xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision d203c2d3)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20 
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 	if (IS_ENABLED(CONFIG_RCU_TRACE))
28 		pr_info("\tRCU event tracing is enabled.\n");
29 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 			RCU_FANOUT);
33 	if (rcu_fanout_exact)
34 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 	if (IS_ENABLED(CONFIG_PROVE_RCU))
38 		pr_info("\tRCU lockdep checking is enabled.\n");
39 	if (RCU_NUM_LVLS >= 4)
40 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 	if (RCU_FANOUT_LEAF != 16)
42 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 			RCU_FANOUT_LEAF);
44 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 			rcu_fanout_leaf);
47 	if (nr_cpu_ids != NR_CPUS)
48 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 	if (blimit != DEFAULT_RCU_BLIMIT)
54 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 	if (qhimark != DEFAULT_RCU_QHIMARK)
56 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 	if (qlowmark != DEFAULT_RCU_QLOMARK)
58 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 	if (qovld != DEFAULT_RCU_QOVLD)
60 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
61 	if (jiffies_till_first_fqs != ULONG_MAX)
62 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63 	if (jiffies_till_next_fqs != ULONG_MAX)
64 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
65 	if (jiffies_till_sched_qs != ULONG_MAX)
66 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
67 	if (rcu_kick_kthreads)
68 		pr_info("\tKick kthreads if too-long grace period.\n");
69 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
71 	if (gp_preinit_delay)
72 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
73 	if (gp_init_delay)
74 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
75 	if (gp_cleanup_delay)
76 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
77 	if (!use_softirq)
78 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80 		pr_info("\tRCU debug extended QS entry/exit.\n");
81 	rcupdate_announce_bootup_oddness();
82 }
83 
84 #ifdef CONFIG_PREEMPT_RCU
85 
86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
87 static void rcu_read_unlock_special(struct task_struct *t);
88 
89 /*
90  * Tell them what RCU they are running.
91  */
92 static void __init rcu_bootup_announce(void)
93 {
94 	pr_info("Preemptible hierarchical RCU implementation.\n");
95 	rcu_bootup_announce_oddness();
96 }
97 
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS	0x8
100 #define RCU_EXP_TASKS	0x4
101 #define RCU_GP_BLKD	0x2
102 #define RCU_EXP_BLKD	0x1
103 
104 /*
105  * Queues a task preempted within an RCU-preempt read-side critical
106  * section into the appropriate location within the ->blkd_tasks list,
107  * depending on the states of any ongoing normal and expedited grace
108  * periods.  The ->gp_tasks pointer indicates which element the normal
109  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110  * indicates which element the expedited grace period is waiting on (again,
111  * NULL if none).  If a grace period is waiting on a given element in the
112  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
113  * adding a task to the tail of the list blocks any grace period that is
114  * already waiting on one of the elements.  In contrast, adding a task
115  * to the head of the list won't block any grace period that is already
116  * waiting on one of the elements.
117  *
118  * This queuing is imprecise, and can sometimes make an ongoing grace
119  * period wait for a task that is not strictly speaking blocking it.
120  * Given the choice, we needlessly block a normal grace period rather than
121  * blocking an expedited grace period.
122  *
123  * Note that an endless sequence of expedited grace periods still cannot
124  * indefinitely postpone a normal grace period.  Eventually, all of the
125  * fixed number of preempted tasks blocking the normal grace period that are
126  * not also blocking the expedited grace period will resume and complete
127  * their RCU read-side critical sections.  At that point, the ->gp_tasks
128  * pointer will equal the ->exp_tasks pointer, at which point the end of
129  * the corresponding expedited grace period will also be the end of the
130  * normal grace period.
131  */
132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133 	__releases(rnp->lock) /* But leaves rrupts disabled. */
134 {
135 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139 	struct task_struct *t = current;
140 
141 	raw_lockdep_assert_held_rcu_node(rnp);
142 	WARN_ON_ONCE(rdp->mynode != rnp);
143 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
144 	/* RCU better not be waiting on newly onlined CPUs! */
145 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146 		     rdp->grpmask);
147 
148 	/*
149 	 * Decide where to queue the newly blocked task.  In theory,
150 	 * this could be an if-statement.  In practice, when I tried
151 	 * that, it was quite messy.
152 	 */
153 	switch (blkd_state) {
154 	case 0:
155 	case                RCU_EXP_TASKS:
156 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
157 	case RCU_GP_TASKS:
158 	case RCU_GP_TASKS + RCU_EXP_TASKS:
159 
160 		/*
161 		 * Blocking neither GP, or first task blocking the normal
162 		 * GP but not blocking the already-waiting expedited GP.
163 		 * Queue at the head of the list to avoid unnecessarily
164 		 * blocking the already-waiting GPs.
165 		 */
166 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167 		break;
168 
169 	case                                              RCU_EXP_BLKD:
170 	case                                RCU_GP_BLKD:
171 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
172 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
173 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
174 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175 
176 		/*
177 		 * First task arriving that blocks either GP, or first task
178 		 * arriving that blocks the expedited GP (with the normal
179 		 * GP already waiting), or a task arriving that blocks
180 		 * both GPs with both GPs already waiting.  Queue at the
181 		 * tail of the list to avoid any GP waiting on any of the
182 		 * already queued tasks that are not blocking it.
183 		 */
184 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185 		break;
186 
187 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
188 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
190 
191 		/*
192 		 * Second or subsequent task blocking the expedited GP.
193 		 * The task either does not block the normal GP, or is the
194 		 * first task blocking the normal GP.  Queue just after
195 		 * the first task blocking the expedited GP.
196 		 */
197 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
198 		break;
199 
200 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
201 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202 
203 		/*
204 		 * Second or subsequent task blocking the normal GP.
205 		 * The task does not block the expedited GP. Queue just
206 		 * after the first task blocking the normal GP.
207 		 */
208 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
209 		break;
210 
211 	default:
212 
213 		/* Yet another exercise in excessive paranoia. */
214 		WARN_ON_ONCE(1);
215 		break;
216 	}
217 
218 	/*
219 	 * We have now queued the task.  If it was the first one to
220 	 * block either grace period, update the ->gp_tasks and/or
221 	 * ->exp_tasks pointers, respectively, to reference the newly
222 	 * blocked tasks.
223 	 */
224 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
225 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
226 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
227 	}
228 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229 		rnp->exp_tasks = &t->rcu_node_entry;
230 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231 		     !(rnp->qsmask & rdp->grpmask));
232 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233 		     !(rnp->expmask & rdp->grpmask));
234 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
235 
236 	/*
237 	 * Report the quiescent state for the expedited GP.  This expedited
238 	 * GP should not be able to end until we report, so there should be
239 	 * no need to check for a subsequent expedited GP.  (Though we are
240 	 * still in a quiescent state in any case.)
241 	 */
242 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
243 		rcu_report_exp_rdp(rdp);
244 	else
245 		WARN_ON_ONCE(rdp->exp_deferred_qs);
246 }
247 
248 /*
249  * Record a preemptible-RCU quiescent state for the specified CPU.
250  * Note that this does not necessarily mean that the task currently running
251  * on the CPU is in a quiescent state:  Instead, it means that the current
252  * grace period need not wait on any RCU read-side critical section that
253  * starts later on this CPU.  It also means that if the current task is
254  * in an RCU read-side critical section, it has already added itself to
255  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
256  * current task, there might be any number of other tasks blocked while
257  * in an RCU read-side critical section.
258  *
259  * Callers to this function must disable preemption.
260  */
261 static void rcu_qs(void)
262 {
263 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
265 		trace_rcu_grace_period(TPS("rcu_preempt"),
266 				       __this_cpu_read(rcu_data.gp_seq),
267 				       TPS("cpuqs"));
268 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
269 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
271 	}
272 }
273 
274 /*
275  * We have entered the scheduler, and the current task might soon be
276  * context-switched away from.  If this task is in an RCU read-side
277  * critical section, we will no longer be able to rely on the CPU to
278  * record that fact, so we enqueue the task on the blkd_tasks list.
279  * The task will dequeue itself when it exits the outermost enclosing
280  * RCU read-side critical section.  Therefore, the current grace period
281  * cannot be permitted to complete until the blkd_tasks list entries
282  * predating the current grace period drain, in other words, until
283  * rnp->gp_tasks becomes NULL.
284  *
285  * Caller must disable interrupts.
286  */
287 void rcu_note_context_switch(bool preempt)
288 {
289 	struct task_struct *t = current;
290 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291 	struct rcu_node *rnp;
292 
293 	trace_rcu_utilization(TPS("Start context switch"));
294 	lockdep_assert_irqs_disabled();
295 	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296 	if (rcu_preempt_depth() > 0 &&
297 	    !t->rcu_read_unlock_special.b.blocked) {
298 
299 		/* Possibly blocking in an RCU read-side critical section. */
300 		rnp = rdp->mynode;
301 		raw_spin_lock_rcu_node(rnp);
302 		t->rcu_read_unlock_special.b.blocked = true;
303 		t->rcu_blocked_node = rnp;
304 
305 		/*
306 		 * Verify the CPU's sanity, trace the preemption, and
307 		 * then queue the task as required based on the states
308 		 * of any ongoing and expedited grace periods.
309 		 */
310 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 		trace_rcu_preempt_task(rcu_state.name,
313 				       t->pid,
314 				       (rnp->qsmask & rdp->grpmask)
315 				       ? rnp->gp_seq
316 				       : rcu_seq_snap(&rnp->gp_seq));
317 		rcu_preempt_ctxt_queue(rnp, rdp);
318 	} else {
319 		rcu_preempt_deferred_qs(t);
320 	}
321 
322 	/*
323 	 * Either we were not in an RCU read-side critical section to
324 	 * begin with, or we have now recorded that critical section
325 	 * globally.  Either way, we can now note a quiescent state
326 	 * for this CPU.  Again, if we were in an RCU read-side critical
327 	 * section, and if that critical section was blocking the current
328 	 * grace period, then the fact that the task has been enqueued
329 	 * means that we continue to block the current grace period.
330 	 */
331 	rcu_qs();
332 	if (rdp->exp_deferred_qs)
333 		rcu_report_exp_rdp(rdp);
334 	trace_rcu_utilization(TPS("End context switch"));
335 }
336 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
337 
338 /*
339  * Check for preempted RCU readers blocking the current grace period
340  * for the specified rcu_node structure.  If the caller needs a reliable
341  * answer, it must hold the rcu_node's ->lock.
342  */
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
344 {
345 	return READ_ONCE(rnp->gp_tasks) != NULL;
346 }
347 
348 /* Bias and limit values for ->rcu_read_lock_nesting. */
349 #define RCU_NEST_BIAS INT_MAX
350 #define RCU_NEST_NMAX (-INT_MAX / 2)
351 #define RCU_NEST_PMAX (INT_MAX / 2)
352 
353 static void rcu_preempt_read_enter(void)
354 {
355 	current->rcu_read_lock_nesting++;
356 }
357 
358 static void rcu_preempt_read_exit(void)
359 {
360 	current->rcu_read_lock_nesting--;
361 }
362 
363 static void rcu_preempt_depth_set(int val)
364 {
365 	current->rcu_read_lock_nesting = val;
366 }
367 
368 /*
369  * Preemptible RCU implementation for rcu_read_lock().
370  * Just increment ->rcu_read_lock_nesting, shared state will be updated
371  * if we block.
372  */
373 void __rcu_read_lock(void)
374 {
375 	rcu_preempt_read_enter();
376 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
377 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
378 	barrier();  /* critical section after entry code. */
379 }
380 EXPORT_SYMBOL_GPL(__rcu_read_lock);
381 
382 /*
383  * Preemptible RCU implementation for rcu_read_unlock().
384  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
385  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
386  * invoke rcu_read_unlock_special() to clean up after a context switch
387  * in an RCU read-side critical section and other special cases.
388  */
389 void __rcu_read_unlock(void)
390 {
391 	struct task_struct *t = current;
392 
393 	if (rcu_preempt_depth() != 1) {
394 		rcu_preempt_read_exit();
395 	} else {
396 		barrier();  /* critical section before exit code. */
397 		rcu_preempt_depth_set(-RCU_NEST_BIAS);
398 		barrier();  /* assign before ->rcu_read_unlock_special load */
399 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
400 			rcu_read_unlock_special(t);
401 		barrier();  /* ->rcu_read_unlock_special load before assign */
402 		rcu_preempt_depth_set(0);
403 	}
404 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
405 		int rrln = rcu_preempt_depth();
406 
407 		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
408 	}
409 }
410 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
411 
412 /*
413  * Advance a ->blkd_tasks-list pointer to the next entry, instead
414  * returning NULL if at the end of the list.
415  */
416 static struct list_head *rcu_next_node_entry(struct task_struct *t,
417 					     struct rcu_node *rnp)
418 {
419 	struct list_head *np;
420 
421 	np = t->rcu_node_entry.next;
422 	if (np == &rnp->blkd_tasks)
423 		np = NULL;
424 	return np;
425 }
426 
427 /*
428  * Return true if the specified rcu_node structure has tasks that were
429  * preempted within an RCU read-side critical section.
430  */
431 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
432 {
433 	return !list_empty(&rnp->blkd_tasks);
434 }
435 
436 /*
437  * Report deferred quiescent states.  The deferral time can
438  * be quite short, for example, in the case of the call from
439  * rcu_read_unlock_special().
440  */
441 static void
442 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
443 {
444 	bool empty_exp;
445 	bool empty_norm;
446 	bool empty_exp_now;
447 	struct list_head *np;
448 	bool drop_boost_mutex = false;
449 	struct rcu_data *rdp;
450 	struct rcu_node *rnp;
451 	union rcu_special special;
452 
453 	/*
454 	 * If RCU core is waiting for this CPU to exit its critical section,
455 	 * report the fact that it has exited.  Because irqs are disabled,
456 	 * t->rcu_read_unlock_special cannot change.
457 	 */
458 	special = t->rcu_read_unlock_special;
459 	rdp = this_cpu_ptr(&rcu_data);
460 	if (!special.s && !rdp->exp_deferred_qs) {
461 		local_irq_restore(flags);
462 		return;
463 	}
464 	t->rcu_read_unlock_special.s = 0;
465 	if (special.b.need_qs)
466 		rcu_qs();
467 
468 	/*
469 	 * Respond to a request by an expedited grace period for a
470 	 * quiescent state from this CPU.  Note that requests from
471 	 * tasks are handled when removing the task from the
472 	 * blocked-tasks list below.
473 	 */
474 	if (rdp->exp_deferred_qs)
475 		rcu_report_exp_rdp(rdp);
476 
477 	/* Clean up if blocked during RCU read-side critical section. */
478 	if (special.b.blocked) {
479 
480 		/*
481 		 * Remove this task from the list it blocked on.  The task
482 		 * now remains queued on the rcu_node corresponding to the
483 		 * CPU it first blocked on, so there is no longer any need
484 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
485 		 */
486 		rnp = t->rcu_blocked_node;
487 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
488 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
489 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
490 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
491 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
492 			     (!empty_norm || rnp->qsmask));
493 		empty_exp = sync_rcu_exp_done(rnp);
494 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
495 		np = rcu_next_node_entry(t, rnp);
496 		list_del_init(&t->rcu_node_entry);
497 		t->rcu_blocked_node = NULL;
498 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
499 						rnp->gp_seq, t->pid);
500 		if (&t->rcu_node_entry == rnp->gp_tasks)
501 			WRITE_ONCE(rnp->gp_tasks, np);
502 		if (&t->rcu_node_entry == rnp->exp_tasks)
503 			rnp->exp_tasks = np;
504 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
505 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
506 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
507 			if (&t->rcu_node_entry == rnp->boost_tasks)
508 				rnp->boost_tasks = np;
509 		}
510 
511 		/*
512 		 * If this was the last task on the current list, and if
513 		 * we aren't waiting on any CPUs, report the quiescent state.
514 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
515 		 * so we must take a snapshot of the expedited state.
516 		 */
517 		empty_exp_now = sync_rcu_exp_done(rnp);
518 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
519 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
520 							 rnp->gp_seq,
521 							 0, rnp->qsmask,
522 							 rnp->level,
523 							 rnp->grplo,
524 							 rnp->grphi,
525 							 !!rnp->gp_tasks);
526 			rcu_report_unblock_qs_rnp(rnp, flags);
527 		} else {
528 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 		}
530 
531 		/* Unboost if we were boosted. */
532 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
533 			rt_mutex_futex_unlock(&rnp->boost_mtx);
534 
535 		/*
536 		 * If this was the last task on the expedited lists,
537 		 * then we need to report up the rcu_node hierarchy.
538 		 */
539 		if (!empty_exp && empty_exp_now)
540 			rcu_report_exp_rnp(rnp, true);
541 	} else {
542 		local_irq_restore(flags);
543 	}
544 }
545 
546 /*
547  * Is a deferred quiescent-state pending, and are we also not in
548  * an RCU read-side critical section?  It is the caller's responsibility
549  * to ensure it is otherwise safe to report any deferred quiescent
550  * states.  The reason for this is that it is safe to report a
551  * quiescent state during context switch even though preemption
552  * is disabled.  This function cannot be expected to understand these
553  * nuances, so the caller must handle them.
554  */
555 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
556 {
557 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
558 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
559 	       rcu_preempt_depth() <= 0;
560 }
561 
562 /*
563  * Report a deferred quiescent state if needed and safe to do so.
564  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
565  * not being in an RCU read-side critical section.  The caller must
566  * evaluate safety in terms of interrupt, softirq, and preemption
567  * disabling.
568  */
569 static void rcu_preempt_deferred_qs(struct task_struct *t)
570 {
571 	unsigned long flags;
572 	bool couldrecurse = rcu_preempt_depth() >= 0;
573 
574 	if (!rcu_preempt_need_deferred_qs(t))
575 		return;
576 	if (couldrecurse)
577 		rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
578 	local_irq_save(flags);
579 	rcu_preempt_deferred_qs_irqrestore(t, flags);
580 	if (couldrecurse)
581 		rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
582 }
583 
584 /*
585  * Minimal handler to give the scheduler a chance to re-evaluate.
586  */
587 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
588 {
589 	struct rcu_data *rdp;
590 
591 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
592 	rdp->defer_qs_iw_pending = false;
593 }
594 
595 /*
596  * Handle special cases during rcu_read_unlock(), such as needing to
597  * notify RCU core processing or task having blocked during the RCU
598  * read-side critical section.
599  */
600 static void rcu_read_unlock_special(struct task_struct *t)
601 {
602 	unsigned long flags;
603 	bool preempt_bh_were_disabled =
604 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
605 	bool irqs_were_disabled;
606 
607 	/* NMI handlers cannot block and cannot safely manipulate state. */
608 	if (in_nmi())
609 		return;
610 
611 	local_irq_save(flags);
612 	irqs_were_disabled = irqs_disabled_flags(flags);
613 	if (preempt_bh_were_disabled || irqs_were_disabled) {
614 		bool exp;
615 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
616 		struct rcu_node *rnp = rdp->mynode;
617 
618 		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
619 		      (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
620 		      tick_nohz_full_cpu(rdp->cpu);
621 		// Need to defer quiescent state until everything is enabled.
622 		if (irqs_were_disabled && use_softirq &&
623 		    (in_interrupt() ||
624 		     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
625 			// Using softirq, safe to awaken, and we get
626 			// no help from enabling irqs, unlike bh/preempt.
627 			raise_softirq_irqoff(RCU_SOFTIRQ);
628 		} else {
629 			// Enabling BH or preempt does reschedule, so...
630 			// Also if no expediting or NO_HZ_FULL, slow is OK.
631 			set_tsk_need_resched(current);
632 			set_preempt_need_resched();
633 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
634 			    !rdp->defer_qs_iw_pending && exp) {
635 				// Get scheduler to re-evaluate and call hooks.
636 				// If !IRQ_WORK, FQS scan will eventually IPI.
637 				init_irq_work(&rdp->defer_qs_iw,
638 					      rcu_preempt_deferred_qs_handler);
639 				rdp->defer_qs_iw_pending = true;
640 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
641 			}
642 		}
643 		t->rcu_read_unlock_special.b.deferred_qs = true;
644 		local_irq_restore(flags);
645 		return;
646 	}
647 	rcu_preempt_deferred_qs_irqrestore(t, flags);
648 }
649 
650 /*
651  * Check that the list of blocked tasks for the newly completed grace
652  * period is in fact empty.  It is a serious bug to complete a grace
653  * period that still has RCU readers blocked!  This function must be
654  * invoked -before- updating this rnp's ->gp_seq.
655  *
656  * Also, if there are blocked tasks on the list, they automatically
657  * block the newly created grace period, so set up ->gp_tasks accordingly.
658  */
659 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
660 {
661 	struct task_struct *t;
662 
663 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
664 	raw_lockdep_assert_held_rcu_node(rnp);
665 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
666 		dump_blkd_tasks(rnp, 10);
667 	if (rcu_preempt_has_tasks(rnp) &&
668 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
669 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
670 		t = container_of(rnp->gp_tasks, struct task_struct,
671 				 rcu_node_entry);
672 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
673 						rnp->gp_seq, t->pid);
674 	}
675 	WARN_ON_ONCE(rnp->qsmask);
676 }
677 
678 /*
679  * Check for a quiescent state from the current CPU, including voluntary
680  * context switches for Tasks RCU.  When a task blocks, the task is
681  * recorded in the corresponding CPU's rcu_node structure, which is checked
682  * elsewhere, hence this function need only check for quiescent states
683  * related to the current CPU, not to those related to tasks.
684  */
685 static void rcu_flavor_sched_clock_irq(int user)
686 {
687 	struct task_struct *t = current;
688 
689 	if (user || rcu_is_cpu_rrupt_from_idle()) {
690 		rcu_note_voluntary_context_switch(current);
691 	}
692 	if (rcu_preempt_depth() > 0 ||
693 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
694 		/* No QS, force context switch if deferred. */
695 		if (rcu_preempt_need_deferred_qs(t)) {
696 			set_tsk_need_resched(t);
697 			set_preempt_need_resched();
698 		}
699 	} else if (rcu_preempt_need_deferred_qs(t)) {
700 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
701 		return;
702 	} else if (!rcu_preempt_depth()) {
703 		rcu_qs(); /* Report immediate QS. */
704 		return;
705 	}
706 
707 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
708 	if (rcu_preempt_depth() > 0 &&
709 	    __this_cpu_read(rcu_data.core_needs_qs) &&
710 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
711 	    !t->rcu_read_unlock_special.b.need_qs &&
712 	    time_after(jiffies, rcu_state.gp_start + HZ))
713 		t->rcu_read_unlock_special.b.need_qs = true;
714 }
715 
716 /*
717  * Check for a task exiting while in a preemptible-RCU read-side
718  * critical section, clean up if so.  No need to issue warnings, as
719  * debug_check_no_locks_held() already does this if lockdep is enabled.
720  * Besides, if this function does anything other than just immediately
721  * return, there was a bug of some sort.  Spewing warnings from this
722  * function is like as not to simply obscure important prior warnings.
723  */
724 void exit_rcu(void)
725 {
726 	struct task_struct *t = current;
727 
728 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
729 		rcu_preempt_depth_set(1);
730 		barrier();
731 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
732 	} else if (unlikely(rcu_preempt_depth())) {
733 		rcu_preempt_depth_set(1);
734 	} else {
735 		return;
736 	}
737 	__rcu_read_unlock();
738 	rcu_preempt_deferred_qs(current);
739 }
740 
741 /*
742  * Dump the blocked-tasks state, but limit the list dump to the
743  * specified number of elements.
744  */
745 static void
746 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
747 {
748 	int cpu;
749 	int i;
750 	struct list_head *lhp;
751 	bool onl;
752 	struct rcu_data *rdp;
753 	struct rcu_node *rnp1;
754 
755 	raw_lockdep_assert_held_rcu_node(rnp);
756 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
757 		__func__, rnp->grplo, rnp->grphi, rnp->level,
758 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
759 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
760 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
761 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
762 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
763 		__func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
764 		rnp->exp_tasks);
765 	pr_info("%s: ->blkd_tasks", __func__);
766 	i = 0;
767 	list_for_each(lhp, &rnp->blkd_tasks) {
768 		pr_cont(" %p", lhp);
769 		if (++i >= ncheck)
770 			break;
771 	}
772 	pr_cont("\n");
773 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
774 		rdp = per_cpu_ptr(&rcu_data, cpu);
775 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
776 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
777 			cpu, ".o"[onl],
778 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
779 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
780 	}
781 }
782 
783 #else /* #ifdef CONFIG_PREEMPT_RCU */
784 
785 /*
786  * Tell them what RCU they are running.
787  */
788 static void __init rcu_bootup_announce(void)
789 {
790 	pr_info("Hierarchical RCU implementation.\n");
791 	rcu_bootup_announce_oddness();
792 }
793 
794 /*
795  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
796  * how many quiescent states passed, just if there was at least one since
797  * the start of the grace period, this just sets a flag.  The caller must
798  * have disabled preemption.
799  */
800 static void rcu_qs(void)
801 {
802 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
803 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
804 		return;
805 	trace_rcu_grace_period(TPS("rcu_sched"),
806 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
807 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
808 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
809 		return;
810 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
811 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
812 }
813 
814 /*
815  * Register an urgently needed quiescent state.  If there is an
816  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
817  * dyntick-idle quiescent state visible to other CPUs, which will in
818  * some cases serve for expedited as well as normal grace periods.
819  * Either way, register a lightweight quiescent state.
820  */
821 void rcu_all_qs(void)
822 {
823 	unsigned long flags;
824 
825 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
826 		return;
827 	preempt_disable();
828 	/* Load rcu_urgent_qs before other flags. */
829 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
830 		preempt_enable();
831 		return;
832 	}
833 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
834 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
835 		local_irq_save(flags);
836 		rcu_momentary_dyntick_idle();
837 		local_irq_restore(flags);
838 	}
839 	rcu_qs();
840 	preempt_enable();
841 }
842 EXPORT_SYMBOL_GPL(rcu_all_qs);
843 
844 /*
845  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
846  */
847 void rcu_note_context_switch(bool preempt)
848 {
849 	trace_rcu_utilization(TPS("Start context switch"));
850 	rcu_qs();
851 	/* Load rcu_urgent_qs before other flags. */
852 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
853 		goto out;
854 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
855 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
856 		rcu_momentary_dyntick_idle();
857 	if (!preempt)
858 		rcu_tasks_qs(current);
859 out:
860 	trace_rcu_utilization(TPS("End context switch"));
861 }
862 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
863 
864 /*
865  * Because preemptible RCU does not exist, there are never any preempted
866  * RCU readers.
867  */
868 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
869 {
870 	return 0;
871 }
872 
873 /*
874  * Because there is no preemptible RCU, there can be no readers blocked.
875  */
876 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
877 {
878 	return false;
879 }
880 
881 /*
882  * Because there is no preemptible RCU, there can be no deferred quiescent
883  * states.
884  */
885 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
886 {
887 	return false;
888 }
889 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
890 
891 /*
892  * Because there is no preemptible RCU, there can be no readers blocked,
893  * so there is no need to check for blocked tasks.  So check only for
894  * bogus qsmask values.
895  */
896 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
897 {
898 	WARN_ON_ONCE(rnp->qsmask);
899 }
900 
901 /*
902  * Check to see if this CPU is in a non-context-switch quiescent state,
903  * namely user mode and idle loop.
904  */
905 static void rcu_flavor_sched_clock_irq(int user)
906 {
907 	if (user || rcu_is_cpu_rrupt_from_idle()) {
908 
909 		/*
910 		 * Get here if this CPU took its interrupt from user
911 		 * mode or from the idle loop, and if this is not a
912 		 * nested interrupt.  In this case, the CPU is in
913 		 * a quiescent state, so note it.
914 		 *
915 		 * No memory barrier is required here because rcu_qs()
916 		 * references only CPU-local variables that other CPUs
917 		 * neither access nor modify, at least not while the
918 		 * corresponding CPU is online.
919 		 */
920 
921 		rcu_qs();
922 	}
923 }
924 
925 /*
926  * Because preemptible RCU does not exist, tasks cannot possibly exit
927  * while in preemptible RCU read-side critical sections.
928  */
929 void exit_rcu(void)
930 {
931 }
932 
933 /*
934  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
935  */
936 static void
937 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
938 {
939 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
940 }
941 
942 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
943 
944 /*
945  * If boosting, set rcuc kthreads to realtime priority.
946  */
947 static void rcu_cpu_kthread_setup(unsigned int cpu)
948 {
949 #ifdef CONFIG_RCU_BOOST
950 	struct sched_param sp;
951 
952 	sp.sched_priority = kthread_prio;
953 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
954 #endif /* #ifdef CONFIG_RCU_BOOST */
955 }
956 
957 #ifdef CONFIG_RCU_BOOST
958 
959 /*
960  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
961  * or ->boost_tasks, advancing the pointer to the next task in the
962  * ->blkd_tasks list.
963  *
964  * Note that irqs must be enabled: boosting the task can block.
965  * Returns 1 if there are more tasks needing to be boosted.
966  */
967 static int rcu_boost(struct rcu_node *rnp)
968 {
969 	unsigned long flags;
970 	struct task_struct *t;
971 	struct list_head *tb;
972 
973 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
974 	    READ_ONCE(rnp->boost_tasks) == NULL)
975 		return 0;  /* Nothing left to boost. */
976 
977 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
978 
979 	/*
980 	 * Recheck under the lock: all tasks in need of boosting
981 	 * might exit their RCU read-side critical sections on their own.
982 	 */
983 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
984 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
985 		return 0;
986 	}
987 
988 	/*
989 	 * Preferentially boost tasks blocking expedited grace periods.
990 	 * This cannot starve the normal grace periods because a second
991 	 * expedited grace period must boost all blocked tasks, including
992 	 * those blocking the pre-existing normal grace period.
993 	 */
994 	if (rnp->exp_tasks != NULL)
995 		tb = rnp->exp_tasks;
996 	else
997 		tb = rnp->boost_tasks;
998 
999 	/*
1000 	 * We boost task t by manufacturing an rt_mutex that appears to
1001 	 * be held by task t.  We leave a pointer to that rt_mutex where
1002 	 * task t can find it, and task t will release the mutex when it
1003 	 * exits its outermost RCU read-side critical section.  Then
1004 	 * simply acquiring this artificial rt_mutex will boost task
1005 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1006 	 *
1007 	 * Note that task t must acquire rnp->lock to remove itself from
1008 	 * the ->blkd_tasks list, which it will do from exit() if from
1009 	 * nowhere else.  We therefore are guaranteed that task t will
1010 	 * stay around at least until we drop rnp->lock.  Note that
1011 	 * rnp->lock also resolves races between our priority boosting
1012 	 * and task t's exiting its outermost RCU read-side critical
1013 	 * section.
1014 	 */
1015 	t = container_of(tb, struct task_struct, rcu_node_entry);
1016 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1017 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1018 	/* Lock only for side effect: boosts task t's priority. */
1019 	rt_mutex_lock(&rnp->boost_mtx);
1020 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1021 
1022 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1023 	       READ_ONCE(rnp->boost_tasks) != NULL;
1024 }
1025 
1026 /*
1027  * Priority-boosting kthread, one per leaf rcu_node.
1028  */
1029 static int rcu_boost_kthread(void *arg)
1030 {
1031 	struct rcu_node *rnp = (struct rcu_node *)arg;
1032 	int spincnt = 0;
1033 	int more2boost;
1034 
1035 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1036 	for (;;) {
1037 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1038 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1039 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1040 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1041 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1042 		more2boost = rcu_boost(rnp);
1043 		if (more2boost)
1044 			spincnt++;
1045 		else
1046 			spincnt = 0;
1047 		if (spincnt > 10) {
1048 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1049 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1050 			schedule_timeout_interruptible(2);
1051 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1052 			spincnt = 0;
1053 		}
1054 	}
1055 	/* NOTREACHED */
1056 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1057 	return 0;
1058 }
1059 
1060 /*
1061  * Check to see if it is time to start boosting RCU readers that are
1062  * blocking the current grace period, and, if so, tell the per-rcu_node
1063  * kthread to start boosting them.  If there is an expedited grace
1064  * period in progress, it is always time to boost.
1065  *
1066  * The caller must hold rnp->lock, which this function releases.
1067  * The ->boost_kthread_task is immortal, so we don't need to worry
1068  * about it going away.
1069  */
1070 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1071 	__releases(rnp->lock)
1072 {
1073 	raw_lockdep_assert_held_rcu_node(rnp);
1074 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1075 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076 		return;
1077 	}
1078 	if (rnp->exp_tasks != NULL ||
1079 	    (rnp->gp_tasks != NULL &&
1080 	     rnp->boost_tasks == NULL &&
1081 	     rnp->qsmask == 0 &&
1082 	     (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) {
1083 		if (rnp->exp_tasks == NULL)
1084 			rnp->boost_tasks = rnp->gp_tasks;
1085 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086 		rcu_wake_cond(rnp->boost_kthread_task,
1087 			      READ_ONCE(rnp->boost_kthread_status));
1088 	} else {
1089 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1090 	}
1091 }
1092 
1093 /*
1094  * Is the current CPU running the RCU-callbacks kthread?
1095  * Caller must have preemption disabled.
1096  */
1097 static bool rcu_is_callbacks_kthread(void)
1098 {
1099 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1100 }
1101 
1102 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103 
1104 /*
1105  * Do priority-boost accounting for the start of a new grace period.
1106  */
1107 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1108 {
1109 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1110 }
1111 
1112 /*
1113  * Create an RCU-boost kthread for the specified node if one does not
1114  * already exist.  We only create this kthread for preemptible RCU.
1115  * Returns zero if all is well, a negated errno otherwise.
1116  */
1117 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1118 {
1119 	int rnp_index = rnp - rcu_get_root();
1120 	unsigned long flags;
1121 	struct sched_param sp;
1122 	struct task_struct *t;
1123 
1124 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1125 		return;
1126 
1127 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1128 		return;
1129 
1130 	rcu_state.boost = 1;
1131 
1132 	if (rnp->boost_kthread_task != NULL)
1133 		return;
1134 
1135 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1136 			   "rcub/%d", rnp_index);
1137 	if (WARN_ON_ONCE(IS_ERR(t)))
1138 		return;
1139 
1140 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1141 	rnp->boost_kthread_task = t;
1142 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1143 	sp.sched_priority = kthread_prio;
1144 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1145 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1146 }
1147 
1148 /*
1149  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1150  * served by the rcu_node in question.  The CPU hotplug lock is still
1151  * held, so the value of rnp->qsmaskinit will be stable.
1152  *
1153  * We don't include outgoingcpu in the affinity set, use -1 if there is
1154  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1155  * this function allows the kthread to execute on any CPU.
1156  */
1157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1158 {
1159 	struct task_struct *t = rnp->boost_kthread_task;
1160 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1161 	cpumask_var_t cm;
1162 	int cpu;
1163 
1164 	if (!t)
1165 		return;
1166 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1167 		return;
1168 	for_each_leaf_node_possible_cpu(rnp, cpu)
1169 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1170 		    cpu != outgoingcpu)
1171 			cpumask_set_cpu(cpu, cm);
1172 	if (cpumask_weight(cm) == 0)
1173 		cpumask_setall(cm);
1174 	set_cpus_allowed_ptr(t, cm);
1175 	free_cpumask_var(cm);
1176 }
1177 
1178 /*
1179  * Spawn boost kthreads -- called as soon as the scheduler is running.
1180  */
1181 static void __init rcu_spawn_boost_kthreads(void)
1182 {
1183 	struct rcu_node *rnp;
1184 
1185 	rcu_for_each_leaf_node(rnp)
1186 		rcu_spawn_one_boost_kthread(rnp);
1187 }
1188 
1189 static void rcu_prepare_kthreads(int cpu)
1190 {
1191 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1192 	struct rcu_node *rnp = rdp->mynode;
1193 
1194 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1195 	if (rcu_scheduler_fully_active)
1196 		rcu_spawn_one_boost_kthread(rnp);
1197 }
1198 
1199 #else /* #ifdef CONFIG_RCU_BOOST */
1200 
1201 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1202 	__releases(rnp->lock)
1203 {
1204 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1205 }
1206 
1207 static bool rcu_is_callbacks_kthread(void)
1208 {
1209 	return false;
1210 }
1211 
1212 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1213 {
1214 }
1215 
1216 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1217 {
1218 }
1219 
1220 static void __init rcu_spawn_boost_kthreads(void)
1221 {
1222 }
1223 
1224 static void rcu_prepare_kthreads(int cpu)
1225 {
1226 }
1227 
1228 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1229 
1230 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1231 
1232 /*
1233  * Check to see if any future non-offloaded RCU-related work will need
1234  * to be done by the current CPU, even if none need be done immediately,
1235  * returning 1 if so.  This function is part of the RCU implementation;
1236  * it is -not- an exported member of the RCU API.
1237  *
1238  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1239  * CPU has RCU callbacks queued.
1240  */
1241 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1242 {
1243 	*nextevt = KTIME_MAX;
1244 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1245 	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1246 }
1247 
1248 /*
1249  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1250  * after it.
1251  */
1252 static void rcu_cleanup_after_idle(void)
1253 {
1254 }
1255 
1256 /*
1257  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1258  * is nothing.
1259  */
1260 static void rcu_prepare_for_idle(void)
1261 {
1262 }
1263 
1264 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1265 
1266 /*
1267  * This code is invoked when a CPU goes idle, at which point we want
1268  * to have the CPU do everything required for RCU so that it can enter
1269  * the energy-efficient dyntick-idle mode.
1270  *
1271  * The following preprocessor symbol controls this:
1272  *
1273  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1274  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1275  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1276  *	benchmarkers who might otherwise be tempted to set this to a large
1277  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1278  *	system.  And if you are -that- concerned about energy efficiency,
1279  *	just power the system down and be done with it!
1280  *
1281  * The value below works well in practice.  If future workloads require
1282  * adjustment, they can be converted into kernel config parameters, though
1283  * making the state machine smarter might be a better option.
1284  */
1285 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1286 
1287 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1288 module_param(rcu_idle_gp_delay, int, 0644);
1289 
1290 /*
1291  * Try to advance callbacks on the current CPU, but only if it has been
1292  * awhile since the last time we did so.  Afterwards, if there are any
1293  * callbacks ready for immediate invocation, return true.
1294  */
1295 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1296 {
1297 	bool cbs_ready = false;
1298 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1299 	struct rcu_node *rnp;
1300 
1301 	/* Exit early if we advanced recently. */
1302 	if (jiffies == rdp->last_advance_all)
1303 		return false;
1304 	rdp->last_advance_all = jiffies;
1305 
1306 	rnp = rdp->mynode;
1307 
1308 	/*
1309 	 * Don't bother checking unless a grace period has
1310 	 * completed since we last checked and there are
1311 	 * callbacks not yet ready to invoke.
1312 	 */
1313 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1314 				  rcu_seq_current(&rnp->gp_seq)) ||
1315 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1316 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1317 		note_gp_changes(rdp);
1318 
1319 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1320 		cbs_ready = true;
1321 	return cbs_ready;
1322 }
1323 
1324 /*
1325  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1326  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1327  * caller about what to set the timeout.
1328  *
1329  * The caller must have disabled interrupts.
1330  */
1331 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1332 {
1333 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1334 	unsigned long dj;
1335 
1336 	lockdep_assert_irqs_disabled();
1337 
1338 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1339 	if (rcu_segcblist_empty(&rdp->cblist) ||
1340 	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1341 		*nextevt = KTIME_MAX;
1342 		return 0;
1343 	}
1344 
1345 	/* Attempt to advance callbacks. */
1346 	if (rcu_try_advance_all_cbs()) {
1347 		/* Some ready to invoke, so initiate later invocation. */
1348 		invoke_rcu_core();
1349 		return 1;
1350 	}
1351 	rdp->last_accelerate = jiffies;
1352 
1353 	/* Request timer and round. */
1354 	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1355 
1356 	*nextevt = basemono + dj * TICK_NSEC;
1357 	return 0;
1358 }
1359 
1360 /*
1361  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1362  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1363  * major task is to accelerate (that is, assign grace-period numbers to) any
1364  * recently arrived callbacks.
1365  *
1366  * The caller must have disabled interrupts.
1367  */
1368 static void rcu_prepare_for_idle(void)
1369 {
1370 	bool needwake;
1371 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1372 	struct rcu_node *rnp;
1373 	int tne;
1374 
1375 	lockdep_assert_irqs_disabled();
1376 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1377 		return;
1378 
1379 	/* Handle nohz enablement switches conservatively. */
1380 	tne = READ_ONCE(tick_nohz_active);
1381 	if (tne != rdp->tick_nohz_enabled_snap) {
1382 		if (!rcu_segcblist_empty(&rdp->cblist))
1383 			invoke_rcu_core(); /* force nohz to see update. */
1384 		rdp->tick_nohz_enabled_snap = tne;
1385 		return;
1386 	}
1387 	if (!tne)
1388 		return;
1389 
1390 	/*
1391 	 * If we have not yet accelerated this jiffy, accelerate all
1392 	 * callbacks on this CPU.
1393 	 */
1394 	if (rdp->last_accelerate == jiffies)
1395 		return;
1396 	rdp->last_accelerate = jiffies;
1397 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1398 		rnp = rdp->mynode;
1399 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1400 		needwake = rcu_accelerate_cbs(rnp, rdp);
1401 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1402 		if (needwake)
1403 			rcu_gp_kthread_wake();
1404 	}
1405 }
1406 
1407 /*
1408  * Clean up for exit from idle.  Attempt to advance callbacks based on
1409  * any grace periods that elapsed while the CPU was idle, and if any
1410  * callbacks are now ready to invoke, initiate invocation.
1411  */
1412 static void rcu_cleanup_after_idle(void)
1413 {
1414 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1415 
1416 	lockdep_assert_irqs_disabled();
1417 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1418 		return;
1419 	if (rcu_try_advance_all_cbs())
1420 		invoke_rcu_core();
1421 }
1422 
1423 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1424 
1425 #ifdef CONFIG_RCU_NOCB_CPU
1426 
1427 /*
1428  * Offload callback processing from the boot-time-specified set of CPUs
1429  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1430  * created that pull the callbacks from the corresponding CPU, wait for
1431  * a grace period to elapse, and invoke the callbacks.  These kthreads
1432  * are organized into GP kthreads, which manage incoming callbacks, wait for
1433  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1434  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1435  * do a wake_up() on their GP kthread when they insert a callback into any
1436  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1437  * in which case each kthread actively polls its CPU.  (Which isn't so great
1438  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1439  *
1440  * This is intended to be used in conjunction with Frederic Weisbecker's
1441  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1442  * running CPU-bound user-mode computations.
1443  *
1444  * Offloading of callbacks can also be used as an energy-efficiency
1445  * measure because CPUs with no RCU callbacks queued are more aggressive
1446  * about entering dyntick-idle mode.
1447  */
1448 
1449 
1450 /*
1451  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1452  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1453  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1454  * given, a warning is emitted and all CPUs are offloaded.
1455  */
1456 static int __init rcu_nocb_setup(char *str)
1457 {
1458 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1459 	if (!strcasecmp(str, "all"))
1460 		cpumask_setall(rcu_nocb_mask);
1461 	else
1462 		if (cpulist_parse(str, rcu_nocb_mask)) {
1463 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1464 			cpumask_setall(rcu_nocb_mask);
1465 		}
1466 	return 1;
1467 }
1468 __setup("rcu_nocbs=", rcu_nocb_setup);
1469 
1470 static int __init parse_rcu_nocb_poll(char *arg)
1471 {
1472 	rcu_nocb_poll = true;
1473 	return 0;
1474 }
1475 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1476 
1477 /*
1478  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1479  * After all, the main point of bypassing is to avoid lock contention
1480  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1481  */
1482 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1483 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1484 
1485 /*
1486  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1487  * lock isn't immediately available, increment ->nocb_lock_contended to
1488  * flag the contention.
1489  */
1490 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1491 	__acquires(&rdp->nocb_bypass_lock)
1492 {
1493 	lockdep_assert_irqs_disabled();
1494 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1495 		return;
1496 	atomic_inc(&rdp->nocb_lock_contended);
1497 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1498 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1499 	raw_spin_lock(&rdp->nocb_bypass_lock);
1500 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1501 	atomic_dec(&rdp->nocb_lock_contended);
1502 }
1503 
1504 /*
1505  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1506  * not contended.  Please note that this is extremely special-purpose,
1507  * relying on the fact that at most two kthreads and one CPU contend for
1508  * this lock, and also that the two kthreads are guaranteed to have frequent
1509  * grace-period-duration time intervals between successive acquisitions
1510  * of the lock.  This allows us to use an extremely simple throttling
1511  * mechanism, and further to apply it only to the CPU doing floods of
1512  * call_rcu() invocations.  Don't try this at home!
1513  */
1514 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1515 {
1516 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1517 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1518 		cpu_relax();
1519 }
1520 
1521 /*
1522  * Conditionally acquire the specified rcu_data structure's
1523  * ->nocb_bypass_lock.
1524  */
1525 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1526 {
1527 	lockdep_assert_irqs_disabled();
1528 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1529 }
1530 
1531 /*
1532  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1533  */
1534 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1535 	__releases(&rdp->nocb_bypass_lock)
1536 {
1537 	lockdep_assert_irqs_disabled();
1538 	raw_spin_unlock(&rdp->nocb_bypass_lock);
1539 }
1540 
1541 /*
1542  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1543  * if it corresponds to a no-CBs CPU.
1544  */
1545 static void rcu_nocb_lock(struct rcu_data *rdp)
1546 {
1547 	lockdep_assert_irqs_disabled();
1548 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1549 		return;
1550 	raw_spin_lock(&rdp->nocb_lock);
1551 }
1552 
1553 /*
1554  * Release the specified rcu_data structure's ->nocb_lock, but only
1555  * if it corresponds to a no-CBs CPU.
1556  */
1557 static void rcu_nocb_unlock(struct rcu_data *rdp)
1558 {
1559 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1560 		lockdep_assert_irqs_disabled();
1561 		raw_spin_unlock(&rdp->nocb_lock);
1562 	}
1563 }
1564 
1565 /*
1566  * Release the specified rcu_data structure's ->nocb_lock and restore
1567  * interrupts, but only if it corresponds to a no-CBs CPU.
1568  */
1569 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1570 				       unsigned long flags)
1571 {
1572 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1573 		lockdep_assert_irqs_disabled();
1574 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1575 	} else {
1576 		local_irq_restore(flags);
1577 	}
1578 }
1579 
1580 /* Lockdep check that ->cblist may be safely accessed. */
1581 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1582 {
1583 	lockdep_assert_irqs_disabled();
1584 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1585 		lockdep_assert_held(&rdp->nocb_lock);
1586 }
1587 
1588 /*
1589  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1590  * grace period.
1591  */
1592 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1593 {
1594 	swake_up_all(sq);
1595 }
1596 
1597 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1598 {
1599 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1600 }
1601 
1602 static void rcu_init_one_nocb(struct rcu_node *rnp)
1603 {
1604 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1605 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1606 }
1607 
1608 /* Is the specified CPU a no-CBs CPU? */
1609 bool rcu_is_nocb_cpu(int cpu)
1610 {
1611 	if (cpumask_available(rcu_nocb_mask))
1612 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1613 	return false;
1614 }
1615 
1616 /*
1617  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1618  * and this function releases it.
1619  */
1620 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1621 			   unsigned long flags)
1622 	__releases(rdp->nocb_lock)
1623 {
1624 	bool needwake = false;
1625 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1626 
1627 	lockdep_assert_held(&rdp->nocb_lock);
1628 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1629 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1630 				    TPS("AlreadyAwake"));
1631 		rcu_nocb_unlock_irqrestore(rdp, flags);
1632 		return;
1633 	}
1634 	del_timer(&rdp->nocb_timer);
1635 	rcu_nocb_unlock_irqrestore(rdp, flags);
1636 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1637 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1638 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1639 		needwake = true;
1640 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1641 	}
1642 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1643 	if (needwake)
1644 		wake_up_process(rdp_gp->nocb_gp_kthread);
1645 }
1646 
1647 /*
1648  * Arrange to wake the GP kthread for this NOCB group at some future
1649  * time when it is safe to do so.
1650  */
1651 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1652 			       const char *reason)
1653 {
1654 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1655 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1656 	if (rdp->nocb_defer_wakeup < waketype)
1657 		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1658 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1659 }
1660 
1661 /*
1662  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1663  * However, if there is a callback to be enqueued and if ->nocb_bypass
1664  * proves to be initially empty, just return false because the no-CB GP
1665  * kthread may need to be awakened in this case.
1666  *
1667  * Note that this function always returns true if rhp is NULL.
1668  */
1669 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1670 				     unsigned long j)
1671 {
1672 	struct rcu_cblist rcl;
1673 
1674 	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1675 	rcu_lockdep_assert_cblist_protected(rdp);
1676 	lockdep_assert_held(&rdp->nocb_bypass_lock);
1677 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1678 		raw_spin_unlock(&rdp->nocb_bypass_lock);
1679 		return false;
1680 	}
1681 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1682 	if (rhp)
1683 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1684 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1685 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1686 	WRITE_ONCE(rdp->nocb_bypass_first, j);
1687 	rcu_nocb_bypass_unlock(rdp);
1688 	return true;
1689 }
1690 
1691 /*
1692  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1693  * However, if there is a callback to be enqueued and if ->nocb_bypass
1694  * proves to be initially empty, just return false because the no-CB GP
1695  * kthread may need to be awakened in this case.
1696  *
1697  * Note that this function always returns true if rhp is NULL.
1698  */
1699 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1700 				  unsigned long j)
1701 {
1702 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1703 		return true;
1704 	rcu_lockdep_assert_cblist_protected(rdp);
1705 	rcu_nocb_bypass_lock(rdp);
1706 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1707 }
1708 
1709 /*
1710  * If the ->nocb_bypass_lock is immediately available, flush the
1711  * ->nocb_bypass queue into ->cblist.
1712  */
1713 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1714 {
1715 	rcu_lockdep_assert_cblist_protected(rdp);
1716 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1717 	    !rcu_nocb_bypass_trylock(rdp))
1718 		return;
1719 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1720 }
1721 
1722 /*
1723  * See whether it is appropriate to use the ->nocb_bypass list in order
1724  * to control contention on ->nocb_lock.  A limited number of direct
1725  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1726  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1727  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1728  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1729  * used if ->cblist is empty, because otherwise callbacks can be stranded
1730  * on ->nocb_bypass because we cannot count on the current CPU ever again
1731  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1732  * non-empty, the corresponding no-CBs grace-period kthread must not be
1733  * in an indefinite sleep state.
1734  *
1735  * Finally, it is not permitted to use the bypass during early boot,
1736  * as doing so would confuse the auto-initialization code.  Besides
1737  * which, there is no point in worrying about lock contention while
1738  * there is only one CPU in operation.
1739  */
1740 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1741 				bool *was_alldone, unsigned long flags)
1742 {
1743 	unsigned long c;
1744 	unsigned long cur_gp_seq;
1745 	unsigned long j = jiffies;
1746 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1747 
1748 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1749 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1750 		return false; /* Not offloaded, no bypassing. */
1751 	}
1752 	lockdep_assert_irqs_disabled();
1753 
1754 	// Don't use ->nocb_bypass during early boot.
1755 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1756 		rcu_nocb_lock(rdp);
1757 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1758 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1759 		return false;
1760 	}
1761 
1762 	// If we have advanced to a new jiffy, reset counts to allow
1763 	// moving back from ->nocb_bypass to ->cblist.
1764 	if (j == rdp->nocb_nobypass_last) {
1765 		c = rdp->nocb_nobypass_count + 1;
1766 	} else {
1767 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1768 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1769 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1770 				 nocb_nobypass_lim_per_jiffy))
1771 			c = 0;
1772 		else if (c > nocb_nobypass_lim_per_jiffy)
1773 			c = nocb_nobypass_lim_per_jiffy;
1774 	}
1775 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1776 
1777 	// If there hasn't yet been all that many ->cblist enqueues
1778 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1779 	// ->nocb_bypass first.
1780 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1781 		rcu_nocb_lock(rdp);
1782 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1783 		if (*was_alldone)
1784 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1785 					    TPS("FirstQ"));
1786 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1787 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788 		return false; // Caller must enqueue the callback.
1789 	}
1790 
1791 	// If ->nocb_bypass has been used too long or is too full,
1792 	// flush ->nocb_bypass to ->cblist.
1793 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1794 	    ncbs >= qhimark) {
1795 		rcu_nocb_lock(rdp);
1796 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1797 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1798 			if (*was_alldone)
1799 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1800 						    TPS("FirstQ"));
1801 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1802 			return false; // Caller must enqueue the callback.
1803 		}
1804 		if (j != rdp->nocb_gp_adv_time &&
1805 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1806 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1807 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1808 			rdp->nocb_gp_adv_time = j;
1809 		}
1810 		rcu_nocb_unlock_irqrestore(rdp, flags);
1811 		return true; // Callback already enqueued.
1812 	}
1813 
1814 	// We need to use the bypass.
1815 	rcu_nocb_wait_contended(rdp);
1816 	rcu_nocb_bypass_lock(rdp);
1817 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1818 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1819 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1820 	if (!ncbs) {
1821 		WRITE_ONCE(rdp->nocb_bypass_first, j);
1822 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1823 	}
1824 	rcu_nocb_bypass_unlock(rdp);
1825 	smp_mb(); /* Order enqueue before wake. */
1826 	if (ncbs) {
1827 		local_irq_restore(flags);
1828 	} else {
1829 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1830 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1831 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1832 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1833 					    TPS("FirstBQwake"));
1834 			__call_rcu_nocb_wake(rdp, true, flags);
1835 		} else {
1836 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1837 					    TPS("FirstBQnoWake"));
1838 			rcu_nocb_unlock_irqrestore(rdp, flags);
1839 		}
1840 	}
1841 	return true; // Callback already enqueued.
1842 }
1843 
1844 /*
1845  * Awaken the no-CBs grace-period kthead if needed, either due to it
1846  * legitimately being asleep or due to overload conditions.
1847  *
1848  * If warranted, also wake up the kthread servicing this CPUs queues.
1849  */
1850 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1851 				 unsigned long flags)
1852 				 __releases(rdp->nocb_lock)
1853 {
1854 	unsigned long cur_gp_seq;
1855 	unsigned long j;
1856 	long len;
1857 	struct task_struct *t;
1858 
1859 	// If we are being polled or there is no kthread, just leave.
1860 	t = READ_ONCE(rdp->nocb_gp_kthread);
1861 	if (rcu_nocb_poll || !t) {
1862 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1863 				    TPS("WakeNotPoll"));
1864 		rcu_nocb_unlock_irqrestore(rdp, flags);
1865 		return;
1866 	}
1867 	// Need to actually to a wakeup.
1868 	len = rcu_segcblist_n_cbs(&rdp->cblist);
1869 	if (was_alldone) {
1870 		rdp->qlen_last_fqs_check = len;
1871 		if (!irqs_disabled_flags(flags)) {
1872 			/* ... if queue was empty ... */
1873 			wake_nocb_gp(rdp, false, flags);
1874 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1875 					    TPS("WakeEmpty"));
1876 		} else {
1877 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1878 					   TPS("WakeEmptyIsDeferred"));
1879 			rcu_nocb_unlock_irqrestore(rdp, flags);
1880 		}
1881 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1882 		/* ... or if many callbacks queued. */
1883 		rdp->qlen_last_fqs_check = len;
1884 		j = jiffies;
1885 		if (j != rdp->nocb_gp_adv_time &&
1886 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1887 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1888 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1889 			rdp->nocb_gp_adv_time = j;
1890 		}
1891 		smp_mb(); /* Enqueue before timer_pending(). */
1892 		if ((rdp->nocb_cb_sleep ||
1893 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1894 		    !timer_pending(&rdp->nocb_bypass_timer))
1895 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1896 					   TPS("WakeOvfIsDeferred"));
1897 		rcu_nocb_unlock_irqrestore(rdp, flags);
1898 	} else {
1899 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1900 		rcu_nocb_unlock_irqrestore(rdp, flags);
1901 	}
1902 	return;
1903 }
1904 
1905 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1906 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1907 {
1908 	unsigned long flags;
1909 	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1910 
1911 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1912 	rcu_nocb_lock_irqsave(rdp, flags);
1913 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1914 	__call_rcu_nocb_wake(rdp, true, flags);
1915 }
1916 
1917 /*
1918  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1919  * or for grace periods to end.
1920  */
1921 static void nocb_gp_wait(struct rcu_data *my_rdp)
1922 {
1923 	bool bypass = false;
1924 	long bypass_ncbs;
1925 	int __maybe_unused cpu = my_rdp->cpu;
1926 	unsigned long cur_gp_seq;
1927 	unsigned long flags;
1928 	bool gotcbs = false;
1929 	unsigned long j = jiffies;
1930 	bool needwait_gp = false; // This prevents actual uninitialized use.
1931 	bool needwake;
1932 	bool needwake_gp;
1933 	struct rcu_data *rdp;
1934 	struct rcu_node *rnp;
1935 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1936 	bool wasempty = false;
1937 
1938 	/*
1939 	 * Each pass through the following loop checks for CBs and for the
1940 	 * nearest grace period (if any) to wait for next.  The CB kthreads
1941 	 * and the global grace-period kthread are awakened if needed.
1942 	 */
1943 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1944 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1945 		rcu_nocb_lock_irqsave(rdp, flags);
1946 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1947 		if (bypass_ncbs &&
1948 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1949 		     bypass_ncbs > 2 * qhimark)) {
1950 			// Bypass full or old, so flush it.
1951 			(void)rcu_nocb_try_flush_bypass(rdp, j);
1952 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1953 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1954 			rcu_nocb_unlock_irqrestore(rdp, flags);
1955 			continue; /* No callbacks here, try next. */
1956 		}
1957 		if (bypass_ncbs) {
1958 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1959 					    TPS("Bypass"));
1960 			bypass = true;
1961 		}
1962 		rnp = rdp->mynode;
1963 		if (bypass) {  // Avoid race with first bypass CB.
1964 			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1965 				   RCU_NOCB_WAKE_NOT);
1966 			del_timer(&my_rdp->nocb_timer);
1967 		}
1968 		// Advance callbacks if helpful and low contention.
1969 		needwake_gp = false;
1970 		if (!rcu_segcblist_restempty(&rdp->cblist,
1971 					     RCU_NEXT_READY_TAIL) ||
1972 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1973 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1974 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1975 			needwake_gp = rcu_advance_cbs(rnp, rdp);
1976 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
1977 							   RCU_NEXT_READY_TAIL);
1978 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1979 		}
1980 		// Need to wait on some grace period?
1981 		WARN_ON_ONCE(wasempty &&
1982 			     !rcu_segcblist_restempty(&rdp->cblist,
1983 						      RCU_NEXT_READY_TAIL));
1984 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1985 			if (!needwait_gp ||
1986 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1987 				wait_gp_seq = cur_gp_seq;
1988 			needwait_gp = true;
1989 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1990 					    TPS("NeedWaitGP"));
1991 		}
1992 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1993 			needwake = rdp->nocb_cb_sleep;
1994 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
1995 			smp_mb(); /* CB invocation -after- GP end. */
1996 		} else {
1997 			needwake = false;
1998 		}
1999 		rcu_nocb_unlock_irqrestore(rdp, flags);
2000 		if (needwake) {
2001 			swake_up_one(&rdp->nocb_cb_wq);
2002 			gotcbs = true;
2003 		}
2004 		if (needwake_gp)
2005 			rcu_gp_kthread_wake();
2006 	}
2007 
2008 	my_rdp->nocb_gp_bypass = bypass;
2009 	my_rdp->nocb_gp_gp = needwait_gp;
2010 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2011 	if (bypass && !rcu_nocb_poll) {
2012 		// At least one child with non-empty ->nocb_bypass, so set
2013 		// timer in order to avoid stranding its callbacks.
2014 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2015 		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2016 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2017 	}
2018 	if (rcu_nocb_poll) {
2019 		/* Polling, so trace if first poll in the series. */
2020 		if (gotcbs)
2021 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2022 		schedule_timeout_interruptible(1);
2023 	} else if (!needwait_gp) {
2024 		/* Wait for callbacks to appear. */
2025 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2026 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2027 				!READ_ONCE(my_rdp->nocb_gp_sleep));
2028 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2029 	} else {
2030 		rnp = my_rdp->mynode;
2031 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2032 		swait_event_interruptible_exclusive(
2033 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2034 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2035 			!READ_ONCE(my_rdp->nocb_gp_sleep));
2036 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2037 	}
2038 	if (!rcu_nocb_poll) {
2039 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2040 		if (bypass)
2041 			del_timer(&my_rdp->nocb_bypass_timer);
2042 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2043 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2044 	}
2045 	my_rdp->nocb_gp_seq = -1;
2046 	WARN_ON(signal_pending(current));
2047 }
2048 
2049 /*
2050  * No-CBs grace-period-wait kthread.  There is one of these per group
2051  * of CPUs, but only once at least one CPU in that group has come online
2052  * at least once since boot.  This kthread checks for newly posted
2053  * callbacks from any of the CPUs it is responsible for, waits for a
2054  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2055  * that then have callback-invocation work to do.
2056  */
2057 static int rcu_nocb_gp_kthread(void *arg)
2058 {
2059 	struct rcu_data *rdp = arg;
2060 
2061 	for (;;) {
2062 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2063 		nocb_gp_wait(rdp);
2064 		cond_resched_tasks_rcu_qs();
2065 	}
2066 	return 0;
2067 }
2068 
2069 /*
2070  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2071  * then, if there are no more, wait for more to appear.
2072  */
2073 static void nocb_cb_wait(struct rcu_data *rdp)
2074 {
2075 	unsigned long cur_gp_seq;
2076 	unsigned long flags;
2077 	bool needwake_gp = false;
2078 	struct rcu_node *rnp = rdp->mynode;
2079 
2080 	local_irq_save(flags);
2081 	rcu_momentary_dyntick_idle();
2082 	local_irq_restore(flags);
2083 	local_bh_disable();
2084 	rcu_do_batch(rdp);
2085 	local_bh_enable();
2086 	lockdep_assert_irqs_enabled();
2087 	rcu_nocb_lock_irqsave(rdp, flags);
2088 	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2089 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2090 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2091 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2092 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2093 	}
2094 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2095 		rcu_nocb_unlock_irqrestore(rdp, flags);
2096 		if (needwake_gp)
2097 			rcu_gp_kthread_wake();
2098 		return;
2099 	}
2100 
2101 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2102 	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2103 	rcu_nocb_unlock_irqrestore(rdp, flags);
2104 	if (needwake_gp)
2105 		rcu_gp_kthread_wake();
2106 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2107 				 !READ_ONCE(rdp->nocb_cb_sleep));
2108 	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2109 		/* ^^^ Ensure CB invocation follows _sleep test. */
2110 		return;
2111 	}
2112 	WARN_ON(signal_pending(current));
2113 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2114 }
2115 
2116 /*
2117  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2118  * nocb_cb_wait() to do the dirty work.
2119  */
2120 static int rcu_nocb_cb_kthread(void *arg)
2121 {
2122 	struct rcu_data *rdp = arg;
2123 
2124 	// Each pass through this loop does one callback batch, and,
2125 	// if there are no more ready callbacks, waits for them.
2126 	for (;;) {
2127 		nocb_cb_wait(rdp);
2128 		cond_resched_tasks_rcu_qs();
2129 	}
2130 	return 0;
2131 }
2132 
2133 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2134 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2135 {
2136 	return READ_ONCE(rdp->nocb_defer_wakeup);
2137 }
2138 
2139 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2140 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2141 {
2142 	unsigned long flags;
2143 	int ndw;
2144 
2145 	rcu_nocb_lock_irqsave(rdp, flags);
2146 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2147 		rcu_nocb_unlock_irqrestore(rdp, flags);
2148 		return;
2149 	}
2150 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2151 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2152 	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2153 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2154 }
2155 
2156 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2157 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2158 {
2159 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2160 
2161 	do_nocb_deferred_wakeup_common(rdp);
2162 }
2163 
2164 /*
2165  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2166  * This means we do an inexact common-case check.  Note that if
2167  * we miss, ->nocb_timer will eventually clean things up.
2168  */
2169 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2170 {
2171 	if (rcu_nocb_need_deferred_wakeup(rdp))
2172 		do_nocb_deferred_wakeup_common(rdp);
2173 }
2174 
2175 void __init rcu_init_nohz(void)
2176 {
2177 	int cpu;
2178 	bool need_rcu_nocb_mask = false;
2179 	struct rcu_data *rdp;
2180 
2181 #if defined(CONFIG_NO_HZ_FULL)
2182 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2183 		need_rcu_nocb_mask = true;
2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2185 
2186 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2187 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2188 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2189 			return;
2190 		}
2191 	}
2192 	if (!cpumask_available(rcu_nocb_mask))
2193 		return;
2194 
2195 #if defined(CONFIG_NO_HZ_FULL)
2196 	if (tick_nohz_full_running)
2197 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2198 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2199 
2200 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2201 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2202 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2203 			    rcu_nocb_mask);
2204 	}
2205 	if (cpumask_empty(rcu_nocb_mask))
2206 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2207 	else
2208 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2209 			cpumask_pr_args(rcu_nocb_mask));
2210 	if (rcu_nocb_poll)
2211 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2212 
2213 	for_each_cpu(cpu, rcu_nocb_mask) {
2214 		rdp = per_cpu_ptr(&rcu_data, cpu);
2215 		if (rcu_segcblist_empty(&rdp->cblist))
2216 			rcu_segcblist_init(&rdp->cblist);
2217 		rcu_segcblist_offload(&rdp->cblist);
2218 	}
2219 	rcu_organize_nocb_kthreads();
2220 }
2221 
2222 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2223 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2224 {
2225 	init_swait_queue_head(&rdp->nocb_cb_wq);
2226 	init_swait_queue_head(&rdp->nocb_gp_wq);
2227 	raw_spin_lock_init(&rdp->nocb_lock);
2228 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2229 	raw_spin_lock_init(&rdp->nocb_gp_lock);
2230 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2231 	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2232 	rcu_cblist_init(&rdp->nocb_bypass);
2233 }
2234 
2235 /*
2236  * If the specified CPU is a no-CBs CPU that does not already have its
2237  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2238  * for this CPU's group has not yet been created, spawn it as well.
2239  */
2240 static void rcu_spawn_one_nocb_kthread(int cpu)
2241 {
2242 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2243 	struct rcu_data *rdp_gp;
2244 	struct task_struct *t;
2245 
2246 	/*
2247 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2248 	 * then nothing to do.
2249 	 */
2250 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2251 		return;
2252 
2253 	/* If we didn't spawn the GP kthread first, reorganize! */
2254 	rdp_gp = rdp->nocb_gp_rdp;
2255 	if (!rdp_gp->nocb_gp_kthread) {
2256 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2257 				"rcuog/%d", rdp_gp->cpu);
2258 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2259 			return;
2260 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2261 	}
2262 
2263 	/* Spawn the kthread for this CPU. */
2264 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2265 			"rcuo%c/%d", rcu_state.abbr, cpu);
2266 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2267 		return;
2268 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2269 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2270 }
2271 
2272 /*
2273  * If the specified CPU is a no-CBs CPU that does not already have its
2274  * rcuo kthread, spawn it.
2275  */
2276 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2277 {
2278 	if (rcu_scheduler_fully_active)
2279 		rcu_spawn_one_nocb_kthread(cpu);
2280 }
2281 
2282 /*
2283  * Once the scheduler is running, spawn rcuo kthreads for all online
2284  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2285  * non-boot CPUs come online -- if this changes, we will need to add
2286  * some mutual exclusion.
2287  */
2288 static void __init rcu_spawn_nocb_kthreads(void)
2289 {
2290 	int cpu;
2291 
2292 	for_each_online_cpu(cpu)
2293 		rcu_spawn_cpu_nocb_kthread(cpu);
2294 }
2295 
2296 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2297 static int rcu_nocb_gp_stride = -1;
2298 module_param(rcu_nocb_gp_stride, int, 0444);
2299 
2300 /*
2301  * Initialize GP-CB relationships for all no-CBs CPU.
2302  */
2303 static void __init rcu_organize_nocb_kthreads(void)
2304 {
2305 	int cpu;
2306 	bool firsttime = true;
2307 	bool gotnocbs = false;
2308 	bool gotnocbscbs = true;
2309 	int ls = rcu_nocb_gp_stride;
2310 	int nl = 0;  /* Next GP kthread. */
2311 	struct rcu_data *rdp;
2312 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2313 	struct rcu_data *rdp_prev = NULL;
2314 
2315 	if (!cpumask_available(rcu_nocb_mask))
2316 		return;
2317 	if (ls == -1) {
2318 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2319 		rcu_nocb_gp_stride = ls;
2320 	}
2321 
2322 	/*
2323 	 * Each pass through this loop sets up one rcu_data structure.
2324 	 * Should the corresponding CPU come online in the future, then
2325 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2326 	 */
2327 	for_each_cpu(cpu, rcu_nocb_mask) {
2328 		rdp = per_cpu_ptr(&rcu_data, cpu);
2329 		if (rdp->cpu >= nl) {
2330 			/* New GP kthread, set up for CBs & next GP. */
2331 			gotnocbs = true;
2332 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2333 			rdp->nocb_gp_rdp = rdp;
2334 			rdp_gp = rdp;
2335 			if (dump_tree) {
2336 				if (!firsttime)
2337 					pr_cont("%s\n", gotnocbscbs
2338 							? "" : " (self only)");
2339 				gotnocbscbs = false;
2340 				firsttime = false;
2341 				pr_alert("%s: No-CB GP kthread CPU %d:",
2342 					 __func__, cpu);
2343 			}
2344 		} else {
2345 			/* Another CB kthread, link to previous GP kthread. */
2346 			gotnocbscbs = true;
2347 			rdp->nocb_gp_rdp = rdp_gp;
2348 			rdp_prev->nocb_next_cb_rdp = rdp;
2349 			if (dump_tree)
2350 				pr_cont(" %d", cpu);
2351 		}
2352 		rdp_prev = rdp;
2353 	}
2354 	if (gotnocbs && dump_tree)
2355 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2356 }
2357 
2358 /*
2359  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2360  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2361  */
2362 void rcu_bind_current_to_nocb(void)
2363 {
2364 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2365 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2366 }
2367 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2368 
2369 /*
2370  * Dump out nocb grace-period kthread state for the specified rcu_data
2371  * structure.
2372  */
2373 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2374 {
2375 	struct rcu_node *rnp = rdp->mynode;
2376 
2377 	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2378 		rdp->cpu,
2379 		"kK"[!!rdp->nocb_gp_kthread],
2380 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2381 		"dD"[!!rdp->nocb_defer_wakeup],
2382 		"tT"[timer_pending(&rdp->nocb_timer)],
2383 		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2384 		"sS"[!!rdp->nocb_gp_sleep],
2385 		".W"[swait_active(&rdp->nocb_gp_wq)],
2386 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2387 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2388 		".B"[!!rdp->nocb_gp_bypass],
2389 		".G"[!!rdp->nocb_gp_gp],
2390 		(long)rdp->nocb_gp_seq,
2391 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2392 }
2393 
2394 /* Dump out nocb kthread state for the specified rcu_data structure. */
2395 static void show_rcu_nocb_state(struct rcu_data *rdp)
2396 {
2397 	struct rcu_segcblist *rsclp = &rdp->cblist;
2398 	bool waslocked;
2399 	bool wastimer;
2400 	bool wassleep;
2401 
2402 	if (rdp->nocb_gp_rdp == rdp)
2403 		show_rcu_nocb_gp_state(rdp);
2404 
2405 	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2406 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2407 		"kK"[!!rdp->nocb_cb_kthread],
2408 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2409 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2410 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2411 		"sS"[!!rdp->nocb_cb_sleep],
2412 		".W"[swait_active(&rdp->nocb_cb_wq)],
2413 		jiffies - rdp->nocb_bypass_first,
2414 		jiffies - rdp->nocb_nobypass_last,
2415 		rdp->nocb_nobypass_count,
2416 		".D"[rcu_segcblist_ready_cbs(rsclp)],
2417 		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2418 		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2419 		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2420 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2421 		rcu_segcblist_n_cbs(&rdp->cblist));
2422 
2423 	/* It is OK for GP kthreads to have GP state. */
2424 	if (rdp->nocb_gp_rdp == rdp)
2425 		return;
2426 
2427 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2428 	wastimer = timer_pending(&rdp->nocb_timer);
2429 	wassleep = swait_active(&rdp->nocb_gp_wq);
2430 	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2431 	    !waslocked && !wastimer && !wassleep)
2432 		return;  /* Nothing untowards. */
2433 
2434 	pr_info("   !!! %c%c%c%c %c\n",
2435 		"lL"[waslocked],
2436 		"dD"[!!rdp->nocb_defer_wakeup],
2437 		"tT"[wastimer],
2438 		"sS"[!!rdp->nocb_gp_sleep],
2439 		".W"[wassleep]);
2440 }
2441 
2442 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2443 
2444 /* No ->nocb_lock to acquire.  */
2445 static void rcu_nocb_lock(struct rcu_data *rdp)
2446 {
2447 }
2448 
2449 /* No ->nocb_lock to release.  */
2450 static void rcu_nocb_unlock(struct rcu_data *rdp)
2451 {
2452 }
2453 
2454 /* No ->nocb_lock to release.  */
2455 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2456 				       unsigned long flags)
2457 {
2458 	local_irq_restore(flags);
2459 }
2460 
2461 /* Lockdep check that ->cblist may be safely accessed. */
2462 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2463 {
2464 	lockdep_assert_irqs_disabled();
2465 }
2466 
2467 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2468 {
2469 }
2470 
2471 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2472 {
2473 	return NULL;
2474 }
2475 
2476 static void rcu_init_one_nocb(struct rcu_node *rnp)
2477 {
2478 }
2479 
2480 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2481 				  unsigned long j)
2482 {
2483 	return true;
2484 }
2485 
2486 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2487 				bool *was_alldone, unsigned long flags)
2488 {
2489 	return false;
2490 }
2491 
2492 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2493 				 unsigned long flags)
2494 {
2495 	WARN_ON_ONCE(1);  /* Should be dead code! */
2496 }
2497 
2498 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2499 {
2500 }
2501 
2502 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2503 {
2504 	return false;
2505 }
2506 
2507 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2508 {
2509 }
2510 
2511 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2512 {
2513 }
2514 
2515 static void __init rcu_spawn_nocb_kthreads(void)
2516 {
2517 }
2518 
2519 static void show_rcu_nocb_state(struct rcu_data *rdp)
2520 {
2521 }
2522 
2523 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2524 
2525 /*
2526  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2527  * grace-period kthread will do force_quiescent_state() processing?
2528  * The idea is to avoid waking up RCU core processing on such a
2529  * CPU unless the grace period has extended for too long.
2530  *
2531  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2532  * CONFIG_RCU_NOCB_CPU CPUs.
2533  */
2534 static bool rcu_nohz_full_cpu(void)
2535 {
2536 #ifdef CONFIG_NO_HZ_FULL
2537 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2538 	    (!rcu_gp_in_progress() ||
2539 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2540 		return true;
2541 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2542 	return false;
2543 }
2544 
2545 /*
2546  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2547  */
2548 static void rcu_bind_gp_kthread(void)
2549 {
2550 	if (!tick_nohz_full_enabled())
2551 		return;
2552 	housekeeping_affine(current, HK_FLAG_RCU);
2553 }
2554 
2555 /* Record the current task on dyntick-idle entry. */
2556 static void rcu_dynticks_task_enter(void)
2557 {
2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2559 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2561 }
2562 
2563 /* Record no current task on dyntick-idle exit. */
2564 static void rcu_dynticks_task_exit(void)
2565 {
2566 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2567 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2568 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2569 }
2570