xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision ccd51b9f)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20 
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 	if (IS_ENABLED(CONFIG_RCU_TRACE))
28 		pr_info("\tRCU event tracing is enabled.\n");
29 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 			RCU_FANOUT);
33 	if (rcu_fanout_exact)
34 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 	if (IS_ENABLED(CONFIG_PROVE_RCU))
38 		pr_info("\tRCU lockdep checking is enabled.\n");
39 	if (RCU_NUM_LVLS >= 4)
40 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 	if (RCU_FANOUT_LEAF != 16)
42 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 			RCU_FANOUT_LEAF);
44 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 			rcu_fanout_leaf);
47 	if (nr_cpu_ids != NR_CPUS)
48 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 	if (blimit != DEFAULT_RCU_BLIMIT)
54 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 	if (qhimark != DEFAULT_RCU_QHIMARK)
56 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 	if (qlowmark != DEFAULT_RCU_QLOMARK)
58 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 	if (jiffies_till_first_fqs != ULONG_MAX)
60 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 	if (jiffies_till_next_fqs != ULONG_MAX)
62 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63 	if (jiffies_till_sched_qs != ULONG_MAX)
64 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65 	if (rcu_kick_kthreads)
66 		pr_info("\tKick kthreads if too-long grace period.\n");
67 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69 	if (gp_preinit_delay)
70 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71 	if (gp_init_delay)
72 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73 	if (gp_cleanup_delay)
74 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75 	if (!use_softirq)
76 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 		pr_info("\tRCU debug extended QS entry/exit.\n");
79 	rcupdate_announce_bootup_oddness();
80 }
81 
82 #ifdef CONFIG_PREEMPT_RCU
83 
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86 
87 /*
88  * Tell them what RCU they are running.
89  */
90 static void __init rcu_bootup_announce(void)
91 {
92 	pr_info("Preemptible hierarchical RCU implementation.\n");
93 	rcu_bootup_announce_oddness();
94 }
95 
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS	0x8
98 #define RCU_EXP_TASKS	0x4
99 #define RCU_GP_BLKD	0x2
100 #define RCU_EXP_BLKD	0x1
101 
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 	__releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 	struct task_struct *t = current;
138 
139 	raw_lockdep_assert_held_rcu_node(rnp);
140 	WARN_ON_ONCE(rdp->mynode != rnp);
141 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142 	/* RCU better not be waiting on newly onlined CPUs! */
143 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 		     rdp->grpmask);
145 
146 	/*
147 	 * Decide where to queue the newly blocked task.  In theory,
148 	 * this could be an if-statement.  In practice, when I tried
149 	 * that, it was quite messy.
150 	 */
151 	switch (blkd_state) {
152 	case 0:
153 	case                RCU_EXP_TASKS:
154 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
155 	case RCU_GP_TASKS:
156 	case RCU_GP_TASKS + RCU_EXP_TASKS:
157 
158 		/*
159 		 * Blocking neither GP, or first task blocking the normal
160 		 * GP but not blocking the already-waiting expedited GP.
161 		 * Queue at the head of the list to avoid unnecessarily
162 		 * blocking the already-waiting GPs.
163 		 */
164 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 		break;
166 
167 	case                                              RCU_EXP_BLKD:
168 	case                                RCU_GP_BLKD:
169 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173 
174 		/*
175 		 * First task arriving that blocks either GP, or first task
176 		 * arriving that blocks the expedited GP (with the normal
177 		 * GP already waiting), or a task arriving that blocks
178 		 * both GPs with both GPs already waiting.  Queue at the
179 		 * tail of the list to avoid any GP waiting on any of the
180 		 * already queued tasks that are not blocking it.
181 		 */
182 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 		break;
184 
185 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188 
189 		/*
190 		 * Second or subsequent task blocking the expedited GP.
191 		 * The task either does not block the normal GP, or is the
192 		 * first task blocking the normal GP.  Queue just after
193 		 * the first task blocking the expedited GP.
194 		 */
195 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 		break;
197 
198 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the normal GP.
203 		 * The task does not block the expedited GP. Queue just
204 		 * after the first task blocking the normal GP.
205 		 */
206 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 		break;
208 
209 	default:
210 
211 		/* Yet another exercise in excessive paranoia. */
212 		WARN_ON_ONCE(1);
213 		break;
214 	}
215 
216 	/*
217 	 * We have now queued the task.  If it was the first one to
218 	 * block either grace period, update the ->gp_tasks and/or
219 	 * ->exp_tasks pointers, respectively, to reference the newly
220 	 * blocked tasks.
221 	 */
222 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223 		rnp->gp_tasks = &t->rcu_node_entry;
224 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225 	}
226 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 		rnp->exp_tasks = &t->rcu_node_entry;
228 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 		     !(rnp->qsmask & rdp->grpmask));
230 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 		     !(rnp->expmask & rdp->grpmask));
232 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233 
234 	/*
235 	 * Report the quiescent state for the expedited GP.  This expedited
236 	 * GP should not be able to end until we report, so there should be
237 	 * no need to check for a subsequent expedited GP.  (Though we are
238 	 * still in a quiescent state in any case.)
239 	 */
240 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241 		rcu_report_exp_rdp(rdp);
242 	else
243 		WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245 
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
259 static void rcu_qs(void)
260 {
261 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263 		trace_rcu_grace_period(TPS("rcu_preempt"),
264 				       __this_cpu_read(rcu_data.gp_seq),
265 				       TPS("cpuqs"));
266 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269 	}
270 }
271 
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
285 void rcu_note_context_switch(bool preempt)
286 {
287 	struct task_struct *t = current;
288 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289 	struct rcu_node *rnp;
290 
291 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
292 	trace_rcu_utilization(TPS("Start context switch"));
293 	lockdep_assert_irqs_disabled();
294 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
295 	if (t->rcu_read_lock_nesting > 0 &&
296 	    !t->rcu_read_unlock_special.b.blocked) {
297 
298 		/* Possibly blocking in an RCU read-side critical section. */
299 		rnp = rdp->mynode;
300 		raw_spin_lock_rcu_node(rnp);
301 		t->rcu_read_unlock_special.b.blocked = true;
302 		t->rcu_blocked_node = rnp;
303 
304 		/*
305 		 * Verify the CPU's sanity, trace the preemption, and
306 		 * then queue the task as required based on the states
307 		 * of any ongoing and expedited grace periods.
308 		 */
309 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
310 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
311 		trace_rcu_preempt_task(rcu_state.name,
312 				       t->pid,
313 				       (rnp->qsmask & rdp->grpmask)
314 				       ? rnp->gp_seq
315 				       : rcu_seq_snap(&rnp->gp_seq));
316 		rcu_preempt_ctxt_queue(rnp, rdp);
317 	} else if (t->rcu_read_lock_nesting < 0 &&
318 		   t->rcu_read_unlock_special.s) {
319 
320 		/*
321 		 * Complete exit from RCU read-side critical section on
322 		 * behalf of preempted instance of __rcu_read_unlock().
323 		 */
324 		rcu_read_unlock_special(t);
325 		rcu_preempt_deferred_qs(t);
326 	} else {
327 		rcu_preempt_deferred_qs(t);
328 	}
329 
330 	/*
331 	 * Either we were not in an RCU read-side critical section to
332 	 * begin with, or we have now recorded that critical section
333 	 * globally.  Either way, we can now note a quiescent state
334 	 * for this CPU.  Again, if we were in an RCU read-side critical
335 	 * section, and if that critical section was blocking the current
336 	 * grace period, then the fact that the task has been enqueued
337 	 * means that we continue to block the current grace period.
338 	 */
339 	rcu_qs();
340 	if (rdp->exp_deferred_qs)
341 		rcu_report_exp_rdp(rdp);
342 	trace_rcu_utilization(TPS("End context switch"));
343 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
344 }
345 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
346 
347 /*
348  * Check for preempted RCU readers blocking the current grace period
349  * for the specified rcu_node structure.  If the caller needs a reliable
350  * answer, it must hold the rcu_node's ->lock.
351  */
352 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
353 {
354 	return rnp->gp_tasks != NULL;
355 }
356 
357 /* Bias and limit values for ->rcu_read_lock_nesting. */
358 #define RCU_NEST_BIAS INT_MAX
359 #define RCU_NEST_NMAX (-INT_MAX / 2)
360 #define RCU_NEST_PMAX (INT_MAX / 2)
361 
362 /*
363  * Preemptible RCU implementation for rcu_read_lock().
364  * Just increment ->rcu_read_lock_nesting, shared state will be updated
365  * if we block.
366  */
367 void __rcu_read_lock(void)
368 {
369 	current->rcu_read_lock_nesting++;
370 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
371 		WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
372 	barrier();  /* critical section after entry code. */
373 }
374 EXPORT_SYMBOL_GPL(__rcu_read_lock);
375 
376 /*
377  * Preemptible RCU implementation for rcu_read_unlock().
378  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
379  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
380  * invoke rcu_read_unlock_special() to clean up after a context switch
381  * in an RCU read-side critical section and other special cases.
382  */
383 void __rcu_read_unlock(void)
384 {
385 	struct task_struct *t = current;
386 
387 	if (t->rcu_read_lock_nesting != 1) {
388 		--t->rcu_read_lock_nesting;
389 	} else {
390 		barrier();  /* critical section before exit code. */
391 		t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
392 		barrier();  /* assign before ->rcu_read_unlock_special load */
393 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
394 			rcu_read_unlock_special(t);
395 		barrier();  /* ->rcu_read_unlock_special load before assign */
396 		t->rcu_read_lock_nesting = 0;
397 	}
398 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
399 		int rrln = t->rcu_read_lock_nesting;
400 
401 		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
402 	}
403 }
404 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
405 
406 /*
407  * Advance a ->blkd_tasks-list pointer to the next entry, instead
408  * returning NULL if at the end of the list.
409  */
410 static struct list_head *rcu_next_node_entry(struct task_struct *t,
411 					     struct rcu_node *rnp)
412 {
413 	struct list_head *np;
414 
415 	np = t->rcu_node_entry.next;
416 	if (np == &rnp->blkd_tasks)
417 		np = NULL;
418 	return np;
419 }
420 
421 /*
422  * Return true if the specified rcu_node structure has tasks that were
423  * preempted within an RCU read-side critical section.
424  */
425 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
426 {
427 	return !list_empty(&rnp->blkd_tasks);
428 }
429 
430 /*
431  * Report deferred quiescent states.  The deferral time can
432  * be quite short, for example, in the case of the call from
433  * rcu_read_unlock_special().
434  */
435 static void
436 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
437 {
438 	bool empty_exp;
439 	bool empty_norm;
440 	bool empty_exp_now;
441 	struct list_head *np;
442 	bool drop_boost_mutex = false;
443 	struct rcu_data *rdp;
444 	struct rcu_node *rnp;
445 	union rcu_special special;
446 
447 	/*
448 	 * If RCU core is waiting for this CPU to exit its critical section,
449 	 * report the fact that it has exited.  Because irqs are disabled,
450 	 * t->rcu_read_unlock_special cannot change.
451 	 */
452 	special = t->rcu_read_unlock_special;
453 	rdp = this_cpu_ptr(&rcu_data);
454 	if (!special.s && !rdp->exp_deferred_qs) {
455 		local_irq_restore(flags);
456 		return;
457 	}
458 	t->rcu_read_unlock_special.b.deferred_qs = false;
459 	if (special.b.need_qs) {
460 		rcu_qs();
461 		t->rcu_read_unlock_special.b.need_qs = false;
462 		if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
463 			local_irq_restore(flags);
464 			return;
465 		}
466 	}
467 
468 	/*
469 	 * Respond to a request by an expedited grace period for a
470 	 * quiescent state from this CPU.  Note that requests from
471 	 * tasks are handled when removing the task from the
472 	 * blocked-tasks list below.
473 	 */
474 	if (rdp->exp_deferred_qs) {
475 		rcu_report_exp_rdp(rdp);
476 		if (!t->rcu_read_unlock_special.s) {
477 			local_irq_restore(flags);
478 			return;
479 		}
480 	}
481 
482 	/* Clean up if blocked during RCU read-side critical section. */
483 	if (special.b.blocked) {
484 		t->rcu_read_unlock_special.b.blocked = false;
485 
486 		/*
487 		 * Remove this task from the list it blocked on.  The task
488 		 * now remains queued on the rcu_node corresponding to the
489 		 * CPU it first blocked on, so there is no longer any need
490 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
491 		 */
492 		rnp = t->rcu_blocked_node;
493 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
494 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
495 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
496 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
497 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
498 			     (!empty_norm || rnp->qsmask));
499 		empty_exp = sync_rcu_preempt_exp_done(rnp);
500 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
501 		np = rcu_next_node_entry(t, rnp);
502 		list_del_init(&t->rcu_node_entry);
503 		t->rcu_blocked_node = NULL;
504 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
505 						rnp->gp_seq, t->pid);
506 		if (&t->rcu_node_entry == rnp->gp_tasks)
507 			rnp->gp_tasks = np;
508 		if (&t->rcu_node_entry == rnp->exp_tasks)
509 			rnp->exp_tasks = np;
510 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
511 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
512 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
513 			if (&t->rcu_node_entry == rnp->boost_tasks)
514 				rnp->boost_tasks = np;
515 		}
516 
517 		/*
518 		 * If this was the last task on the current list, and if
519 		 * we aren't waiting on any CPUs, report the quiescent state.
520 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
521 		 * so we must take a snapshot of the expedited state.
522 		 */
523 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
524 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
525 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
526 							 rnp->gp_seq,
527 							 0, rnp->qsmask,
528 							 rnp->level,
529 							 rnp->grplo,
530 							 rnp->grphi,
531 							 !!rnp->gp_tasks);
532 			rcu_report_unblock_qs_rnp(rnp, flags);
533 		} else {
534 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
535 		}
536 
537 		/* Unboost if we were boosted. */
538 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
539 			rt_mutex_futex_unlock(&rnp->boost_mtx);
540 
541 		/*
542 		 * If this was the last task on the expedited lists,
543 		 * then we need to report up the rcu_node hierarchy.
544 		 */
545 		if (!empty_exp && empty_exp_now)
546 			rcu_report_exp_rnp(rnp, true);
547 	} else {
548 		local_irq_restore(flags);
549 	}
550 }
551 
552 /*
553  * Is a deferred quiescent-state pending, and are we also not in
554  * an RCU read-side critical section?  It is the caller's responsibility
555  * to ensure it is otherwise safe to report any deferred quiescent
556  * states.  The reason for this is that it is safe to report a
557  * quiescent state during context switch even though preemption
558  * is disabled.  This function cannot be expected to understand these
559  * nuances, so the caller must handle them.
560  */
561 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
562 {
563 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
564 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
565 	       t->rcu_read_lock_nesting <= 0;
566 }
567 
568 /*
569  * Report a deferred quiescent state if needed and safe to do so.
570  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
571  * not being in an RCU read-side critical section.  The caller must
572  * evaluate safety in terms of interrupt, softirq, and preemption
573  * disabling.
574  */
575 static void rcu_preempt_deferred_qs(struct task_struct *t)
576 {
577 	unsigned long flags;
578 	bool couldrecurse = t->rcu_read_lock_nesting >= 0;
579 
580 	if (!rcu_preempt_need_deferred_qs(t))
581 		return;
582 	if (couldrecurse)
583 		t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
584 	local_irq_save(flags);
585 	rcu_preempt_deferred_qs_irqrestore(t, flags);
586 	if (couldrecurse)
587 		t->rcu_read_lock_nesting += RCU_NEST_BIAS;
588 }
589 
590 /*
591  * Minimal handler to give the scheduler a chance to re-evaluate.
592  */
593 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
594 {
595 	struct rcu_data *rdp;
596 
597 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
598 	rdp->defer_qs_iw_pending = false;
599 }
600 
601 /*
602  * Handle special cases during rcu_read_unlock(), such as needing to
603  * notify RCU core processing or task having blocked during the RCU
604  * read-side critical section.
605  */
606 static void rcu_read_unlock_special(struct task_struct *t)
607 {
608 	unsigned long flags;
609 	bool preempt_bh_were_disabled =
610 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
611 	bool irqs_were_disabled;
612 
613 	/* NMI handlers cannot block and cannot safely manipulate state. */
614 	if (in_nmi())
615 		return;
616 
617 	local_irq_save(flags);
618 	irqs_were_disabled = irqs_disabled_flags(flags);
619 	if (preempt_bh_were_disabled || irqs_were_disabled) {
620 		bool exp;
621 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
622 		struct rcu_node *rnp = rdp->mynode;
623 
624 		t->rcu_read_unlock_special.b.exp_hint = false;
625 		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
626 		      (rdp->grpmask & rnp->expmask) ||
627 		      tick_nohz_full_cpu(rdp->cpu);
628 		// Need to defer quiescent state until everything is enabled.
629 		if ((exp || in_irq()) && irqs_were_disabled && use_softirq &&
630 		    (in_irq() || !t->rcu_read_unlock_special.b.deferred_qs)) {
631 			// Using softirq, safe to awaken, and we get
632 			// no help from enabling irqs, unlike bh/preempt.
633 			raise_softirq_irqoff(RCU_SOFTIRQ);
634 		} else if (exp && irqs_were_disabled && !use_softirq &&
635 			   !t->rcu_read_unlock_special.b.deferred_qs) {
636 			// Safe to awaken and we get no help from enabling
637 			// irqs, unlike bh/preempt.
638 			invoke_rcu_core();
639 		} else {
640 			// Enabling BH or preempt does reschedule, so...
641 			// Also if no expediting or NO_HZ_FULL, slow is OK.
642 			set_tsk_need_resched(current);
643 			set_preempt_need_resched();
644 			if (IS_ENABLED(CONFIG_IRQ_WORK) &&
645 			    !rdp->defer_qs_iw_pending && exp) {
646 				// Get scheduler to re-evaluate and call hooks.
647 				// If !IRQ_WORK, FQS scan will eventually IPI.
648 				init_irq_work(&rdp->defer_qs_iw,
649 					      rcu_preempt_deferred_qs_handler);
650 				rdp->defer_qs_iw_pending = true;
651 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
652 			}
653 		}
654 		t->rcu_read_unlock_special.b.deferred_qs = true;
655 		local_irq_restore(flags);
656 		return;
657 	}
658 	WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
659 	rcu_preempt_deferred_qs_irqrestore(t, flags);
660 }
661 
662 /*
663  * Check that the list of blocked tasks for the newly completed grace
664  * period is in fact empty.  It is a serious bug to complete a grace
665  * period that still has RCU readers blocked!  This function must be
666  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
667  * must be held by the caller.
668  *
669  * Also, if there are blocked tasks on the list, they automatically
670  * block the newly created grace period, so set up ->gp_tasks accordingly.
671  */
672 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
673 {
674 	struct task_struct *t;
675 
676 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
677 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
678 		dump_blkd_tasks(rnp, 10);
679 	if (rcu_preempt_has_tasks(rnp) &&
680 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
681 		rnp->gp_tasks = rnp->blkd_tasks.next;
682 		t = container_of(rnp->gp_tasks, struct task_struct,
683 				 rcu_node_entry);
684 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
685 						rnp->gp_seq, t->pid);
686 	}
687 	WARN_ON_ONCE(rnp->qsmask);
688 }
689 
690 /*
691  * Check for a quiescent state from the current CPU, including voluntary
692  * context switches for Tasks RCU.  When a task blocks, the task is
693  * recorded in the corresponding CPU's rcu_node structure, which is checked
694  * elsewhere, hence this function need only check for quiescent states
695  * related to the current CPU, not to those related to tasks.
696  */
697 static void rcu_flavor_sched_clock_irq(int user)
698 {
699 	struct task_struct *t = current;
700 
701 	if (user || rcu_is_cpu_rrupt_from_idle()) {
702 		rcu_note_voluntary_context_switch(current);
703 	}
704 	if (t->rcu_read_lock_nesting > 0 ||
705 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
706 		/* No QS, force context switch if deferred. */
707 		if (rcu_preempt_need_deferred_qs(t)) {
708 			set_tsk_need_resched(t);
709 			set_preempt_need_resched();
710 		}
711 	} else if (rcu_preempt_need_deferred_qs(t)) {
712 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
713 		return;
714 	} else if (!t->rcu_read_lock_nesting) {
715 		rcu_qs(); /* Report immediate QS. */
716 		return;
717 	}
718 
719 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
720 	if (t->rcu_read_lock_nesting > 0 &&
721 	    __this_cpu_read(rcu_data.core_needs_qs) &&
722 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
723 	    !t->rcu_read_unlock_special.b.need_qs &&
724 	    time_after(jiffies, rcu_state.gp_start + HZ))
725 		t->rcu_read_unlock_special.b.need_qs = true;
726 }
727 
728 /*
729  * Check for a task exiting while in a preemptible-RCU read-side
730  * critical section, clean up if so.  No need to issue warnings, as
731  * debug_check_no_locks_held() already does this if lockdep is enabled.
732  * Besides, if this function does anything other than just immediately
733  * return, there was a bug of some sort.  Spewing warnings from this
734  * function is like as not to simply obscure important prior warnings.
735  */
736 void exit_rcu(void)
737 {
738 	struct task_struct *t = current;
739 
740 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
741 		t->rcu_read_lock_nesting = 1;
742 		barrier();
743 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
744 	} else if (unlikely(t->rcu_read_lock_nesting)) {
745 		t->rcu_read_lock_nesting = 1;
746 	} else {
747 		return;
748 	}
749 	__rcu_read_unlock();
750 	rcu_preempt_deferred_qs(current);
751 }
752 
753 /*
754  * Dump the blocked-tasks state, but limit the list dump to the
755  * specified number of elements.
756  */
757 static void
758 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
759 {
760 	int cpu;
761 	int i;
762 	struct list_head *lhp;
763 	bool onl;
764 	struct rcu_data *rdp;
765 	struct rcu_node *rnp1;
766 
767 	raw_lockdep_assert_held_rcu_node(rnp);
768 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
769 		__func__, rnp->grplo, rnp->grphi, rnp->level,
770 		(long)rnp->gp_seq, (long)rnp->completedqs);
771 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
772 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
773 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
774 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
775 		__func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
776 	pr_info("%s: ->blkd_tasks", __func__);
777 	i = 0;
778 	list_for_each(lhp, &rnp->blkd_tasks) {
779 		pr_cont(" %p", lhp);
780 		if (++i >= ncheck)
781 			break;
782 	}
783 	pr_cont("\n");
784 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
785 		rdp = per_cpu_ptr(&rcu_data, cpu);
786 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
787 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
788 			cpu, ".o"[onl],
789 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
790 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
791 	}
792 }
793 
794 #else /* #ifdef CONFIG_PREEMPT_RCU */
795 
796 /*
797  * Tell them what RCU they are running.
798  */
799 static void __init rcu_bootup_announce(void)
800 {
801 	pr_info("Hierarchical RCU implementation.\n");
802 	rcu_bootup_announce_oddness();
803 }
804 
805 /*
806  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
807  * how many quiescent states passed, just if there was at least one since
808  * the start of the grace period, this just sets a flag.  The caller must
809  * have disabled preemption.
810  */
811 static void rcu_qs(void)
812 {
813 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
814 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
815 		return;
816 	trace_rcu_grace_period(TPS("rcu_sched"),
817 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
818 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
819 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
820 		return;
821 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
822 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
823 }
824 
825 /*
826  * Register an urgently needed quiescent state.  If there is an
827  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
828  * dyntick-idle quiescent state visible to other CPUs, which will in
829  * some cases serve for expedited as well as normal grace periods.
830  * Either way, register a lightweight quiescent state.
831  *
832  * The barrier() calls are redundant in the common case when this is
833  * called externally, but just in case this is called from within this
834  * file.
835  *
836  */
837 void rcu_all_qs(void)
838 {
839 	unsigned long flags;
840 
841 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
842 		return;
843 	preempt_disable();
844 	/* Load rcu_urgent_qs before other flags. */
845 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
846 		preempt_enable();
847 		return;
848 	}
849 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
850 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
851 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
852 		local_irq_save(flags);
853 		rcu_momentary_dyntick_idle();
854 		local_irq_restore(flags);
855 	}
856 	rcu_qs();
857 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
858 	preempt_enable();
859 }
860 EXPORT_SYMBOL_GPL(rcu_all_qs);
861 
862 /*
863  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
864  */
865 void rcu_note_context_switch(bool preempt)
866 {
867 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
868 	trace_rcu_utilization(TPS("Start context switch"));
869 	rcu_qs();
870 	/* Load rcu_urgent_qs before other flags. */
871 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
872 		goto out;
873 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
874 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
875 		rcu_momentary_dyntick_idle();
876 	if (!preempt)
877 		rcu_tasks_qs(current);
878 out:
879 	trace_rcu_utilization(TPS("End context switch"));
880 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
881 }
882 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
883 
884 /*
885  * Because preemptible RCU does not exist, there are never any preempted
886  * RCU readers.
887  */
888 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
889 {
890 	return 0;
891 }
892 
893 /*
894  * Because there is no preemptible RCU, there can be no readers blocked.
895  */
896 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
897 {
898 	return false;
899 }
900 
901 /*
902  * Because there is no preemptible RCU, there can be no deferred quiescent
903  * states.
904  */
905 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
906 {
907 	return false;
908 }
909 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
910 
911 /*
912  * Because there is no preemptible RCU, there can be no readers blocked,
913  * so there is no need to check for blocked tasks.  So check only for
914  * bogus qsmask values.
915  */
916 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
917 {
918 	WARN_ON_ONCE(rnp->qsmask);
919 }
920 
921 /*
922  * Check to see if this CPU is in a non-context-switch quiescent state,
923  * namely user mode and idle loop.
924  */
925 static void rcu_flavor_sched_clock_irq(int user)
926 {
927 	if (user || rcu_is_cpu_rrupt_from_idle()) {
928 
929 		/*
930 		 * Get here if this CPU took its interrupt from user
931 		 * mode or from the idle loop, and if this is not a
932 		 * nested interrupt.  In this case, the CPU is in
933 		 * a quiescent state, so note it.
934 		 *
935 		 * No memory barrier is required here because rcu_qs()
936 		 * references only CPU-local variables that other CPUs
937 		 * neither access nor modify, at least not while the
938 		 * corresponding CPU is online.
939 		 */
940 
941 		rcu_qs();
942 	}
943 }
944 
945 /*
946  * Because preemptible RCU does not exist, tasks cannot possibly exit
947  * while in preemptible RCU read-side critical sections.
948  */
949 void exit_rcu(void)
950 {
951 }
952 
953 /*
954  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
955  */
956 static void
957 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
958 {
959 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
960 }
961 
962 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
963 
964 /*
965  * If boosting, set rcuc kthreads to realtime priority.
966  */
967 static void rcu_cpu_kthread_setup(unsigned int cpu)
968 {
969 #ifdef CONFIG_RCU_BOOST
970 	struct sched_param sp;
971 
972 	sp.sched_priority = kthread_prio;
973 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
974 #endif /* #ifdef CONFIG_RCU_BOOST */
975 }
976 
977 #ifdef CONFIG_RCU_BOOST
978 
979 /*
980  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
981  * or ->boost_tasks, advancing the pointer to the next task in the
982  * ->blkd_tasks list.
983  *
984  * Note that irqs must be enabled: boosting the task can block.
985  * Returns 1 if there are more tasks needing to be boosted.
986  */
987 static int rcu_boost(struct rcu_node *rnp)
988 {
989 	unsigned long flags;
990 	struct task_struct *t;
991 	struct list_head *tb;
992 
993 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
994 	    READ_ONCE(rnp->boost_tasks) == NULL)
995 		return 0;  /* Nothing left to boost. */
996 
997 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
998 
999 	/*
1000 	 * Recheck under the lock: all tasks in need of boosting
1001 	 * might exit their RCU read-side critical sections on their own.
1002 	 */
1003 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1004 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1005 		return 0;
1006 	}
1007 
1008 	/*
1009 	 * Preferentially boost tasks blocking expedited grace periods.
1010 	 * This cannot starve the normal grace periods because a second
1011 	 * expedited grace period must boost all blocked tasks, including
1012 	 * those blocking the pre-existing normal grace period.
1013 	 */
1014 	if (rnp->exp_tasks != NULL)
1015 		tb = rnp->exp_tasks;
1016 	else
1017 		tb = rnp->boost_tasks;
1018 
1019 	/*
1020 	 * We boost task t by manufacturing an rt_mutex that appears to
1021 	 * be held by task t.  We leave a pointer to that rt_mutex where
1022 	 * task t can find it, and task t will release the mutex when it
1023 	 * exits its outermost RCU read-side critical section.  Then
1024 	 * simply acquiring this artificial rt_mutex will boost task
1025 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1026 	 *
1027 	 * Note that task t must acquire rnp->lock to remove itself from
1028 	 * the ->blkd_tasks list, which it will do from exit() if from
1029 	 * nowhere else.  We therefore are guaranteed that task t will
1030 	 * stay around at least until we drop rnp->lock.  Note that
1031 	 * rnp->lock also resolves races between our priority boosting
1032 	 * and task t's exiting its outermost RCU read-side critical
1033 	 * section.
1034 	 */
1035 	t = container_of(tb, struct task_struct, rcu_node_entry);
1036 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1037 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1038 	/* Lock only for side effect: boosts task t's priority. */
1039 	rt_mutex_lock(&rnp->boost_mtx);
1040 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1041 
1042 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1043 	       READ_ONCE(rnp->boost_tasks) != NULL;
1044 }
1045 
1046 /*
1047  * Priority-boosting kthread, one per leaf rcu_node.
1048  */
1049 static int rcu_boost_kthread(void *arg)
1050 {
1051 	struct rcu_node *rnp = (struct rcu_node *)arg;
1052 	int spincnt = 0;
1053 	int more2boost;
1054 
1055 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1056 	for (;;) {
1057 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1058 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1059 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1060 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1061 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1062 		more2boost = rcu_boost(rnp);
1063 		if (more2boost)
1064 			spincnt++;
1065 		else
1066 			spincnt = 0;
1067 		if (spincnt > 10) {
1068 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1069 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1070 			schedule_timeout_interruptible(2);
1071 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1072 			spincnt = 0;
1073 		}
1074 	}
1075 	/* NOTREACHED */
1076 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Check to see if it is time to start boosting RCU readers that are
1082  * blocking the current grace period, and, if so, tell the per-rcu_node
1083  * kthread to start boosting them.  If there is an expedited grace
1084  * period in progress, it is always time to boost.
1085  *
1086  * The caller must hold rnp->lock, which this function releases.
1087  * The ->boost_kthread_task is immortal, so we don't need to worry
1088  * about it going away.
1089  */
1090 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1091 	__releases(rnp->lock)
1092 {
1093 	raw_lockdep_assert_held_rcu_node(rnp);
1094 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1095 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1096 		return;
1097 	}
1098 	if (rnp->exp_tasks != NULL ||
1099 	    (rnp->gp_tasks != NULL &&
1100 	     rnp->boost_tasks == NULL &&
1101 	     rnp->qsmask == 0 &&
1102 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1103 		if (rnp->exp_tasks == NULL)
1104 			rnp->boost_tasks = rnp->gp_tasks;
1105 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1106 		rcu_wake_cond(rnp->boost_kthread_task,
1107 			      rnp->boost_kthread_status);
1108 	} else {
1109 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1110 	}
1111 }
1112 
1113 /*
1114  * Is the current CPU running the RCU-callbacks kthread?
1115  * Caller must have preemption disabled.
1116  */
1117 static bool rcu_is_callbacks_kthread(void)
1118 {
1119 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1120 }
1121 
1122 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1123 
1124 /*
1125  * Do priority-boost accounting for the start of a new grace period.
1126  */
1127 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1128 {
1129 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1130 }
1131 
1132 /*
1133  * Create an RCU-boost kthread for the specified node if one does not
1134  * already exist.  We only create this kthread for preemptible RCU.
1135  * Returns zero if all is well, a negated errno otherwise.
1136  */
1137 static int rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1138 {
1139 	int rnp_index = rnp - rcu_get_root();
1140 	unsigned long flags;
1141 	struct sched_param sp;
1142 	struct task_struct *t;
1143 
1144 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1145 		return 0;
1146 
1147 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1148 		return 0;
1149 
1150 	rcu_state.boost = 1;
1151 	if (rnp->boost_kthread_task != NULL)
1152 		return 0;
1153 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1154 			   "rcub/%d", rnp_index);
1155 	if (IS_ERR(t))
1156 		return PTR_ERR(t);
1157 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1158 	rnp->boost_kthread_task = t;
1159 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1160 	sp.sched_priority = kthread_prio;
1161 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1162 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1168  * served by the rcu_node in question.  The CPU hotplug lock is still
1169  * held, so the value of rnp->qsmaskinit will be stable.
1170  *
1171  * We don't include outgoingcpu in the affinity set, use -1 if there is
1172  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1173  * this function allows the kthread to execute on any CPU.
1174  */
1175 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1176 {
1177 	struct task_struct *t = rnp->boost_kthread_task;
1178 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1179 	cpumask_var_t cm;
1180 	int cpu;
1181 
1182 	if (!t)
1183 		return;
1184 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1185 		return;
1186 	for_each_leaf_node_possible_cpu(rnp, cpu)
1187 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1188 		    cpu != outgoingcpu)
1189 			cpumask_set_cpu(cpu, cm);
1190 	if (cpumask_weight(cm) == 0)
1191 		cpumask_setall(cm);
1192 	set_cpus_allowed_ptr(t, cm);
1193 	free_cpumask_var(cm);
1194 }
1195 
1196 /*
1197  * Spawn boost kthreads -- called as soon as the scheduler is running.
1198  */
1199 static void __init rcu_spawn_boost_kthreads(void)
1200 {
1201 	struct rcu_node *rnp;
1202 
1203 	rcu_for_each_leaf_node(rnp)
1204 		(void)rcu_spawn_one_boost_kthread(rnp);
1205 }
1206 
1207 static void rcu_prepare_kthreads(int cpu)
1208 {
1209 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1210 	struct rcu_node *rnp = rdp->mynode;
1211 
1212 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1213 	if (rcu_scheduler_fully_active)
1214 		(void)rcu_spawn_one_boost_kthread(rnp);
1215 }
1216 
1217 #else /* #ifdef CONFIG_RCU_BOOST */
1218 
1219 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1220 	__releases(rnp->lock)
1221 {
1222 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1223 }
1224 
1225 static bool rcu_is_callbacks_kthread(void)
1226 {
1227 	return false;
1228 }
1229 
1230 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1231 {
1232 }
1233 
1234 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1235 {
1236 }
1237 
1238 static void __init rcu_spawn_boost_kthreads(void)
1239 {
1240 }
1241 
1242 static void rcu_prepare_kthreads(int cpu)
1243 {
1244 }
1245 
1246 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1247 
1248 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1249 
1250 /*
1251  * Check to see if any future RCU-related work will need to be done
1252  * by the current CPU, even if none need be done immediately, returning
1253  * 1 if so.  This function is part of the RCU implementation; it is -not-
1254  * an exported member of the RCU API.
1255  *
1256  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1257  * CPU has RCU callbacks queued.
1258  */
1259 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1260 {
1261 	*nextevt = KTIME_MAX;
1262 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist);
1263 }
1264 
1265 /*
1266  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1267  * after it.
1268  */
1269 static void rcu_cleanup_after_idle(void)
1270 {
1271 }
1272 
1273 /*
1274  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1275  * is nothing.
1276  */
1277 static void rcu_prepare_for_idle(void)
1278 {
1279 }
1280 
1281 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1282 
1283 /*
1284  * This code is invoked when a CPU goes idle, at which point we want
1285  * to have the CPU do everything required for RCU so that it can enter
1286  * the energy-efficient dyntick-idle mode.  This is handled by a
1287  * state machine implemented by rcu_prepare_for_idle() below.
1288  *
1289  * The following three proprocessor symbols control this state machine:
1290  *
1291  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1292  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1293  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1294  *	benchmarkers who might otherwise be tempted to set this to a large
1295  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1296  *	system.  And if you are -that- concerned about energy efficiency,
1297  *	just power the system down and be done with it!
1298  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1299  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1300  *	callbacks pending.  Setting this too high can OOM your system.
1301  *
1302  * The values below work well in practice.  If future workloads require
1303  * adjustment, they can be converted into kernel config parameters, though
1304  * making the state machine smarter might be a better option.
1305  */
1306 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1307 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1308 
1309 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1310 module_param(rcu_idle_gp_delay, int, 0644);
1311 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1312 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1313 
1314 /*
1315  * Try to advance callbacks on the current CPU, but only if it has been
1316  * awhile since the last time we did so.  Afterwards, if there are any
1317  * callbacks ready for immediate invocation, return true.
1318  */
1319 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1320 {
1321 	bool cbs_ready = false;
1322 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1323 	struct rcu_node *rnp;
1324 
1325 	/* Exit early if we advanced recently. */
1326 	if (jiffies == rdp->last_advance_all)
1327 		return false;
1328 	rdp->last_advance_all = jiffies;
1329 
1330 	rnp = rdp->mynode;
1331 
1332 	/*
1333 	 * Don't bother checking unless a grace period has
1334 	 * completed since we last checked and there are
1335 	 * callbacks not yet ready to invoke.
1336 	 */
1337 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1338 				  rcu_seq_current(&rnp->gp_seq)) ||
1339 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1340 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1341 		note_gp_changes(rdp);
1342 
1343 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1344 		cbs_ready = true;
1345 	return cbs_ready;
1346 }
1347 
1348 /*
1349  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1350  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1351  * caller to set the timeout based on whether or not there are non-lazy
1352  * callbacks.
1353  *
1354  * The caller must have disabled interrupts.
1355  */
1356 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1357 {
1358 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1359 	unsigned long dj;
1360 
1361 	lockdep_assert_irqs_disabled();
1362 
1363 	/* If no callbacks, RCU doesn't need the CPU. */
1364 	if (rcu_segcblist_empty(&rdp->cblist)) {
1365 		*nextevt = KTIME_MAX;
1366 		return 0;
1367 	}
1368 
1369 	/* Attempt to advance callbacks. */
1370 	if (rcu_try_advance_all_cbs()) {
1371 		/* Some ready to invoke, so initiate later invocation. */
1372 		invoke_rcu_core();
1373 		return 1;
1374 	}
1375 	rdp->last_accelerate = jiffies;
1376 
1377 	/* Request timer delay depending on laziness, and round. */
1378 	rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1379 	if (rdp->all_lazy) {
1380 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1381 	} else {
1382 		dj = round_up(rcu_idle_gp_delay + jiffies,
1383 			       rcu_idle_gp_delay) - jiffies;
1384 	}
1385 	*nextevt = basemono + dj * TICK_NSEC;
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Prepare a CPU for idle from an RCU perspective.  The first major task
1391  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1392  * The second major task is to check to see if a non-lazy callback has
1393  * arrived at a CPU that previously had only lazy callbacks.  The third
1394  * major task is to accelerate (that is, assign grace-period numbers to)
1395  * any recently arrived callbacks.
1396  *
1397  * The caller must have disabled interrupts.
1398  */
1399 static void rcu_prepare_for_idle(void)
1400 {
1401 	bool needwake;
1402 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1403 	struct rcu_node *rnp;
1404 	int tne;
1405 
1406 	lockdep_assert_irqs_disabled();
1407 	if (rcu_is_nocb_cpu(smp_processor_id()))
1408 		return;
1409 
1410 	/* Handle nohz enablement switches conservatively. */
1411 	tne = READ_ONCE(tick_nohz_active);
1412 	if (tne != rdp->tick_nohz_enabled_snap) {
1413 		if (!rcu_segcblist_empty(&rdp->cblist))
1414 			invoke_rcu_core(); /* force nohz to see update. */
1415 		rdp->tick_nohz_enabled_snap = tne;
1416 		return;
1417 	}
1418 	if (!tne)
1419 		return;
1420 
1421 	/*
1422 	 * If a non-lazy callback arrived at a CPU having only lazy
1423 	 * callbacks, invoke RCU core for the side-effect of recalculating
1424 	 * idle duration on re-entry to idle.
1425 	 */
1426 	if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1427 		rdp->all_lazy = false;
1428 		invoke_rcu_core();
1429 		return;
1430 	}
1431 
1432 	/*
1433 	 * If we have not yet accelerated this jiffy, accelerate all
1434 	 * callbacks on this CPU.
1435 	 */
1436 	if (rdp->last_accelerate == jiffies)
1437 		return;
1438 	rdp->last_accelerate = jiffies;
1439 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1440 		rnp = rdp->mynode;
1441 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1442 		needwake = rcu_accelerate_cbs(rnp, rdp);
1443 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1444 		if (needwake)
1445 			rcu_gp_kthread_wake();
1446 	}
1447 }
1448 
1449 /*
1450  * Clean up for exit from idle.  Attempt to advance callbacks based on
1451  * any grace periods that elapsed while the CPU was idle, and if any
1452  * callbacks are now ready to invoke, initiate invocation.
1453  */
1454 static void rcu_cleanup_after_idle(void)
1455 {
1456 	lockdep_assert_irqs_disabled();
1457 	if (rcu_is_nocb_cpu(smp_processor_id()))
1458 		return;
1459 	if (rcu_try_advance_all_cbs())
1460 		invoke_rcu_core();
1461 }
1462 
1463 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1464 
1465 #ifdef CONFIG_RCU_NOCB_CPU
1466 
1467 /*
1468  * Offload callback processing from the boot-time-specified set of CPUs
1469  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1470  * created that pull the callbacks from the corresponding CPU, wait for
1471  * a grace period to elapse, and invoke the callbacks.  These kthreads
1472  * are organized into leaders, which manage incoming callbacks, wait for
1473  * grace periods, and awaken followers, and the followers, which only
1474  * invoke callbacks.  Each leader is its own follower.  The no-CBs CPUs
1475  * do a wake_up() on their kthread when they insert a callback into any
1476  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1477  * in which case each kthread actively polls its CPU.  (Which isn't so great
1478  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1479  *
1480  * This is intended to be used in conjunction with Frederic Weisbecker's
1481  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1482  * running CPU-bound user-mode computations.
1483  *
1484  * Offloading of callbacks can also be used as an energy-efficiency
1485  * measure because CPUs with no RCU callbacks queued are more aggressive
1486  * about entering dyntick-idle mode.
1487  */
1488 
1489 
1490 /*
1491  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1492  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1493  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1494  * given, a warning is emitted and all CPUs are offloaded.
1495  */
1496 static int __init rcu_nocb_setup(char *str)
1497 {
1498 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1499 	if (!strcasecmp(str, "all"))
1500 		cpumask_setall(rcu_nocb_mask);
1501 	else
1502 		if (cpulist_parse(str, rcu_nocb_mask)) {
1503 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1504 			cpumask_setall(rcu_nocb_mask);
1505 		}
1506 	return 1;
1507 }
1508 __setup("rcu_nocbs=", rcu_nocb_setup);
1509 
1510 static int __init parse_rcu_nocb_poll(char *arg)
1511 {
1512 	rcu_nocb_poll = true;
1513 	return 0;
1514 }
1515 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1516 
1517 /*
1518  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1519  * grace period.
1520  */
1521 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1522 {
1523 	swake_up_all(sq);
1524 }
1525 
1526 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1527 {
1528 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1529 }
1530 
1531 static void rcu_init_one_nocb(struct rcu_node *rnp)
1532 {
1533 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1534 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1535 }
1536 
1537 /* Is the specified CPU a no-CBs CPU? */
1538 bool rcu_is_nocb_cpu(int cpu)
1539 {
1540 	if (cpumask_available(rcu_nocb_mask))
1541 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1542 	return false;
1543 }
1544 
1545 /*
1546  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1547  * and this function releases it.
1548  */
1549 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1550 			       unsigned long flags)
1551 	__releases(rdp->nocb_lock)
1552 {
1553 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1554 
1555 	lockdep_assert_held(&rdp->nocb_lock);
1556 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1557 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1558 		return;
1559 	}
1560 	if (rdp_leader->nocb_leader_sleep || force) {
1561 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1562 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1563 		del_timer(&rdp->nocb_timer);
1564 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1565 		smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1566 		swake_up_one(&rdp_leader->nocb_wq);
1567 	} else {
1568 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1569 	}
1570 }
1571 
1572 /*
1573  * Kick the leader kthread for this NOCB group, but caller has not
1574  * acquired locks.
1575  */
1576 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1577 {
1578 	unsigned long flags;
1579 
1580 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1581 	__wake_nocb_leader(rdp, force, flags);
1582 }
1583 
1584 /*
1585  * Arrange to wake the leader kthread for this NOCB group at some
1586  * future time when it is safe to do so.
1587  */
1588 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1589 				   const char *reason)
1590 {
1591 	unsigned long flags;
1592 
1593 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1594 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1595 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1596 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1597 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1598 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1599 }
1600 
1601 /* Does rcu_barrier need to queue an RCU callback on the specified CPU?  */
1602 static bool rcu_nocb_cpu_needs_barrier(int cpu)
1603 {
1604 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1605 	unsigned long ret;
1606 #ifdef CONFIG_PROVE_RCU
1607 	struct rcu_head *rhp;
1608 #endif /* #ifdef CONFIG_PROVE_RCU */
1609 
1610 	/*
1611 	 * Check count of all no-CBs callbacks awaiting invocation.
1612 	 * There needs to be a barrier before this function is called,
1613 	 * but associated with a prior determination that no more
1614 	 * callbacks would be posted.  In the worst case, the first
1615 	 * barrier in rcu_barrier() suffices (but the caller cannot
1616 	 * necessarily rely on this, not a substitute for the caller
1617 	 * getting the concurrency design right!).  There must also be a
1618 	 * barrier between the following load and posting of a callback
1619 	 * (if a callback is in fact needed).  This is associated with an
1620 	 * atomic_inc() in the caller.
1621 	 */
1622 	ret = rcu_get_n_cbs_nocb_cpu(rdp);
1623 
1624 #ifdef CONFIG_PROVE_RCU
1625 	rhp = READ_ONCE(rdp->nocb_head);
1626 	if (!rhp)
1627 		rhp = READ_ONCE(rdp->nocb_gp_head);
1628 	if (!rhp)
1629 		rhp = READ_ONCE(rdp->nocb_follower_head);
1630 
1631 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1632 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1633 	    rcu_scheduler_fully_active) {
1634 		/* RCU callback enqueued before CPU first came online??? */
1635 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1636 		       cpu, rhp->func);
1637 		WARN_ON_ONCE(1);
1638 	}
1639 #endif /* #ifdef CONFIG_PROVE_RCU */
1640 
1641 	return !!ret;
1642 }
1643 
1644 /*
1645  * Enqueue the specified string of rcu_head structures onto the specified
1646  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1647  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1648  * counts are supplied by rhcount and rhcount_lazy.
1649  *
1650  * If warranted, also wake up the kthread servicing this CPUs queues.
1651  */
1652 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1653 				    struct rcu_head *rhp,
1654 				    struct rcu_head **rhtp,
1655 				    int rhcount, int rhcount_lazy,
1656 				    unsigned long flags)
1657 {
1658 	int len;
1659 	struct rcu_head **old_rhpp;
1660 	struct task_struct *t;
1661 
1662 	/* Enqueue the callback on the nocb list and update counts. */
1663 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1664 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1665 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1666 	WRITE_ONCE(*old_rhpp, rhp);
1667 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1668 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1669 
1670 	/* If we are not being polled and there is a kthread, awaken it ... */
1671 	t = READ_ONCE(rdp->nocb_kthread);
1672 	if (rcu_nocb_poll || !t) {
1673 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1674 				    TPS("WakeNotPoll"));
1675 		return;
1676 	}
1677 	len = rcu_get_n_cbs_nocb_cpu(rdp);
1678 	if (old_rhpp == &rdp->nocb_head) {
1679 		if (!irqs_disabled_flags(flags)) {
1680 			/* ... if queue was empty ... */
1681 			wake_nocb_leader(rdp, false);
1682 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1683 					    TPS("WakeEmpty"));
1684 		} else {
1685 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1686 					       TPS("WakeEmptyIsDeferred"));
1687 		}
1688 		rdp->qlen_last_fqs_check = 0;
1689 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1690 		/* ... or if many callbacks queued. */
1691 		if (!irqs_disabled_flags(flags)) {
1692 			wake_nocb_leader(rdp, true);
1693 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1694 					    TPS("WakeOvf"));
1695 		} else {
1696 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
1697 					       TPS("WakeOvfIsDeferred"));
1698 		}
1699 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1700 	} else {
1701 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1702 	}
1703 	return;
1704 }
1705 
1706 /*
1707  * This is a helper for __call_rcu(), which invokes this when the normal
1708  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1709  * function returns failure back to __call_rcu(), which can complain
1710  * appropriately.
1711  *
1712  * Otherwise, this function queues the callback where the corresponding
1713  * "rcuo" kthread can find it.
1714  */
1715 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1716 			    bool lazy, unsigned long flags)
1717 {
1718 
1719 	if (!rcu_is_nocb_cpu(rdp->cpu))
1720 		return false;
1721 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1722 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1723 		trace_rcu_kfree_callback(rcu_state.name, rhp,
1724 					 (unsigned long)rhp->func,
1725 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1726 					 -rcu_get_n_cbs_nocb_cpu(rdp));
1727 	else
1728 		trace_rcu_callback(rcu_state.name, rhp,
1729 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1730 				   -rcu_get_n_cbs_nocb_cpu(rdp));
1731 
1732 	/*
1733 	 * If called from an extended quiescent state with interrupts
1734 	 * disabled, invoke the RCU core in order to allow the idle-entry
1735 	 * deferred-wakeup check to function.
1736 	 */
1737 	if (irqs_disabled_flags(flags) &&
1738 	    !rcu_is_watching() &&
1739 	    cpu_online(smp_processor_id()))
1740 		invoke_rcu_core();
1741 
1742 	return true;
1743 }
1744 
1745 /*
1746  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1747  * not a no-CBs CPU.
1748  */
1749 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
1750 						     struct rcu_data *rdp,
1751 						     unsigned long flags)
1752 {
1753 	lockdep_assert_irqs_disabled();
1754 	if (!rcu_is_nocb_cpu(smp_processor_id()))
1755 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
1756 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
1757 				rcu_segcblist_tail(&rdp->cblist),
1758 				rcu_segcblist_n_cbs(&rdp->cblist),
1759 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
1760 	rcu_segcblist_init(&rdp->cblist);
1761 	rcu_segcblist_disable(&rdp->cblist);
1762 	return true;
1763 }
1764 
1765 /*
1766  * If necessary, kick off a new grace period, and either way wait
1767  * for a subsequent grace period to complete.
1768  */
1769 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1770 {
1771 	unsigned long c;
1772 	bool d;
1773 	unsigned long flags;
1774 	bool needwake;
1775 	struct rcu_node *rnp = rdp->mynode;
1776 
1777 	local_irq_save(flags);
1778 	c = rcu_seq_snap(&rcu_state.gp_seq);
1779 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1780 		local_irq_restore(flags);
1781 	} else {
1782 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1783 		needwake = rcu_start_this_gp(rnp, rdp, c);
1784 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1785 		if (needwake)
1786 			rcu_gp_kthread_wake();
1787 	}
1788 
1789 	/*
1790 	 * Wait for the grace period.  Do so interruptibly to avoid messing
1791 	 * up the load average.
1792 	 */
1793 	trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
1794 	for (;;) {
1795 		swait_event_interruptible_exclusive(
1796 			rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
1797 			(d = rcu_seq_done(&rnp->gp_seq, c)));
1798 		if (likely(d))
1799 			break;
1800 		WARN_ON(signal_pending(current));
1801 		trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
1802 	}
1803 	trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
1804 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
1805 }
1806 
1807 /*
1808  * Leaders come here to wait for additional callbacks to show up.
1809  * This function does not return until callbacks appear.
1810  */
1811 static void nocb_leader_wait(struct rcu_data *my_rdp)
1812 {
1813 	bool firsttime = true;
1814 	unsigned long flags;
1815 	bool gotcbs;
1816 	struct rcu_data *rdp;
1817 	struct rcu_head **tail;
1818 
1819 wait_again:
1820 
1821 	/* Wait for callbacks to appear. */
1822 	if (!rcu_nocb_poll) {
1823 		trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Sleep"));
1824 		swait_event_interruptible_exclusive(my_rdp->nocb_wq,
1825 				!READ_ONCE(my_rdp->nocb_leader_sleep));
1826 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
1827 		my_rdp->nocb_leader_sleep = true;
1828 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
1829 		del_timer(&my_rdp->nocb_timer);
1830 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
1831 	} else if (firsttime) {
1832 		firsttime = false; /* Don't drown trace log with "Poll"! */
1833 		trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Poll"));
1834 	}
1835 
1836 	/*
1837 	 * Each pass through the following loop checks a follower for CBs.
1838 	 * We are our own first follower.  Any CBs found are moved to
1839 	 * nocb_gp_head, where they await a grace period.
1840 	 */
1841 	gotcbs = false;
1842 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
1843 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
1844 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
1845 		if (!rdp->nocb_gp_head)
1846 			continue;  /* No CBs here, try next follower. */
1847 
1848 		/* Move callbacks to wait-for-GP list, which is empty. */
1849 		WRITE_ONCE(rdp->nocb_head, NULL);
1850 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
1851 		gotcbs = true;
1852 	}
1853 
1854 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
1855 	if (unlikely(!gotcbs)) {
1856 		WARN_ON(signal_pending(current));
1857 		if (rcu_nocb_poll) {
1858 			schedule_timeout_interruptible(1);
1859 		} else {
1860 			trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu,
1861 					    TPS("WokeEmpty"));
1862 		}
1863 		goto wait_again;
1864 	}
1865 
1866 	/* Wait for one grace period. */
1867 	rcu_nocb_wait_gp(my_rdp);
1868 
1869 	/* Each pass through the following loop wakes a follower, if needed. */
1870 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
1871 		if (!rcu_nocb_poll &&
1872 		    READ_ONCE(rdp->nocb_head) &&
1873 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
1874 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
1875 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
1876 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
1877 		}
1878 		if (!rdp->nocb_gp_head)
1879 			continue; /* No CBs, so no need to wake follower. */
1880 
1881 		/* Append callbacks to follower's "done" list. */
1882 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1883 		tail = rdp->nocb_follower_tail;
1884 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
1885 		*tail = rdp->nocb_gp_head;
1886 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1887 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
1888 			/* List was empty, so wake up the follower.  */
1889 			swake_up_one(&rdp->nocb_wq);
1890 		}
1891 	}
1892 
1893 	/* If we (the leader) don't have CBs, go wait some more. */
1894 	if (!my_rdp->nocb_follower_head)
1895 		goto wait_again;
1896 }
1897 
1898 /*
1899  * Followers come here to wait for additional callbacks to show up.
1900  * This function does not return until callbacks appear.
1901  */
1902 static void nocb_follower_wait(struct rcu_data *rdp)
1903 {
1904 	for (;;) {
1905 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FollowerSleep"));
1906 		swait_event_interruptible_exclusive(rdp->nocb_wq,
1907 					 READ_ONCE(rdp->nocb_follower_head));
1908 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
1909 			/* ^^^ Ensure CB invocation follows _head test. */
1910 			return;
1911 		}
1912 		WARN_ON(signal_pending(current));
1913 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
1914 	}
1915 }
1916 
1917 /*
1918  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
1919  * callbacks queued by the corresponding no-CBs CPU, however, there is
1920  * an optional leader-follower relationship so that the grace-period
1921  * kthreads don't have to do quite so many wakeups.
1922  */
1923 static int rcu_nocb_kthread(void *arg)
1924 {
1925 	int c, cl;
1926 	unsigned long flags;
1927 	struct rcu_head *list;
1928 	struct rcu_head *next;
1929 	struct rcu_head **tail;
1930 	struct rcu_data *rdp = arg;
1931 
1932 	/* Each pass through this loop invokes one batch of callbacks */
1933 	for (;;) {
1934 		/* Wait for callbacks. */
1935 		if (rdp->nocb_leader == rdp)
1936 			nocb_leader_wait(rdp);
1937 		else
1938 			nocb_follower_wait(rdp);
1939 
1940 		/* Pull the ready-to-invoke callbacks onto local list. */
1941 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1942 		list = rdp->nocb_follower_head;
1943 		rdp->nocb_follower_head = NULL;
1944 		tail = rdp->nocb_follower_tail;
1945 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
1946 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1947 		if (WARN_ON_ONCE(!list))
1948 			continue;
1949 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeNonEmpty"));
1950 
1951 		/* Each pass through the following loop invokes a callback. */
1952 		trace_rcu_batch_start(rcu_state.name,
1953 				      atomic_long_read(&rdp->nocb_q_count_lazy),
1954 				      rcu_get_n_cbs_nocb_cpu(rdp), -1);
1955 		c = cl = 0;
1956 		while (list) {
1957 			next = list->next;
1958 			/* Wait for enqueuing to complete, if needed. */
1959 			while (next == NULL && &list->next != tail) {
1960 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1961 						    TPS("WaitQueue"));
1962 				schedule_timeout_interruptible(1);
1963 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1964 						    TPS("WokeQueue"));
1965 				next = list->next;
1966 			}
1967 			debug_rcu_head_unqueue(list);
1968 			local_bh_disable();
1969 			if (__rcu_reclaim(rcu_state.name, list))
1970 				cl++;
1971 			c++;
1972 			local_bh_enable();
1973 			cond_resched_tasks_rcu_qs();
1974 			list = next;
1975 		}
1976 		trace_rcu_batch_end(rcu_state.name, c, !!list, 0, 0, 1);
1977 		smp_mb__before_atomic();  /* _add after CB invocation. */
1978 		atomic_long_add(-c, &rdp->nocb_q_count);
1979 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
1980 	}
1981 	return 0;
1982 }
1983 
1984 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
1985 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
1986 {
1987 	return READ_ONCE(rdp->nocb_defer_wakeup);
1988 }
1989 
1990 /* Do a deferred wakeup of rcu_nocb_kthread(). */
1991 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
1992 {
1993 	unsigned long flags;
1994 	int ndw;
1995 
1996 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1997 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
1998 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1999 		return;
2000 	}
2001 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2002 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2003 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2004 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2005 }
2006 
2007 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2008 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2009 {
2010 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2011 
2012 	do_nocb_deferred_wakeup_common(rdp);
2013 }
2014 
2015 /*
2016  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2017  * This means we do an inexact common-case check.  Note that if
2018  * we miss, ->nocb_timer will eventually clean things up.
2019  */
2020 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2021 {
2022 	if (rcu_nocb_need_deferred_wakeup(rdp))
2023 		do_nocb_deferred_wakeup_common(rdp);
2024 }
2025 
2026 void __init rcu_init_nohz(void)
2027 {
2028 	int cpu;
2029 	bool need_rcu_nocb_mask = false;
2030 
2031 #if defined(CONFIG_NO_HZ_FULL)
2032 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2033 		need_rcu_nocb_mask = true;
2034 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2035 
2036 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2037 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2038 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2039 			return;
2040 		}
2041 	}
2042 	if (!cpumask_available(rcu_nocb_mask))
2043 		return;
2044 
2045 #if defined(CONFIG_NO_HZ_FULL)
2046 	if (tick_nohz_full_running)
2047 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2048 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2049 
2050 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2051 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2052 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2053 			    rcu_nocb_mask);
2054 	}
2055 	if (cpumask_empty(rcu_nocb_mask))
2056 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2057 	else
2058 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2059 			cpumask_pr_args(rcu_nocb_mask));
2060 	if (rcu_nocb_poll)
2061 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2062 
2063 	for_each_cpu(cpu, rcu_nocb_mask)
2064 		init_nocb_callback_list(per_cpu_ptr(&rcu_data, cpu));
2065 	rcu_organize_nocb_kthreads();
2066 }
2067 
2068 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2069 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2070 {
2071 	rdp->nocb_tail = &rdp->nocb_head;
2072 	init_swait_queue_head(&rdp->nocb_wq);
2073 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2074 	raw_spin_lock_init(&rdp->nocb_lock);
2075 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2076 }
2077 
2078 /*
2079  * If the specified CPU is a no-CBs CPU that does not already have its
2080  * rcuo kthread, spawn it.  If the CPUs are brought online out of order,
2081  * this can require re-organizing the leader-follower relationships.
2082  */
2083 static void rcu_spawn_one_nocb_kthread(int cpu)
2084 {
2085 	struct rcu_data *rdp;
2086 	struct rcu_data *rdp_last;
2087 	struct rcu_data *rdp_old_leader;
2088 	struct rcu_data *rdp_spawn = per_cpu_ptr(&rcu_data, cpu);
2089 	struct task_struct *t;
2090 
2091 	/*
2092 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2093 	 * then nothing to do.
2094 	 */
2095 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2096 		return;
2097 
2098 	/* If we didn't spawn the leader first, reorganize! */
2099 	rdp_old_leader = rdp_spawn->nocb_leader;
2100 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2101 		rdp_last = NULL;
2102 		rdp = rdp_old_leader;
2103 		do {
2104 			rdp->nocb_leader = rdp_spawn;
2105 			if (rdp_last && rdp != rdp_spawn)
2106 				rdp_last->nocb_next_follower = rdp;
2107 			if (rdp == rdp_spawn) {
2108 				rdp = rdp->nocb_next_follower;
2109 			} else {
2110 				rdp_last = rdp;
2111 				rdp = rdp->nocb_next_follower;
2112 				rdp_last->nocb_next_follower = NULL;
2113 			}
2114 		} while (rdp);
2115 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2116 	}
2117 
2118 	/* Spawn the kthread for this CPU. */
2119 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2120 			"rcuo%c/%d", rcu_state.abbr, cpu);
2121 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo kthread, OOM is now expected behavior\n", __func__))
2122 		return;
2123 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2124 }
2125 
2126 /*
2127  * If the specified CPU is a no-CBs CPU that does not already have its
2128  * rcuo kthread, spawn it.
2129  */
2130 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2131 {
2132 	if (rcu_scheduler_fully_active)
2133 		rcu_spawn_one_nocb_kthread(cpu);
2134 }
2135 
2136 /*
2137  * Once the scheduler is running, spawn rcuo kthreads for all online
2138  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2139  * non-boot CPUs come online -- if this changes, we will need to add
2140  * some mutual exclusion.
2141  */
2142 static void __init rcu_spawn_nocb_kthreads(void)
2143 {
2144 	int cpu;
2145 
2146 	for_each_online_cpu(cpu)
2147 		rcu_spawn_cpu_nocb_kthread(cpu);
2148 }
2149 
2150 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2151 static int rcu_nocb_leader_stride = -1;
2152 module_param(rcu_nocb_leader_stride, int, 0444);
2153 
2154 /*
2155  * Initialize leader-follower relationships for all no-CBs CPU.
2156  */
2157 static void __init rcu_organize_nocb_kthreads(void)
2158 {
2159 	int cpu;
2160 	int ls = rcu_nocb_leader_stride;
2161 	int nl = 0;  /* Next leader. */
2162 	struct rcu_data *rdp;
2163 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2164 	struct rcu_data *rdp_prev = NULL;
2165 
2166 	if (!cpumask_available(rcu_nocb_mask))
2167 		return;
2168 	if (ls == -1) {
2169 		ls = int_sqrt(nr_cpu_ids);
2170 		rcu_nocb_leader_stride = ls;
2171 	}
2172 
2173 	/*
2174 	 * Each pass through this loop sets up one rcu_data structure.
2175 	 * Should the corresponding CPU come online in the future, then
2176 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2177 	 */
2178 	for_each_cpu(cpu, rcu_nocb_mask) {
2179 		rdp = per_cpu_ptr(&rcu_data, cpu);
2180 		if (rdp->cpu >= nl) {
2181 			/* New leader, set up for followers & next leader. */
2182 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2183 			rdp->nocb_leader = rdp;
2184 			rdp_leader = rdp;
2185 		} else {
2186 			/* Another follower, link to previous leader. */
2187 			rdp->nocb_leader = rdp_leader;
2188 			rdp_prev->nocb_next_follower = rdp;
2189 		}
2190 		rdp_prev = rdp;
2191 	}
2192 }
2193 
2194 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2195 static bool init_nocb_callback_list(struct rcu_data *rdp)
2196 {
2197 	if (!rcu_is_nocb_cpu(rdp->cpu))
2198 		return false;
2199 
2200 	/* If there are early-boot callbacks, move them to nocb lists. */
2201 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2202 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2203 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2204 		atomic_long_set(&rdp->nocb_q_count,
2205 				rcu_segcblist_n_cbs(&rdp->cblist));
2206 		atomic_long_set(&rdp->nocb_q_count_lazy,
2207 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2208 		rcu_segcblist_init(&rdp->cblist);
2209 	}
2210 	rcu_segcblist_disable(&rdp->cblist);
2211 	return true;
2212 }
2213 
2214 /*
2215  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2216  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2217  */
2218 void rcu_bind_current_to_nocb(void)
2219 {
2220 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2221 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2222 }
2223 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2224 
2225 /*
2226  * Return the number of RCU callbacks still queued from the specified
2227  * CPU, which must be a nocbs CPU.
2228  */
2229 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2230 {
2231 	return atomic_long_read(&rdp->nocb_q_count);
2232 }
2233 
2234 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2235 
2236 static bool rcu_nocb_cpu_needs_barrier(int cpu)
2237 {
2238 	WARN_ON_ONCE(1); /* Should be dead code. */
2239 	return false;
2240 }
2241 
2242 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2243 {
2244 }
2245 
2246 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2247 {
2248 	return NULL;
2249 }
2250 
2251 static void rcu_init_one_nocb(struct rcu_node *rnp)
2252 {
2253 }
2254 
2255 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2256 			    bool lazy, unsigned long flags)
2257 {
2258 	return false;
2259 }
2260 
2261 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2262 						     struct rcu_data *rdp,
2263 						     unsigned long flags)
2264 {
2265 	return false;
2266 }
2267 
2268 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2269 {
2270 }
2271 
2272 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2273 {
2274 	return false;
2275 }
2276 
2277 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2278 {
2279 }
2280 
2281 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2282 {
2283 }
2284 
2285 static void __init rcu_spawn_nocb_kthreads(void)
2286 {
2287 }
2288 
2289 static bool init_nocb_callback_list(struct rcu_data *rdp)
2290 {
2291 	return false;
2292 }
2293 
2294 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2295 {
2296 	return 0;
2297 }
2298 
2299 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2300 
2301 /*
2302  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2303  * grace-period kthread will do force_quiescent_state() processing?
2304  * The idea is to avoid waking up RCU core processing on such a
2305  * CPU unless the grace period has extended for too long.
2306  *
2307  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2308  * CONFIG_RCU_NOCB_CPU CPUs.
2309  */
2310 static bool rcu_nohz_full_cpu(void)
2311 {
2312 #ifdef CONFIG_NO_HZ_FULL
2313 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2314 	    (!rcu_gp_in_progress() ||
2315 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2316 		return true;
2317 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2318 	return false;
2319 }
2320 
2321 /*
2322  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2323  */
2324 static void rcu_bind_gp_kthread(void)
2325 {
2326 	if (!tick_nohz_full_enabled())
2327 		return;
2328 	housekeeping_affine(current, HK_FLAG_RCU);
2329 }
2330 
2331 /* Record the current task on dyntick-idle entry. */
2332 static void rcu_dynticks_task_enter(void)
2333 {
2334 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2335 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2336 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2337 }
2338 
2339 /* Record no current task on dyntick-idle exit. */
2340 static void rcu_dynticks_task_exit(void)
2341 {
2342 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2343 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2344 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2345 }
2346