1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #define RCU_KTHREAD_PRIO 1 34 35 #ifdef CONFIG_RCU_BOOST 36 #include "../locking/rtmutex_common.h" 37 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO 38 #else 39 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO 40 #endif 41 42 #ifdef CONFIG_RCU_NOCB_CPU 43 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 44 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 45 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 46 static char __initdata nocb_buf[NR_CPUS * 5]; 47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 48 49 /* 50 * Check the RCU kernel configuration parameters and print informative 51 * messages about anything out of the ordinary. If you like #ifdef, you 52 * will love this function. 53 */ 54 static void __init rcu_bootup_announce_oddness(void) 55 { 56 #ifdef CONFIG_RCU_TRACE 57 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 58 #endif 59 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) 60 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 61 CONFIG_RCU_FANOUT); 62 #endif 63 #ifdef CONFIG_RCU_FANOUT_EXACT 64 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 65 #endif 66 #ifdef CONFIG_RCU_FAST_NO_HZ 67 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 68 #endif 69 #ifdef CONFIG_PROVE_RCU 70 pr_info("\tRCU lockdep checking is enabled.\n"); 71 #endif 72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE 73 pr_info("\tRCU torture testing starts during boot.\n"); 74 #endif 75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE) 76 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n"); 77 #endif 78 #if defined(CONFIG_RCU_CPU_STALL_INFO) 79 pr_info("\tAdditional per-CPU info printed with stalls.\n"); 80 #endif 81 #if NUM_RCU_LVL_4 != 0 82 pr_info("\tFour-level hierarchy is enabled.\n"); 83 #endif 84 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) 85 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 86 if (nr_cpu_ids != NR_CPUS) 87 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 88 } 89 90 #ifdef CONFIG_TREE_PREEMPT_RCU 91 92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 93 static struct rcu_state *rcu_state_p = &rcu_preempt_state; 94 95 static int rcu_preempted_readers_exp(struct rcu_node *rnp); 96 97 /* 98 * Tell them what RCU they are running. 99 */ 100 static void __init rcu_bootup_announce(void) 101 { 102 pr_info("Preemptible hierarchical RCU implementation.\n"); 103 rcu_bootup_announce_oddness(); 104 } 105 106 /* 107 * Return the number of RCU-preempt batches processed thus far 108 * for debug and statistics. 109 */ 110 static long rcu_batches_completed_preempt(void) 111 { 112 return rcu_preempt_state.completed; 113 } 114 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); 115 116 /* 117 * Return the number of RCU batches processed thus far for debug & stats. 118 */ 119 long rcu_batches_completed(void) 120 { 121 return rcu_batches_completed_preempt(); 122 } 123 EXPORT_SYMBOL_GPL(rcu_batches_completed); 124 125 /* 126 * Record a preemptible-RCU quiescent state for the specified CPU. Note 127 * that this just means that the task currently running on the CPU is 128 * not in a quiescent state. There might be any number of tasks blocked 129 * while in an RCU read-side critical section. 130 * 131 * As with the other rcu_*_qs() functions, callers to this function 132 * must disable preemption. 133 */ 134 static void rcu_preempt_qs(void) 135 { 136 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) { 137 trace_rcu_grace_period(TPS("rcu_preempt"), 138 __this_cpu_read(rcu_preempt_data.gpnum), 139 TPS("cpuqs")); 140 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1); 141 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 142 current->rcu_read_unlock_special.b.need_qs = false; 143 } 144 } 145 146 /* 147 * We have entered the scheduler, and the current task might soon be 148 * context-switched away from. If this task is in an RCU read-side 149 * critical section, we will no longer be able to rely on the CPU to 150 * record that fact, so we enqueue the task on the blkd_tasks list. 151 * The task will dequeue itself when it exits the outermost enclosing 152 * RCU read-side critical section. Therefore, the current grace period 153 * cannot be permitted to complete until the blkd_tasks list entries 154 * predating the current grace period drain, in other words, until 155 * rnp->gp_tasks becomes NULL. 156 * 157 * Caller must disable preemption. 158 */ 159 static void rcu_preempt_note_context_switch(int cpu) 160 { 161 struct task_struct *t = current; 162 unsigned long flags; 163 struct rcu_data *rdp; 164 struct rcu_node *rnp; 165 166 if (t->rcu_read_lock_nesting > 0 && 167 !t->rcu_read_unlock_special.b.blocked) { 168 169 /* Possibly blocking in an RCU read-side critical section. */ 170 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu); 171 rnp = rdp->mynode; 172 raw_spin_lock_irqsave(&rnp->lock, flags); 173 smp_mb__after_unlock_lock(); 174 t->rcu_read_unlock_special.b.blocked = true; 175 t->rcu_blocked_node = rnp; 176 177 /* 178 * If this CPU has already checked in, then this task 179 * will hold up the next grace period rather than the 180 * current grace period. Queue the task accordingly. 181 * If the task is queued for the current grace period 182 * (i.e., this CPU has not yet passed through a quiescent 183 * state for the current grace period), then as long 184 * as that task remains queued, the current grace period 185 * cannot end. Note that there is some uncertainty as 186 * to exactly when the current grace period started. 187 * We take a conservative approach, which can result 188 * in unnecessarily waiting on tasks that started very 189 * slightly after the current grace period began. C'est 190 * la vie!!! 191 * 192 * But first, note that the current CPU must still be 193 * on line! 194 */ 195 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); 196 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 197 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { 198 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); 199 rnp->gp_tasks = &t->rcu_node_entry; 200 #ifdef CONFIG_RCU_BOOST 201 if (rnp->boost_tasks != NULL) 202 rnp->boost_tasks = rnp->gp_tasks; 203 #endif /* #ifdef CONFIG_RCU_BOOST */ 204 } else { 205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 206 if (rnp->qsmask & rdp->grpmask) 207 rnp->gp_tasks = &t->rcu_node_entry; 208 } 209 trace_rcu_preempt_task(rdp->rsp->name, 210 t->pid, 211 (rnp->qsmask & rdp->grpmask) 212 ? rnp->gpnum 213 : rnp->gpnum + 1); 214 raw_spin_unlock_irqrestore(&rnp->lock, flags); 215 } else if (t->rcu_read_lock_nesting < 0 && 216 t->rcu_read_unlock_special.s) { 217 218 /* 219 * Complete exit from RCU read-side critical section on 220 * behalf of preempted instance of __rcu_read_unlock(). 221 */ 222 rcu_read_unlock_special(t); 223 } 224 225 /* 226 * Either we were not in an RCU read-side critical section to 227 * begin with, or we have now recorded that critical section 228 * globally. Either way, we can now note a quiescent state 229 * for this CPU. Again, if we were in an RCU read-side critical 230 * section, and if that critical section was blocking the current 231 * grace period, then the fact that the task has been enqueued 232 * means that we continue to block the current grace period. 233 */ 234 rcu_preempt_qs(); 235 } 236 237 /* 238 * Check for preempted RCU readers blocking the current grace period 239 * for the specified rcu_node structure. If the caller needs a reliable 240 * answer, it must hold the rcu_node's ->lock. 241 */ 242 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 243 { 244 return rnp->gp_tasks != NULL; 245 } 246 247 /* 248 * Record a quiescent state for all tasks that were previously queued 249 * on the specified rcu_node structure and that were blocking the current 250 * RCU grace period. The caller must hold the specified rnp->lock with 251 * irqs disabled, and this lock is released upon return, but irqs remain 252 * disabled. 253 */ 254 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 255 __releases(rnp->lock) 256 { 257 unsigned long mask; 258 struct rcu_node *rnp_p; 259 260 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 261 raw_spin_unlock_irqrestore(&rnp->lock, flags); 262 return; /* Still need more quiescent states! */ 263 } 264 265 rnp_p = rnp->parent; 266 if (rnp_p == NULL) { 267 /* 268 * Either there is only one rcu_node in the tree, 269 * or tasks were kicked up to root rcu_node due to 270 * CPUs going offline. 271 */ 272 rcu_report_qs_rsp(&rcu_preempt_state, flags); 273 return; 274 } 275 276 /* Report up the rest of the hierarchy. */ 277 mask = rnp->grpmask; 278 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 279 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ 280 smp_mb__after_unlock_lock(); 281 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); 282 } 283 284 /* 285 * Advance a ->blkd_tasks-list pointer to the next entry, instead 286 * returning NULL if at the end of the list. 287 */ 288 static struct list_head *rcu_next_node_entry(struct task_struct *t, 289 struct rcu_node *rnp) 290 { 291 struct list_head *np; 292 293 np = t->rcu_node_entry.next; 294 if (np == &rnp->blkd_tasks) 295 np = NULL; 296 return np; 297 } 298 299 /* 300 * Handle special cases during rcu_read_unlock(), such as needing to 301 * notify RCU core processing or task having blocked during the RCU 302 * read-side critical section. 303 */ 304 void rcu_read_unlock_special(struct task_struct *t) 305 { 306 int empty; 307 int empty_exp; 308 int empty_exp_now; 309 unsigned long flags; 310 struct list_head *np; 311 #ifdef CONFIG_RCU_BOOST 312 bool drop_boost_mutex = false; 313 #endif /* #ifdef CONFIG_RCU_BOOST */ 314 struct rcu_node *rnp; 315 union rcu_special special; 316 317 /* NMI handlers cannot block and cannot safely manipulate state. */ 318 if (in_nmi()) 319 return; 320 321 local_irq_save(flags); 322 323 /* 324 * If RCU core is waiting for this CPU to exit critical section, 325 * let it know that we have done so. Because irqs are disabled, 326 * t->rcu_read_unlock_special cannot change. 327 */ 328 special = t->rcu_read_unlock_special; 329 if (special.b.need_qs) { 330 rcu_preempt_qs(); 331 if (!t->rcu_read_unlock_special.s) { 332 local_irq_restore(flags); 333 return; 334 } 335 } 336 337 /* Hardware IRQ handlers cannot block, complain if they get here. */ 338 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) { 339 local_irq_restore(flags); 340 return; 341 } 342 343 /* Clean up if blocked during RCU read-side critical section. */ 344 if (special.b.blocked) { 345 t->rcu_read_unlock_special.b.blocked = false; 346 347 /* 348 * Remove this task from the list it blocked on. The 349 * task can migrate while we acquire the lock, but at 350 * most one time. So at most two passes through loop. 351 */ 352 for (;;) { 353 rnp = t->rcu_blocked_node; 354 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 355 smp_mb__after_unlock_lock(); 356 if (rnp == t->rcu_blocked_node) 357 break; 358 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 359 } 360 empty = !rcu_preempt_blocked_readers_cgp(rnp); 361 empty_exp = !rcu_preempted_readers_exp(rnp); 362 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 363 np = rcu_next_node_entry(t, rnp); 364 list_del_init(&t->rcu_node_entry); 365 t->rcu_blocked_node = NULL; 366 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 367 rnp->gpnum, t->pid); 368 if (&t->rcu_node_entry == rnp->gp_tasks) 369 rnp->gp_tasks = np; 370 if (&t->rcu_node_entry == rnp->exp_tasks) 371 rnp->exp_tasks = np; 372 #ifdef CONFIG_RCU_BOOST 373 if (&t->rcu_node_entry == rnp->boost_tasks) 374 rnp->boost_tasks = np; 375 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */ 376 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 377 #endif /* #ifdef CONFIG_RCU_BOOST */ 378 379 /* 380 * If this was the last task on the current list, and if 381 * we aren't waiting on any CPUs, report the quiescent state. 382 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 383 * so we must take a snapshot of the expedited state. 384 */ 385 empty_exp_now = !rcu_preempted_readers_exp(rnp); 386 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) { 387 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 388 rnp->gpnum, 389 0, rnp->qsmask, 390 rnp->level, 391 rnp->grplo, 392 rnp->grphi, 393 !!rnp->gp_tasks); 394 rcu_report_unblock_qs_rnp(rnp, flags); 395 } else { 396 raw_spin_unlock_irqrestore(&rnp->lock, flags); 397 } 398 399 #ifdef CONFIG_RCU_BOOST 400 /* Unboost if we were boosted. */ 401 if (drop_boost_mutex) { 402 rt_mutex_unlock(&rnp->boost_mtx); 403 complete(&rnp->boost_completion); 404 } 405 #endif /* #ifdef CONFIG_RCU_BOOST */ 406 407 /* 408 * If this was the last task on the expedited lists, 409 * then we need to report up the rcu_node hierarchy. 410 */ 411 if (!empty_exp && empty_exp_now) 412 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); 413 } else { 414 local_irq_restore(flags); 415 } 416 } 417 418 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE 419 420 /* 421 * Dump detailed information for all tasks blocking the current RCU 422 * grace period on the specified rcu_node structure. 423 */ 424 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 425 { 426 unsigned long flags; 427 struct task_struct *t; 428 429 raw_spin_lock_irqsave(&rnp->lock, flags); 430 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 431 raw_spin_unlock_irqrestore(&rnp->lock, flags); 432 return; 433 } 434 t = list_entry(rnp->gp_tasks, 435 struct task_struct, rcu_node_entry); 436 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 437 sched_show_task(t); 438 raw_spin_unlock_irqrestore(&rnp->lock, flags); 439 } 440 441 /* 442 * Dump detailed information for all tasks blocking the current RCU 443 * grace period. 444 */ 445 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 446 { 447 struct rcu_node *rnp = rcu_get_root(rsp); 448 449 rcu_print_detail_task_stall_rnp(rnp); 450 rcu_for_each_leaf_node(rsp, rnp) 451 rcu_print_detail_task_stall_rnp(rnp); 452 } 453 454 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ 455 456 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 457 { 458 } 459 460 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ 461 462 #ifdef CONFIG_RCU_CPU_STALL_INFO 463 464 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 465 { 466 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 467 rnp->level, rnp->grplo, rnp->grphi); 468 } 469 470 static void rcu_print_task_stall_end(void) 471 { 472 pr_cont("\n"); 473 } 474 475 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 476 477 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 478 { 479 } 480 481 static void rcu_print_task_stall_end(void) 482 { 483 } 484 485 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 486 487 /* 488 * Scan the current list of tasks blocked within RCU read-side critical 489 * sections, printing out the tid of each. 490 */ 491 static int rcu_print_task_stall(struct rcu_node *rnp) 492 { 493 struct task_struct *t; 494 int ndetected = 0; 495 496 if (!rcu_preempt_blocked_readers_cgp(rnp)) 497 return 0; 498 rcu_print_task_stall_begin(rnp); 499 t = list_entry(rnp->gp_tasks, 500 struct task_struct, rcu_node_entry); 501 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 502 pr_cont(" P%d", t->pid); 503 ndetected++; 504 } 505 rcu_print_task_stall_end(); 506 return ndetected; 507 } 508 509 /* 510 * Check that the list of blocked tasks for the newly completed grace 511 * period is in fact empty. It is a serious bug to complete a grace 512 * period that still has RCU readers blocked! This function must be 513 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 514 * must be held by the caller. 515 * 516 * Also, if there are blocked tasks on the list, they automatically 517 * block the newly created grace period, so set up ->gp_tasks accordingly. 518 */ 519 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 520 { 521 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 522 if (!list_empty(&rnp->blkd_tasks)) 523 rnp->gp_tasks = rnp->blkd_tasks.next; 524 WARN_ON_ONCE(rnp->qsmask); 525 } 526 527 #ifdef CONFIG_HOTPLUG_CPU 528 529 /* 530 * Handle tasklist migration for case in which all CPUs covered by the 531 * specified rcu_node have gone offline. Move them up to the root 532 * rcu_node. The reason for not just moving them to the immediate 533 * parent is to remove the need for rcu_read_unlock_special() to 534 * make more than two attempts to acquire the target rcu_node's lock. 535 * Returns true if there were tasks blocking the current RCU grace 536 * period. 537 * 538 * Returns 1 if there was previously a task blocking the current grace 539 * period on the specified rcu_node structure. 540 * 541 * The caller must hold rnp->lock with irqs disabled. 542 */ 543 static int rcu_preempt_offline_tasks(struct rcu_state *rsp, 544 struct rcu_node *rnp, 545 struct rcu_data *rdp) 546 { 547 struct list_head *lp; 548 struct list_head *lp_root; 549 int retval = 0; 550 struct rcu_node *rnp_root = rcu_get_root(rsp); 551 struct task_struct *t; 552 553 if (rnp == rnp_root) { 554 WARN_ONCE(1, "Last CPU thought to be offlined?"); 555 return 0; /* Shouldn't happen: at least one CPU online. */ 556 } 557 558 /* If we are on an internal node, complain bitterly. */ 559 WARN_ON_ONCE(rnp != rdp->mynode); 560 561 /* 562 * Move tasks up to root rcu_node. Don't try to get fancy for 563 * this corner-case operation -- just put this node's tasks 564 * at the head of the root node's list, and update the root node's 565 * ->gp_tasks and ->exp_tasks pointers to those of this node's, 566 * if non-NULL. This might result in waiting for more tasks than 567 * absolutely necessary, but this is a good performance/complexity 568 * tradeoff. 569 */ 570 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0) 571 retval |= RCU_OFL_TASKS_NORM_GP; 572 if (rcu_preempted_readers_exp(rnp)) 573 retval |= RCU_OFL_TASKS_EXP_GP; 574 lp = &rnp->blkd_tasks; 575 lp_root = &rnp_root->blkd_tasks; 576 while (!list_empty(lp)) { 577 t = list_entry(lp->next, typeof(*t), rcu_node_entry); 578 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ 579 smp_mb__after_unlock_lock(); 580 list_del(&t->rcu_node_entry); 581 t->rcu_blocked_node = rnp_root; 582 list_add(&t->rcu_node_entry, lp_root); 583 if (&t->rcu_node_entry == rnp->gp_tasks) 584 rnp_root->gp_tasks = rnp->gp_tasks; 585 if (&t->rcu_node_entry == rnp->exp_tasks) 586 rnp_root->exp_tasks = rnp->exp_tasks; 587 #ifdef CONFIG_RCU_BOOST 588 if (&t->rcu_node_entry == rnp->boost_tasks) 589 rnp_root->boost_tasks = rnp->boost_tasks; 590 #endif /* #ifdef CONFIG_RCU_BOOST */ 591 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ 592 } 593 594 rnp->gp_tasks = NULL; 595 rnp->exp_tasks = NULL; 596 #ifdef CONFIG_RCU_BOOST 597 rnp->boost_tasks = NULL; 598 /* 599 * In case root is being boosted and leaf was not. Make sure 600 * that we boost the tasks blocking the current grace period 601 * in this case. 602 */ 603 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ 604 smp_mb__after_unlock_lock(); 605 if (rnp_root->boost_tasks != NULL && 606 rnp_root->boost_tasks != rnp_root->gp_tasks && 607 rnp_root->boost_tasks != rnp_root->exp_tasks) 608 rnp_root->boost_tasks = rnp_root->gp_tasks; 609 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ 610 #endif /* #ifdef CONFIG_RCU_BOOST */ 611 612 return retval; 613 } 614 615 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 616 617 /* 618 * Check for a quiescent state from the current CPU. When a task blocks, 619 * the task is recorded in the corresponding CPU's rcu_node structure, 620 * which is checked elsewhere. 621 * 622 * Caller must disable hard irqs. 623 */ 624 static void rcu_preempt_check_callbacks(int cpu) 625 { 626 struct task_struct *t = current; 627 628 if (t->rcu_read_lock_nesting == 0) { 629 rcu_preempt_qs(); 630 return; 631 } 632 if (t->rcu_read_lock_nesting > 0 && 633 per_cpu(rcu_preempt_data, cpu).qs_pending && 634 !per_cpu(rcu_preempt_data, cpu).passed_quiesce) 635 t->rcu_read_unlock_special.b.need_qs = true; 636 } 637 638 #ifdef CONFIG_RCU_BOOST 639 640 static void rcu_preempt_do_callbacks(void) 641 { 642 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); 643 } 644 645 #endif /* #ifdef CONFIG_RCU_BOOST */ 646 647 /* 648 * Queue a preemptible-RCU callback for invocation after a grace period. 649 */ 650 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 651 { 652 __call_rcu(head, func, &rcu_preempt_state, -1, 0); 653 } 654 EXPORT_SYMBOL_GPL(call_rcu); 655 656 /** 657 * synchronize_rcu - wait until a grace period has elapsed. 658 * 659 * Control will return to the caller some time after a full grace 660 * period has elapsed, in other words after all currently executing RCU 661 * read-side critical sections have completed. Note, however, that 662 * upon return from synchronize_rcu(), the caller might well be executing 663 * concurrently with new RCU read-side critical sections that began while 664 * synchronize_rcu() was waiting. RCU read-side critical sections are 665 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 666 * 667 * See the description of synchronize_sched() for more detailed information 668 * on memory ordering guarantees. 669 */ 670 void synchronize_rcu(void) 671 { 672 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 673 !lock_is_held(&rcu_lock_map) && 674 !lock_is_held(&rcu_sched_lock_map), 675 "Illegal synchronize_rcu() in RCU read-side critical section"); 676 if (!rcu_scheduler_active) 677 return; 678 if (rcu_expedited) 679 synchronize_rcu_expedited(); 680 else 681 wait_rcu_gp(call_rcu); 682 } 683 EXPORT_SYMBOL_GPL(synchronize_rcu); 684 685 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); 686 static unsigned long sync_rcu_preempt_exp_count; 687 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); 688 689 /* 690 * Return non-zero if there are any tasks in RCU read-side critical 691 * sections blocking the current preemptible-RCU expedited grace period. 692 * If there is no preemptible-RCU expedited grace period currently in 693 * progress, returns zero unconditionally. 694 */ 695 static int rcu_preempted_readers_exp(struct rcu_node *rnp) 696 { 697 return rnp->exp_tasks != NULL; 698 } 699 700 /* 701 * return non-zero if there is no RCU expedited grace period in progress 702 * for the specified rcu_node structure, in other words, if all CPUs and 703 * tasks covered by the specified rcu_node structure have done their bit 704 * for the current expedited grace period. Works only for preemptible 705 * RCU -- other RCU implementation use other means. 706 * 707 * Caller must hold sync_rcu_preempt_exp_mutex. 708 */ 709 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 710 { 711 return !rcu_preempted_readers_exp(rnp) && 712 ACCESS_ONCE(rnp->expmask) == 0; 713 } 714 715 /* 716 * Report the exit from RCU read-side critical section for the last task 717 * that queued itself during or before the current expedited preemptible-RCU 718 * grace period. This event is reported either to the rcu_node structure on 719 * which the task was queued or to one of that rcu_node structure's ancestors, 720 * recursively up the tree. (Calm down, calm down, we do the recursion 721 * iteratively!) 722 * 723 * Most callers will set the "wake" flag, but the task initiating the 724 * expedited grace period need not wake itself. 725 * 726 * Caller must hold sync_rcu_preempt_exp_mutex. 727 */ 728 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 729 bool wake) 730 { 731 unsigned long flags; 732 unsigned long mask; 733 734 raw_spin_lock_irqsave(&rnp->lock, flags); 735 smp_mb__after_unlock_lock(); 736 for (;;) { 737 if (!sync_rcu_preempt_exp_done(rnp)) { 738 raw_spin_unlock_irqrestore(&rnp->lock, flags); 739 break; 740 } 741 if (rnp->parent == NULL) { 742 raw_spin_unlock_irqrestore(&rnp->lock, flags); 743 if (wake) { 744 smp_mb(); /* EGP done before wake_up(). */ 745 wake_up(&sync_rcu_preempt_exp_wq); 746 } 747 break; 748 } 749 mask = rnp->grpmask; 750 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 751 rnp = rnp->parent; 752 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 753 smp_mb__after_unlock_lock(); 754 rnp->expmask &= ~mask; 755 } 756 } 757 758 /* 759 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 760 * grace period for the specified rcu_node structure. If there are no such 761 * tasks, report it up the rcu_node hierarchy. 762 * 763 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude 764 * CPU hotplug operations. 765 */ 766 static void 767 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) 768 { 769 unsigned long flags; 770 int must_wait = 0; 771 772 raw_spin_lock_irqsave(&rnp->lock, flags); 773 smp_mb__after_unlock_lock(); 774 if (list_empty(&rnp->blkd_tasks)) { 775 raw_spin_unlock_irqrestore(&rnp->lock, flags); 776 } else { 777 rnp->exp_tasks = rnp->blkd_tasks.next; 778 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 779 must_wait = 1; 780 } 781 if (!must_wait) 782 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */ 783 } 784 785 /** 786 * synchronize_rcu_expedited - Brute-force RCU grace period 787 * 788 * Wait for an RCU-preempt grace period, but expedite it. The basic 789 * idea is to invoke synchronize_sched_expedited() to push all the tasks to 790 * the ->blkd_tasks lists and wait for this list to drain. This consumes 791 * significant time on all CPUs and is unfriendly to real-time workloads, 792 * so is thus not recommended for any sort of common-case code. 793 * In fact, if you are using synchronize_rcu_expedited() in a loop, 794 * please restructure your code to batch your updates, and then Use a 795 * single synchronize_rcu() instead. 796 */ 797 void synchronize_rcu_expedited(void) 798 { 799 unsigned long flags; 800 struct rcu_node *rnp; 801 struct rcu_state *rsp = &rcu_preempt_state; 802 unsigned long snap; 803 int trycount = 0; 804 805 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 806 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; 807 smp_mb(); /* Above access cannot bleed into critical section. */ 808 809 /* 810 * Block CPU-hotplug operations. This means that any CPU-hotplug 811 * operation that finds an rcu_node structure with tasks in the 812 * process of being boosted will know that all tasks blocking 813 * this expedited grace period will already be in the process of 814 * being boosted. This simplifies the process of moving tasks 815 * from leaf to root rcu_node structures. 816 */ 817 if (!try_get_online_cpus()) { 818 /* CPU-hotplug operation in flight, fall back to normal GP. */ 819 wait_rcu_gp(call_rcu); 820 return; 821 } 822 823 /* 824 * Acquire lock, falling back to synchronize_rcu() if too many 825 * lock-acquisition failures. Of course, if someone does the 826 * expedited grace period for us, just leave. 827 */ 828 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { 829 if (ULONG_CMP_LT(snap, 830 ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 831 put_online_cpus(); 832 goto mb_ret; /* Others did our work for us. */ 833 } 834 if (trycount++ < 10) { 835 udelay(trycount * num_online_cpus()); 836 } else { 837 put_online_cpus(); 838 wait_rcu_gp(call_rcu); 839 return; 840 } 841 } 842 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 843 put_online_cpus(); 844 goto unlock_mb_ret; /* Others did our work for us. */ 845 } 846 847 /* force all RCU readers onto ->blkd_tasks lists. */ 848 synchronize_sched_expedited(); 849 850 /* Initialize ->expmask for all non-leaf rcu_node structures. */ 851 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { 852 raw_spin_lock_irqsave(&rnp->lock, flags); 853 smp_mb__after_unlock_lock(); 854 rnp->expmask = rnp->qsmaskinit; 855 raw_spin_unlock_irqrestore(&rnp->lock, flags); 856 } 857 858 /* Snapshot current state of ->blkd_tasks lists. */ 859 rcu_for_each_leaf_node(rsp, rnp) 860 sync_rcu_preempt_exp_init(rsp, rnp); 861 if (NUM_RCU_NODES > 1) 862 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); 863 864 put_online_cpus(); 865 866 /* Wait for snapshotted ->blkd_tasks lists to drain. */ 867 rnp = rcu_get_root(rsp); 868 wait_event(sync_rcu_preempt_exp_wq, 869 sync_rcu_preempt_exp_done(rnp)); 870 871 /* Clean up and exit. */ 872 smp_mb(); /* ensure expedited GP seen before counter increment. */ 873 ACCESS_ONCE(sync_rcu_preempt_exp_count) = 874 sync_rcu_preempt_exp_count + 1; 875 unlock_mb_ret: 876 mutex_unlock(&sync_rcu_preempt_exp_mutex); 877 mb_ret: 878 smp_mb(); /* ensure subsequent action seen after grace period. */ 879 } 880 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 881 882 /** 883 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 884 * 885 * Note that this primitive does not necessarily wait for an RCU grace period 886 * to complete. For example, if there are no RCU callbacks queued anywhere 887 * in the system, then rcu_barrier() is within its rights to return 888 * immediately, without waiting for anything, much less an RCU grace period. 889 */ 890 void rcu_barrier(void) 891 { 892 _rcu_barrier(&rcu_preempt_state); 893 } 894 EXPORT_SYMBOL_GPL(rcu_barrier); 895 896 /* 897 * Initialize preemptible RCU's state structures. 898 */ 899 static void __init __rcu_init_preempt(void) 900 { 901 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); 902 } 903 904 /* 905 * Check for a task exiting while in a preemptible-RCU read-side 906 * critical section, clean up if so. No need to issue warnings, 907 * as debug_check_no_locks_held() already does this if lockdep 908 * is enabled. 909 */ 910 void exit_rcu(void) 911 { 912 struct task_struct *t = current; 913 914 if (likely(list_empty(¤t->rcu_node_entry))) 915 return; 916 t->rcu_read_lock_nesting = 1; 917 barrier(); 918 t->rcu_read_unlock_special.b.blocked = true; 919 __rcu_read_unlock(); 920 } 921 922 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 923 924 static struct rcu_state *rcu_state_p = &rcu_sched_state; 925 926 /* 927 * Tell them what RCU they are running. 928 */ 929 static void __init rcu_bootup_announce(void) 930 { 931 pr_info("Hierarchical RCU implementation.\n"); 932 rcu_bootup_announce_oddness(); 933 } 934 935 /* 936 * Return the number of RCU batches processed thus far for debug & stats. 937 */ 938 long rcu_batches_completed(void) 939 { 940 return rcu_batches_completed_sched(); 941 } 942 EXPORT_SYMBOL_GPL(rcu_batches_completed); 943 944 /* 945 * Because preemptible RCU does not exist, we never have to check for 946 * CPUs being in quiescent states. 947 */ 948 static void rcu_preempt_note_context_switch(int cpu) 949 { 950 } 951 952 /* 953 * Because preemptible RCU does not exist, there are never any preempted 954 * RCU readers. 955 */ 956 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 957 { 958 return 0; 959 } 960 961 #ifdef CONFIG_HOTPLUG_CPU 962 963 /* Because preemptible RCU does not exist, no quieting of tasks. */ 964 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 965 __releases(rnp->lock) 966 { 967 raw_spin_unlock_irqrestore(&rnp->lock, flags); 968 } 969 970 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 971 972 /* 973 * Because preemptible RCU does not exist, we never have to check for 974 * tasks blocked within RCU read-side critical sections. 975 */ 976 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 977 { 978 } 979 980 /* 981 * Because preemptible RCU does not exist, we never have to check for 982 * tasks blocked within RCU read-side critical sections. 983 */ 984 static int rcu_print_task_stall(struct rcu_node *rnp) 985 { 986 return 0; 987 } 988 989 /* 990 * Because there is no preemptible RCU, there can be no readers blocked, 991 * so there is no need to check for blocked tasks. So check only for 992 * bogus qsmask values. 993 */ 994 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 995 { 996 WARN_ON_ONCE(rnp->qsmask); 997 } 998 999 #ifdef CONFIG_HOTPLUG_CPU 1000 1001 /* 1002 * Because preemptible RCU does not exist, it never needs to migrate 1003 * tasks that were blocked within RCU read-side critical sections, and 1004 * such non-existent tasks cannot possibly have been blocking the current 1005 * grace period. 1006 */ 1007 static int rcu_preempt_offline_tasks(struct rcu_state *rsp, 1008 struct rcu_node *rnp, 1009 struct rcu_data *rdp) 1010 { 1011 return 0; 1012 } 1013 1014 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 1015 1016 /* 1017 * Because preemptible RCU does not exist, it never has any callbacks 1018 * to check. 1019 */ 1020 static void rcu_preempt_check_callbacks(int cpu) 1021 { 1022 } 1023 1024 /* 1025 * Wait for an rcu-preempt grace period, but make it happen quickly. 1026 * But because preemptible RCU does not exist, map to rcu-sched. 1027 */ 1028 void synchronize_rcu_expedited(void) 1029 { 1030 synchronize_sched_expedited(); 1031 } 1032 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 1033 1034 #ifdef CONFIG_HOTPLUG_CPU 1035 1036 /* 1037 * Because preemptible RCU does not exist, there is never any need to 1038 * report on tasks preempted in RCU read-side critical sections during 1039 * expedited RCU grace periods. 1040 */ 1041 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 1042 bool wake) 1043 { 1044 } 1045 1046 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 1047 1048 /* 1049 * Because preemptible RCU does not exist, rcu_barrier() is just 1050 * another name for rcu_barrier_sched(). 1051 */ 1052 void rcu_barrier(void) 1053 { 1054 rcu_barrier_sched(); 1055 } 1056 EXPORT_SYMBOL_GPL(rcu_barrier); 1057 1058 /* 1059 * Because preemptible RCU does not exist, it need not be initialized. 1060 */ 1061 static void __init __rcu_init_preempt(void) 1062 { 1063 } 1064 1065 /* 1066 * Because preemptible RCU does not exist, tasks cannot possibly exit 1067 * while in preemptible RCU read-side critical sections. 1068 */ 1069 void exit_rcu(void) 1070 { 1071 } 1072 1073 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ 1074 1075 #ifdef CONFIG_RCU_BOOST 1076 1077 #include "../locking/rtmutex_common.h" 1078 1079 #ifdef CONFIG_RCU_TRACE 1080 1081 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 1082 { 1083 if (list_empty(&rnp->blkd_tasks)) 1084 rnp->n_balk_blkd_tasks++; 1085 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 1086 rnp->n_balk_exp_gp_tasks++; 1087 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 1088 rnp->n_balk_boost_tasks++; 1089 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 1090 rnp->n_balk_notblocked++; 1091 else if (rnp->gp_tasks != NULL && 1092 ULONG_CMP_LT(jiffies, rnp->boost_time)) 1093 rnp->n_balk_notyet++; 1094 else 1095 rnp->n_balk_nos++; 1096 } 1097 1098 #else /* #ifdef CONFIG_RCU_TRACE */ 1099 1100 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 1101 { 1102 } 1103 1104 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 1105 1106 static void rcu_wake_cond(struct task_struct *t, int status) 1107 { 1108 /* 1109 * If the thread is yielding, only wake it when this 1110 * is invoked from idle 1111 */ 1112 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 1113 wake_up_process(t); 1114 } 1115 1116 /* 1117 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1118 * or ->boost_tasks, advancing the pointer to the next task in the 1119 * ->blkd_tasks list. 1120 * 1121 * Note that irqs must be enabled: boosting the task can block. 1122 * Returns 1 if there are more tasks needing to be boosted. 1123 */ 1124 static int rcu_boost(struct rcu_node *rnp) 1125 { 1126 unsigned long flags; 1127 struct task_struct *t; 1128 struct list_head *tb; 1129 1130 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) 1131 return 0; /* Nothing left to boost. */ 1132 1133 raw_spin_lock_irqsave(&rnp->lock, flags); 1134 smp_mb__after_unlock_lock(); 1135 1136 /* 1137 * Recheck under the lock: all tasks in need of boosting 1138 * might exit their RCU read-side critical sections on their own. 1139 */ 1140 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1141 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1142 return 0; 1143 } 1144 1145 /* 1146 * Preferentially boost tasks blocking expedited grace periods. 1147 * This cannot starve the normal grace periods because a second 1148 * expedited grace period must boost all blocked tasks, including 1149 * those blocking the pre-existing normal grace period. 1150 */ 1151 if (rnp->exp_tasks != NULL) { 1152 tb = rnp->exp_tasks; 1153 rnp->n_exp_boosts++; 1154 } else { 1155 tb = rnp->boost_tasks; 1156 rnp->n_normal_boosts++; 1157 } 1158 rnp->n_tasks_boosted++; 1159 1160 /* 1161 * We boost task t by manufacturing an rt_mutex that appears to 1162 * be held by task t. We leave a pointer to that rt_mutex where 1163 * task t can find it, and task t will release the mutex when it 1164 * exits its outermost RCU read-side critical section. Then 1165 * simply acquiring this artificial rt_mutex will boost task 1166 * t's priority. (Thanks to tglx for suggesting this approach!) 1167 * 1168 * Note that task t must acquire rnp->lock to remove itself from 1169 * the ->blkd_tasks list, which it will do from exit() if from 1170 * nowhere else. We therefore are guaranteed that task t will 1171 * stay around at least until we drop rnp->lock. Note that 1172 * rnp->lock also resolves races between our priority boosting 1173 * and task t's exiting its outermost RCU read-side critical 1174 * section. 1175 */ 1176 t = container_of(tb, struct task_struct, rcu_node_entry); 1177 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1178 init_completion(&rnp->boost_completion); 1179 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1180 /* Lock only for side effect: boosts task t's priority. */ 1181 rt_mutex_lock(&rnp->boost_mtx); 1182 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1183 1184 /* Wait for boostee to be done w/boost_mtx before reinitializing. */ 1185 wait_for_completion(&rnp->boost_completion); 1186 1187 return ACCESS_ONCE(rnp->exp_tasks) != NULL || 1188 ACCESS_ONCE(rnp->boost_tasks) != NULL; 1189 } 1190 1191 /* 1192 * Priority-boosting kthread. One per leaf rcu_node and one for the 1193 * root rcu_node. 1194 */ 1195 static int rcu_boost_kthread(void *arg) 1196 { 1197 struct rcu_node *rnp = (struct rcu_node *)arg; 1198 int spincnt = 0; 1199 int more2boost; 1200 1201 trace_rcu_utilization(TPS("Start boost kthread@init")); 1202 for (;;) { 1203 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1204 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1205 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1206 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1207 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1208 more2boost = rcu_boost(rnp); 1209 if (more2boost) 1210 spincnt++; 1211 else 1212 spincnt = 0; 1213 if (spincnt > 10) { 1214 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1215 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1216 schedule_timeout_interruptible(2); 1217 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1218 spincnt = 0; 1219 } 1220 } 1221 /* NOTREACHED */ 1222 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1223 return 0; 1224 } 1225 1226 /* 1227 * Check to see if it is time to start boosting RCU readers that are 1228 * blocking the current grace period, and, if so, tell the per-rcu_node 1229 * kthread to start boosting them. If there is an expedited grace 1230 * period in progress, it is always time to boost. 1231 * 1232 * The caller must hold rnp->lock, which this function releases. 1233 * The ->boost_kthread_task is immortal, so we don't need to worry 1234 * about it going away. 1235 */ 1236 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1237 __releases(rnp->lock) 1238 { 1239 struct task_struct *t; 1240 1241 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1242 rnp->n_balk_exp_gp_tasks++; 1243 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1244 return; 1245 } 1246 if (rnp->exp_tasks != NULL || 1247 (rnp->gp_tasks != NULL && 1248 rnp->boost_tasks == NULL && 1249 rnp->qsmask == 0 && 1250 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1251 if (rnp->exp_tasks == NULL) 1252 rnp->boost_tasks = rnp->gp_tasks; 1253 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1254 t = rnp->boost_kthread_task; 1255 if (t) 1256 rcu_wake_cond(t, rnp->boost_kthread_status); 1257 } else { 1258 rcu_initiate_boost_trace(rnp); 1259 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1260 } 1261 } 1262 1263 /* 1264 * Wake up the per-CPU kthread to invoke RCU callbacks. 1265 */ 1266 static void invoke_rcu_callbacks_kthread(void) 1267 { 1268 unsigned long flags; 1269 1270 local_irq_save(flags); 1271 __this_cpu_write(rcu_cpu_has_work, 1); 1272 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1273 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1274 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1275 __this_cpu_read(rcu_cpu_kthread_status)); 1276 } 1277 local_irq_restore(flags); 1278 } 1279 1280 /* 1281 * Is the current CPU running the RCU-callbacks kthread? 1282 * Caller must have preemption disabled. 1283 */ 1284 static bool rcu_is_callbacks_kthread(void) 1285 { 1286 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1287 } 1288 1289 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1290 1291 /* 1292 * Do priority-boost accounting for the start of a new grace period. 1293 */ 1294 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1295 { 1296 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1297 } 1298 1299 /* 1300 * Create an RCU-boost kthread for the specified node if one does not 1301 * already exist. We only create this kthread for preemptible RCU. 1302 * Returns zero if all is well, a negated errno otherwise. 1303 */ 1304 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1305 struct rcu_node *rnp) 1306 { 1307 int rnp_index = rnp - &rsp->node[0]; 1308 unsigned long flags; 1309 struct sched_param sp; 1310 struct task_struct *t; 1311 1312 if (&rcu_preempt_state != rsp) 1313 return 0; 1314 1315 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0) 1316 return 0; 1317 1318 rsp->boost = 1; 1319 if (rnp->boost_kthread_task != NULL) 1320 return 0; 1321 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1322 "rcub/%d", rnp_index); 1323 if (IS_ERR(t)) 1324 return PTR_ERR(t); 1325 raw_spin_lock_irqsave(&rnp->lock, flags); 1326 smp_mb__after_unlock_lock(); 1327 rnp->boost_kthread_task = t; 1328 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1329 sp.sched_priority = RCU_BOOST_PRIO; 1330 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1331 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1332 return 0; 1333 } 1334 1335 static void rcu_kthread_do_work(void) 1336 { 1337 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1338 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1339 rcu_preempt_do_callbacks(); 1340 } 1341 1342 static void rcu_cpu_kthread_setup(unsigned int cpu) 1343 { 1344 struct sched_param sp; 1345 1346 sp.sched_priority = RCU_KTHREAD_PRIO; 1347 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1348 } 1349 1350 static void rcu_cpu_kthread_park(unsigned int cpu) 1351 { 1352 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1353 } 1354 1355 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1356 { 1357 return __this_cpu_read(rcu_cpu_has_work); 1358 } 1359 1360 /* 1361 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1362 * RCU softirq used in flavors and configurations of RCU that do not 1363 * support RCU priority boosting. 1364 */ 1365 static void rcu_cpu_kthread(unsigned int cpu) 1366 { 1367 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1368 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1369 int spincnt; 1370 1371 for (spincnt = 0; spincnt < 10; spincnt++) { 1372 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1373 local_bh_disable(); 1374 *statusp = RCU_KTHREAD_RUNNING; 1375 this_cpu_inc(rcu_cpu_kthread_loops); 1376 local_irq_disable(); 1377 work = *workp; 1378 *workp = 0; 1379 local_irq_enable(); 1380 if (work) 1381 rcu_kthread_do_work(); 1382 local_bh_enable(); 1383 if (*workp == 0) { 1384 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1385 *statusp = RCU_KTHREAD_WAITING; 1386 return; 1387 } 1388 } 1389 *statusp = RCU_KTHREAD_YIELDING; 1390 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1391 schedule_timeout_interruptible(2); 1392 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1393 *statusp = RCU_KTHREAD_WAITING; 1394 } 1395 1396 /* 1397 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1398 * served by the rcu_node in question. The CPU hotplug lock is still 1399 * held, so the value of rnp->qsmaskinit will be stable. 1400 * 1401 * We don't include outgoingcpu in the affinity set, use -1 if there is 1402 * no outgoing CPU. If there are no CPUs left in the affinity set, 1403 * this function allows the kthread to execute on any CPU. 1404 */ 1405 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1406 { 1407 struct task_struct *t = rnp->boost_kthread_task; 1408 unsigned long mask = rnp->qsmaskinit; 1409 cpumask_var_t cm; 1410 int cpu; 1411 1412 if (!t) 1413 return; 1414 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1415 return; 1416 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1417 if ((mask & 0x1) && cpu != outgoingcpu) 1418 cpumask_set_cpu(cpu, cm); 1419 if (cpumask_weight(cm) == 0) { 1420 cpumask_setall(cm); 1421 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) 1422 cpumask_clear_cpu(cpu, cm); 1423 WARN_ON_ONCE(cpumask_weight(cm) == 0); 1424 } 1425 set_cpus_allowed_ptr(t, cm); 1426 free_cpumask_var(cm); 1427 } 1428 1429 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1430 .store = &rcu_cpu_kthread_task, 1431 .thread_should_run = rcu_cpu_kthread_should_run, 1432 .thread_fn = rcu_cpu_kthread, 1433 .thread_comm = "rcuc/%u", 1434 .setup = rcu_cpu_kthread_setup, 1435 .park = rcu_cpu_kthread_park, 1436 }; 1437 1438 /* 1439 * Spawn boost kthreads -- called as soon as the scheduler is running. 1440 */ 1441 static void __init rcu_spawn_boost_kthreads(void) 1442 { 1443 struct rcu_node *rnp; 1444 int cpu; 1445 1446 for_each_possible_cpu(cpu) 1447 per_cpu(rcu_cpu_has_work, cpu) = 0; 1448 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1449 rnp = rcu_get_root(rcu_state_p); 1450 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1451 if (NUM_RCU_NODES > 1) { 1452 rcu_for_each_leaf_node(rcu_state_p, rnp) 1453 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1454 } 1455 } 1456 1457 static void rcu_prepare_kthreads(int cpu) 1458 { 1459 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1460 struct rcu_node *rnp = rdp->mynode; 1461 1462 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1463 if (rcu_scheduler_fully_active) 1464 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1465 } 1466 1467 #else /* #ifdef CONFIG_RCU_BOOST */ 1468 1469 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1470 __releases(rnp->lock) 1471 { 1472 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1473 } 1474 1475 static void invoke_rcu_callbacks_kthread(void) 1476 { 1477 WARN_ON_ONCE(1); 1478 } 1479 1480 static bool rcu_is_callbacks_kthread(void) 1481 { 1482 return false; 1483 } 1484 1485 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1486 { 1487 } 1488 1489 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1490 { 1491 } 1492 1493 static void __init rcu_spawn_boost_kthreads(void) 1494 { 1495 } 1496 1497 static void rcu_prepare_kthreads(int cpu) 1498 { 1499 } 1500 1501 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1502 1503 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1504 1505 /* 1506 * Check to see if any future RCU-related work will need to be done 1507 * by the current CPU, even if none need be done immediately, returning 1508 * 1 if so. This function is part of the RCU implementation; it is -not- 1509 * an exported member of the RCU API. 1510 * 1511 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1512 * any flavor of RCU. 1513 */ 1514 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1515 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) 1516 { 1517 *delta_jiffies = ULONG_MAX; 1518 return rcu_cpu_has_callbacks(cpu, NULL); 1519 } 1520 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1521 1522 /* 1523 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1524 * after it. 1525 */ 1526 static void rcu_cleanup_after_idle(int cpu) 1527 { 1528 } 1529 1530 /* 1531 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1532 * is nothing. 1533 */ 1534 static void rcu_prepare_for_idle(int cpu) 1535 { 1536 } 1537 1538 /* 1539 * Don't bother keeping a running count of the number of RCU callbacks 1540 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1541 */ 1542 static void rcu_idle_count_callbacks_posted(void) 1543 { 1544 } 1545 1546 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1547 1548 /* 1549 * This code is invoked when a CPU goes idle, at which point we want 1550 * to have the CPU do everything required for RCU so that it can enter 1551 * the energy-efficient dyntick-idle mode. This is handled by a 1552 * state machine implemented by rcu_prepare_for_idle() below. 1553 * 1554 * The following three proprocessor symbols control this state machine: 1555 * 1556 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1557 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1558 * is sized to be roughly one RCU grace period. Those energy-efficiency 1559 * benchmarkers who might otherwise be tempted to set this to a large 1560 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1561 * system. And if you are -that- concerned about energy efficiency, 1562 * just power the system down and be done with it! 1563 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1564 * permitted to sleep in dyntick-idle mode with only lazy RCU 1565 * callbacks pending. Setting this too high can OOM your system. 1566 * 1567 * The values below work well in practice. If future workloads require 1568 * adjustment, they can be converted into kernel config parameters, though 1569 * making the state machine smarter might be a better option. 1570 */ 1571 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1572 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1573 1574 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1575 module_param(rcu_idle_gp_delay, int, 0644); 1576 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1577 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1578 1579 extern int tick_nohz_active; 1580 1581 /* 1582 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1583 * only if it has been awhile since the last time we did so. Afterwards, 1584 * if there are any callbacks ready for immediate invocation, return true. 1585 */ 1586 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1587 { 1588 bool cbs_ready = false; 1589 struct rcu_data *rdp; 1590 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1591 struct rcu_node *rnp; 1592 struct rcu_state *rsp; 1593 1594 /* Exit early if we advanced recently. */ 1595 if (jiffies == rdtp->last_advance_all) 1596 return false; 1597 rdtp->last_advance_all = jiffies; 1598 1599 for_each_rcu_flavor(rsp) { 1600 rdp = this_cpu_ptr(rsp->rda); 1601 rnp = rdp->mynode; 1602 1603 /* 1604 * Don't bother checking unless a grace period has 1605 * completed since we last checked and there are 1606 * callbacks not yet ready to invoke. 1607 */ 1608 if (rdp->completed != rnp->completed && 1609 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1610 note_gp_changes(rsp, rdp); 1611 1612 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1613 cbs_ready = true; 1614 } 1615 return cbs_ready; 1616 } 1617 1618 /* 1619 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1620 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1621 * caller to set the timeout based on whether or not there are non-lazy 1622 * callbacks. 1623 * 1624 * The caller must have disabled interrupts. 1625 */ 1626 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1627 int rcu_needs_cpu(int cpu, unsigned long *dj) 1628 { 1629 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1630 1631 /* Snapshot to detect later posting of non-lazy callback. */ 1632 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1633 1634 /* If no callbacks, RCU doesn't need the CPU. */ 1635 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) { 1636 *dj = ULONG_MAX; 1637 return 0; 1638 } 1639 1640 /* Attempt to advance callbacks. */ 1641 if (rcu_try_advance_all_cbs()) { 1642 /* Some ready to invoke, so initiate later invocation. */ 1643 invoke_rcu_core(); 1644 return 1; 1645 } 1646 rdtp->last_accelerate = jiffies; 1647 1648 /* Request timer delay depending on laziness, and round. */ 1649 if (!rdtp->all_lazy) { 1650 *dj = round_up(rcu_idle_gp_delay + jiffies, 1651 rcu_idle_gp_delay) - jiffies; 1652 } else { 1653 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1654 } 1655 return 0; 1656 } 1657 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1658 1659 /* 1660 * Prepare a CPU for idle from an RCU perspective. The first major task 1661 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1662 * The second major task is to check to see if a non-lazy callback has 1663 * arrived at a CPU that previously had only lazy callbacks. The third 1664 * major task is to accelerate (that is, assign grace-period numbers to) 1665 * any recently arrived callbacks. 1666 * 1667 * The caller must have disabled interrupts. 1668 */ 1669 static void rcu_prepare_for_idle(int cpu) 1670 { 1671 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1672 bool needwake; 1673 struct rcu_data *rdp; 1674 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1675 struct rcu_node *rnp; 1676 struct rcu_state *rsp; 1677 int tne; 1678 1679 /* Handle nohz enablement switches conservatively. */ 1680 tne = ACCESS_ONCE(tick_nohz_active); 1681 if (tne != rdtp->tick_nohz_enabled_snap) { 1682 if (rcu_cpu_has_callbacks(cpu, NULL)) 1683 invoke_rcu_core(); /* force nohz to see update. */ 1684 rdtp->tick_nohz_enabled_snap = tne; 1685 return; 1686 } 1687 if (!tne) 1688 return; 1689 1690 /* If this is a no-CBs CPU, no callbacks, just return. */ 1691 if (rcu_is_nocb_cpu(cpu)) 1692 return; 1693 1694 /* 1695 * If a non-lazy callback arrived at a CPU having only lazy 1696 * callbacks, invoke RCU core for the side-effect of recalculating 1697 * idle duration on re-entry to idle. 1698 */ 1699 if (rdtp->all_lazy && 1700 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1701 rdtp->all_lazy = false; 1702 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1703 invoke_rcu_core(); 1704 return; 1705 } 1706 1707 /* 1708 * If we have not yet accelerated this jiffy, accelerate all 1709 * callbacks on this CPU. 1710 */ 1711 if (rdtp->last_accelerate == jiffies) 1712 return; 1713 rdtp->last_accelerate = jiffies; 1714 for_each_rcu_flavor(rsp) { 1715 rdp = per_cpu_ptr(rsp->rda, cpu); 1716 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1717 continue; 1718 rnp = rdp->mynode; 1719 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1720 smp_mb__after_unlock_lock(); 1721 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1722 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1723 if (needwake) 1724 rcu_gp_kthread_wake(rsp); 1725 } 1726 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1727 } 1728 1729 /* 1730 * Clean up for exit from idle. Attempt to advance callbacks based on 1731 * any grace periods that elapsed while the CPU was idle, and if any 1732 * callbacks are now ready to invoke, initiate invocation. 1733 */ 1734 static void rcu_cleanup_after_idle(int cpu) 1735 { 1736 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1737 if (rcu_is_nocb_cpu(cpu)) 1738 return; 1739 if (rcu_try_advance_all_cbs()) 1740 invoke_rcu_core(); 1741 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1742 } 1743 1744 /* 1745 * Keep a running count of the number of non-lazy callbacks posted 1746 * on this CPU. This running counter (which is never decremented) allows 1747 * rcu_prepare_for_idle() to detect when something out of the idle loop 1748 * posts a callback, even if an equal number of callbacks are invoked. 1749 * Of course, callbacks should only be posted from within a trace event 1750 * designed to be called from idle or from within RCU_NONIDLE(). 1751 */ 1752 static void rcu_idle_count_callbacks_posted(void) 1753 { 1754 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1755 } 1756 1757 /* 1758 * Data for flushing lazy RCU callbacks at OOM time. 1759 */ 1760 static atomic_t oom_callback_count; 1761 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1762 1763 /* 1764 * RCU OOM callback -- decrement the outstanding count and deliver the 1765 * wake-up if we are the last one. 1766 */ 1767 static void rcu_oom_callback(struct rcu_head *rhp) 1768 { 1769 if (atomic_dec_and_test(&oom_callback_count)) 1770 wake_up(&oom_callback_wq); 1771 } 1772 1773 /* 1774 * Post an rcu_oom_notify callback on the current CPU if it has at 1775 * least one lazy callback. This will unnecessarily post callbacks 1776 * to CPUs that already have a non-lazy callback at the end of their 1777 * callback list, but this is an infrequent operation, so accept some 1778 * extra overhead to keep things simple. 1779 */ 1780 static void rcu_oom_notify_cpu(void *unused) 1781 { 1782 struct rcu_state *rsp; 1783 struct rcu_data *rdp; 1784 1785 for_each_rcu_flavor(rsp) { 1786 rdp = raw_cpu_ptr(rsp->rda); 1787 if (rdp->qlen_lazy != 0) { 1788 atomic_inc(&oom_callback_count); 1789 rsp->call(&rdp->oom_head, rcu_oom_callback); 1790 } 1791 } 1792 } 1793 1794 /* 1795 * If low on memory, ensure that each CPU has a non-lazy callback. 1796 * This will wake up CPUs that have only lazy callbacks, in turn 1797 * ensuring that they free up the corresponding memory in a timely manner. 1798 * Because an uncertain amount of memory will be freed in some uncertain 1799 * timeframe, we do not claim to have freed anything. 1800 */ 1801 static int rcu_oom_notify(struct notifier_block *self, 1802 unsigned long notused, void *nfreed) 1803 { 1804 int cpu; 1805 1806 /* Wait for callbacks from earlier instance to complete. */ 1807 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1808 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1809 1810 /* 1811 * Prevent premature wakeup: ensure that all increments happen 1812 * before there is a chance of the counter reaching zero. 1813 */ 1814 atomic_set(&oom_callback_count, 1); 1815 1816 get_online_cpus(); 1817 for_each_online_cpu(cpu) { 1818 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1819 cond_resched_rcu_qs(); 1820 } 1821 put_online_cpus(); 1822 1823 /* Unconditionally decrement: no need to wake ourselves up. */ 1824 atomic_dec(&oom_callback_count); 1825 1826 return NOTIFY_OK; 1827 } 1828 1829 static struct notifier_block rcu_oom_nb = { 1830 .notifier_call = rcu_oom_notify 1831 }; 1832 1833 static int __init rcu_register_oom_notifier(void) 1834 { 1835 register_oom_notifier(&rcu_oom_nb); 1836 return 0; 1837 } 1838 early_initcall(rcu_register_oom_notifier); 1839 1840 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1841 1842 #ifdef CONFIG_RCU_CPU_STALL_INFO 1843 1844 #ifdef CONFIG_RCU_FAST_NO_HZ 1845 1846 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1847 { 1848 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1849 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1850 1851 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1852 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1853 ulong2long(nlpd), 1854 rdtp->all_lazy ? 'L' : '.', 1855 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1856 } 1857 1858 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1859 1860 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1861 { 1862 *cp = '\0'; 1863 } 1864 1865 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1866 1867 /* Initiate the stall-info list. */ 1868 static void print_cpu_stall_info_begin(void) 1869 { 1870 pr_cont("\n"); 1871 } 1872 1873 /* 1874 * Print out diagnostic information for the specified stalled CPU. 1875 * 1876 * If the specified CPU is aware of the current RCU grace period 1877 * (flavor specified by rsp), then print the number of scheduling 1878 * clock interrupts the CPU has taken during the time that it has 1879 * been aware. Otherwise, print the number of RCU grace periods 1880 * that this CPU is ignorant of, for example, "1" if the CPU was 1881 * aware of the previous grace period. 1882 * 1883 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1884 */ 1885 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1886 { 1887 char fast_no_hz[72]; 1888 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1889 struct rcu_dynticks *rdtp = rdp->dynticks; 1890 char *ticks_title; 1891 unsigned long ticks_value; 1892 1893 if (rsp->gpnum == rdp->gpnum) { 1894 ticks_title = "ticks this GP"; 1895 ticks_value = rdp->ticks_this_gp; 1896 } else { 1897 ticks_title = "GPs behind"; 1898 ticks_value = rsp->gpnum - rdp->gpnum; 1899 } 1900 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1901 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n", 1902 cpu, ticks_value, ticks_title, 1903 atomic_read(&rdtp->dynticks) & 0xfff, 1904 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1905 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1906 fast_no_hz); 1907 } 1908 1909 /* Terminate the stall-info list. */ 1910 static void print_cpu_stall_info_end(void) 1911 { 1912 pr_err("\t"); 1913 } 1914 1915 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1916 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1917 { 1918 rdp->ticks_this_gp = 0; 1919 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1920 } 1921 1922 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1923 static void increment_cpu_stall_ticks(void) 1924 { 1925 struct rcu_state *rsp; 1926 1927 for_each_rcu_flavor(rsp) 1928 raw_cpu_inc(rsp->rda->ticks_this_gp); 1929 } 1930 1931 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1932 1933 static void print_cpu_stall_info_begin(void) 1934 { 1935 pr_cont(" {"); 1936 } 1937 1938 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1939 { 1940 pr_cont(" %d", cpu); 1941 } 1942 1943 static void print_cpu_stall_info_end(void) 1944 { 1945 pr_cont("} "); 1946 } 1947 1948 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1949 { 1950 } 1951 1952 static void increment_cpu_stall_ticks(void) 1953 { 1954 } 1955 1956 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1957 1958 #ifdef CONFIG_RCU_NOCB_CPU 1959 1960 /* 1961 * Offload callback processing from the boot-time-specified set of CPUs 1962 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1963 * kthread created that pulls the callbacks from the corresponding CPU, 1964 * waits for a grace period to elapse, and invokes the callbacks. 1965 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1966 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1967 * has been specified, in which case each kthread actively polls its 1968 * CPU. (Which isn't so great for energy efficiency, but which does 1969 * reduce RCU's overhead on that CPU.) 1970 * 1971 * This is intended to be used in conjunction with Frederic Weisbecker's 1972 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1973 * running CPU-bound user-mode computations. 1974 * 1975 * Offloading of callback processing could also in theory be used as 1976 * an energy-efficiency measure because CPUs with no RCU callbacks 1977 * queued are more aggressive about entering dyntick-idle mode. 1978 */ 1979 1980 1981 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1982 static int __init rcu_nocb_setup(char *str) 1983 { 1984 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1985 have_rcu_nocb_mask = true; 1986 cpulist_parse(str, rcu_nocb_mask); 1987 return 1; 1988 } 1989 __setup("rcu_nocbs=", rcu_nocb_setup); 1990 1991 static int __init parse_rcu_nocb_poll(char *arg) 1992 { 1993 rcu_nocb_poll = 1; 1994 return 0; 1995 } 1996 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1997 1998 /* 1999 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 2000 * grace period. 2001 */ 2002 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2003 { 2004 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); 2005 } 2006 2007 /* 2008 * Set the root rcu_node structure's ->need_future_gp field 2009 * based on the sum of those of all rcu_node structures. This does 2010 * double-count the root rcu_node structure's requests, but this 2011 * is necessary to handle the possibility of a rcu_nocb_kthread() 2012 * having awakened during the time that the rcu_node structures 2013 * were being updated for the end of the previous grace period. 2014 */ 2015 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2016 { 2017 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 2018 } 2019 2020 static void rcu_init_one_nocb(struct rcu_node *rnp) 2021 { 2022 init_waitqueue_head(&rnp->nocb_gp_wq[0]); 2023 init_waitqueue_head(&rnp->nocb_gp_wq[1]); 2024 } 2025 2026 #ifndef CONFIG_RCU_NOCB_CPU_ALL 2027 /* Is the specified CPU a no-CBs CPU? */ 2028 bool rcu_is_nocb_cpu(int cpu) 2029 { 2030 if (have_rcu_nocb_mask) 2031 return cpumask_test_cpu(cpu, rcu_nocb_mask); 2032 return false; 2033 } 2034 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 2035 2036 /* 2037 * Kick the leader kthread for this NOCB group. 2038 */ 2039 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 2040 { 2041 struct rcu_data *rdp_leader = rdp->nocb_leader; 2042 2043 if (!ACCESS_ONCE(rdp_leader->nocb_kthread)) 2044 return; 2045 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) { 2046 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 2047 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false; 2048 wake_up(&rdp_leader->nocb_wq); 2049 } 2050 } 2051 2052 /* 2053 * Does the specified CPU need an RCU callback for the specified flavor 2054 * of rcu_barrier()? 2055 */ 2056 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2057 { 2058 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2059 struct rcu_head *rhp; 2060 2061 /* No-CBs CPUs might have callbacks on any of three lists. */ 2062 rhp = ACCESS_ONCE(rdp->nocb_head); 2063 if (!rhp) 2064 rhp = ACCESS_ONCE(rdp->nocb_gp_head); 2065 if (!rhp) 2066 rhp = ACCESS_ONCE(rdp->nocb_follower_head); 2067 2068 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 2069 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) { 2070 /* RCU callback enqueued before CPU first came online??? */ 2071 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 2072 cpu, rhp->func); 2073 WARN_ON_ONCE(1); 2074 } 2075 2076 return !!rhp; 2077 } 2078 2079 /* 2080 * Enqueue the specified string of rcu_head structures onto the specified 2081 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 2082 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 2083 * counts are supplied by rhcount and rhcount_lazy. 2084 * 2085 * If warranted, also wake up the kthread servicing this CPUs queues. 2086 */ 2087 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 2088 struct rcu_head *rhp, 2089 struct rcu_head **rhtp, 2090 int rhcount, int rhcount_lazy, 2091 unsigned long flags) 2092 { 2093 int len; 2094 struct rcu_head **old_rhpp; 2095 struct task_struct *t; 2096 2097 /* Enqueue the callback on the nocb list and update counts. */ 2098 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 2099 ACCESS_ONCE(*old_rhpp) = rhp; 2100 atomic_long_add(rhcount, &rdp->nocb_q_count); 2101 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 2102 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 2103 2104 /* If we are not being polled and there is a kthread, awaken it ... */ 2105 t = ACCESS_ONCE(rdp->nocb_kthread); 2106 if (rcu_nocb_poll || !t) { 2107 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2108 TPS("WakeNotPoll")); 2109 return; 2110 } 2111 len = atomic_long_read(&rdp->nocb_q_count); 2112 if (old_rhpp == &rdp->nocb_head) { 2113 if (!irqs_disabled_flags(flags)) { 2114 /* ... if queue was empty ... */ 2115 wake_nocb_leader(rdp, false); 2116 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2117 TPS("WakeEmpty")); 2118 } else { 2119 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 2120 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2121 TPS("WakeEmptyIsDeferred")); 2122 } 2123 rdp->qlen_last_fqs_check = 0; 2124 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 2125 /* ... or if many callbacks queued. */ 2126 if (!irqs_disabled_flags(flags)) { 2127 wake_nocb_leader(rdp, true); 2128 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2129 TPS("WakeOvf")); 2130 } else { 2131 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 2132 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2133 TPS("WakeOvfIsDeferred")); 2134 } 2135 rdp->qlen_last_fqs_check = LONG_MAX / 2; 2136 } else { 2137 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 2138 } 2139 return; 2140 } 2141 2142 /* 2143 * This is a helper for __call_rcu(), which invokes this when the normal 2144 * callback queue is inoperable. If this is not a no-CBs CPU, this 2145 * function returns failure back to __call_rcu(), which can complain 2146 * appropriately. 2147 * 2148 * Otherwise, this function queues the callback where the corresponding 2149 * "rcuo" kthread can find it. 2150 */ 2151 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2152 bool lazy, unsigned long flags) 2153 { 2154 2155 if (!rcu_is_nocb_cpu(rdp->cpu)) 2156 return false; 2157 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2158 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2159 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2160 (unsigned long)rhp->func, 2161 -atomic_long_read(&rdp->nocb_q_count_lazy), 2162 -atomic_long_read(&rdp->nocb_q_count)); 2163 else 2164 trace_rcu_callback(rdp->rsp->name, rhp, 2165 -atomic_long_read(&rdp->nocb_q_count_lazy), 2166 -atomic_long_read(&rdp->nocb_q_count)); 2167 2168 /* 2169 * If called from an extended quiescent state with interrupts 2170 * disabled, invoke the RCU core in order to allow the idle-entry 2171 * deferred-wakeup check to function. 2172 */ 2173 if (irqs_disabled_flags(flags) && 2174 !rcu_is_watching() && 2175 cpu_online(smp_processor_id())) 2176 invoke_rcu_core(); 2177 2178 return true; 2179 } 2180 2181 /* 2182 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2183 * not a no-CBs CPU. 2184 */ 2185 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2186 struct rcu_data *rdp, 2187 unsigned long flags) 2188 { 2189 long ql = rsp->qlen; 2190 long qll = rsp->qlen_lazy; 2191 2192 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 2193 if (!rcu_is_nocb_cpu(smp_processor_id())) 2194 return false; 2195 rsp->qlen = 0; 2196 rsp->qlen_lazy = 0; 2197 2198 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 2199 if (rsp->orphan_donelist != NULL) { 2200 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 2201 rsp->orphan_donetail, ql, qll, flags); 2202 ql = qll = 0; 2203 rsp->orphan_donelist = NULL; 2204 rsp->orphan_donetail = &rsp->orphan_donelist; 2205 } 2206 if (rsp->orphan_nxtlist != NULL) { 2207 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2208 rsp->orphan_nxttail, ql, qll, flags); 2209 ql = qll = 0; 2210 rsp->orphan_nxtlist = NULL; 2211 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2212 } 2213 return true; 2214 } 2215 2216 /* 2217 * If necessary, kick off a new grace period, and either way wait 2218 * for a subsequent grace period to complete. 2219 */ 2220 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2221 { 2222 unsigned long c; 2223 bool d; 2224 unsigned long flags; 2225 bool needwake; 2226 struct rcu_node *rnp = rdp->mynode; 2227 2228 raw_spin_lock_irqsave(&rnp->lock, flags); 2229 smp_mb__after_unlock_lock(); 2230 needwake = rcu_start_future_gp(rnp, rdp, &c); 2231 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2232 if (needwake) 2233 rcu_gp_kthread_wake(rdp->rsp); 2234 2235 /* 2236 * Wait for the grace period. Do so interruptibly to avoid messing 2237 * up the load average. 2238 */ 2239 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2240 for (;;) { 2241 wait_event_interruptible( 2242 rnp->nocb_gp_wq[c & 0x1], 2243 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); 2244 if (likely(d)) 2245 break; 2246 WARN_ON(signal_pending(current)); 2247 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2248 } 2249 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2250 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2251 } 2252 2253 /* 2254 * Leaders come here to wait for additional callbacks to show up. 2255 * This function does not return until callbacks appear. 2256 */ 2257 static void nocb_leader_wait(struct rcu_data *my_rdp) 2258 { 2259 bool firsttime = true; 2260 bool gotcbs; 2261 struct rcu_data *rdp; 2262 struct rcu_head **tail; 2263 2264 wait_again: 2265 2266 /* Wait for callbacks to appear. */ 2267 if (!rcu_nocb_poll) { 2268 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2269 wait_event_interruptible(my_rdp->nocb_wq, 2270 !ACCESS_ONCE(my_rdp->nocb_leader_sleep)); 2271 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2272 } else if (firsttime) { 2273 firsttime = false; /* Don't drown trace log with "Poll"! */ 2274 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2275 } 2276 2277 /* 2278 * Each pass through the following loop checks a follower for CBs. 2279 * We are our own first follower. Any CBs found are moved to 2280 * nocb_gp_head, where they await a grace period. 2281 */ 2282 gotcbs = false; 2283 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2284 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head); 2285 if (!rdp->nocb_gp_head) 2286 continue; /* No CBs here, try next follower. */ 2287 2288 /* Move callbacks to wait-for-GP list, which is empty. */ 2289 ACCESS_ONCE(rdp->nocb_head) = NULL; 2290 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2291 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0); 2292 rdp->nocb_gp_count_lazy = 2293 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0); 2294 gotcbs = true; 2295 } 2296 2297 /* 2298 * If there were no callbacks, sleep a bit, rescan after a 2299 * memory barrier, and go retry. 2300 */ 2301 if (unlikely(!gotcbs)) { 2302 if (!rcu_nocb_poll) 2303 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2304 "WokeEmpty"); 2305 WARN_ON(signal_pending(current)); 2306 schedule_timeout_interruptible(1); 2307 2308 /* Rescan in case we were a victim of memory ordering. */ 2309 my_rdp->nocb_leader_sleep = true; 2310 smp_mb(); /* Ensure _sleep true before scan. */ 2311 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2312 if (ACCESS_ONCE(rdp->nocb_head)) { 2313 /* Found CB, so short-circuit next wait. */ 2314 my_rdp->nocb_leader_sleep = false; 2315 break; 2316 } 2317 goto wait_again; 2318 } 2319 2320 /* Wait for one grace period. */ 2321 rcu_nocb_wait_gp(my_rdp); 2322 2323 /* 2324 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2325 * We set it now, but recheck for new callbacks while 2326 * traversing our follower list. 2327 */ 2328 my_rdp->nocb_leader_sleep = true; 2329 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2330 2331 /* Each pass through the following loop wakes a follower, if needed. */ 2332 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2333 if (ACCESS_ONCE(rdp->nocb_head)) 2334 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2335 if (!rdp->nocb_gp_head) 2336 continue; /* No CBs, so no need to wake follower. */ 2337 2338 /* Append callbacks to follower's "done" list. */ 2339 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2340 *tail = rdp->nocb_gp_head; 2341 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count); 2342 atomic_long_add(rdp->nocb_gp_count_lazy, 2343 &rdp->nocb_follower_count_lazy); 2344 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2345 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2346 /* 2347 * List was empty, wake up the follower. 2348 * Memory barriers supplied by atomic_long_add(). 2349 */ 2350 wake_up(&rdp->nocb_wq); 2351 } 2352 } 2353 2354 /* If we (the leader) don't have CBs, go wait some more. */ 2355 if (!my_rdp->nocb_follower_head) 2356 goto wait_again; 2357 } 2358 2359 /* 2360 * Followers come here to wait for additional callbacks to show up. 2361 * This function does not return until callbacks appear. 2362 */ 2363 static void nocb_follower_wait(struct rcu_data *rdp) 2364 { 2365 bool firsttime = true; 2366 2367 for (;;) { 2368 if (!rcu_nocb_poll) { 2369 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2370 "FollowerSleep"); 2371 wait_event_interruptible(rdp->nocb_wq, 2372 ACCESS_ONCE(rdp->nocb_follower_head)); 2373 } else if (firsttime) { 2374 /* Don't drown trace log with "Poll"! */ 2375 firsttime = false; 2376 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2377 } 2378 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2379 /* ^^^ Ensure CB invocation follows _head test. */ 2380 return; 2381 } 2382 if (!rcu_nocb_poll) 2383 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2384 "WokeEmpty"); 2385 WARN_ON(signal_pending(current)); 2386 schedule_timeout_interruptible(1); 2387 } 2388 } 2389 2390 /* 2391 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2392 * callbacks queued by the corresponding no-CBs CPU, however, there is 2393 * an optional leader-follower relationship so that the grace-period 2394 * kthreads don't have to do quite so many wakeups. 2395 */ 2396 static int rcu_nocb_kthread(void *arg) 2397 { 2398 int c, cl; 2399 struct rcu_head *list; 2400 struct rcu_head *next; 2401 struct rcu_head **tail; 2402 struct rcu_data *rdp = arg; 2403 2404 /* Each pass through this loop invokes one batch of callbacks */ 2405 for (;;) { 2406 /* Wait for callbacks. */ 2407 if (rdp->nocb_leader == rdp) 2408 nocb_leader_wait(rdp); 2409 else 2410 nocb_follower_wait(rdp); 2411 2412 /* Pull the ready-to-invoke callbacks onto local list. */ 2413 list = ACCESS_ONCE(rdp->nocb_follower_head); 2414 BUG_ON(!list); 2415 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2416 ACCESS_ONCE(rdp->nocb_follower_head) = NULL; 2417 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2418 c = atomic_long_xchg(&rdp->nocb_follower_count, 0); 2419 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0); 2420 rdp->nocb_p_count += c; 2421 rdp->nocb_p_count_lazy += cl; 2422 2423 /* Each pass through the following loop invokes a callback. */ 2424 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1); 2425 c = cl = 0; 2426 while (list) { 2427 next = list->next; 2428 /* Wait for enqueuing to complete, if needed. */ 2429 while (next == NULL && &list->next != tail) { 2430 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2431 TPS("WaitQueue")); 2432 schedule_timeout_interruptible(1); 2433 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2434 TPS("WokeQueue")); 2435 next = list->next; 2436 } 2437 debug_rcu_head_unqueue(list); 2438 local_bh_disable(); 2439 if (__rcu_reclaim(rdp->rsp->name, list)) 2440 cl++; 2441 c++; 2442 local_bh_enable(); 2443 list = next; 2444 } 2445 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2446 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c; 2447 ACCESS_ONCE(rdp->nocb_p_count_lazy) = 2448 rdp->nocb_p_count_lazy - cl; 2449 rdp->n_nocbs_invoked += c; 2450 } 2451 return 0; 2452 } 2453 2454 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2455 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2456 { 2457 return ACCESS_ONCE(rdp->nocb_defer_wakeup); 2458 } 2459 2460 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2461 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2462 { 2463 int ndw; 2464 2465 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2466 return; 2467 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup); 2468 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT; 2469 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2470 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2471 } 2472 2473 void __init rcu_init_nohz(void) 2474 { 2475 int cpu; 2476 bool need_rcu_nocb_mask = true; 2477 struct rcu_state *rsp; 2478 2479 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2480 need_rcu_nocb_mask = false; 2481 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2482 2483 #if defined(CONFIG_NO_HZ_FULL) 2484 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2485 need_rcu_nocb_mask = true; 2486 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2487 2488 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2489 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2490 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2491 return; 2492 } 2493 have_rcu_nocb_mask = true; 2494 } 2495 if (!have_rcu_nocb_mask) 2496 return; 2497 2498 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2499 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2500 cpumask_set_cpu(0, rcu_nocb_mask); 2501 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2502 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2503 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2504 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2505 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2506 #if defined(CONFIG_NO_HZ_FULL) 2507 if (tick_nohz_full_running) 2508 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2509 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2510 2511 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2512 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2513 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2514 rcu_nocb_mask); 2515 } 2516 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask); 2517 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf); 2518 if (rcu_nocb_poll) 2519 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2520 2521 for_each_rcu_flavor(rsp) { 2522 for_each_cpu(cpu, rcu_nocb_mask) { 2523 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2524 2525 /* 2526 * If there are early callbacks, they will need 2527 * to be moved to the nocb lists. 2528 */ 2529 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] != 2530 &rdp->nxtlist && 2531 rdp->nxttail[RCU_NEXT_TAIL] != NULL); 2532 init_nocb_callback_list(rdp); 2533 } 2534 rcu_organize_nocb_kthreads(rsp); 2535 } 2536 } 2537 2538 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2539 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2540 { 2541 rdp->nocb_tail = &rdp->nocb_head; 2542 init_waitqueue_head(&rdp->nocb_wq); 2543 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2544 } 2545 2546 /* 2547 * If the specified CPU is a no-CBs CPU that does not already have its 2548 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2549 * brought online out of order, this can require re-organizing the 2550 * leader-follower relationships. 2551 */ 2552 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2553 { 2554 struct rcu_data *rdp; 2555 struct rcu_data *rdp_last; 2556 struct rcu_data *rdp_old_leader; 2557 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2558 struct task_struct *t; 2559 2560 /* 2561 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2562 * then nothing to do. 2563 */ 2564 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2565 return; 2566 2567 /* If we didn't spawn the leader first, reorganize! */ 2568 rdp_old_leader = rdp_spawn->nocb_leader; 2569 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2570 rdp_last = NULL; 2571 rdp = rdp_old_leader; 2572 do { 2573 rdp->nocb_leader = rdp_spawn; 2574 if (rdp_last && rdp != rdp_spawn) 2575 rdp_last->nocb_next_follower = rdp; 2576 rdp_last = rdp; 2577 rdp = rdp->nocb_next_follower; 2578 rdp_last->nocb_next_follower = NULL; 2579 } while (rdp); 2580 rdp_spawn->nocb_next_follower = rdp_old_leader; 2581 } 2582 2583 /* Spawn the kthread for this CPU and RCU flavor. */ 2584 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2585 "rcuo%c/%d", rsp->abbr, cpu); 2586 BUG_ON(IS_ERR(t)); 2587 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t; 2588 } 2589 2590 /* 2591 * If the specified CPU is a no-CBs CPU that does not already have its 2592 * rcuo kthreads, spawn them. 2593 */ 2594 static void rcu_spawn_all_nocb_kthreads(int cpu) 2595 { 2596 struct rcu_state *rsp; 2597 2598 if (rcu_scheduler_fully_active) 2599 for_each_rcu_flavor(rsp) 2600 rcu_spawn_one_nocb_kthread(rsp, cpu); 2601 } 2602 2603 /* 2604 * Once the scheduler is running, spawn rcuo kthreads for all online 2605 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2606 * non-boot CPUs come online -- if this changes, we will need to add 2607 * some mutual exclusion. 2608 */ 2609 static void __init rcu_spawn_nocb_kthreads(void) 2610 { 2611 int cpu; 2612 2613 for_each_online_cpu(cpu) 2614 rcu_spawn_all_nocb_kthreads(cpu); 2615 } 2616 2617 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2618 static int rcu_nocb_leader_stride = -1; 2619 module_param(rcu_nocb_leader_stride, int, 0444); 2620 2621 /* 2622 * Initialize leader-follower relationships for all no-CBs CPU. 2623 */ 2624 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2625 { 2626 int cpu; 2627 int ls = rcu_nocb_leader_stride; 2628 int nl = 0; /* Next leader. */ 2629 struct rcu_data *rdp; 2630 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2631 struct rcu_data *rdp_prev = NULL; 2632 2633 if (!have_rcu_nocb_mask) 2634 return; 2635 if (ls == -1) { 2636 ls = int_sqrt(nr_cpu_ids); 2637 rcu_nocb_leader_stride = ls; 2638 } 2639 2640 /* 2641 * Each pass through this loop sets up one rcu_data structure and 2642 * spawns one rcu_nocb_kthread(). 2643 */ 2644 for_each_cpu(cpu, rcu_nocb_mask) { 2645 rdp = per_cpu_ptr(rsp->rda, cpu); 2646 if (rdp->cpu >= nl) { 2647 /* New leader, set up for followers & next leader. */ 2648 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2649 rdp->nocb_leader = rdp; 2650 rdp_leader = rdp; 2651 } else { 2652 /* Another follower, link to previous leader. */ 2653 rdp->nocb_leader = rdp_leader; 2654 rdp_prev->nocb_next_follower = rdp; 2655 } 2656 rdp_prev = rdp; 2657 } 2658 } 2659 2660 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2661 static bool init_nocb_callback_list(struct rcu_data *rdp) 2662 { 2663 if (!rcu_is_nocb_cpu(rdp->cpu)) 2664 return false; 2665 2666 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2667 return true; 2668 } 2669 2670 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2671 2672 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2673 { 2674 WARN_ON_ONCE(1); /* Should be dead code. */ 2675 return false; 2676 } 2677 2678 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2679 { 2680 } 2681 2682 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2683 { 2684 } 2685 2686 static void rcu_init_one_nocb(struct rcu_node *rnp) 2687 { 2688 } 2689 2690 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2691 bool lazy, unsigned long flags) 2692 { 2693 return false; 2694 } 2695 2696 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2697 struct rcu_data *rdp, 2698 unsigned long flags) 2699 { 2700 return false; 2701 } 2702 2703 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2704 { 2705 } 2706 2707 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2708 { 2709 return false; 2710 } 2711 2712 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2713 { 2714 } 2715 2716 static void rcu_spawn_all_nocb_kthreads(int cpu) 2717 { 2718 } 2719 2720 static void __init rcu_spawn_nocb_kthreads(void) 2721 { 2722 } 2723 2724 static bool init_nocb_callback_list(struct rcu_data *rdp) 2725 { 2726 return false; 2727 } 2728 2729 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2730 2731 /* 2732 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2733 * arbitrarily long period of time with the scheduling-clock tick turned 2734 * off. RCU will be paying attention to this CPU because it is in the 2735 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2736 * machine because the scheduling-clock tick has been disabled. Therefore, 2737 * if an adaptive-ticks CPU is failing to respond to the current grace 2738 * period and has not be idle from an RCU perspective, kick it. 2739 */ 2740 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2741 { 2742 #ifdef CONFIG_NO_HZ_FULL 2743 if (tick_nohz_full_cpu(cpu)) 2744 smp_send_reschedule(cpu); 2745 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2746 } 2747 2748 2749 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2750 2751 static int full_sysidle_state; /* Current system-idle state. */ 2752 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2753 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2754 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2755 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2756 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2757 2758 /* 2759 * Invoked to note exit from irq or task transition to idle. Note that 2760 * usermode execution does -not- count as idle here! After all, we want 2761 * to detect full-system idle states, not RCU quiescent states and grace 2762 * periods. The caller must have disabled interrupts. 2763 */ 2764 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq) 2765 { 2766 unsigned long j; 2767 2768 /* If there are no nohz_full= CPUs, no need to track this. */ 2769 if (!tick_nohz_full_enabled()) 2770 return; 2771 2772 /* Adjust nesting, check for fully idle. */ 2773 if (irq) { 2774 rdtp->dynticks_idle_nesting--; 2775 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2776 if (rdtp->dynticks_idle_nesting != 0) 2777 return; /* Still not fully idle. */ 2778 } else { 2779 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2780 DYNTICK_TASK_NEST_VALUE) { 2781 rdtp->dynticks_idle_nesting = 0; 2782 } else { 2783 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2784 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2785 return; /* Still not fully idle. */ 2786 } 2787 } 2788 2789 /* Record start of fully idle period. */ 2790 j = jiffies; 2791 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j; 2792 smp_mb__before_atomic(); 2793 atomic_inc(&rdtp->dynticks_idle); 2794 smp_mb__after_atomic(); 2795 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2796 } 2797 2798 /* 2799 * Unconditionally force exit from full system-idle state. This is 2800 * invoked when a normal CPU exits idle, but must be called separately 2801 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2802 * is that the timekeeping CPU is permitted to take scheduling-clock 2803 * interrupts while the system is in system-idle state, and of course 2804 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2805 * interrupt from any other type of interrupt. 2806 */ 2807 void rcu_sysidle_force_exit(void) 2808 { 2809 int oldstate = ACCESS_ONCE(full_sysidle_state); 2810 int newoldstate; 2811 2812 /* 2813 * Each pass through the following loop attempts to exit full 2814 * system-idle state. If contention proves to be a problem, 2815 * a trylock-based contention tree could be used here. 2816 */ 2817 while (oldstate > RCU_SYSIDLE_SHORT) { 2818 newoldstate = cmpxchg(&full_sysidle_state, 2819 oldstate, RCU_SYSIDLE_NOT); 2820 if (oldstate == newoldstate && 2821 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2822 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2823 return; /* We cleared it, done! */ 2824 } 2825 oldstate = newoldstate; 2826 } 2827 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2828 } 2829 2830 /* 2831 * Invoked to note entry to irq or task transition from idle. Note that 2832 * usermode execution does -not- count as idle here! The caller must 2833 * have disabled interrupts. 2834 */ 2835 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) 2836 { 2837 /* If there are no nohz_full= CPUs, no need to track this. */ 2838 if (!tick_nohz_full_enabled()) 2839 return; 2840 2841 /* Adjust nesting, check for already non-idle. */ 2842 if (irq) { 2843 rdtp->dynticks_idle_nesting++; 2844 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2845 if (rdtp->dynticks_idle_nesting != 1) 2846 return; /* Already non-idle. */ 2847 } else { 2848 /* 2849 * Allow for irq misnesting. Yes, it really is possible 2850 * to enter an irq handler then never leave it, and maybe 2851 * also vice versa. Handle both possibilities. 2852 */ 2853 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2854 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2855 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2856 return; /* Already non-idle. */ 2857 } else { 2858 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2859 } 2860 } 2861 2862 /* Record end of idle period. */ 2863 smp_mb__before_atomic(); 2864 atomic_inc(&rdtp->dynticks_idle); 2865 smp_mb__after_atomic(); 2866 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2867 2868 /* 2869 * If we are the timekeeping CPU, we are permitted to be non-idle 2870 * during a system-idle state. This must be the case, because 2871 * the timekeeping CPU has to take scheduling-clock interrupts 2872 * during the time that the system is transitioning to full 2873 * system-idle state. This means that the timekeeping CPU must 2874 * invoke rcu_sysidle_force_exit() directly if it does anything 2875 * more than take a scheduling-clock interrupt. 2876 */ 2877 if (smp_processor_id() == tick_do_timer_cpu) 2878 return; 2879 2880 /* Update system-idle state: We are clearly no longer fully idle! */ 2881 rcu_sysidle_force_exit(); 2882 } 2883 2884 /* 2885 * Check to see if the current CPU is idle. Note that usermode execution 2886 * does not count as idle. The caller must have disabled interrupts. 2887 */ 2888 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2889 unsigned long *maxj) 2890 { 2891 int cur; 2892 unsigned long j; 2893 struct rcu_dynticks *rdtp = rdp->dynticks; 2894 2895 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2896 if (!tick_nohz_full_enabled()) 2897 return; 2898 2899 /* 2900 * If some other CPU has already reported non-idle, if this is 2901 * not the flavor of RCU that tracks sysidle state, or if this 2902 * is an offline or the timekeeping CPU, nothing to do. 2903 */ 2904 if (!*isidle || rdp->rsp != rcu_state_p || 2905 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2906 return; 2907 if (rcu_gp_in_progress(rdp->rsp)) 2908 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2909 2910 /* Pick up current idle and NMI-nesting counter and check. */ 2911 cur = atomic_read(&rdtp->dynticks_idle); 2912 if (cur & 0x1) { 2913 *isidle = false; /* We are not idle! */ 2914 return; 2915 } 2916 smp_mb(); /* Read counters before timestamps. */ 2917 2918 /* Pick up timestamps. */ 2919 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies); 2920 /* If this CPU entered idle more recently, update maxj timestamp. */ 2921 if (ULONG_CMP_LT(*maxj, j)) 2922 *maxj = j; 2923 } 2924 2925 /* 2926 * Is this the flavor of RCU that is handling full-system idle? 2927 */ 2928 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2929 { 2930 return rsp == rcu_state_p; 2931 } 2932 2933 /* 2934 * Return a delay in jiffies based on the number of CPUs, rcu_node 2935 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2936 * systems more time to transition to full-idle state in order to 2937 * avoid the cache thrashing that otherwise occur on the state variable. 2938 * Really small systems (less than a couple of tens of CPUs) should 2939 * instead use a single global atomically incremented counter, and later 2940 * versions of this will automatically reconfigure themselves accordingly. 2941 */ 2942 static unsigned long rcu_sysidle_delay(void) 2943 { 2944 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2945 return 0; 2946 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2947 } 2948 2949 /* 2950 * Advance the full-system-idle state. This is invoked when all of 2951 * the non-timekeeping CPUs are idle. 2952 */ 2953 static void rcu_sysidle(unsigned long j) 2954 { 2955 /* Check the current state. */ 2956 switch (ACCESS_ONCE(full_sysidle_state)) { 2957 case RCU_SYSIDLE_NOT: 2958 2959 /* First time all are idle, so note a short idle period. */ 2960 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT; 2961 break; 2962 2963 case RCU_SYSIDLE_SHORT: 2964 2965 /* 2966 * Idle for a bit, time to advance to next state? 2967 * cmpxchg failure means race with non-idle, let them win. 2968 */ 2969 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2970 (void)cmpxchg(&full_sysidle_state, 2971 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2972 break; 2973 2974 case RCU_SYSIDLE_LONG: 2975 2976 /* 2977 * Do an additional check pass before advancing to full. 2978 * cmpxchg failure means race with non-idle, let them win. 2979 */ 2980 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2981 (void)cmpxchg(&full_sysidle_state, 2982 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2983 break; 2984 2985 default: 2986 break; 2987 } 2988 } 2989 2990 /* 2991 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2992 * back to the beginning. 2993 */ 2994 static void rcu_sysidle_cancel(void) 2995 { 2996 smp_mb(); 2997 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2998 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT; 2999 } 3000 3001 /* 3002 * Update the sysidle state based on the results of a force-quiescent-state 3003 * scan of the CPUs' dyntick-idle state. 3004 */ 3005 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 3006 unsigned long maxj, bool gpkt) 3007 { 3008 if (rsp != rcu_state_p) 3009 return; /* Wrong flavor, ignore. */ 3010 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 3011 return; /* Running state machine from timekeeping CPU. */ 3012 if (isidle) 3013 rcu_sysidle(maxj); /* More idle! */ 3014 else 3015 rcu_sysidle_cancel(); /* Idle is over. */ 3016 } 3017 3018 /* 3019 * Wrapper for rcu_sysidle_report() when called from the grace-period 3020 * kthread's context. 3021 */ 3022 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 3023 unsigned long maxj) 3024 { 3025 /* If there are no nohz_full= CPUs, no need to track this. */ 3026 if (!tick_nohz_full_enabled()) 3027 return; 3028 3029 rcu_sysidle_report(rsp, isidle, maxj, true); 3030 } 3031 3032 /* Callback and function for forcing an RCU grace period. */ 3033 struct rcu_sysidle_head { 3034 struct rcu_head rh; 3035 int inuse; 3036 }; 3037 3038 static void rcu_sysidle_cb(struct rcu_head *rhp) 3039 { 3040 struct rcu_sysidle_head *rshp; 3041 3042 /* 3043 * The following memory barrier is needed to replace the 3044 * memory barriers that would normally be in the memory 3045 * allocator. 3046 */ 3047 smp_mb(); /* grace period precedes setting inuse. */ 3048 3049 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 3050 ACCESS_ONCE(rshp->inuse) = 0; 3051 } 3052 3053 /* 3054 * Check to see if the system is fully idle, other than the timekeeping CPU. 3055 * The caller must have disabled interrupts. This is not intended to be 3056 * called unless tick_nohz_full_enabled(). 3057 */ 3058 bool rcu_sys_is_idle(void) 3059 { 3060 static struct rcu_sysidle_head rsh; 3061 int rss = ACCESS_ONCE(full_sysidle_state); 3062 3063 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 3064 return false; 3065 3066 /* Handle small-system case by doing a full scan of CPUs. */ 3067 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 3068 int oldrss = rss - 1; 3069 3070 /* 3071 * One pass to advance to each state up to _FULL. 3072 * Give up if any pass fails to advance the state. 3073 */ 3074 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 3075 int cpu; 3076 bool isidle = true; 3077 unsigned long maxj = jiffies - ULONG_MAX / 4; 3078 struct rcu_data *rdp; 3079 3080 /* Scan all the CPUs looking for nonidle CPUs. */ 3081 for_each_possible_cpu(cpu) { 3082 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3083 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 3084 if (!isidle) 3085 break; 3086 } 3087 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 3088 oldrss = rss; 3089 rss = ACCESS_ONCE(full_sysidle_state); 3090 } 3091 } 3092 3093 /* If this is the first observation of an idle period, record it. */ 3094 if (rss == RCU_SYSIDLE_FULL) { 3095 rss = cmpxchg(&full_sysidle_state, 3096 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 3097 return rss == RCU_SYSIDLE_FULL; 3098 } 3099 3100 smp_mb(); /* ensure rss load happens before later caller actions. */ 3101 3102 /* If already fully idle, tell the caller (in case of races). */ 3103 if (rss == RCU_SYSIDLE_FULL_NOTED) 3104 return true; 3105 3106 /* 3107 * If we aren't there yet, and a grace period is not in flight, 3108 * initiate a grace period. Either way, tell the caller that 3109 * we are not there yet. We use an xchg() rather than an assignment 3110 * to make up for the memory barriers that would otherwise be 3111 * provided by the memory allocator. 3112 */ 3113 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 3114 !rcu_gp_in_progress(rcu_state_p) && 3115 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 3116 call_rcu(&rsh.rh, rcu_sysidle_cb); 3117 return false; 3118 } 3119 3120 /* 3121 * Initialize dynticks sysidle state for CPUs coming online. 3122 */ 3123 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3124 { 3125 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 3126 } 3127 3128 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3129 3130 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq) 3131 { 3132 } 3133 3134 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) 3135 { 3136 } 3137 3138 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 3139 unsigned long *maxj) 3140 { 3141 } 3142 3143 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 3144 { 3145 return false; 3146 } 3147 3148 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 3149 unsigned long maxj) 3150 { 3151 } 3152 3153 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3154 { 3155 } 3156 3157 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3158 3159 /* 3160 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 3161 * grace-period kthread will do force_quiescent_state() processing? 3162 * The idea is to avoid waking up RCU core processing on such a 3163 * CPU unless the grace period has extended for too long. 3164 * 3165 * This code relies on the fact that all NO_HZ_FULL CPUs are also 3166 * CONFIG_RCU_NOCB_CPU CPUs. 3167 */ 3168 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 3169 { 3170 #ifdef CONFIG_NO_HZ_FULL 3171 if (tick_nohz_full_cpu(smp_processor_id()) && 3172 (!rcu_gp_in_progress(rsp) || 3173 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ))) 3174 return 1; 3175 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 3176 return 0; 3177 } 3178 3179 /* 3180 * Bind the grace-period kthread for the sysidle flavor of RCU to the 3181 * timekeeping CPU. 3182 */ 3183 static void rcu_bind_gp_kthread(void) 3184 { 3185 int __maybe_unused cpu; 3186 3187 if (!tick_nohz_full_enabled()) 3188 return; 3189 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 3190 cpu = tick_do_timer_cpu; 3191 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu) 3192 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 3193 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3194 if (!is_housekeeping_cpu(raw_smp_processor_id())) 3195 housekeeping_affine(current); 3196 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3197 } 3198 3199 /* Record the current task on dyntick-idle entry. */ 3200 static void rcu_dynticks_task_enter(void) 3201 { 3202 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3203 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id(); 3204 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3205 } 3206 3207 /* Record no current task on dyntick-idle exit. */ 3208 static void rcu_dynticks_task_exit(void) 3209 { 3210 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3211 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1; 3212 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3213 } 3214