Check for a quiescent state from the current CPU. When a task blocks, 646 * the task is recorded in the corresponding CPU's rcu_node structure, 647 * which is checked elsewhere. 648 * 649 * Caller must disable hard irqs. 650 */ 651 static void rcu_preempt_check_callbacks(int cpu) 652 { 653 struct task_struct *t = current; 654 655 if (t->rcu_read_lock_nesting == 0) { 656 rcu_preempt_qs(cpu); 657 return; 658 } 659 if (t->rcu_read_lock_nesting > 0 && 660 per_cpu(rcu_preempt_data, cpu).qs_pending) 661 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; 662 } 663 664 #ifdef CONFIG_RCU_BOOST 665 666 static void rcu_preempt_do_callbacks(void) 667 { 668 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); 669 } 670 671 #endif /* #ifdef CONFIG_RCU_BOOST */ 672 673 /* 674 * Queue a preemptible-RCU callback for invocation after a grace period. 675 */ 676 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 677 { 678 __call_rcu(head, func, &rcu_preempt_state, -1, 0); 679 } 680 EXPORT_SYMBOL_GPL(call_rcu); 681 682 /** 683 * synchronize_rcu - wait until a grace period has elapsed. 684 * 685 * Control will return to the caller some time after a full grace 686 * period has elapsed, in other words after all currently executing RCU 687 * read-side critical sections have completed. Note, however, that 688 * upon return from synchronize_rcu(), the caller might well be executing 689 * concurrently with new RCU read-side critical sections that began while 690 * synchronize_rcu() was waiting. RCU read-side critical sections are 691 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 692 * 693 * See the description of synchronize_sched() for more detailed information 694 * on memory ordering guarantees. 695 */ 696 void synchronize_rcu(void) 697 { 698 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 699 !lock_is_held(&rcu_lock_map) && 700 !lock_is_held(&rcu_sched_lock_map), 701 "Illegal synchronize_rcu() in RCU read-side critical section"); 702 if (!rcu_scheduler_active) 703 return; 704 if (rcu_expedited) 705 synchronize_rcu_expedited(); 706 else 707 wait_rcu_gp(call_rcu); 708 } 709 EXPORT_SYMBOL_GPL(synchronize_rcu); 710 711 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); 712 static unsigned long sync_rcu_preempt_exp_count; 713 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); 714 715 /* 716 * Return non-zero if there are any tasks in RCU read-side critical 717 * sections blocking the current preemptible-RCU expedited grace period. 718 * If there is no preemptible-RCU expedited grace period currently in 719 * progress, returns zero unconditionally. 720 */ 721 static int rcu_preempted_readers_exp(struct rcu_node *rnp) 722 { 723 return rnp->exp_tasks != NULL; 724 } 725 726 /* 727 * return non-zero if there is no RCU expedited grace period in progress 728 * for the specified rcu_node structure, in other words, if all CPUs and 729 * tasks covered by the specified rcu_node structure have done their bit 730 * for the current expedited grace period. Works only for preemptible 731 * RCU -- other RCU implementation use other means. 732 * 733 * Caller must hold sync_rcu_preempt_exp_mutex. 734 */ 735 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 736 { 737 return !rcu_preempted_readers_exp(rnp) && 738 ACCESS_ONCE(rnp->expmask) == 0; 739 } 740 741 /* 742 * Report the exit from RCU read-side critical section for the last task 743 * that queued itself during or before the current expedited preemptible-RCU 744 * grace period. This event is reported either to the rcu_node structure on 745 * which the task was queued or to one of that rcu_node structure's ancestors, 746 * recursively up the tree. (Calm down, calm down, we do the recursion 747 * iteratively!) 748 * 749 * Most callers will set the "wake" flag, but the task initiating the 750 * expedited grace period need not wake itself. 751 * 752 * Caller must hold sync_rcu_preempt_exp_mutex. 753 */ 754 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 755 bool wake) 756 { 757 unsigned long flags; 758 unsigned long mask; 759 760 raw_spin_lock_irqsave(&rnp->lock, flags); 761 smp_mb__after_unlock_lock(); 762 for (;;) { 763 if (!sync_rcu_preempt_exp_done(rnp)) { 764 raw_spin_unlock_irqrestore(&rnp->lock, flags); 765 break; 766 } 767 if (rnp->parent == NULL) { 768 raw_spin_unlock_irqrestore(&rnp->lock, flags); 769 if (wake) { 770 smp_mb(); /* EGP done before wake_up(). */ 771 wake_up(&sync_rcu_preempt_exp_wq); 772 } 773 break; 774 } 775 mask = rnp->grpmask; 776 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 777 rnp = rnp->parent; 778 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 779 smp_mb__after_unlock_lock(); 780 rnp->expmask &= ~mask; 781 } 782 } 783 784 /* 785 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 786 * grace period for the specified rcu_node structure. If there are no such 787 * tasks, report it up the rcu_node hierarchy. 788 * 789 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude 790 * CPU hotplug operations. 791 */ 792 static void 793 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) 794 { 795 unsigned long flags; 796 int must_wait = 0; 797 798 raw_spin_lock_irqsave(&rnp->lock, flags); 799 smp_mb__after_unlock_lock(); 800 if (list_empty(&rnp->blkd_tasks)) { 801 raw_spin_unlock_irqrestore(&rnp->lock, flags); 802 } else { 803 rnp->exp_tasks = rnp->blkd_tasks.next; 804 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 805 must_wait = 1; 806 } 807 if (!must_wait) 808 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */ 809 } 810 811 /** 812 * synchronize_rcu_expedited - Brute-force RCU grace period 813 * 814 * Wait for an RCU-preempt grace period, but expedite it. The basic 815 * idea is to invoke synchronize_sched_expedited() to push all the tasks to 816 * the ->blkd_tasks lists and wait for this list to drain. This consumes 817 * significant time on all CPUs and is unfriendly to real-time workloads, 818 * so is thus not recommended for any sort of common-case code. 819 * In fact, if you are using synchronize_rcu_expedited() in a loop, 820 * please restructure your code to batch your updates, and then Use a 821 * single synchronize_rcu() instead. 822 * 823 * Note that it is illegal to call this function while holding any lock 824 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 825 * to call this function from a CPU-hotplug notifier. Failing to observe 826 * these restriction will result in deadlock. 827 */ 828 void synchronize_rcu_expedited(void) 829 { 830 unsigned long flags; 831 struct rcu_node *rnp; 832 struct rcu_state *rsp = &rcu_preempt_state; 833 unsigned long snap; 834 int trycount = 0; 835 836 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 837 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; 838 smp_mb(); /* Above access cannot bleed into critical section. */ 839 840 /* 841 * Block CPU-hotplug operations. This means that any CPU-hotplug 842 * operation that finds an rcu_node structure with tasks in the 843 * process of being boosted will know that all tasks blocking 844 * this expedited grace period will already be in the process of 845 * being boosted. This simplifies the process of moving tasks 846 * from leaf to root rcu_node structures. 847 */ 848 get_online_cpus(); 849 850 /* 851 * Acquire lock, falling back to synchronize_rcu() if too many 852 * lock-acquisition failures. Of course, if someone does the 853 * expedited grace period for us, just leave. 854 */ 855 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { 856 if (ULONG_CMP_LT(snap, 857 ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 858 put_online_cpus(); 859 goto mb_ret; /* Others did our work for us. */ 860 } 861 if (trycount++ < 10) { 862 udelay(trycount * num_online_cpus()); 863 } else { 864 put_online_cpus(); 865 wait_rcu_gp(call_rcu); 866 return; 867 } 868 } 869 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 870 put_online_cpus(); 871 goto unlock_mb_ret; /* Others did our work for us. */ 872 } 873 874 /* force all RCU readers onto ->blkd_tasks lists. */ 875 synchronize_sched_expedited(); 876 877 /* Initialize ->expmask for all non-leaf rcu_node structures. */ 878 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { 879 raw_spin_lock_irqsave(&rnp->lock, flags); 880 smp_mb__after_unlock_lock(); 881 rnp->expmask = rnp->qsmaskinit; 882 raw_spin_unlock_irqrestore(&rnp->lock, flags); 883 } 884 885 /* Snapshot current state of ->blkd_tasks lists. */ 886 rcu_for_each_leaf_node(rsp, rnp) 887 sync_rcu_preempt_exp_init(rsp, rnp); 888 if (NUM_RCU_NODES > 1) 889 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); 890 891 put_online_cpus(); 892 893 /* Wait for snapshotted ->blkd_tasks lists to drain. */ 894 rnp = rcu_get_root(rsp); 895 wait_event(sync_rcu_preempt_exp_wq, 896 sync_rcu_preempt_exp_done(rnp)); 897 898 /* Clean up and exit. */ 899 smp_mb(); /* ensure expedited GP seen before counter increment. */ 900 ACCESS_ONCE(sync_rcu_preempt_exp_count)++; 901 unlock_mb_ret: 902 mutex_unlock(&sync_rcu_preempt_exp_mutex); 903 mb_ret: 904 smp_mb(); /* ensure subsequent action seen after grace period. */ 905 } 906 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 907 908 /** 909 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 910 * 911 * Note that this primitive does not necessarily wait for an RCU grace period 912 * to complete. For example, if there are no RCU callbacks queued anywhere 913 * in the system, then rcu_barrier() is within its rights to return 914 * immediately, without waiting for anything, much less an RCU grace period. 915 */ 916 void rcu_barrier(void) 917 { 918 _rcu_barrier(&rcu_preempt_state); 919 } 920 EXPORT_SYMBOL_GPL(rcu_barrier); 921 922 /* 923 * Initialize preemptible RCU's state structures. 924 */ 925 static void __init __rcu_init_preempt(void) 926 { 927 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); 928 } 929 930 /* 931 * Check for a task exiting while in a preemptible-RCU read-side 932 * critical section, clean up if so. No need to issue warnings, 933 * as debug_check_no_locks_held() already does this if lockdep 934 * is enabled. 935 */ 936 void exit_rcu(void) 937 { 938 struct task_struct *t = current; 939 940 if (likely(list_empty(¤t->rcu_node_entry))) 941 return; 942 t->rcu_read_lock_nesting = 1; 943 barrier(); 944 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED; 945 __rcu_read_unlock(); 946 } 947 948 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 949 950 static struct rcu_state *rcu_state_p = &rcu_sched_state; 951 952 /* 953 * Tell them what RCU they are running. 954 */ 955 static void __init rcu_bootup_announce(void) 956 { 957 pr_info("Hierarchical RCU implementation.\n"); 958 rcu_bootup_announce_oddness(); 959 } 960 961 /* 962 * Return the number of RCU batches processed thus far for debug & stats. 963 */ 964 long rcu_batches_completed(void) 965 { 966 return rcu_batches_completed_sched(); 967 } 968 EXPORT_SYMBOL_GPL(rcu_batches_completed); 969 970 /* 971 * Because preemptible RCU does not exist, we never have to check for 972 * CPUs being in quiescent states. 973 */ 974 static void rcu_preempt_note_context_switch(int cpu) 975 { 976 } 977 978 /* 979 * Because preemptible RCU does not exist, there are never any preempted 980 * RCU readers. 981 */ 982 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 983 { 984 return 0; 985 } 986 987 #ifdef CONFIG_HOTPLUG_CPU 988 989 /* Because preemptible RCU does not exist, no quieting of tasks. */ 990 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 991 { 992 raw_spin_unlock_irqrestore(&rnp->lock, flags); 993 } 994 995 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 996 997 /* 998 * Because preemptible RCU does not exist, we never have to check for 999 * tasks blocked within RCU read-side critical sections. 1000 */ 1001 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 1002 { 1003 } 1004 1005 /* 1006 * Because preemptible RCU does not exist, we never have to check for 1007 * tasks blocked within RCU read-side critical sections. 1008 */ 1009 static int rcu_print_task_stall(struct rcu_node *rnp) 1010 { 1011 return 0; 1012 } 1013 1014 /* 1015 * Because there is no preemptible RCU, there can be no readers blocked, 1016 * so there is no need to check for blocked tasks. So check only for 1017 * bogus qsmask values. 1018 */ 1019 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 1020 { 1021 WARN_ON_ONCE(rnp->qsmask); 1022 } 1023 1024 #ifdef CONFIG_HOTPLUG_CPU 1025 1026 /* 1027 * Because preemptible RCU does not exist, it never needs to migrate 1028 * tasks that were blocked within RCU read-side critical sections, and 1029 * such non-existent tasks cannot possibly have been blocking the current 1030 * grace period. 1031 */ 1032 static int rcu_preempt_offline_tasks(struct rcu_state *rsp, 1033 struct rcu_node *rnp, 1034 struct rcu_data *rdp) 1035 { 1036 return 0; 1037 } 1038 1039 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 1040 1041 /* 1042 * Because preemptible RCU does not exist, it never has any callbacks 1043 * to check. 1044 */ 1045 static void rcu_preempt_check_callbacks(int cpu) 1046 { 1047 } 1048 1049 /* 1050 * Wait for an rcu-preempt grace period, but make it happen quickly. 1051 * But because preemptible RCU does not exist, map to rcu-sched. 1052 */ 1053 void synchronize_rcu_expedited(void) 1054 { 1055 synchronize_sched_expedited(); 1056 } 1057 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 1058 1059 #ifdef CONFIG_HOTPLUG_CPU 1060 1061 /* 1062 * Because preemptible RCU does not exist, there is never any need to 1063 * report on tasks preempted in RCU read-side critical sections during 1064 * expedited RCU grace periods. 1065 */ 1066 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 1067 bool wake) 1068 { 1069 } 1070 1071 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 1072 1073 /* 1074 * Because preemptible RCU does not exist, rcu_barrier() is just 1075 * another name for rcu_barrier_sched(). 1076 */ 1077 void rcu_barrier(void) 1078 { 1079 rcu_barrier_sched(); 1080 } 1081 EXPORT_SYMBOL_GPL(rcu_barrier); 1082 1083 /* 1084 * Because preemptible RCU does not exist, it need not be initialized. 1085 */ 1086 static void __init __rcu_init_preempt(void) 1087 { 1088 } 1089 1090 /* 1091 * Because preemptible RCU does not exist, tasks cannot possibly exit 1092 * while in preemptible RCU read-side critical sections. 1093 */ 1094 void exit_rcu(void) 1095 { 1096 } 1097 1098 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ 1099 1100 #ifdef CONFIG_RCU_BOOST 1101 1102 #include "../locking/rtmutex_common.h" 1103 1104 #ifdef CONFIG_RCU_TRACE 1105 1106 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 1107 { 1108 if (list_empty(&rnp->blkd_tasks)) 1109 rnp->n_balk_blkd_tasks++; 1110 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 1111 rnp->n_balk_exp_gp_tasks++; 1112 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 1113 rnp->n_balk_boost_tasks++; 1114 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 1115 rnp->n_balk_notblocked++; 1116 else if (rnp->gp_tasks != NULL && 1117 ULONG_CMP_LT(jiffies, rnp->boost_time)) 1118 rnp->n_balk_notyet++; 1119 else 1120 rnp->n_balk_nos++; 1121 } 1122 1123 #else /* #ifdef CONFIG_RCU_TRACE */ 1124 1125 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 1126 { 1127 } 1128 1129 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 1130 1131 static void rcu_wake_cond(struct task_struct *t, int status) 1132 { 1133 /* 1134 * If the thread is yielding, only wake it when this 1135 * is invoked from idle 1136 */ 1137 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 1138 wake_up_process(t); 1139 } 1140 1141 /* 1142 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1143 * or ->boost_tasks, advancing the pointer to the next task in the 1144 * ->blkd_tasks list. 1145 * 1146 * Note that irqs must be enabled: boosting the task can block. 1147 * Returns 1 if there are more tasks needing to be boosted. 1148 */ 1149 static int rcu_boost(struct rcu_node *rnp) 1150 { 1151 unsigned long flags; 1152 struct rt_mutex mtx; 1153 struct task_struct *t; 1154 struct list_head *tb; 1155 1156 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) 1157 return 0; /* Nothing left to boost. */ 1158 1159 raw_spin_lock_irqsave(&rnp->lock, flags); 1160 smp_mb__after_unlock_lock(); 1161 1162 /* 1163 * Recheck under the lock: all tasks in need of boosting 1164 * might exit their RCU read-side critical sections on their own. 1165 */ 1166 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1167 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1168 return 0; 1169 } 1170 1171 /* 1172 * Preferentially boost tasks blocking expedited grace periods. 1173 * This cannot starve the normal grace periods because a second 1174 * expedited grace period must boost all blocked tasks, including 1175 * those blocking the pre-existing normal grace period. 1176 */ 1177 if (rnp->exp_tasks != NULL) { 1178 tb = rnp->exp_tasks; 1179 rnp->n_exp_boosts++; 1180 } else { 1181 tb = rnp->boost_tasks; 1182 rnp->n_normal_boosts++; 1183 } 1184 rnp->n_tasks_boosted++; 1185 1186 /* 1187 * We boost task t by manufacturing an rt_mutex that appears to 1188 * be held by task t. We leave a pointer to that rt_mutex where 1189 * task t can find it, and task t will release the mutex when it 1190 * exits its outermost RCU read-side critical section. Then 1191 * simply acquiring this artificial rt_mutex will boost task 1192 * t's priority. (Thanks to tglx for suggesting this approach!) 1193 * 1194 * Note that task t must acquire rnp->lock to remove itself from 1195 * the ->blkd_tasks list, which it will do from exit() if from 1196 * nowhere else. We therefore are guaranteed that task t will 1197 * stay around at least until we drop rnp->lock. Note that 1198 * rnp->lock also resolves races between our priority boosting 1199 * and task t's exiting its outermost RCU read-side critical 1200 * section. 1201 */ 1202 t = container_of(tb, struct task_struct, rcu_node_entry); 1203 rt_mutex_init_proxy_locked(&mtx, t); 1204 t->rcu_boost_mutex = &mtx; 1205 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1206 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */ 1207 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */ 1208 1209 return ACCESS_ONCE(rnp->exp_tasks) != NULL || 1210 ACCESS_ONCE(rnp->boost_tasks) != NULL; 1211 } 1212 1213 /* 1214 * Priority-boosting kthread. One per leaf rcu_node and one for the 1215 * root rcu_node. 1216 */ 1217 static int rcu_boost_kthread(void *arg) 1218 { 1219 struct rcu_node *rnp = (struct rcu_node *)arg; 1220 int spincnt = 0; 1221 int more2boost; 1222 1223 trace_rcu_utilization(TPS("Start boost kthread@init")); 1224 for (;;) { 1225 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1226 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1227 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1228 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1229 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1230 more2boost = rcu_boost(rnp); 1231 if (more2boost) 1232 spincnt++; 1233 else 1234 spincnt = 0; 1235 if (spincnt > 10) { 1236 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1237 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1238 schedule_timeout_interruptible(2); 1239 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1240 spincnt = 0; 1241 } 1242 } 1243 /* NOTREACHED */ 1244 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1245 return 0; 1246 } 1247 1248 /* 1249 * Check to see if it is time to start boosting RCU readers that are 1250 * blocking the current grace period, and, if so, tell the per-rcu_node 1251 * kthread to start boosting them. If there is an expedited grace 1252 * period in progress, it is always time to boost. 1253 * 1254 * The caller must hold rnp->lock, which this function releases. 1255 * The ->boost_kthread_task is immortal, so we don't need to worry 1256 * about it going away. 1257 */ 1258 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1259 { 1260 struct task_struct *t; 1261 1262 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1263 rnp->n_balk_exp_gp_tasks++; 1264 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1265 return; 1266 } 1267 if (rnp->exp_tasks != NULL || 1268 (rnp->gp_tasks != NULL && 1269 rnp->boost_tasks == NULL && 1270 rnp->qsmask == 0 && 1271 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1272 if (rnp->exp_tasks == NULL) 1273 rnp->boost_tasks = rnp->gp_tasks; 1274 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1275 t = rnp->boost_kthread_task; 1276 if (t) 1277 rcu_wake_cond(t, rnp->boost_kthread_status); 1278 } else { 1279 rcu_initiate_boost_trace(rnp); 1280 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1281 } 1282 } 1283 1284 /* 1285 * Wake up the per-CPU kthread to invoke RCU callbacks. 1286 */ 1287 static void invoke_rcu_callbacks_kthread(void) 1288 { 1289 unsigned long flags; 1290 1291 local_irq_save(flags); 1292 __this_cpu_write(rcu_cpu_has_work, 1); 1293 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1294 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1295 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1296 __this_cpu_read(rcu_cpu_kthread_status)); 1297 } 1298 local_irq_restore(flags); 1299 } 1300 1301 /* 1302 * Is the current CPU running the RCU-callbacks kthread? 1303 * Caller must have preemption disabled. 1304 */ 1305 static bool rcu_is_callbacks_kthread(void) 1306 { 1307 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1308 } 1309 1310 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1311 1312 /* 1313 * Do priority-boost accounting for the start of a new grace period. 1314 */ 1315 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1316 { 1317 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1318 } 1319 1320 /* 1321 * Create an RCU-boost kthread for the specified node if one does not 1322 * already exist. We only create this kthread for preemptible RCU. 1323 * Returns zero if all is well, a negated errno otherwise. 1324 */ 1325 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1326 struct rcu_node *rnp) 1327 { 1328 int rnp_index = rnp - &rsp->node[0]; 1329 unsigned long flags; 1330 struct sched_param sp; 1331 struct task_struct *t; 1332 1333 if (&rcu_preempt_state != rsp) 1334 return 0; 1335 1336 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0) 1337 return 0; 1338 1339 rsp->boost = 1; 1340 if (rnp->boost_kthread_task != NULL) 1341 return 0; 1342 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1343 "rcub/%d", rnp_index); 1344 if (IS_ERR(t)) 1345 return PTR_ERR(t); 1346 raw_spin_lock_irqsave(&rnp->lock, flags); 1347 smp_mb__after_unlock_lock(); 1348 rnp->boost_kthread_task = t; 1349 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1350 sp.sched_priority = RCU_BOOST_PRIO; 1351 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1352 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1353 return 0; 1354 } 1355 1356 static void rcu_kthread_do_work(void) 1357 { 1358 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1359 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1360 rcu_preempt_do_callbacks(); 1361 } 1362 1363 static void rcu_cpu_kthread_setup(unsigned int cpu) 1364 { 1365 struct sched_param sp; 1366 1367 sp.sched_priority = RCU_KTHREAD_PRIO; 1368 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1369 } 1370 1371 static void rcu_cpu_kthread_park(unsigned int cpu) 1372 { 1373 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1374 } 1375 1376 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1377 { 1378 return __this_cpu_read(rcu_cpu_has_work); 1379 } 1380 1381 /* 1382 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1383 * RCU softirq used in flavors and configurations of RCU that do not 1384 * support RCU priority boosting. 1385 */ 1386 static void rcu_cpu_kthread(unsigned int cpu) 1387 { 1388 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1389 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1390 int spincnt; 1391 1392 for (spincnt = 0; spincnt < 10; spincnt++) { 1393 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1394 local_bh_disable(); 1395 *statusp = RCU_KTHREAD_RUNNING; 1396 this_cpu_inc(rcu_cpu_kthread_loops); 1397 local_irq_disable(); 1398 work = *workp; 1399 *workp = 0; 1400 local_irq_enable(); 1401 if (work) 1402 rcu_kthread_do_work(); 1403 local_bh_enable(); 1404 if (*workp == 0) { 1405 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1406 *statusp = RCU_KTHREAD_WAITING; 1407 return; 1408 } 1409 } 1410 *statusp = RCU_KTHREAD_YIELDING; 1411 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1412 schedule_timeout_interruptible(2); 1413 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1414 *statusp = RCU_KTHREAD_WAITING; 1415 } 1416 1417 /* 1418 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1419 * served by the rcu_node in question. The CPU hotplug lock is still 1420 * held, so the value of rnp->qsmaskinit will be stable. 1421 * 1422 * We don't include outgoingcpu in the affinity set, use -1 if there is 1423 * no outgoing CPU. If there are no CPUs left in the affinity set, 1424 * this function allows the kthread to execute on any CPU. 1425 */ 1426 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1427 { 1428 struct task_struct *t = rnp->boost_kthread_task; 1429 unsigned long mask = rnp->qsmaskinit; 1430 cpumask_var_t cm; 1431 int cpu; 1432 1433 if (!t) 1434 return; 1435 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1436 return; 1437 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1438 if ((mask & 0x1) && cpu != outgoingcpu) 1439 cpumask_set_cpu(cpu, cm); 1440 if (cpumask_weight(cm) == 0) { 1441 cpumask_setall(cm); 1442 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) 1443 cpumask_clear_cpu(cpu, cm); 1444 WARN_ON_ONCE(cpumask_weight(cm) == 0); 1445 } 1446 set_cpus_allowed_ptr(t, cm); 1447 free_cpumask_var(cm); 1448 } 1449 1450 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1451 .store = &rcu_cpu_kthread_task, 1452 .thread_should_run = rcu_cpu_kthread_should_run, 1453 .thread_fn = rcu_cpu_kthread, 1454 .thread_comm = "rcuc/%u", 1455 .setup = rcu_cpu_kthread_setup, 1456 .park = rcu_cpu_kthread_park, 1457 }; 1458 1459 /* 1460 * Spawn all kthreads -- called as soon as the scheduler is running. 1461 */ 1462 static int __init rcu_spawn_kthreads(void) 1463 { 1464 struct rcu_node *rnp; 1465 int cpu; 1466 1467 rcu_scheduler_fully_active = 1; 1468 for_each_possible_cpu(cpu) 1469 per_cpu(rcu_cpu_has_work, cpu) = 0; 1470 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1471 rnp = rcu_get_root(rcu_state_p); 1472 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1473 if (NUM_RCU_NODES > 1) { 1474 rcu_for_each_leaf_node(rcu_state_p, rnp) 1475 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1476 } 1477 return 0; 1478 } 1479 early_initcall(rcu_spawn_kthreads); 1480 1481 static void rcu_prepare_kthreads(int cpu) 1482 { 1483 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1484 struct rcu_node *rnp = rdp->mynode; 1485 1486 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1487 if (rcu_scheduler_fully_active) 1488 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1489 } 1490 1491 #else /* #ifdef CONFIG_RCU_BOOST */ 1492 1493 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1494 { 1495 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1496 } 1497 1498 static void invoke_rcu_callbacks_kthread(void) 1499 { 1500 WARN_ON_ONCE(1); 1501 } 1502 1503 static bool rcu_is_callbacks_kthread(void) 1504 { 1505 return false; 1506 } 1507 1508 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1509 { 1510 } 1511 1512 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1513 { 1514 } 1515 1516 static int __init rcu_scheduler_really_started(void) 1517 { 1518 rcu_scheduler_fully_active = 1; 1519 return 0; 1520 } 1521 early_initcall(rcu_scheduler_really_started); 1522 1523 static void rcu_prepare_kthreads(int cpu) 1524 { 1525 } 1526 1527 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1528 1529 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1530 1531 /* 1532 * Check to see if any future RCU-related work will need to be done 1533 * by the current CPU, even if none need be done immediately, returning 1534 * 1 if so. This function is part of the RCU implementation; it is -not- 1535 * an exported member of the RCU API. 1536 * 1537 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1538 * any flavor of RCU. 1539 */ 1540 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1541 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) 1542 { 1543 *delta_jiffies = ULONG_MAX; 1544 return rcu_cpu_has_callbacks(cpu, NULL); 1545 } 1546 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1547 1548 /* 1549 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1550 * after it. 1551 */ 1552 static void rcu_cleanup_after_idle(int cpu) 1553 { 1554 } 1555 1556 /* 1557 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1558 * is nothing. 1559 */ 1560 static void rcu_prepare_for_idle(int cpu) 1561 { 1562 } 1563 1564 /* 1565 * Don't bother keeping a running count of the number of RCU callbacks 1566 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1567 */ 1568 static void rcu_idle_count_callbacks_posted(void) 1569 { 1570 } 1571 1572 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1573 1574 /* 1575 * This code is invoked when a CPU goes idle, at which point we want 1576 * to have the CPU do everything required for RCU so that it can enter 1577 * the energy-efficient dyntick-idle mode. This is handled by a 1578 * state machine implemented by rcu_prepare_for_idle() below. 1579 * 1580 * The following three proprocessor symbols control this state machine: 1581 * 1582 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1583 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1584 * is sized to be roughly one RCU grace period. Those energy-efficiency 1585 * benchmarkers who might otherwise be tempted to set this to a large 1586 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1587 * system. And if you are -that- concerned about energy efficiency, 1588 * just power the system down and be done with it! 1589 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1590 * permitted to sleep in dyntick-idle mode with only lazy RCU 1591 * callbacks pending. Setting this too high can OOM your system. 1592 * 1593 * The values below work well in practice. If future workloads require 1594 * adjustment, they can be converted into kernel config parameters, though 1595 * making the state machine smarter might be a better option. 1596 */ 1597 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1598 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1599 1600 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1601 module_param(rcu_idle_gp_delay, int, 0644); 1602 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1603 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1604 1605 extern int tick_nohz_active; 1606 1607 /* 1608 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1609 * only if it has been awhile since the last time we did so. Afterwards, 1610 * if there are any callbacks ready for immediate invocation, return true. 1611 */ 1612 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1613 { 1614 bool cbs_ready = false; 1615 struct rcu_data *rdp; 1616 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1617 struct rcu_node *rnp; 1618 struct rcu_state *rsp; 1619 1620 /* Exit early if we advanced recently. */ 1621 if (jiffies == rdtp->last_advance_all) 1622 return 0; 1623 rdtp->last_advance_all = jiffies; 1624 1625 for_each_rcu_flavor(rsp) { 1626 rdp = this_cpu_ptr(rsp->rda); 1627 rnp = rdp->mynode; 1628 1629 /* 1630 * Don't bother checking unless a grace period has 1631 * completed since we last checked and there are 1632 * callbacks not yet ready to invoke. 1633 */ 1634 if (rdp->completed != rnp->completed && 1635 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1636 note_gp_changes(rsp, rdp); 1637 1638 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1639 cbs_ready = true; 1640 } 1641 return cbs_ready; 1642 } 1643 1644 /* 1645 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1646 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1647 * caller to set the timeout based on whether or not there are non-lazy 1648 * callbacks. 1649 * 1650 * The caller must have disabled interrupts. 1651 */ 1652 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1653 int rcu_needs_cpu(int cpu, unsigned long *dj) 1654 { 1655 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1656 1657 /* Snapshot to detect later posting of non-lazy callback. */ 1658 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1659 1660 /* If no callbacks, RCU doesn't need the CPU. */ 1661 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) { 1662 *dj = ULONG_MAX; 1663 return 0; 1664 } 1665 1666 /* Attempt to advance callbacks. */ 1667 if (rcu_try_advance_all_cbs()) { 1668 /* Some ready to invoke, so initiate later invocation. */ 1669 invoke_rcu_core(); 1670 return 1; 1671 } 1672 rdtp->last_accelerate = jiffies; 1673 1674 /* Request timer delay depending on laziness, and round. */ 1675 if (!rdtp->all_lazy) { 1676 *dj = round_up(rcu_idle_gp_delay + jiffies, 1677 rcu_idle_gp_delay) - jiffies; 1678 } else { 1679 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1680 } 1681 return 0; 1682 } 1683 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1684 1685 /* 1686 * Prepare a CPU for idle from an RCU perspective. The first major task 1687 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1688 * The second major task is to check to see if a non-lazy callback has 1689 * arrived at a CPU that previously had only lazy callbacks. The third 1690 * major task is to accelerate (that is, assign grace-period numbers to) 1691 * any recently arrived callbacks. 1692 * 1693 * The caller must have disabled interrupts. 1694 */ 1695 static void rcu_prepare_for_idle(int cpu) 1696 { 1697 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1698 bool needwake; 1699 struct rcu_data *rdp; 1700 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1701 struct rcu_node *rnp; 1702 struct rcu_state *rsp; 1703 int tne; 1704 1705 /* Handle nohz enablement switches conservatively. */ 1706 tne = ACCESS_ONCE(tick_nohz_active); 1707 if (tne != rdtp->tick_nohz_enabled_snap) { 1708 if (rcu_cpu_has_callbacks(cpu, NULL)) 1709 invoke_rcu_core(); /* force nohz to see update. */ 1710 rdtp->tick_nohz_enabled_snap = tne; 1711 return; 1712 } 1713 if (!tne) 1714 return; 1715 1716 /* If this is a no-CBs CPU, no callbacks, just return. */ 1717 if (rcu_is_nocb_cpu(cpu)) 1718 return; 1719 1720 /* 1721 * If a non-lazy callback arrived at a CPU having only lazy 1722 * callbacks, invoke RCU core for the side-effect of recalculating 1723 * idle duration on re-entry to idle. 1724 */ 1725 if (rdtp->all_lazy && 1726 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1727 rdtp->all_lazy = false; 1728 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1729 invoke_rcu_core(); 1730 return; 1731 } 1732 1733 /* 1734 * If we have not yet accelerated this jiffy, accelerate all 1735 * callbacks on this CPU. 1736 */ 1737 if (rdtp->last_accelerate == jiffies) 1738 return; 1739 rdtp->last_accelerate = jiffies; 1740 for_each_rcu_flavor(rsp) { 1741 rdp = per_cpu_ptr(rsp->rda, cpu); 1742 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1743 continue; 1744 rnp = rdp->mynode; 1745 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1746 smp_mb__after_unlock_lock(); 1747 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1748 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1749 if (needwake) 1750 rcu_gp_kthread_wake(rsp); 1751 } 1752 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1753 } 1754 1755 /* 1756 * Clean up for exit from idle. Attempt to advance callbacks based on 1757 * any grace periods that elapsed while the CPU was idle, and if any 1758 * callbacks are now ready to invoke, initiate invocation. 1759 */ 1760 static void rcu_cleanup_after_idle(int cpu) 1761 { 1762 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1763 if (rcu_is_nocb_cpu(cpu)) 1764 return; 1765 if (rcu_try_advance_all_cbs()) 1766 invoke_rcu_core(); 1767 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1768 } 1769 1770 /* 1771 * Keep a running count of the number of non-lazy callbacks posted 1772 * on this CPU. This running counter (which is never decremented) allows 1773 * rcu_prepare_for_idle() to detect when something out of the idle loop 1774 * posts a callback, even if an equal number of callbacks are invoked. 1775 * Of course, callbacks should only be posted from within a trace event 1776 * designed to be called from idle or from within RCU_NONIDLE(). 1777 */ 1778 static void rcu_idle_count_callbacks_posted(void) 1779 { 1780 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1781 } 1782 1783 /* 1784 * Data for flushing lazy RCU callbacks at OOM time. 1785 */ 1786 static atomic_t oom_callback_count; 1787 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1788 1789 /* 1790 * RCU OOM callback -- decrement the outstanding count and deliver the 1791 * wake-up if we are the last one. 1792 */ 1793 static void rcu_oom_callback(struct rcu_head *rhp) 1794 { 1795 if (atomic_dec_and_test(&oom_callback_count)) 1796 wake_up(&oom_callback_wq); 1797 } 1798 1799 /* 1800 * Post an rcu_oom_notify callback on the current CPU if it has at 1801 * least one lazy callback. This will unnecessarily post callbacks 1802 * to CPUs that already have a non-lazy callback at the end of their 1803 * callback list, but this is an infrequent operation, so accept some 1804 * extra overhead to keep things simple. 1805 */ 1806 static void rcu_oom_notify_cpu(void *unused) 1807 { 1808 struct rcu_state *rsp; 1809 struct rcu_data *rdp; 1810 1811 for_each_rcu_flavor(rsp) { 1812 rdp = raw_cpu_ptr(rsp->rda); 1813 if (rdp->qlen_lazy != 0) { 1814 atomic_inc(&oom_callback_count); 1815 rsp->call(&rdp->oom_head, rcu_oom_callback); 1816 } 1817 } 1818 } 1819 1820 /* 1821 * If low on memory, ensure that each CPU has a non-lazy callback. 1822 * This will wake up CPUs that have only lazy callbacks, in turn 1823 * ensuring that they free up the corresponding memory in a timely manner. 1824 * Because an uncertain amount of memory will be freed in some uncertain 1825 * timeframe, we do not claim to have freed anything. 1826 */ 1827 static int rcu_oom_notify(struct notifier_block *self, 1828 unsigned long notused, void *nfreed) 1829 { 1830 int cpu; 1831 1832 /* Wait for callbacks from earlier instance to complete. */ 1833 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1834 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1835 1836 /* 1837 * Prevent premature wakeup: ensure that all increments happen 1838 * before there is a chance of the counter reaching zero. 1839 */ 1840 atomic_set(&oom_callback_count, 1); 1841 1842 get_online_cpus(); 1843 for_each_online_cpu(cpu) { 1844 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1845 cond_resched(); 1846 } 1847 put_online_cpus(); 1848 1849 /* Unconditionally decrement: no need to wake ourselves up. */ 1850 atomic_dec(&oom_callback_count); 1851 1852 return NOTIFY_OK; 1853 } 1854 1855 static struct notifier_block rcu_oom_nb = { 1856 .notifier_call = rcu_oom_notify 1857 }; 1858 1859 static int __init rcu_register_oom_notifier(void) 1860 { 1861 register_oom_notifier(&rcu_oom_nb); 1862 return 0; 1863 } 1864 early_initcall(rcu_register_oom_notifier); 1865 1866 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1867 1868 #ifdef CONFIG_RCU_CPU_STALL_INFO 1869 1870 #ifdef CONFIG_RCU_FAST_NO_HZ 1871 1872 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1873 { 1874 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1875 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1876 1877 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1878 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1879 ulong2long(nlpd), 1880 rdtp->all_lazy ? 'L' : '.', 1881 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1882 } 1883 1884 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1885 1886 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1887 { 1888 *cp = '\0'; 1889 } 1890 1891 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1892 1893 /* Initiate the stall-info list. */ 1894 static void print_cpu_stall_info_begin(void) 1895 { 1896 pr_cont("\n"); 1897 } 1898 1899 /* 1900 * Print out diagnostic information for the specified stalled CPU. 1901 * 1902 * If the specified CPU is aware of the current RCU grace period 1903 * (flavor specified by rsp), then print the number of scheduling 1904 * clock interrupts the CPU has taken during the time that it has 1905 * been aware. Otherwise, print the number of RCU grace periods 1906 * that this CPU is ignorant of, for example, "1" if the CPU was 1907 * aware of the previous grace period. 1908 * 1909 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1910 */ 1911 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1912 { 1913 char fast_no_hz[72]; 1914 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1915 struct rcu_dynticks *rdtp = rdp->dynticks; 1916 char *ticks_title; 1917 unsigned long ticks_value; 1918 1919 if (rsp->gpnum == rdp->gpnum) { 1920 ticks_title = "ticks this GP"; 1921 ticks_value = rdp->ticks_this_gp; 1922 } else { 1923 ticks_title = "GPs behind"; 1924 ticks_value = rsp->gpnum - rdp->gpnum; 1925 } 1926 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1927 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n", 1928 cpu, ticks_value, ticks_title, 1929 atomic_read(&rdtp->dynticks) & 0xfff, 1930 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1931 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1932 fast_no_hz); 1933 } 1934 1935 /* Terminate the stall-info list. */ 1936 static void print_cpu_stall_info_end(void) 1937 { 1938 pr_err("\t"); 1939 } 1940 1941 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1942 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1943 { 1944 rdp->ticks_this_gp = 0; 1945 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1946 } 1947 1948 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1949 static void increment_cpu_stall_ticks(void) 1950 { 1951 struct rcu_state *rsp; 1952 1953 for_each_rcu_flavor(rsp) 1954 raw_cpu_inc(rsp->rda->ticks_this_gp); 1955 } 1956 1957 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1958 1959 static void print_cpu_stall_info_begin(void) 1960 { 1961 pr_cont(" {"); 1962 } 1963 1964 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1965 { 1966 pr_cont(" %d", cpu); 1967 } 1968 1969 static void print_cpu_stall_info_end(void) 1970 { 1971 pr_cont("} "); 1972 } 1973 1974 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1975 { 1976 } 1977 1978 static void increment_cpu_stall_ticks(void) 1979 { 1980 } 1981 1982 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1983 1984 #ifdef CONFIG_RCU_NOCB_CPU 1985 1986 /* 1987 * Offload callback processing from the boot-time-specified set of CPUs 1988 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1989 * kthread created that pulls the callbacks from the corresponding CPU, 1990 * waits for a grace period to elapse, and invokes the callbacks. 1991 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1992 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1993 * has been specified, in which case each kthread actively polls its 1994 * CPU. (Which isn't so great for energy efficiency, but which does 1995 * reduce RCU's overhead on that CPU.) 1996 * 1997 * This is intended to be used in conjunction with Frederic Weisbecker's 1998 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1999 * running CPU-bound user-mode computations. 2000 * 2001 * Offloading of callback processing could also in theory be used as 2002 * an energy-efficiency measure because CPUs with no RCU callbacks 2003 * queued are more aggressive about entering dyntick-idle mode. 2004 */ 2005 2006 2007 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 2008 static int __init rcu_nocb_setup(char *str) 2009 { 2010 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 2011 have_rcu_nocb_mask = true; 2012 cpulist_parse(str, rcu_nocb_mask); 2013 return 1; 2014 } 2015 __setup("rcu_nocbs=", rcu_nocb_setup); 2016 2017 static int __init parse_rcu_nocb_poll(char *arg) 2018 { 2019 rcu_nocb_poll = 1; 2020 return 0; 2021 } 2022 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 2023 2024 /* 2025 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 2026 * grace period. 2027 */ 2028 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2029 { 2030 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); 2031 } 2032 2033 /* 2034 * Set the root rcu_node structure's ->need_future_gp field 2035 * based on the sum of those of all rcu_node structures. This does 2036 * double-count the root rcu_node structure's requests, but this 2037 * is necessary to handle the possibility of a rcu_nocb_kthread() 2038 * having awakened during the time that the rcu_node structures 2039 * were being updated for the end of the previous grace period. 2040 */ 2041 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2042 { 2043 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 2044 } 2045 2046 static void rcu_init_one_nocb(struct rcu_node *rnp) 2047 { 2048 init_waitqueue_head(&rnp->nocb_gp_wq[0]); 2049 init_waitqueue_head(&rnp->nocb_gp_wq[1]); 2050 } 2051 2052 #ifndef CONFIG_RCU_NOCB_CPU_ALL 2053 /* Is the specified CPU a no-CBs CPU? */ 2054 bool rcu_is_nocb_cpu(int cpu) 2055 { 2056 if (have_rcu_nocb_mask) 2057 return cpumask_test_cpu(cpu, rcu_nocb_mask); 2058 return false; 2059 } 2060 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 2061 2062 /* 2063 * Enqueue the specified string of rcu_head structures onto the specified 2064 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 2065 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 2066 * counts are supplied by rhcount and rhcount_lazy. 2067 * 2068 * If warranted, also wake up the kthread servicing this CPUs queues. 2069 */ 2070 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 2071 struct rcu_head *rhp, 2072 struct rcu_head **rhtp, 2073 int rhcount, int rhcount_lazy, 2074 unsigned long flags) 2075 { 2076 int len; 2077 struct rcu_head **old_rhpp; 2078 struct task_struct *t; 2079 2080 /* Enqueue the callback on the nocb list and update counts. */ 2081 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 2082 ACCESS_ONCE(*old_rhpp) = rhp; 2083 atomic_long_add(rhcount, &rdp->nocb_q_count); 2084 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 2085 2086 /* If we are not being polled and there is a kthread, awaken it ... */ 2087 t = ACCESS_ONCE(rdp->nocb_kthread); 2088 if (rcu_nocb_poll || !t) { 2089 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2090 TPS("WakeNotPoll")); 2091 return; 2092 } 2093 len = atomic_long_read(&rdp->nocb_q_count); 2094 if (old_rhpp == &rdp->nocb_head) { 2095 if (!irqs_disabled_flags(flags)) { 2096 wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */ 2097 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2098 TPS("WakeEmpty")); 2099 } else { 2100 rdp->nocb_defer_wakeup = true; 2101 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2102 TPS("WakeEmptyIsDeferred")); 2103 } 2104 rdp->qlen_last_fqs_check = 0; 2105 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 2106 wake_up_process(t); /* ... or if many callbacks queued. */ 2107 rdp->qlen_last_fqs_check = LONG_MAX / 2; 2108 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf")); 2109 } else { 2110 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 2111 } 2112 return; 2113 } 2114 2115 /* 2116 * This is a helper for __call_rcu(), which invokes this when the normal 2117 * callback queue is inoperable. If this is not a no-CBs CPU, this 2118 * function returns failure back to __call_rcu(), which can complain 2119 * appropriately. 2120 * 2121 * Otherwise, this function queues the callback where the corresponding 2122 * "rcuo" kthread can find it. 2123 */ 2124 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2125 bool lazy, unsigned long flags) 2126 { 2127 2128 if (!rcu_is_nocb_cpu(rdp->cpu)) 2129 return 0; 2130 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2131 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2132 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2133 (unsigned long)rhp->func, 2134 -atomic_long_read(&rdp->nocb_q_count_lazy), 2135 -atomic_long_read(&rdp->nocb_q_count)); 2136 else 2137 trace_rcu_callback(rdp->rsp->name, rhp, 2138 -atomic_long_read(&rdp->nocb_q_count_lazy), 2139 -atomic_long_read(&rdp->nocb_q_count)); 2140 return 1; 2141 } 2142 2143 /* 2144 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2145 * not a no-CBs CPU. 2146 */ 2147 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2148 struct rcu_data *rdp, 2149 unsigned long flags) 2150 { 2151 long ql = rsp->qlen; 2152 long qll = rsp->qlen_lazy; 2153 2154 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 2155 if (!rcu_is_nocb_cpu(smp_processor_id())) 2156 return 0; 2157 rsp->qlen = 0; 2158 rsp->qlen_lazy = 0; 2159 2160 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 2161 if (rsp->orphan_donelist != NULL) { 2162 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 2163 rsp->orphan_donetail, ql, qll, flags); 2164 ql = qll = 0; 2165 rsp->orphan_donelist = NULL; 2166 rsp->orphan_donetail = &rsp->orphan_donelist; 2167 } 2168 if (rsp->orphan_nxtlist != NULL) { 2169 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2170 rsp->orphan_nxttail, ql, qll, flags); 2171 ql = qll = 0; 2172 rsp->orphan_nxtlist = NULL; 2173 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2174 } 2175 return 1; 2176 } 2177 2178 /* 2179 * If necessary, kick off a new grace period, and either way wait 2180 * for a subsequent grace period to complete. 2181 */ 2182 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2183 { 2184 unsigned long c; 2185 bool d; 2186 unsigned long flags; 2187 bool needwake; 2188 struct rcu_node *rnp = rdp->mynode; 2189 2190 raw_spin_lock_irqsave(&rnp->lock, flags); 2191 smp_mb__after_unlock_lock(); 2192 needwake = rcu_start_future_gp(rnp, rdp, &c); 2193 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2194 if (needwake) 2195 rcu_gp_kthread_wake(rdp->rsp); 2196 2197 /* 2198 * Wait for the grace period. Do so interruptibly to avoid messing 2199 * up the load average. 2200 */ 2201 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2202 for (;;) { 2203 wait_event_interruptible( 2204 rnp->nocb_gp_wq[c & 0x1], 2205 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); 2206 if (likely(d)) 2207 break; 2208 flush_signals(current); 2209 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2210 } 2211 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2212 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2213 } 2214 2215 /* 2216 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2217 * callbacks queued by the corresponding no-CBs CPU. 2218 */ 2219 static int rcu_nocb_kthread(void *arg) 2220 { 2221 int c, cl; 2222 bool firsttime = 1; 2223 struct rcu_head *list; 2224 struct rcu_head *next; 2225 struct rcu_head **tail; 2226 struct rcu_data *rdp = arg; 2227 2228 /* Each pass through this loop invokes one batch of callbacks */ 2229 for (;;) { 2230 /* If not polling, wait for next batch of callbacks. */ 2231 if (!rcu_nocb_poll) { 2232 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2233 TPS("Sleep")); 2234 wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head); 2235 /* Memory barrier provide by xchg() below. */ 2236 } else if (firsttime) { 2237 firsttime = 0; 2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2239 TPS("Poll")); 2240 } 2241 list = ACCESS_ONCE(rdp->nocb_head); 2242 if (!list) { 2243 if (!rcu_nocb_poll) 2244 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2245 TPS("WokeEmpty")); 2246 schedule_timeout_interruptible(1); 2247 flush_signals(current); 2248 continue; 2249 } 2250 firsttime = 1; 2251 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2252 TPS("WokeNonEmpty")); 2253 2254 /* 2255 * Extract queued callbacks, update counts, and wait 2256 * for a grace period to elapse. 2257 */ 2258 ACCESS_ONCE(rdp->nocb_head) = NULL; 2259 tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2260 c = atomic_long_xchg(&rdp->nocb_q_count, 0); 2261 cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0); 2262 ACCESS_ONCE(rdp->nocb_p_count) += c; 2263 ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl; 2264 rcu_nocb_wait_gp(rdp); 2265 2266 /* Each pass through the following loop invokes a callback. */ 2267 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1); 2268 c = cl = 0; 2269 while (list) { 2270 next = list->next; 2271 /* Wait for enqueuing to complete, if needed. */ 2272 while (next == NULL && &list->next != tail) { 2273 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2274 TPS("WaitQueue")); 2275 schedule_timeout_interruptible(1); 2276 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2277 TPS("WokeQueue")); 2278 next = list->next; 2279 } 2280 debug_rcu_head_unqueue(list); 2281 local_bh_disable(); 2282 if (__rcu_reclaim(rdp->rsp->name, list)) 2283 cl++; 2284 c++; 2285 local_bh_enable(); 2286 list = next; 2287 } 2288 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2289 ACCESS_ONCE(rdp->nocb_p_count) -= c; 2290 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl; 2291 rdp->n_nocbs_invoked += c; 2292 } 2293 return 0; 2294 } 2295 2296 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2297 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2298 { 2299 return ACCESS_ONCE(rdp->nocb_defer_wakeup); 2300 } 2301 2302 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2303 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2304 { 2305 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2306 return; 2307 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false; 2308 wake_up(&rdp->nocb_wq); 2309 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty")); 2310 } 2311 2312 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2313 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2314 { 2315 rdp->nocb_tail = &rdp->nocb_head; 2316 init_waitqueue_head(&rdp->nocb_wq); 2317 } 2318 2319 /* Create a kthread for each RCU flavor for each no-CBs CPU. */ 2320 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) 2321 { 2322 int cpu; 2323 struct rcu_data *rdp; 2324 struct task_struct *t; 2325 2326 if (rcu_nocb_mask == NULL) 2327 return; 2328 for_each_cpu(cpu, rcu_nocb_mask) { 2329 rdp = per_cpu_ptr(rsp->rda, cpu); 2330 t = kthread_run(rcu_nocb_kthread, rdp, 2331 "rcuo%c/%d", rsp->abbr, cpu); 2332 BUG_ON(IS_ERR(t)); 2333 ACCESS_ONCE(rdp->nocb_kthread) = t; 2334 } 2335 } 2336 2337 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2338 static bool init_nocb_callback_list(struct rcu_data *rdp) 2339 { 2340 if (rcu_nocb_mask == NULL || 2341 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask)) 2342 return false; 2343 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2344 return true; 2345 } 2346 2347 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2348 2349 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2350 { 2351 } 2352 2353 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2354 { 2355 } 2356 2357 static void rcu_init_one_nocb(struct rcu_node *rnp) 2358 { 2359 } 2360 2361 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2362 bool lazy, unsigned long flags) 2363 { 2364 return 0; 2365 } 2366 2367 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2368 struct rcu_data *rdp, 2369 unsigned long flags) 2370 { 2371 return 0; 2372 } 2373 2374 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2375 { 2376 } 2377 2378 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2379 { 2380 return false; 2381 } 2382 2383 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2384 { 2385 } 2386 2387 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) 2388 { 2389 } 2390 2391 static bool init_nocb_callback_list(struct rcu_data *rdp) 2392 { 2393 return false; 2394 } 2395 2396 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2397 2398 /* 2399 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2400 * arbitrarily long period of time with the scheduling-clock tick turned 2401 * off. RCU will be paying attention to this CPU because it is in the 2402 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2403 * machine because the scheduling-clock tick has been disabled. Therefore, 2404 * if an adaptive-ticks CPU is failing to respond to the current grace 2405 * period and has not be idle from an RCU perspective, kick it. 2406 */ 2407 static void rcu_kick_nohz_cpu(int cpu) 2408 { 2409 #ifdef CONFIG_NO_HZ_FULL 2410 if (tick_nohz_full_cpu(cpu)) 2411 smp_send_reschedule(cpu); 2412 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2413 } 2414 2415 2416 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2417 2418 /* 2419 * Define RCU flavor that holds sysidle state. This needs to be the 2420 * most active flavor of RCU. 2421 */ 2422 #ifdef CONFIG_PREEMPT_RCU 2423 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state; 2424 #else /* #ifdef CONFIG_PREEMPT_RCU */ 2425 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state; 2426 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 2427 2428 static int full_sysidle_state; /* Current system-idle state. */ 2429 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2430 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2431 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2432 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2433 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2434 2435 /* 2436 * Invoked to note exit from irq or task transition to idle. Note that 2437 * usermode execution does -not- count as idle here! After all, we want 2438 * to detect full-system idle states, not RCU quiescent states and grace 2439 * periods. The caller must have disabled interrupts. 2440 */ 2441 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq) 2442 { 2443 unsigned long j; 2444 2445 /* Adjust nesting, check for fully idle. */ 2446 if (irq) { 2447 rdtp->dynticks_idle_nesting--; 2448 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2449 if (rdtp->dynticks_idle_nesting != 0) 2450 return; /* Still not fully idle. */ 2451 } else { 2452 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2453 DYNTICK_TASK_NEST_VALUE) { 2454 rdtp->dynticks_idle_nesting = 0; 2455 } else { 2456 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2457 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2458 return; /* Still not fully idle. */ 2459 } 2460 } 2461 2462 /* Record start of fully idle period. */ 2463 j = jiffies; 2464 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j; 2465 smp_mb__before_atomic(); 2466 atomic_inc(&rdtp->dynticks_idle); 2467 smp_mb__after_atomic(); 2468 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2469 } 2470 2471 /* 2472 * Unconditionally force exit from full system-idle state. This is 2473 * invoked when a normal CPU exits idle, but must be called separately 2474 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2475 * is that the timekeeping CPU is permitted to take scheduling-clock 2476 * interrupts while the system is in system-idle state, and of course 2477 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2478 * interrupt from any other type of interrupt. 2479 */ 2480 void rcu_sysidle_force_exit(void) 2481 { 2482 int oldstate = ACCESS_ONCE(full_sysidle_state); 2483 int newoldstate; 2484 2485 /* 2486 * Each pass through the following loop attempts to exit full 2487 * system-idle state. If contention proves to be a problem, 2488 * a trylock-based contention tree could be used here. 2489 */ 2490 while (oldstate > RCU_SYSIDLE_SHORT) { 2491 newoldstate = cmpxchg(&full_sysidle_state, 2492 oldstate, RCU_SYSIDLE_NOT); 2493 if (oldstate == newoldstate && 2494 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2495 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2496 return; /* We cleared it, done! */ 2497 } 2498 oldstate = newoldstate; 2499 } 2500 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2501 } 2502 2503 /* 2504 * Invoked to note entry to irq or task transition from idle. Note that 2505 * usermode execution does -not- count as idle here! The caller must 2506 * have disabled interrupts. 2507 */ 2508 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) 2509 { 2510 /* Adjust nesting, check for already non-idle. */ 2511 if (irq) { 2512 rdtp->dynticks_idle_nesting++; 2513 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2514 if (rdtp->dynticks_idle_nesting != 1) 2515 return; /* Already non-idle. */ 2516 } else { 2517 /* 2518 * Allow for irq misnesting. Yes, it really is possible 2519 * to enter an irq handler then never leave it, and maybe 2520 * also vice versa. Handle both possibilities. 2521 */ 2522 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2523 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2524 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2525 return; /* Already non-idle. */ 2526 } else { 2527 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2528 } 2529 } 2530 2531 /* Record end of idle period. */ 2532 smp_mb__before_atomic(); 2533 atomic_inc(&rdtp->dynticks_idle); 2534 smp_mb__after_atomic(); 2535 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2536 2537 /* 2538 * If we are the timekeeping CPU, we are permitted to be non-idle 2539 * during a system-idle state. This must be the case, because 2540 * the timekeeping CPU has to take scheduling-clock interrupts 2541 * during the time that the system is transitioning to full 2542 * system-idle state. This means that the timekeeping CPU must 2543 * invoke rcu_sysidle_force_exit() directly if it does anything 2544 * more than take a scheduling-clock interrupt. 2545 */ 2546 if (smp_processor_id() == tick_do_timer_cpu) 2547 return; 2548 2549 /* Update system-idle state: We are clearly no longer fully idle! */ 2550 rcu_sysidle_force_exit(); 2551 } 2552 2553 /* 2554 * Check to see if the current CPU is idle. Note that usermode execution 2555 * does not count as idle. The caller must have disabled interrupts. 2556 */ 2557 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2558 unsigned long *maxj) 2559 { 2560 int cur; 2561 unsigned long j; 2562 struct rcu_dynticks *rdtp = rdp->dynticks; 2563 2564 /* 2565 * If some other CPU has already reported non-idle, if this is 2566 * not the flavor of RCU that tracks sysidle state, or if this 2567 * is an offline or the timekeeping CPU, nothing to do. 2568 */ 2569 if (!*isidle || rdp->rsp != rcu_sysidle_state || 2570 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2571 return; 2572 if (rcu_gp_in_progress(rdp->rsp)) 2573 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2574 2575 /* Pick up current idle and NMI-nesting counter and check. */ 2576 cur = atomic_read(&rdtp->dynticks_idle); 2577 if (cur & 0x1) { 2578 *isidle = false; /* We are not idle! */ 2579 return; 2580 } 2581 smp_mb(); /* Read counters before timestamps. */ 2582 2583 /* Pick up timestamps. */ 2584 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies); 2585 /* If this CPU entered idle more recently, update maxj timestamp. */ 2586 if (ULONG_CMP_LT(*maxj, j)) 2587 *maxj = j; 2588 } 2589 2590 /* 2591 * Is this the flavor of RCU that is handling full-system idle? 2592 */ 2593 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2594 { 2595 return rsp == rcu_sysidle_state; 2596 } 2597 2598 /* 2599 * Return a delay in jiffies based on the number of CPUs, rcu_node 2600 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2601 * systems more time to transition to full-idle state in order to 2602 * avoid the cache thrashing that otherwise occur on the state variable. 2603 * Really small systems (less than a couple of tens of CPUs) should 2604 * instead use a single global atomically incremented counter, and later 2605 * versions of this will automatically reconfigure themselves accordingly. 2606 */ 2607 static unsigned long rcu_sysidle_delay(void) 2608 { 2609 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2610 return 0; 2611 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2612 } 2613 2614 /* 2615 * Advance the full-system-idle state. This is invoked when all of 2616 * the non-timekeeping CPUs are idle. 2617 */ 2618 static void rcu_sysidle(unsigned long j) 2619 { 2620 /* Check the current state. */ 2621 switch (ACCESS_ONCE(full_sysidle_state)) { 2622 case RCU_SYSIDLE_NOT: 2623 2624 /* First time all are idle, so note a short idle period. */ 2625 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT; 2626 break; 2627 2628 case RCU_SYSIDLE_SHORT: 2629 2630 /* 2631 * Idle for a bit, time to advance to next state? 2632 * cmpxchg failure means race with non-idle, let them win. 2633 */ 2634 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2635 (void)cmpxchg(&full_sysidle_state, 2636 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2637 break; 2638 2639 case RCU_SYSIDLE_LONG: 2640 2641 /* 2642 * Do an additional check pass before advancing to full. 2643 * cmpxchg failure means race with non-idle, let them win. 2644 */ 2645 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2646 (void)cmpxchg(&full_sysidle_state, 2647 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2648 break; 2649 2650 default: 2651 break; 2652 } 2653 } 2654 2655 /* 2656 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2657 * back to the beginning. 2658 */ 2659 static void rcu_sysidle_cancel(void) 2660 { 2661 smp_mb(); 2662 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2663 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT; 2664 } 2665 2666 /* 2667 * Update the sysidle state based on the results of a force-quiescent-state 2668 * scan of the CPUs' dyntick-idle state. 2669 */ 2670 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2671 unsigned long maxj, bool gpkt) 2672 { 2673 if (rsp != rcu_sysidle_state) 2674 return; /* Wrong flavor, ignore. */ 2675 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2676 return; /* Running state machine from timekeeping CPU. */ 2677 if (isidle) 2678 rcu_sysidle(maxj); /* More idle! */ 2679 else 2680 rcu_sysidle_cancel(); /* Idle is over. */ 2681 } 2682 2683 /* 2684 * Wrapper for rcu_sysidle_report() when called from the grace-period 2685 * kthread's context. 2686 */ 2687 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2688 unsigned long maxj) 2689 { 2690 rcu_sysidle_report(rsp, isidle, maxj, true); 2691 } 2692 2693 /* Callback and function for forcing an RCU grace period. */ 2694 struct rcu_sysidle_head { 2695 struct rcu_head rh; 2696 int inuse; 2697 }; 2698 2699 static void rcu_sysidle_cb(struct rcu_head *rhp) 2700 { 2701 struct rcu_sysidle_head *rshp; 2702 2703 /* 2704 * The following memory barrier is needed to replace the 2705 * memory barriers that would normally be in the memory 2706 * allocator. 2707 */ 2708 smp_mb(); /* grace period precedes setting inuse. */ 2709 2710 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2711 ACCESS_ONCE(rshp->inuse) = 0; 2712 } 2713 2714 /* 2715 * Check to see if the system is fully idle, other than the timekeeping CPU. 2716 * The caller must have disabled interrupts. 2717 */ 2718 bool rcu_sys_is_idle(void) 2719 { 2720 static struct rcu_sysidle_head rsh; 2721 int rss = ACCESS_ONCE(full_sysidle_state); 2722 2723 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2724 return false; 2725 2726 /* Handle small-system case by doing a full scan of CPUs. */ 2727 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2728 int oldrss = rss - 1; 2729 2730 /* 2731 * One pass to advance to each state up to _FULL. 2732 * Give up if any pass fails to advance the state. 2733 */ 2734 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2735 int cpu; 2736 bool isidle = true; 2737 unsigned long maxj = jiffies - ULONG_MAX / 4; 2738 struct rcu_data *rdp; 2739 2740 /* Scan all the CPUs looking for nonidle CPUs. */ 2741 for_each_possible_cpu(cpu) { 2742 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu); 2743 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2744 if (!isidle) 2745 break; 2746 } 2747 rcu_sysidle_report(rcu_sysidle_state, 2748 isidle, maxj, false); 2749 oldrss = rss; 2750 rss = ACCESS_ONCE(full_sysidle_state); 2751 } 2752 } 2753 2754 /* If this is the first observation of an idle period, record it. */ 2755 if (rss == RCU_SYSIDLE_FULL) { 2756 rss = cmpxchg(&full_sysidle_state, 2757 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2758 return rss == RCU_SYSIDLE_FULL; 2759 } 2760 2761 smp_mb(); /* ensure rss load happens before later caller actions. */ 2762 2763 /* If already fully idle, tell the caller (in case of races). */ 2764 if (rss == RCU_SYSIDLE_FULL_NOTED) 2765 return true; 2766 2767 /* 2768 * If we aren't there yet, and a grace period is not in flight, 2769 * initiate a grace period. Either way, tell the caller that 2770 * we are not there yet. We use an xchg() rather than an assignment 2771 * to make up for the memory barriers that would otherwise be 2772 * provided by the memory allocator. 2773 */ 2774 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2775 !rcu_gp_in_progress(rcu_sysidle_state) && 2776 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2777 call_rcu(&rsh.rh, rcu_sysidle_cb); 2778 return false; 2779 } 2780 2781 /* 2782 * Initialize dynticks sysidle state for CPUs coming online. 2783 */ 2784 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2785 { 2786 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 2787 } 2788 2789 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2790 2791 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq) 2792 { 2793 } 2794 2795 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) 2796 { 2797 } 2798 2799 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2800 unsigned long *maxj) 2801 { 2802 } 2803 2804 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2805 { 2806 return false; 2807 } 2808 2809 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2810 unsigned long maxj) 2811 { 2812 } 2813 2814 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2815 { 2816 } 2817 2818 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2819 2820 /* 2821 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2822 * grace-period kthread will do force_quiescent_state() processing? 2823 * The idea is to avoid waking up RCU core processing on such a 2824 * CPU unless the grace period has extended for too long. 2825 * 2826 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2827 * CONFIG_RCU_NOCB_CPU CPUs. 2828 */ 2829 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2830 { 2831 #ifdef CONFIG_NO_HZ_FULL 2832 if (tick_nohz_full_cpu(smp_processor_id()) && 2833 (!rcu_gp_in_progress(rsp) || 2834 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ))) 2835 return 1; 2836 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2837 return 0; 2838 } 2839 2840 /* 2841 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2842 * timekeeping CPU. 2843 */ 2844 static void rcu_bind_gp_kthread(void) 2845 { 2846 #ifdef CONFIG_NO_HZ_FULL 2847 int cpu = ACCESS_ONCE(tick_do_timer_cpu); 2848 2849 if (cpu < 0 || cpu >= nr_cpu_ids) 2850 return; 2851 if (raw_smp_processor_id() != cpu) 2852 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 2853 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2854 } 2855