1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <uapi/linux/sched/types.h> 33 #include "../time/tick-internal.h" 34 35 #ifdef CONFIG_RCU_BOOST 36 37 #include "../locking/rtmutex_common.h" 38 39 /* 40 * Control variables for per-CPU and per-rcu_node kthreads. These 41 * handle all flavors of RCU. 42 */ 43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 46 DEFINE_PER_CPU(char, rcu_cpu_has_work); 47 48 #else /* #ifdef CONFIG_RCU_BOOST */ 49 50 /* 51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 52 * all uses are in dead code. Provide a definition to keep the compiler 53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 54 * This probably needs to be excluded from -rt builds. 55 */ 56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 57 58 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 59 60 #ifdef CONFIG_RCU_NOCB_CPU 61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 62 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 63 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 65 66 /* 67 * Check the RCU kernel configuration parameters and print informative 68 * messages about anything out of the ordinary. 69 */ 70 static void __init rcu_bootup_announce_oddness(void) 71 { 72 if (IS_ENABLED(CONFIG_RCU_TRACE)) 73 pr_info("\tRCU event tracing is enabled.\n"); 74 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 75 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 77 RCU_FANOUT); 78 if (rcu_fanout_exact) 79 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 82 if (IS_ENABLED(CONFIG_PROVE_RCU)) 83 pr_info("\tRCU lockdep checking is enabled.\n"); 84 if (RCU_NUM_LVLS >= 4) 85 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 86 if (RCU_FANOUT_LEAF != 16) 87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 88 RCU_FANOUT_LEAF); 89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 91 if (nr_cpu_ids != NR_CPUS) 92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 93 #ifdef CONFIG_RCU_BOOST 94 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY); 95 #endif 96 if (blimit != DEFAULT_RCU_BLIMIT) 97 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 98 if (qhimark != DEFAULT_RCU_QHIMARK) 99 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 100 if (qlowmark != DEFAULT_RCU_QLOMARK) 101 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 102 if (jiffies_till_first_fqs != ULONG_MAX) 103 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 104 if (jiffies_till_next_fqs != ULONG_MAX) 105 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 106 if (rcu_kick_kthreads) 107 pr_info("\tKick kthreads if too-long grace period.\n"); 108 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 109 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 110 if (gp_preinit_delay) 111 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 112 if (gp_init_delay) 113 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 114 if (gp_cleanup_delay) 115 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 116 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 117 pr_info("\tRCU debug extended QS entry/exit.\n"); 118 rcupdate_announce_bootup_oddness(); 119 } 120 121 #ifdef CONFIG_PREEMPT_RCU 122 123 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 124 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 125 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 126 127 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 128 bool wake); 129 130 /* 131 * Tell them what RCU they are running. 132 */ 133 static void __init rcu_bootup_announce(void) 134 { 135 pr_info("Preemptible hierarchical RCU implementation.\n"); 136 rcu_bootup_announce_oddness(); 137 } 138 139 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 140 #define RCU_GP_TASKS 0x8 141 #define RCU_EXP_TASKS 0x4 142 #define RCU_GP_BLKD 0x2 143 #define RCU_EXP_BLKD 0x1 144 145 /* 146 * Queues a task preempted within an RCU-preempt read-side critical 147 * section into the appropriate location within the ->blkd_tasks list, 148 * depending on the states of any ongoing normal and expedited grace 149 * periods. The ->gp_tasks pointer indicates which element the normal 150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 151 * indicates which element the expedited grace period is waiting on (again, 152 * NULL if none). If a grace period is waiting on a given element in the 153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 154 * adding a task to the tail of the list blocks any grace period that is 155 * already waiting on one of the elements. In contrast, adding a task 156 * to the head of the list won't block any grace period that is already 157 * waiting on one of the elements. 158 * 159 * This queuing is imprecise, and can sometimes make an ongoing grace 160 * period wait for a task that is not strictly speaking blocking it. 161 * Given the choice, we needlessly block a normal grace period rather than 162 * blocking an expedited grace period. 163 * 164 * Note that an endless sequence of expedited grace periods still cannot 165 * indefinitely postpone a normal grace period. Eventually, all of the 166 * fixed number of preempted tasks blocking the normal grace period that are 167 * not also blocking the expedited grace period will resume and complete 168 * their RCU read-side critical sections. At that point, the ->gp_tasks 169 * pointer will equal the ->exp_tasks pointer, at which point the end of 170 * the corresponding expedited grace period will also be the end of the 171 * normal grace period. 172 */ 173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 174 __releases(rnp->lock) /* But leaves rrupts disabled. */ 175 { 176 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 177 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 178 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 179 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 180 struct task_struct *t = current; 181 182 lockdep_assert_held(&rnp->lock); 183 184 /* 185 * Decide where to queue the newly blocked task. In theory, 186 * this could be an if-statement. In practice, when I tried 187 * that, it was quite messy. 188 */ 189 switch (blkd_state) { 190 case 0: 191 case RCU_EXP_TASKS: 192 case RCU_EXP_TASKS + RCU_GP_BLKD: 193 case RCU_GP_TASKS: 194 case RCU_GP_TASKS + RCU_EXP_TASKS: 195 196 /* 197 * Blocking neither GP, or first task blocking the normal 198 * GP but not blocking the already-waiting expedited GP. 199 * Queue at the head of the list to avoid unnecessarily 200 * blocking the already-waiting GPs. 201 */ 202 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 203 break; 204 205 case RCU_EXP_BLKD: 206 case RCU_GP_BLKD: 207 case RCU_GP_BLKD + RCU_EXP_BLKD: 208 case RCU_GP_TASKS + RCU_EXP_BLKD: 209 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 210 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 211 212 /* 213 * First task arriving that blocks either GP, or first task 214 * arriving that blocks the expedited GP (with the normal 215 * GP already waiting), or a task arriving that blocks 216 * both GPs with both GPs already waiting. Queue at the 217 * tail of the list to avoid any GP waiting on any of the 218 * already queued tasks that are not blocking it. 219 */ 220 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 221 break; 222 223 case RCU_EXP_TASKS + RCU_EXP_BLKD: 224 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 225 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 226 227 /* 228 * Second or subsequent task blocking the expedited GP. 229 * The task either does not block the normal GP, or is the 230 * first task blocking the normal GP. Queue just after 231 * the first task blocking the expedited GP. 232 */ 233 list_add(&t->rcu_node_entry, rnp->exp_tasks); 234 break; 235 236 case RCU_GP_TASKS + RCU_GP_BLKD: 237 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 238 239 /* 240 * Second or subsequent task blocking the normal GP. 241 * The task does not block the expedited GP. Queue just 242 * after the first task blocking the normal GP. 243 */ 244 list_add(&t->rcu_node_entry, rnp->gp_tasks); 245 break; 246 247 default: 248 249 /* Yet another exercise in excessive paranoia. */ 250 WARN_ON_ONCE(1); 251 break; 252 } 253 254 /* 255 * We have now queued the task. If it was the first one to 256 * block either grace period, update the ->gp_tasks and/or 257 * ->exp_tasks pointers, respectively, to reference the newly 258 * blocked tasks. 259 */ 260 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 261 rnp->gp_tasks = &t->rcu_node_entry; 262 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 263 rnp->exp_tasks = &t->rcu_node_entry; 264 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 265 266 /* 267 * Report the quiescent state for the expedited GP. This expedited 268 * GP should not be able to end until we report, so there should be 269 * no need to check for a subsequent expedited GP. (Though we are 270 * still in a quiescent state in any case.) 271 */ 272 if (blkd_state & RCU_EXP_BLKD && 273 t->rcu_read_unlock_special.b.exp_need_qs) { 274 t->rcu_read_unlock_special.b.exp_need_qs = false; 275 rcu_report_exp_rdp(rdp->rsp, rdp, true); 276 } else { 277 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 278 } 279 } 280 281 /* 282 * Record a preemptible-RCU quiescent state for the specified CPU. Note 283 * that this just means that the task currently running on the CPU is 284 * not in a quiescent state. There might be any number of tasks blocked 285 * while in an RCU read-side critical section. 286 * 287 * As with the other rcu_*_qs() functions, callers to this function 288 * must disable preemption. 289 */ 290 static void rcu_preempt_qs(void) 291 { 292 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n"); 293 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 294 trace_rcu_grace_period(TPS("rcu_preempt"), 295 __this_cpu_read(rcu_data_p->gpnum), 296 TPS("cpuqs")); 297 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 298 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 299 current->rcu_read_unlock_special.b.need_qs = false; 300 } 301 } 302 303 /* 304 * We have entered the scheduler, and the current task might soon be 305 * context-switched away from. If this task is in an RCU read-side 306 * critical section, we will no longer be able to rely on the CPU to 307 * record that fact, so we enqueue the task on the blkd_tasks list. 308 * The task will dequeue itself when it exits the outermost enclosing 309 * RCU read-side critical section. Therefore, the current grace period 310 * cannot be permitted to complete until the blkd_tasks list entries 311 * predating the current grace period drain, in other words, until 312 * rnp->gp_tasks becomes NULL. 313 * 314 * Caller must disable interrupts. 315 */ 316 static void rcu_preempt_note_context_switch(bool preempt) 317 { 318 struct task_struct *t = current; 319 struct rcu_data *rdp; 320 struct rcu_node *rnp; 321 322 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n"); 323 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); 324 if (t->rcu_read_lock_nesting > 0 && 325 !t->rcu_read_unlock_special.b.blocked) { 326 327 /* Possibly blocking in an RCU read-side critical section. */ 328 rdp = this_cpu_ptr(rcu_state_p->rda); 329 rnp = rdp->mynode; 330 raw_spin_lock_rcu_node(rnp); 331 t->rcu_read_unlock_special.b.blocked = true; 332 t->rcu_blocked_node = rnp; 333 334 /* 335 * Verify the CPU's sanity, trace the preemption, and 336 * then queue the task as required based on the states 337 * of any ongoing and expedited grace periods. 338 */ 339 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 340 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 341 trace_rcu_preempt_task(rdp->rsp->name, 342 t->pid, 343 (rnp->qsmask & rdp->grpmask) 344 ? rnp->gpnum 345 : rnp->gpnum + 1); 346 rcu_preempt_ctxt_queue(rnp, rdp); 347 } else if (t->rcu_read_lock_nesting < 0 && 348 t->rcu_read_unlock_special.s) { 349 350 /* 351 * Complete exit from RCU read-side critical section on 352 * behalf of preempted instance of __rcu_read_unlock(). 353 */ 354 rcu_read_unlock_special(t); 355 } 356 357 /* 358 * Either we were not in an RCU read-side critical section to 359 * begin with, or we have now recorded that critical section 360 * globally. Either way, we can now note a quiescent state 361 * for this CPU. Again, if we were in an RCU read-side critical 362 * section, and if that critical section was blocking the current 363 * grace period, then the fact that the task has been enqueued 364 * means that we continue to block the current grace period. 365 */ 366 rcu_preempt_qs(); 367 } 368 369 /* 370 * Check for preempted RCU readers blocking the current grace period 371 * for the specified rcu_node structure. If the caller needs a reliable 372 * answer, it must hold the rcu_node's ->lock. 373 */ 374 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 375 { 376 return rnp->gp_tasks != NULL; 377 } 378 379 /* 380 * Advance a ->blkd_tasks-list pointer to the next entry, instead 381 * returning NULL if at the end of the list. 382 */ 383 static struct list_head *rcu_next_node_entry(struct task_struct *t, 384 struct rcu_node *rnp) 385 { 386 struct list_head *np; 387 388 np = t->rcu_node_entry.next; 389 if (np == &rnp->blkd_tasks) 390 np = NULL; 391 return np; 392 } 393 394 /* 395 * Return true if the specified rcu_node structure has tasks that were 396 * preempted within an RCU read-side critical section. 397 */ 398 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 399 { 400 return !list_empty(&rnp->blkd_tasks); 401 } 402 403 /* 404 * Handle special cases during rcu_read_unlock(), such as needing to 405 * notify RCU core processing or task having blocked during the RCU 406 * read-side critical section. 407 */ 408 void rcu_read_unlock_special(struct task_struct *t) 409 { 410 bool empty_exp; 411 bool empty_norm; 412 bool empty_exp_now; 413 unsigned long flags; 414 struct list_head *np; 415 bool drop_boost_mutex = false; 416 struct rcu_data *rdp; 417 struct rcu_node *rnp; 418 union rcu_special special; 419 420 /* NMI handlers cannot block and cannot safely manipulate state. */ 421 if (in_nmi()) 422 return; 423 424 local_irq_save(flags); 425 426 /* 427 * If RCU core is waiting for this CPU to exit its critical section, 428 * report the fact that it has exited. Because irqs are disabled, 429 * t->rcu_read_unlock_special cannot change. 430 */ 431 special = t->rcu_read_unlock_special; 432 if (special.b.need_qs) { 433 rcu_preempt_qs(); 434 t->rcu_read_unlock_special.b.need_qs = false; 435 if (!t->rcu_read_unlock_special.s) { 436 local_irq_restore(flags); 437 return; 438 } 439 } 440 441 /* 442 * Respond to a request for an expedited grace period, but only if 443 * we were not preempted, meaning that we were running on the same 444 * CPU throughout. If we were preempted, the exp_need_qs flag 445 * would have been cleared at the time of the first preemption, 446 * and the quiescent state would be reported when we were dequeued. 447 */ 448 if (special.b.exp_need_qs) { 449 WARN_ON_ONCE(special.b.blocked); 450 t->rcu_read_unlock_special.b.exp_need_qs = false; 451 rdp = this_cpu_ptr(rcu_state_p->rda); 452 rcu_report_exp_rdp(rcu_state_p, rdp, true); 453 if (!t->rcu_read_unlock_special.s) { 454 local_irq_restore(flags); 455 return; 456 } 457 } 458 459 /* Hardware IRQ handlers cannot block, complain if they get here. */ 460 if (in_irq() || in_serving_softirq()) { 461 lockdep_rcu_suspicious(__FILE__, __LINE__, 462 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 463 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 464 t->rcu_read_unlock_special.s, 465 t->rcu_read_unlock_special.b.blocked, 466 t->rcu_read_unlock_special.b.exp_need_qs, 467 t->rcu_read_unlock_special.b.need_qs); 468 local_irq_restore(flags); 469 return; 470 } 471 472 /* Clean up if blocked during RCU read-side critical section. */ 473 if (special.b.blocked) { 474 t->rcu_read_unlock_special.b.blocked = false; 475 476 /* 477 * Remove this task from the list it blocked on. The task 478 * now remains queued on the rcu_node corresponding to the 479 * CPU it first blocked on, so there is no longer any need 480 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 481 */ 482 rnp = t->rcu_blocked_node; 483 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 484 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 485 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 486 empty_exp = sync_rcu_preempt_exp_done(rnp); 487 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 488 np = rcu_next_node_entry(t, rnp); 489 list_del_init(&t->rcu_node_entry); 490 t->rcu_blocked_node = NULL; 491 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 492 rnp->gpnum, t->pid); 493 if (&t->rcu_node_entry == rnp->gp_tasks) 494 rnp->gp_tasks = np; 495 if (&t->rcu_node_entry == rnp->exp_tasks) 496 rnp->exp_tasks = np; 497 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 498 if (&t->rcu_node_entry == rnp->boost_tasks) 499 rnp->boost_tasks = np; 500 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 501 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 502 } 503 504 /* 505 * If this was the last task on the current list, and if 506 * we aren't waiting on any CPUs, report the quiescent state. 507 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 508 * so we must take a snapshot of the expedited state. 509 */ 510 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 511 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 512 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 513 rnp->gpnum, 514 0, rnp->qsmask, 515 rnp->level, 516 rnp->grplo, 517 rnp->grphi, 518 !!rnp->gp_tasks); 519 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 520 } else { 521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 522 } 523 524 /* Unboost if we were boosted. */ 525 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 526 rt_mutex_unlock(&rnp->boost_mtx); 527 528 /* 529 * If this was the last task on the expedited lists, 530 * then we need to report up the rcu_node hierarchy. 531 */ 532 if (!empty_exp && empty_exp_now) 533 rcu_report_exp_rnp(rcu_state_p, rnp, true); 534 } else { 535 local_irq_restore(flags); 536 } 537 } 538 539 /* 540 * Dump detailed information for all tasks blocking the current RCU 541 * grace period on the specified rcu_node structure. 542 */ 543 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 544 { 545 unsigned long flags; 546 struct task_struct *t; 547 548 raw_spin_lock_irqsave_rcu_node(rnp, flags); 549 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 550 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 551 return; 552 } 553 t = list_entry(rnp->gp_tasks->prev, 554 struct task_struct, rcu_node_entry); 555 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 556 sched_show_task(t); 557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 558 } 559 560 /* 561 * Dump detailed information for all tasks blocking the current RCU 562 * grace period. 563 */ 564 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 565 { 566 struct rcu_node *rnp = rcu_get_root(rsp); 567 568 rcu_print_detail_task_stall_rnp(rnp); 569 rcu_for_each_leaf_node(rsp, rnp) 570 rcu_print_detail_task_stall_rnp(rnp); 571 } 572 573 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 574 { 575 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 576 rnp->level, rnp->grplo, rnp->grphi); 577 } 578 579 static void rcu_print_task_stall_end(void) 580 { 581 pr_cont("\n"); 582 } 583 584 /* 585 * Scan the current list of tasks blocked within RCU read-side critical 586 * sections, printing out the tid of each. 587 */ 588 static int rcu_print_task_stall(struct rcu_node *rnp) 589 { 590 struct task_struct *t; 591 int ndetected = 0; 592 593 if (!rcu_preempt_blocked_readers_cgp(rnp)) 594 return 0; 595 rcu_print_task_stall_begin(rnp); 596 t = list_entry(rnp->gp_tasks->prev, 597 struct task_struct, rcu_node_entry); 598 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 599 pr_cont(" P%d", t->pid); 600 ndetected++; 601 } 602 rcu_print_task_stall_end(); 603 return ndetected; 604 } 605 606 /* 607 * Scan the current list of tasks blocked within RCU read-side critical 608 * sections, printing out the tid of each that is blocking the current 609 * expedited grace period. 610 */ 611 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 612 { 613 struct task_struct *t; 614 int ndetected = 0; 615 616 if (!rnp->exp_tasks) 617 return 0; 618 t = list_entry(rnp->exp_tasks->prev, 619 struct task_struct, rcu_node_entry); 620 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 621 pr_cont(" P%d", t->pid); 622 ndetected++; 623 } 624 return ndetected; 625 } 626 627 /* 628 * Check that the list of blocked tasks for the newly completed grace 629 * period is in fact empty. It is a serious bug to complete a grace 630 * period that still has RCU readers blocked! This function must be 631 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 632 * must be held by the caller. 633 * 634 * Also, if there are blocked tasks on the list, they automatically 635 * block the newly created grace period, so set up ->gp_tasks accordingly. 636 */ 637 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 638 { 639 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 640 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 641 if (rcu_preempt_has_tasks(rnp)) 642 rnp->gp_tasks = rnp->blkd_tasks.next; 643 WARN_ON_ONCE(rnp->qsmask); 644 } 645 646 /* 647 * Check for a quiescent state from the current CPU. When a task blocks, 648 * the task is recorded in the corresponding CPU's rcu_node structure, 649 * which is checked elsewhere. 650 * 651 * Caller must disable hard irqs. 652 */ 653 static void rcu_preempt_check_callbacks(void) 654 { 655 struct task_struct *t = current; 656 657 if (t->rcu_read_lock_nesting == 0) { 658 rcu_preempt_qs(); 659 return; 660 } 661 if (t->rcu_read_lock_nesting > 0 && 662 __this_cpu_read(rcu_data_p->core_needs_qs) && 663 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 664 t->rcu_read_unlock_special.b.need_qs = true; 665 } 666 667 #ifdef CONFIG_RCU_BOOST 668 669 static void rcu_preempt_do_callbacks(void) 670 { 671 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 672 } 673 674 #endif /* #ifdef CONFIG_RCU_BOOST */ 675 676 /** 677 * call_rcu() - Queue an RCU callback for invocation after a grace period. 678 * @head: structure to be used for queueing the RCU updates. 679 * @func: actual callback function to be invoked after the grace period 680 * 681 * The callback function will be invoked some time after a full grace 682 * period elapses, in other words after all pre-existing RCU read-side 683 * critical sections have completed. However, the callback function 684 * might well execute concurrently with RCU read-side critical sections 685 * that started after call_rcu() was invoked. RCU read-side critical 686 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 687 * and may be nested. 688 * 689 * Note that all CPUs must agree that the grace period extended beyond 690 * all pre-existing RCU read-side critical section. On systems with more 691 * than one CPU, this means that when "func()" is invoked, each CPU is 692 * guaranteed to have executed a full memory barrier since the end of its 693 * last RCU read-side critical section whose beginning preceded the call 694 * to call_rcu(). It also means that each CPU executing an RCU read-side 695 * critical section that continues beyond the start of "func()" must have 696 * executed a memory barrier after the call_rcu() but before the beginning 697 * of that RCU read-side critical section. Note that these guarantees 698 * include CPUs that are offline, idle, or executing in user mode, as 699 * well as CPUs that are executing in the kernel. 700 * 701 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 702 * resulting RCU callback function "func()", then both CPU A and CPU B are 703 * guaranteed to execute a full memory barrier during the time interval 704 * between the call to call_rcu() and the invocation of "func()" -- even 705 * if CPU A and CPU B are the same CPU (but again only if the system has 706 * more than one CPU). 707 */ 708 void call_rcu(struct rcu_head *head, rcu_callback_t func) 709 { 710 __call_rcu(head, func, rcu_state_p, -1, 0); 711 } 712 EXPORT_SYMBOL_GPL(call_rcu); 713 714 /** 715 * synchronize_rcu - wait until a grace period has elapsed. 716 * 717 * Control will return to the caller some time after a full grace 718 * period has elapsed, in other words after all currently executing RCU 719 * read-side critical sections have completed. Note, however, that 720 * upon return from synchronize_rcu(), the caller might well be executing 721 * concurrently with new RCU read-side critical sections that began while 722 * synchronize_rcu() was waiting. RCU read-side critical sections are 723 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 724 * 725 * See the description of synchronize_sched() for more detailed 726 * information on memory-ordering guarantees. However, please note 727 * that -only- the memory-ordering guarantees apply. For example, 728 * synchronize_rcu() is -not- guaranteed to wait on things like code 729 * protected by preempt_disable(), instead, synchronize_rcu() is -only- 730 * guaranteed to wait on RCU read-side critical sections, that is, sections 731 * of code protected by rcu_read_lock(). 732 */ 733 void synchronize_rcu(void) 734 { 735 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 736 lock_is_held(&rcu_lock_map) || 737 lock_is_held(&rcu_sched_lock_map), 738 "Illegal synchronize_rcu() in RCU read-side critical section"); 739 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 740 return; 741 if (rcu_gp_is_expedited()) 742 synchronize_rcu_expedited(); 743 else 744 wait_rcu_gp(call_rcu); 745 } 746 EXPORT_SYMBOL_GPL(synchronize_rcu); 747 748 /** 749 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 750 * 751 * Note that this primitive does not necessarily wait for an RCU grace period 752 * to complete. For example, if there are no RCU callbacks queued anywhere 753 * in the system, then rcu_barrier() is within its rights to return 754 * immediately, without waiting for anything, much less an RCU grace period. 755 */ 756 void rcu_barrier(void) 757 { 758 _rcu_barrier(rcu_state_p); 759 } 760 EXPORT_SYMBOL_GPL(rcu_barrier); 761 762 /* 763 * Initialize preemptible RCU's state structures. 764 */ 765 static void __init __rcu_init_preempt(void) 766 { 767 rcu_init_one(rcu_state_p); 768 } 769 770 /* 771 * Check for a task exiting while in a preemptible-RCU read-side 772 * critical section, clean up if so. No need to issue warnings, 773 * as debug_check_no_locks_held() already does this if lockdep 774 * is enabled. 775 */ 776 void exit_rcu(void) 777 { 778 struct task_struct *t = current; 779 780 if (likely(list_empty(¤t->rcu_node_entry))) 781 return; 782 t->rcu_read_lock_nesting = 1; 783 barrier(); 784 t->rcu_read_unlock_special.b.blocked = true; 785 __rcu_read_unlock(); 786 } 787 788 #else /* #ifdef CONFIG_PREEMPT_RCU */ 789 790 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 791 792 /* 793 * Tell them what RCU they are running. 794 */ 795 static void __init rcu_bootup_announce(void) 796 { 797 pr_info("Hierarchical RCU implementation.\n"); 798 rcu_bootup_announce_oddness(); 799 } 800 801 /* 802 * Because preemptible RCU does not exist, we never have to check for 803 * CPUs being in quiescent states. 804 */ 805 static void rcu_preempt_note_context_switch(bool preempt) 806 { 807 } 808 809 /* 810 * Because preemptible RCU does not exist, there are never any preempted 811 * RCU readers. 812 */ 813 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 814 { 815 return 0; 816 } 817 818 /* 819 * Because there is no preemptible RCU, there can be no readers blocked. 820 */ 821 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 822 { 823 return false; 824 } 825 826 /* 827 * Because preemptible RCU does not exist, we never have to check for 828 * tasks blocked within RCU read-side critical sections. 829 */ 830 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 831 { 832 } 833 834 /* 835 * Because preemptible RCU does not exist, we never have to check for 836 * tasks blocked within RCU read-side critical sections. 837 */ 838 static int rcu_print_task_stall(struct rcu_node *rnp) 839 { 840 return 0; 841 } 842 843 /* 844 * Because preemptible RCU does not exist, we never have to check for 845 * tasks blocked within RCU read-side critical sections that are 846 * blocking the current expedited grace period. 847 */ 848 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 849 { 850 return 0; 851 } 852 853 /* 854 * Because there is no preemptible RCU, there can be no readers blocked, 855 * so there is no need to check for blocked tasks. So check only for 856 * bogus qsmask values. 857 */ 858 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 859 { 860 WARN_ON_ONCE(rnp->qsmask); 861 } 862 863 /* 864 * Because preemptible RCU does not exist, it never has any callbacks 865 * to check. 866 */ 867 static void rcu_preempt_check_callbacks(void) 868 { 869 } 870 871 /* 872 * Because preemptible RCU does not exist, rcu_barrier() is just 873 * another name for rcu_barrier_sched(). 874 */ 875 void rcu_barrier(void) 876 { 877 rcu_barrier_sched(); 878 } 879 EXPORT_SYMBOL_GPL(rcu_barrier); 880 881 /* 882 * Because preemptible RCU does not exist, it need not be initialized. 883 */ 884 static void __init __rcu_init_preempt(void) 885 { 886 } 887 888 /* 889 * Because preemptible RCU does not exist, tasks cannot possibly exit 890 * while in preemptible RCU read-side critical sections. 891 */ 892 void exit_rcu(void) 893 { 894 } 895 896 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 897 898 #ifdef CONFIG_RCU_BOOST 899 900 #include "../locking/rtmutex_common.h" 901 902 static void rcu_wake_cond(struct task_struct *t, int status) 903 { 904 /* 905 * If the thread is yielding, only wake it when this 906 * is invoked from idle 907 */ 908 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 909 wake_up_process(t); 910 } 911 912 /* 913 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 914 * or ->boost_tasks, advancing the pointer to the next task in the 915 * ->blkd_tasks list. 916 * 917 * Note that irqs must be enabled: boosting the task can block. 918 * Returns 1 if there are more tasks needing to be boosted. 919 */ 920 static int rcu_boost(struct rcu_node *rnp) 921 { 922 unsigned long flags; 923 struct task_struct *t; 924 struct list_head *tb; 925 926 if (READ_ONCE(rnp->exp_tasks) == NULL && 927 READ_ONCE(rnp->boost_tasks) == NULL) 928 return 0; /* Nothing left to boost. */ 929 930 raw_spin_lock_irqsave_rcu_node(rnp, flags); 931 932 /* 933 * Recheck under the lock: all tasks in need of boosting 934 * might exit their RCU read-side critical sections on their own. 935 */ 936 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 937 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 938 return 0; 939 } 940 941 /* 942 * Preferentially boost tasks blocking expedited grace periods. 943 * This cannot starve the normal grace periods because a second 944 * expedited grace period must boost all blocked tasks, including 945 * those blocking the pre-existing normal grace period. 946 */ 947 if (rnp->exp_tasks != NULL) { 948 tb = rnp->exp_tasks; 949 rnp->n_exp_boosts++; 950 } else { 951 tb = rnp->boost_tasks; 952 rnp->n_normal_boosts++; 953 } 954 rnp->n_tasks_boosted++; 955 956 /* 957 * We boost task t by manufacturing an rt_mutex that appears to 958 * be held by task t. We leave a pointer to that rt_mutex where 959 * task t can find it, and task t will release the mutex when it 960 * exits its outermost RCU read-side critical section. Then 961 * simply acquiring this artificial rt_mutex will boost task 962 * t's priority. (Thanks to tglx for suggesting this approach!) 963 * 964 * Note that task t must acquire rnp->lock to remove itself from 965 * the ->blkd_tasks list, which it will do from exit() if from 966 * nowhere else. We therefore are guaranteed that task t will 967 * stay around at least until we drop rnp->lock. Note that 968 * rnp->lock also resolves races between our priority boosting 969 * and task t's exiting its outermost RCU read-side critical 970 * section. 971 */ 972 t = container_of(tb, struct task_struct, rcu_node_entry); 973 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 974 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 975 /* Lock only for side effect: boosts task t's priority. */ 976 rt_mutex_lock(&rnp->boost_mtx); 977 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 978 979 return READ_ONCE(rnp->exp_tasks) != NULL || 980 READ_ONCE(rnp->boost_tasks) != NULL; 981 } 982 983 /* 984 * Priority-boosting kthread, one per leaf rcu_node. 985 */ 986 static int rcu_boost_kthread(void *arg) 987 { 988 struct rcu_node *rnp = (struct rcu_node *)arg; 989 int spincnt = 0; 990 int more2boost; 991 992 trace_rcu_utilization(TPS("Start boost kthread@init")); 993 for (;;) { 994 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 995 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 996 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 997 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 998 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 999 more2boost = rcu_boost(rnp); 1000 if (more2boost) 1001 spincnt++; 1002 else 1003 spincnt = 0; 1004 if (spincnt > 10) { 1005 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1006 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1007 schedule_timeout_interruptible(2); 1008 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1009 spincnt = 0; 1010 } 1011 } 1012 /* NOTREACHED */ 1013 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1014 return 0; 1015 } 1016 1017 /* 1018 * Check to see if it is time to start boosting RCU readers that are 1019 * blocking the current grace period, and, if so, tell the per-rcu_node 1020 * kthread to start boosting them. If there is an expedited grace 1021 * period in progress, it is always time to boost. 1022 * 1023 * The caller must hold rnp->lock, which this function releases. 1024 * The ->boost_kthread_task is immortal, so we don't need to worry 1025 * about it going away. 1026 */ 1027 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1028 __releases(rnp->lock) 1029 { 1030 struct task_struct *t; 1031 1032 lockdep_assert_held(&rnp->lock); 1033 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1034 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1035 return; 1036 } 1037 if (rnp->exp_tasks != NULL || 1038 (rnp->gp_tasks != NULL && 1039 rnp->boost_tasks == NULL && 1040 rnp->qsmask == 0 && 1041 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1042 if (rnp->exp_tasks == NULL) 1043 rnp->boost_tasks = rnp->gp_tasks; 1044 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1045 t = rnp->boost_kthread_task; 1046 if (t) 1047 rcu_wake_cond(t, rnp->boost_kthread_status); 1048 } else { 1049 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1050 } 1051 } 1052 1053 /* 1054 * Wake up the per-CPU kthread to invoke RCU callbacks. 1055 */ 1056 static void invoke_rcu_callbacks_kthread(void) 1057 { 1058 unsigned long flags; 1059 1060 local_irq_save(flags); 1061 __this_cpu_write(rcu_cpu_has_work, 1); 1062 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1063 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1064 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1065 __this_cpu_read(rcu_cpu_kthread_status)); 1066 } 1067 local_irq_restore(flags); 1068 } 1069 1070 /* 1071 * Is the current CPU running the RCU-callbacks kthread? 1072 * Caller must have preemption disabled. 1073 */ 1074 static bool rcu_is_callbacks_kthread(void) 1075 { 1076 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1077 } 1078 1079 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1080 1081 /* 1082 * Do priority-boost accounting for the start of a new grace period. 1083 */ 1084 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1085 { 1086 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1087 } 1088 1089 /* 1090 * Create an RCU-boost kthread for the specified node if one does not 1091 * already exist. We only create this kthread for preemptible RCU. 1092 * Returns zero if all is well, a negated errno otherwise. 1093 */ 1094 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1095 struct rcu_node *rnp) 1096 { 1097 int rnp_index = rnp - &rsp->node[0]; 1098 unsigned long flags; 1099 struct sched_param sp; 1100 struct task_struct *t; 1101 1102 if (rcu_state_p != rsp) 1103 return 0; 1104 1105 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1106 return 0; 1107 1108 rsp->boost = 1; 1109 if (rnp->boost_kthread_task != NULL) 1110 return 0; 1111 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1112 "rcub/%d", rnp_index); 1113 if (IS_ERR(t)) 1114 return PTR_ERR(t); 1115 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1116 rnp->boost_kthread_task = t; 1117 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1118 sp.sched_priority = kthread_prio; 1119 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1120 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1121 return 0; 1122 } 1123 1124 static void rcu_kthread_do_work(void) 1125 { 1126 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1127 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1128 rcu_preempt_do_callbacks(); 1129 } 1130 1131 static void rcu_cpu_kthread_setup(unsigned int cpu) 1132 { 1133 struct sched_param sp; 1134 1135 sp.sched_priority = kthread_prio; 1136 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1137 } 1138 1139 static void rcu_cpu_kthread_park(unsigned int cpu) 1140 { 1141 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1142 } 1143 1144 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1145 { 1146 return __this_cpu_read(rcu_cpu_has_work); 1147 } 1148 1149 /* 1150 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1151 * RCU softirq used in flavors and configurations of RCU that do not 1152 * support RCU priority boosting. 1153 */ 1154 static void rcu_cpu_kthread(unsigned int cpu) 1155 { 1156 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1157 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1158 int spincnt; 1159 1160 for (spincnt = 0; spincnt < 10; spincnt++) { 1161 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1162 local_bh_disable(); 1163 *statusp = RCU_KTHREAD_RUNNING; 1164 this_cpu_inc(rcu_cpu_kthread_loops); 1165 local_irq_disable(); 1166 work = *workp; 1167 *workp = 0; 1168 local_irq_enable(); 1169 if (work) 1170 rcu_kthread_do_work(); 1171 local_bh_enable(); 1172 if (*workp == 0) { 1173 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1174 *statusp = RCU_KTHREAD_WAITING; 1175 return; 1176 } 1177 } 1178 *statusp = RCU_KTHREAD_YIELDING; 1179 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1180 schedule_timeout_interruptible(2); 1181 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1182 *statusp = RCU_KTHREAD_WAITING; 1183 } 1184 1185 /* 1186 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1187 * served by the rcu_node in question. The CPU hotplug lock is still 1188 * held, so the value of rnp->qsmaskinit will be stable. 1189 * 1190 * We don't include outgoingcpu in the affinity set, use -1 if there is 1191 * no outgoing CPU. If there are no CPUs left in the affinity set, 1192 * this function allows the kthread to execute on any CPU. 1193 */ 1194 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1195 { 1196 struct task_struct *t = rnp->boost_kthread_task; 1197 unsigned long mask = rcu_rnp_online_cpus(rnp); 1198 cpumask_var_t cm; 1199 int cpu; 1200 1201 if (!t) 1202 return; 1203 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1204 return; 1205 for_each_leaf_node_possible_cpu(rnp, cpu) 1206 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1207 cpu != outgoingcpu) 1208 cpumask_set_cpu(cpu, cm); 1209 if (cpumask_weight(cm) == 0) 1210 cpumask_setall(cm); 1211 set_cpus_allowed_ptr(t, cm); 1212 free_cpumask_var(cm); 1213 } 1214 1215 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1216 .store = &rcu_cpu_kthread_task, 1217 .thread_should_run = rcu_cpu_kthread_should_run, 1218 .thread_fn = rcu_cpu_kthread, 1219 .thread_comm = "rcuc/%u", 1220 .setup = rcu_cpu_kthread_setup, 1221 .park = rcu_cpu_kthread_park, 1222 }; 1223 1224 /* 1225 * Spawn boost kthreads -- called as soon as the scheduler is running. 1226 */ 1227 static void __init rcu_spawn_boost_kthreads(void) 1228 { 1229 struct rcu_node *rnp; 1230 int cpu; 1231 1232 for_each_possible_cpu(cpu) 1233 per_cpu(rcu_cpu_has_work, cpu) = 0; 1234 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1235 rcu_for_each_leaf_node(rcu_state_p, rnp) 1236 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1237 } 1238 1239 static void rcu_prepare_kthreads(int cpu) 1240 { 1241 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1242 struct rcu_node *rnp = rdp->mynode; 1243 1244 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1245 if (rcu_scheduler_fully_active) 1246 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1247 } 1248 1249 #else /* #ifdef CONFIG_RCU_BOOST */ 1250 1251 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1252 __releases(rnp->lock) 1253 { 1254 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1255 } 1256 1257 static void invoke_rcu_callbacks_kthread(void) 1258 { 1259 WARN_ON_ONCE(1); 1260 } 1261 1262 static bool rcu_is_callbacks_kthread(void) 1263 { 1264 return false; 1265 } 1266 1267 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1268 { 1269 } 1270 1271 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1272 { 1273 } 1274 1275 static void __init rcu_spawn_boost_kthreads(void) 1276 { 1277 } 1278 1279 static void rcu_prepare_kthreads(int cpu) 1280 { 1281 } 1282 1283 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1284 1285 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1286 1287 /* 1288 * Check to see if any future RCU-related work will need to be done 1289 * by the current CPU, even if none need be done immediately, returning 1290 * 1 if so. This function is part of the RCU implementation; it is -not- 1291 * an exported member of the RCU API. 1292 * 1293 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1294 * any flavor of RCU. 1295 */ 1296 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1297 { 1298 *nextevt = KTIME_MAX; 1299 return rcu_cpu_has_callbacks(NULL); 1300 } 1301 1302 /* 1303 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1304 * after it. 1305 */ 1306 static void rcu_cleanup_after_idle(void) 1307 { 1308 } 1309 1310 /* 1311 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1312 * is nothing. 1313 */ 1314 static void rcu_prepare_for_idle(void) 1315 { 1316 } 1317 1318 /* 1319 * Don't bother keeping a running count of the number of RCU callbacks 1320 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1321 */ 1322 static void rcu_idle_count_callbacks_posted(void) 1323 { 1324 } 1325 1326 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1327 1328 /* 1329 * This code is invoked when a CPU goes idle, at which point we want 1330 * to have the CPU do everything required for RCU so that it can enter 1331 * the energy-efficient dyntick-idle mode. This is handled by a 1332 * state machine implemented by rcu_prepare_for_idle() below. 1333 * 1334 * The following three proprocessor symbols control this state machine: 1335 * 1336 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1337 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1338 * is sized to be roughly one RCU grace period. Those energy-efficiency 1339 * benchmarkers who might otherwise be tempted to set this to a large 1340 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1341 * system. And if you are -that- concerned about energy efficiency, 1342 * just power the system down and be done with it! 1343 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1344 * permitted to sleep in dyntick-idle mode with only lazy RCU 1345 * callbacks pending. Setting this too high can OOM your system. 1346 * 1347 * The values below work well in practice. If future workloads require 1348 * adjustment, they can be converted into kernel config parameters, though 1349 * making the state machine smarter might be a better option. 1350 */ 1351 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1352 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1353 1354 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1355 module_param(rcu_idle_gp_delay, int, 0644); 1356 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1357 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1358 1359 /* 1360 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1361 * only if it has been awhile since the last time we did so. Afterwards, 1362 * if there are any callbacks ready for immediate invocation, return true. 1363 */ 1364 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1365 { 1366 bool cbs_ready = false; 1367 struct rcu_data *rdp; 1368 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1369 struct rcu_node *rnp; 1370 struct rcu_state *rsp; 1371 1372 /* Exit early if we advanced recently. */ 1373 if (jiffies == rdtp->last_advance_all) 1374 return false; 1375 rdtp->last_advance_all = jiffies; 1376 1377 for_each_rcu_flavor(rsp) { 1378 rdp = this_cpu_ptr(rsp->rda); 1379 rnp = rdp->mynode; 1380 1381 /* 1382 * Don't bother checking unless a grace period has 1383 * completed since we last checked and there are 1384 * callbacks not yet ready to invoke. 1385 */ 1386 if ((rdp->completed != rnp->completed || 1387 unlikely(READ_ONCE(rdp->gpwrap))) && 1388 rcu_segcblist_pend_cbs(&rdp->cblist)) 1389 note_gp_changes(rsp, rdp); 1390 1391 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1392 cbs_ready = true; 1393 } 1394 return cbs_ready; 1395 } 1396 1397 /* 1398 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1399 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1400 * caller to set the timeout based on whether or not there are non-lazy 1401 * callbacks. 1402 * 1403 * The caller must have disabled interrupts. 1404 */ 1405 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1406 { 1407 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1408 unsigned long dj; 1409 1410 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!"); 1411 1412 /* Snapshot to detect later posting of non-lazy callback. */ 1413 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1414 1415 /* If no callbacks, RCU doesn't need the CPU. */ 1416 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1417 *nextevt = KTIME_MAX; 1418 return 0; 1419 } 1420 1421 /* Attempt to advance callbacks. */ 1422 if (rcu_try_advance_all_cbs()) { 1423 /* Some ready to invoke, so initiate later invocation. */ 1424 invoke_rcu_core(); 1425 return 1; 1426 } 1427 rdtp->last_accelerate = jiffies; 1428 1429 /* Request timer delay depending on laziness, and round. */ 1430 if (!rdtp->all_lazy) { 1431 dj = round_up(rcu_idle_gp_delay + jiffies, 1432 rcu_idle_gp_delay) - jiffies; 1433 } else { 1434 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1435 } 1436 *nextevt = basemono + dj * TICK_NSEC; 1437 return 0; 1438 } 1439 1440 /* 1441 * Prepare a CPU for idle from an RCU perspective. The first major task 1442 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1443 * The second major task is to check to see if a non-lazy callback has 1444 * arrived at a CPU that previously had only lazy callbacks. The third 1445 * major task is to accelerate (that is, assign grace-period numbers to) 1446 * any recently arrived callbacks. 1447 * 1448 * The caller must have disabled interrupts. 1449 */ 1450 static void rcu_prepare_for_idle(void) 1451 { 1452 bool needwake; 1453 struct rcu_data *rdp; 1454 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1455 struct rcu_node *rnp; 1456 struct rcu_state *rsp; 1457 int tne; 1458 1459 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!"); 1460 if (rcu_is_nocb_cpu(smp_processor_id())) 1461 return; 1462 1463 /* Handle nohz enablement switches conservatively. */ 1464 tne = READ_ONCE(tick_nohz_active); 1465 if (tne != rdtp->tick_nohz_enabled_snap) { 1466 if (rcu_cpu_has_callbacks(NULL)) 1467 invoke_rcu_core(); /* force nohz to see update. */ 1468 rdtp->tick_nohz_enabled_snap = tne; 1469 return; 1470 } 1471 if (!tne) 1472 return; 1473 1474 /* 1475 * If a non-lazy callback arrived at a CPU having only lazy 1476 * callbacks, invoke RCU core for the side-effect of recalculating 1477 * idle duration on re-entry to idle. 1478 */ 1479 if (rdtp->all_lazy && 1480 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1481 rdtp->all_lazy = false; 1482 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1483 invoke_rcu_core(); 1484 return; 1485 } 1486 1487 /* 1488 * If we have not yet accelerated this jiffy, accelerate all 1489 * callbacks on this CPU. 1490 */ 1491 if (rdtp->last_accelerate == jiffies) 1492 return; 1493 rdtp->last_accelerate = jiffies; 1494 for_each_rcu_flavor(rsp) { 1495 rdp = this_cpu_ptr(rsp->rda); 1496 if (rcu_segcblist_pend_cbs(&rdp->cblist)) 1497 continue; 1498 rnp = rdp->mynode; 1499 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1500 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1501 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1502 if (needwake) 1503 rcu_gp_kthread_wake(rsp); 1504 } 1505 } 1506 1507 /* 1508 * Clean up for exit from idle. Attempt to advance callbacks based on 1509 * any grace periods that elapsed while the CPU was idle, and if any 1510 * callbacks are now ready to invoke, initiate invocation. 1511 */ 1512 static void rcu_cleanup_after_idle(void) 1513 { 1514 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!"); 1515 if (rcu_is_nocb_cpu(smp_processor_id())) 1516 return; 1517 if (rcu_try_advance_all_cbs()) 1518 invoke_rcu_core(); 1519 } 1520 1521 /* 1522 * Keep a running count of the number of non-lazy callbacks posted 1523 * on this CPU. This running counter (which is never decremented) allows 1524 * rcu_prepare_for_idle() to detect when something out of the idle loop 1525 * posts a callback, even if an equal number of callbacks are invoked. 1526 * Of course, callbacks should only be posted from within a trace event 1527 * designed to be called from idle or from within RCU_NONIDLE(). 1528 */ 1529 static void rcu_idle_count_callbacks_posted(void) 1530 { 1531 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1532 } 1533 1534 /* 1535 * Data for flushing lazy RCU callbacks at OOM time. 1536 */ 1537 static atomic_t oom_callback_count; 1538 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1539 1540 /* 1541 * RCU OOM callback -- decrement the outstanding count and deliver the 1542 * wake-up if we are the last one. 1543 */ 1544 static void rcu_oom_callback(struct rcu_head *rhp) 1545 { 1546 if (atomic_dec_and_test(&oom_callback_count)) 1547 wake_up(&oom_callback_wq); 1548 } 1549 1550 /* 1551 * Post an rcu_oom_notify callback on the current CPU if it has at 1552 * least one lazy callback. This will unnecessarily post callbacks 1553 * to CPUs that already have a non-lazy callback at the end of their 1554 * callback list, but this is an infrequent operation, so accept some 1555 * extra overhead to keep things simple. 1556 */ 1557 static void rcu_oom_notify_cpu(void *unused) 1558 { 1559 struct rcu_state *rsp; 1560 struct rcu_data *rdp; 1561 1562 for_each_rcu_flavor(rsp) { 1563 rdp = raw_cpu_ptr(rsp->rda); 1564 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { 1565 atomic_inc(&oom_callback_count); 1566 rsp->call(&rdp->oom_head, rcu_oom_callback); 1567 } 1568 } 1569 } 1570 1571 /* 1572 * If low on memory, ensure that each CPU has a non-lazy callback. 1573 * This will wake up CPUs that have only lazy callbacks, in turn 1574 * ensuring that they free up the corresponding memory in a timely manner. 1575 * Because an uncertain amount of memory will be freed in some uncertain 1576 * timeframe, we do not claim to have freed anything. 1577 */ 1578 static int rcu_oom_notify(struct notifier_block *self, 1579 unsigned long notused, void *nfreed) 1580 { 1581 int cpu; 1582 1583 /* Wait for callbacks from earlier instance to complete. */ 1584 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1585 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1586 1587 /* 1588 * Prevent premature wakeup: ensure that all increments happen 1589 * before there is a chance of the counter reaching zero. 1590 */ 1591 atomic_set(&oom_callback_count, 1); 1592 1593 for_each_online_cpu(cpu) { 1594 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1595 cond_resched_rcu_qs(); 1596 } 1597 1598 /* Unconditionally decrement: no need to wake ourselves up. */ 1599 atomic_dec(&oom_callback_count); 1600 1601 return NOTIFY_OK; 1602 } 1603 1604 static struct notifier_block rcu_oom_nb = { 1605 .notifier_call = rcu_oom_notify 1606 }; 1607 1608 static int __init rcu_register_oom_notifier(void) 1609 { 1610 register_oom_notifier(&rcu_oom_nb); 1611 return 0; 1612 } 1613 early_initcall(rcu_register_oom_notifier); 1614 1615 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1616 1617 #ifdef CONFIG_RCU_FAST_NO_HZ 1618 1619 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1620 { 1621 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1622 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1623 1624 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1625 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1626 ulong2long(nlpd), 1627 rdtp->all_lazy ? 'L' : '.', 1628 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1629 } 1630 1631 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1632 1633 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1634 { 1635 *cp = '\0'; 1636 } 1637 1638 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1639 1640 /* Initiate the stall-info list. */ 1641 static void print_cpu_stall_info_begin(void) 1642 { 1643 pr_cont("\n"); 1644 } 1645 1646 /* 1647 * Print out diagnostic information for the specified stalled CPU. 1648 * 1649 * If the specified CPU is aware of the current RCU grace period 1650 * (flavor specified by rsp), then print the number of scheduling 1651 * clock interrupts the CPU has taken during the time that it has 1652 * been aware. Otherwise, print the number of RCU grace periods 1653 * that this CPU is ignorant of, for example, "1" if the CPU was 1654 * aware of the previous grace period. 1655 * 1656 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1657 */ 1658 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1659 { 1660 char fast_no_hz[72]; 1661 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1662 struct rcu_dynticks *rdtp = rdp->dynticks; 1663 char *ticks_title; 1664 unsigned long ticks_value; 1665 1666 if (rsp->gpnum == rdp->gpnum) { 1667 ticks_title = "ticks this GP"; 1668 ticks_value = rdp->ticks_this_gp; 1669 } else { 1670 ticks_title = "GPs behind"; 1671 ticks_value = rsp->gpnum - rdp->gpnum; 1672 } 1673 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1674 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1675 cpu, 1676 "O."[!!cpu_online(cpu)], 1677 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1678 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1679 ticks_value, ticks_title, 1680 rcu_dynticks_snap(rdtp) & 0xfff, 1681 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1682 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1683 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1684 fast_no_hz); 1685 } 1686 1687 /* Terminate the stall-info list. */ 1688 static void print_cpu_stall_info_end(void) 1689 { 1690 pr_err("\t"); 1691 } 1692 1693 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1694 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1695 { 1696 rdp->ticks_this_gp = 0; 1697 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1698 } 1699 1700 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1701 static void increment_cpu_stall_ticks(void) 1702 { 1703 struct rcu_state *rsp; 1704 1705 for_each_rcu_flavor(rsp) 1706 raw_cpu_inc(rsp->rda->ticks_this_gp); 1707 } 1708 1709 #ifdef CONFIG_RCU_NOCB_CPU 1710 1711 /* 1712 * Offload callback processing from the boot-time-specified set of CPUs 1713 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1714 * kthread created that pulls the callbacks from the corresponding CPU, 1715 * waits for a grace period to elapse, and invokes the callbacks. 1716 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1717 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1718 * has been specified, in which case each kthread actively polls its 1719 * CPU. (Which isn't so great for energy efficiency, but which does 1720 * reduce RCU's overhead on that CPU.) 1721 * 1722 * This is intended to be used in conjunction with Frederic Weisbecker's 1723 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1724 * running CPU-bound user-mode computations. 1725 * 1726 * Offloading of callback processing could also in theory be used as 1727 * an energy-efficiency measure because CPUs with no RCU callbacks 1728 * queued are more aggressive about entering dyntick-idle mode. 1729 */ 1730 1731 1732 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1733 static int __init rcu_nocb_setup(char *str) 1734 { 1735 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1736 have_rcu_nocb_mask = true; 1737 cpulist_parse(str, rcu_nocb_mask); 1738 return 1; 1739 } 1740 __setup("rcu_nocbs=", rcu_nocb_setup); 1741 1742 static int __init parse_rcu_nocb_poll(char *arg) 1743 { 1744 rcu_nocb_poll = true; 1745 return 0; 1746 } 1747 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1748 1749 /* 1750 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1751 * grace period. 1752 */ 1753 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1754 { 1755 swake_up_all(sq); 1756 } 1757 1758 /* 1759 * Set the root rcu_node structure's ->need_future_gp field 1760 * based on the sum of those of all rcu_node structures. This does 1761 * double-count the root rcu_node structure's requests, but this 1762 * is necessary to handle the possibility of a rcu_nocb_kthread() 1763 * having awakened during the time that the rcu_node structures 1764 * were being updated for the end of the previous grace period. 1765 */ 1766 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1767 { 1768 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1769 } 1770 1771 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1772 { 1773 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1774 } 1775 1776 static void rcu_init_one_nocb(struct rcu_node *rnp) 1777 { 1778 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1779 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1780 } 1781 1782 /* Is the specified CPU a no-CBs CPU? */ 1783 bool rcu_is_nocb_cpu(int cpu) 1784 { 1785 if (have_rcu_nocb_mask) 1786 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1787 return false; 1788 } 1789 1790 /* 1791 * Kick the leader kthread for this NOCB group. 1792 */ 1793 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1794 { 1795 struct rcu_data *rdp_leader = rdp->nocb_leader; 1796 1797 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1798 return; 1799 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1800 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1801 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1802 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */ 1803 swake_up(&rdp_leader->nocb_wq); 1804 } 1805 } 1806 1807 /* 1808 * Does the specified CPU need an RCU callback for the specified flavor 1809 * of rcu_barrier()? 1810 */ 1811 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1812 { 1813 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1814 unsigned long ret; 1815 #ifdef CONFIG_PROVE_RCU 1816 struct rcu_head *rhp; 1817 #endif /* #ifdef CONFIG_PROVE_RCU */ 1818 1819 /* 1820 * Check count of all no-CBs callbacks awaiting invocation. 1821 * There needs to be a barrier before this function is called, 1822 * but associated with a prior determination that no more 1823 * callbacks would be posted. In the worst case, the first 1824 * barrier in _rcu_barrier() suffices (but the caller cannot 1825 * necessarily rely on this, not a substitute for the caller 1826 * getting the concurrency design right!). There must also be 1827 * a barrier between the following load an posting of a callback 1828 * (if a callback is in fact needed). This is associated with an 1829 * atomic_inc() in the caller. 1830 */ 1831 ret = atomic_long_read(&rdp->nocb_q_count); 1832 1833 #ifdef CONFIG_PROVE_RCU 1834 rhp = READ_ONCE(rdp->nocb_head); 1835 if (!rhp) 1836 rhp = READ_ONCE(rdp->nocb_gp_head); 1837 if (!rhp) 1838 rhp = READ_ONCE(rdp->nocb_follower_head); 1839 1840 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1841 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1842 rcu_scheduler_fully_active) { 1843 /* RCU callback enqueued before CPU first came online??? */ 1844 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1845 cpu, rhp->func); 1846 WARN_ON_ONCE(1); 1847 } 1848 #endif /* #ifdef CONFIG_PROVE_RCU */ 1849 1850 return !!ret; 1851 } 1852 1853 /* 1854 * Enqueue the specified string of rcu_head structures onto the specified 1855 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1856 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1857 * counts are supplied by rhcount and rhcount_lazy. 1858 * 1859 * If warranted, also wake up the kthread servicing this CPUs queues. 1860 */ 1861 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1862 struct rcu_head *rhp, 1863 struct rcu_head **rhtp, 1864 int rhcount, int rhcount_lazy, 1865 unsigned long flags) 1866 { 1867 int len; 1868 struct rcu_head **old_rhpp; 1869 struct task_struct *t; 1870 1871 /* Enqueue the callback on the nocb list and update counts. */ 1872 atomic_long_add(rhcount, &rdp->nocb_q_count); 1873 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1874 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1875 WRITE_ONCE(*old_rhpp, rhp); 1876 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1877 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1878 1879 /* If we are not being polled and there is a kthread, awaken it ... */ 1880 t = READ_ONCE(rdp->nocb_kthread); 1881 if (rcu_nocb_poll || !t) { 1882 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1883 TPS("WakeNotPoll")); 1884 return; 1885 } 1886 len = atomic_long_read(&rdp->nocb_q_count); 1887 if (old_rhpp == &rdp->nocb_head) { 1888 if (!irqs_disabled_flags(flags)) { 1889 /* ... if queue was empty ... */ 1890 wake_nocb_leader(rdp, false); 1891 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1892 TPS("WakeEmpty")); 1893 } else { 1894 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE); 1895 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */ 1896 smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true); 1897 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1898 TPS("WakeEmptyIsDeferred")); 1899 } 1900 rdp->qlen_last_fqs_check = 0; 1901 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1902 /* ... or if many callbacks queued. */ 1903 if (!irqs_disabled_flags(flags)) { 1904 wake_nocb_leader(rdp, true); 1905 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1906 TPS("WakeOvf")); 1907 } else { 1908 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_FORCE); 1909 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */ 1910 smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true); 1911 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1912 TPS("WakeOvfIsDeferred")); 1913 } 1914 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1915 } else { 1916 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1917 } 1918 return; 1919 } 1920 1921 /* 1922 * This is a helper for __call_rcu(), which invokes this when the normal 1923 * callback queue is inoperable. If this is not a no-CBs CPU, this 1924 * function returns failure back to __call_rcu(), which can complain 1925 * appropriately. 1926 * 1927 * Otherwise, this function queues the callback where the corresponding 1928 * "rcuo" kthread can find it. 1929 */ 1930 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1931 bool lazy, unsigned long flags) 1932 { 1933 1934 if (!rcu_is_nocb_cpu(rdp->cpu)) 1935 return false; 1936 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1937 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1938 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1939 (unsigned long)rhp->func, 1940 -atomic_long_read(&rdp->nocb_q_count_lazy), 1941 -atomic_long_read(&rdp->nocb_q_count)); 1942 else 1943 trace_rcu_callback(rdp->rsp->name, rhp, 1944 -atomic_long_read(&rdp->nocb_q_count_lazy), 1945 -atomic_long_read(&rdp->nocb_q_count)); 1946 1947 /* 1948 * If called from an extended quiescent state with interrupts 1949 * disabled, invoke the RCU core in order to allow the idle-entry 1950 * deferred-wakeup check to function. 1951 */ 1952 if (irqs_disabled_flags(flags) && 1953 !rcu_is_watching() && 1954 cpu_online(smp_processor_id())) 1955 invoke_rcu_core(); 1956 1957 return true; 1958 } 1959 1960 /* 1961 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 1962 * not a no-CBs CPU. 1963 */ 1964 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 1965 struct rcu_data *rdp, 1966 unsigned long flags) 1967 { 1968 long ql = rsp->orphan_done.len; 1969 long qll = rsp->orphan_done.len_lazy; 1970 1971 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 1972 if (!rcu_is_nocb_cpu(smp_processor_id())) 1973 return false; 1974 1975 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 1976 if (rsp->orphan_done.head) { 1977 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done), 1978 rcu_cblist_tail(&rsp->orphan_done), 1979 ql, qll, flags); 1980 } 1981 if (rsp->orphan_pend.head) { 1982 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend), 1983 rcu_cblist_tail(&rsp->orphan_pend), 1984 ql, qll, flags); 1985 } 1986 rcu_cblist_init(&rsp->orphan_done); 1987 rcu_cblist_init(&rsp->orphan_pend); 1988 return true; 1989 } 1990 1991 /* 1992 * If necessary, kick off a new grace period, and either way wait 1993 * for a subsequent grace period to complete. 1994 */ 1995 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 1996 { 1997 unsigned long c; 1998 bool d; 1999 unsigned long flags; 2000 bool needwake; 2001 struct rcu_node *rnp = rdp->mynode; 2002 2003 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2004 needwake = rcu_start_future_gp(rnp, rdp, &c); 2005 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2006 if (needwake) 2007 rcu_gp_kthread_wake(rdp->rsp); 2008 2009 /* 2010 * Wait for the grace period. Do so interruptibly to avoid messing 2011 * up the load average. 2012 */ 2013 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2014 for (;;) { 2015 swait_event_interruptible( 2016 rnp->nocb_gp_wq[c & 0x1], 2017 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2018 if (likely(d)) 2019 break; 2020 WARN_ON(signal_pending(current)); 2021 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2022 } 2023 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2024 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2025 } 2026 2027 /* 2028 * Leaders come here to wait for additional callbacks to show up. 2029 * This function does not return until callbacks appear. 2030 */ 2031 static void nocb_leader_wait(struct rcu_data *my_rdp) 2032 { 2033 bool firsttime = true; 2034 bool gotcbs; 2035 struct rcu_data *rdp; 2036 struct rcu_head **tail; 2037 2038 wait_again: 2039 2040 /* Wait for callbacks to appear. */ 2041 if (!rcu_nocb_poll) { 2042 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2043 swait_event_interruptible(my_rdp->nocb_wq, 2044 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2045 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2046 } else if (firsttime) { 2047 firsttime = false; /* Don't drown trace log with "Poll"! */ 2048 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2049 } 2050 2051 /* 2052 * Each pass through the following loop checks a follower for CBs. 2053 * We are our own first follower. Any CBs found are moved to 2054 * nocb_gp_head, where they await a grace period. 2055 */ 2056 gotcbs = false; 2057 smp_mb(); /* wakeup before ->nocb_head reads. */ 2058 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2059 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2060 if (!rdp->nocb_gp_head) 2061 continue; /* No CBs here, try next follower. */ 2062 2063 /* Move callbacks to wait-for-GP list, which is empty. */ 2064 WRITE_ONCE(rdp->nocb_head, NULL); 2065 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2066 gotcbs = true; 2067 } 2068 2069 /* 2070 * If there were no callbacks, sleep a bit, rescan after a 2071 * memory barrier, and go retry. 2072 */ 2073 if (unlikely(!gotcbs)) { 2074 if (!rcu_nocb_poll) 2075 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2076 "WokeEmpty"); 2077 WARN_ON(signal_pending(current)); 2078 schedule_timeout_interruptible(1); 2079 2080 /* Rescan in case we were a victim of memory ordering. */ 2081 my_rdp->nocb_leader_sleep = true; 2082 smp_mb(); /* Ensure _sleep true before scan. */ 2083 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2084 if (READ_ONCE(rdp->nocb_head)) { 2085 /* Found CB, so short-circuit next wait. */ 2086 my_rdp->nocb_leader_sleep = false; 2087 break; 2088 } 2089 goto wait_again; 2090 } 2091 2092 /* Wait for one grace period. */ 2093 rcu_nocb_wait_gp(my_rdp); 2094 2095 /* 2096 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2097 * We set it now, but recheck for new callbacks while 2098 * traversing our follower list. 2099 */ 2100 my_rdp->nocb_leader_sleep = true; 2101 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2102 2103 /* Each pass through the following loop wakes a follower, if needed. */ 2104 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2105 if (READ_ONCE(rdp->nocb_head)) 2106 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2107 if (!rdp->nocb_gp_head) 2108 continue; /* No CBs, so no need to wake follower. */ 2109 2110 /* Append callbacks to follower's "done" list. */ 2111 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2112 *tail = rdp->nocb_gp_head; 2113 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2114 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2115 /* 2116 * List was empty, wake up the follower. 2117 * Memory barriers supplied by atomic_long_add(). 2118 */ 2119 swake_up(&rdp->nocb_wq); 2120 } 2121 } 2122 2123 /* If we (the leader) don't have CBs, go wait some more. */ 2124 if (!my_rdp->nocb_follower_head) 2125 goto wait_again; 2126 } 2127 2128 /* 2129 * Followers come here to wait for additional callbacks to show up. 2130 * This function does not return until callbacks appear. 2131 */ 2132 static void nocb_follower_wait(struct rcu_data *rdp) 2133 { 2134 bool firsttime = true; 2135 2136 for (;;) { 2137 if (!rcu_nocb_poll) { 2138 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2139 "FollowerSleep"); 2140 swait_event_interruptible(rdp->nocb_wq, 2141 READ_ONCE(rdp->nocb_follower_head)); 2142 } else if (firsttime) { 2143 /* Don't drown trace log with "Poll"! */ 2144 firsttime = false; 2145 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2146 } 2147 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2148 /* ^^^ Ensure CB invocation follows _head test. */ 2149 return; 2150 } 2151 if (!rcu_nocb_poll) 2152 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2153 "WokeEmpty"); 2154 WARN_ON(signal_pending(current)); 2155 schedule_timeout_interruptible(1); 2156 } 2157 } 2158 2159 /* 2160 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2161 * callbacks queued by the corresponding no-CBs CPU, however, there is 2162 * an optional leader-follower relationship so that the grace-period 2163 * kthreads don't have to do quite so many wakeups. 2164 */ 2165 static int rcu_nocb_kthread(void *arg) 2166 { 2167 int c, cl; 2168 struct rcu_head *list; 2169 struct rcu_head *next; 2170 struct rcu_head **tail; 2171 struct rcu_data *rdp = arg; 2172 2173 /* Each pass through this loop invokes one batch of callbacks */ 2174 for (;;) { 2175 /* Wait for callbacks. */ 2176 if (rdp->nocb_leader == rdp) 2177 nocb_leader_wait(rdp); 2178 else 2179 nocb_follower_wait(rdp); 2180 2181 /* Pull the ready-to-invoke callbacks onto local list. */ 2182 list = READ_ONCE(rdp->nocb_follower_head); 2183 BUG_ON(!list); 2184 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2185 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2186 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2187 2188 /* Each pass through the following loop invokes a callback. */ 2189 trace_rcu_batch_start(rdp->rsp->name, 2190 atomic_long_read(&rdp->nocb_q_count_lazy), 2191 atomic_long_read(&rdp->nocb_q_count), -1); 2192 c = cl = 0; 2193 while (list) { 2194 next = list->next; 2195 /* Wait for enqueuing to complete, if needed. */ 2196 while (next == NULL && &list->next != tail) { 2197 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2198 TPS("WaitQueue")); 2199 schedule_timeout_interruptible(1); 2200 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2201 TPS("WokeQueue")); 2202 next = list->next; 2203 } 2204 debug_rcu_head_unqueue(list); 2205 local_bh_disable(); 2206 if (__rcu_reclaim(rdp->rsp->name, list)) 2207 cl++; 2208 c++; 2209 local_bh_enable(); 2210 cond_resched_rcu_qs(); 2211 list = next; 2212 } 2213 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2214 smp_mb__before_atomic(); /* _add after CB invocation. */ 2215 atomic_long_add(-c, &rdp->nocb_q_count); 2216 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2217 rdp->n_nocbs_invoked += c; 2218 } 2219 return 0; 2220 } 2221 2222 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2223 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2224 { 2225 return READ_ONCE(rdp->nocb_defer_wakeup); 2226 } 2227 2228 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2229 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2230 { 2231 int ndw; 2232 2233 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2234 return; 2235 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2236 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2237 wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE); 2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2239 } 2240 2241 void __init rcu_init_nohz(void) 2242 { 2243 int cpu; 2244 bool need_rcu_nocb_mask = true; 2245 struct rcu_state *rsp; 2246 2247 #if defined(CONFIG_NO_HZ_FULL) 2248 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2249 need_rcu_nocb_mask = true; 2250 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2251 2252 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2253 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2254 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2255 return; 2256 } 2257 have_rcu_nocb_mask = true; 2258 } 2259 if (!have_rcu_nocb_mask) 2260 return; 2261 2262 #if defined(CONFIG_NO_HZ_FULL) 2263 if (tick_nohz_full_running) 2264 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2265 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2266 2267 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2268 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2269 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2270 rcu_nocb_mask); 2271 } 2272 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2273 cpumask_pr_args(rcu_nocb_mask)); 2274 if (rcu_nocb_poll) 2275 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2276 2277 for_each_rcu_flavor(rsp) { 2278 for_each_cpu(cpu, rcu_nocb_mask) 2279 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2280 rcu_organize_nocb_kthreads(rsp); 2281 } 2282 } 2283 2284 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2285 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2286 { 2287 rdp->nocb_tail = &rdp->nocb_head; 2288 init_swait_queue_head(&rdp->nocb_wq); 2289 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2290 } 2291 2292 /* 2293 * If the specified CPU is a no-CBs CPU that does not already have its 2294 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2295 * brought online out of order, this can require re-organizing the 2296 * leader-follower relationships. 2297 */ 2298 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2299 { 2300 struct rcu_data *rdp; 2301 struct rcu_data *rdp_last; 2302 struct rcu_data *rdp_old_leader; 2303 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2304 struct task_struct *t; 2305 2306 /* 2307 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2308 * then nothing to do. 2309 */ 2310 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2311 return; 2312 2313 /* If we didn't spawn the leader first, reorganize! */ 2314 rdp_old_leader = rdp_spawn->nocb_leader; 2315 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2316 rdp_last = NULL; 2317 rdp = rdp_old_leader; 2318 do { 2319 rdp->nocb_leader = rdp_spawn; 2320 if (rdp_last && rdp != rdp_spawn) 2321 rdp_last->nocb_next_follower = rdp; 2322 if (rdp == rdp_spawn) { 2323 rdp = rdp->nocb_next_follower; 2324 } else { 2325 rdp_last = rdp; 2326 rdp = rdp->nocb_next_follower; 2327 rdp_last->nocb_next_follower = NULL; 2328 } 2329 } while (rdp); 2330 rdp_spawn->nocb_next_follower = rdp_old_leader; 2331 } 2332 2333 /* Spawn the kthread for this CPU and RCU flavor. */ 2334 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2335 "rcuo%c/%d", rsp->abbr, cpu); 2336 BUG_ON(IS_ERR(t)); 2337 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2338 } 2339 2340 /* 2341 * If the specified CPU is a no-CBs CPU that does not already have its 2342 * rcuo kthreads, spawn them. 2343 */ 2344 static void rcu_spawn_all_nocb_kthreads(int cpu) 2345 { 2346 struct rcu_state *rsp; 2347 2348 if (rcu_scheduler_fully_active) 2349 for_each_rcu_flavor(rsp) 2350 rcu_spawn_one_nocb_kthread(rsp, cpu); 2351 } 2352 2353 /* 2354 * Once the scheduler is running, spawn rcuo kthreads for all online 2355 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2356 * non-boot CPUs come online -- if this changes, we will need to add 2357 * some mutual exclusion. 2358 */ 2359 static void __init rcu_spawn_nocb_kthreads(void) 2360 { 2361 int cpu; 2362 2363 for_each_online_cpu(cpu) 2364 rcu_spawn_all_nocb_kthreads(cpu); 2365 } 2366 2367 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2368 static int rcu_nocb_leader_stride = -1; 2369 module_param(rcu_nocb_leader_stride, int, 0444); 2370 2371 /* 2372 * Initialize leader-follower relationships for all no-CBs CPU. 2373 */ 2374 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2375 { 2376 int cpu; 2377 int ls = rcu_nocb_leader_stride; 2378 int nl = 0; /* Next leader. */ 2379 struct rcu_data *rdp; 2380 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2381 struct rcu_data *rdp_prev = NULL; 2382 2383 if (!have_rcu_nocb_mask) 2384 return; 2385 if (ls == -1) { 2386 ls = int_sqrt(nr_cpu_ids); 2387 rcu_nocb_leader_stride = ls; 2388 } 2389 2390 /* 2391 * Each pass through this loop sets up one rcu_data structure. 2392 * Should the corresponding CPU come online in the future, then 2393 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2394 */ 2395 for_each_cpu(cpu, rcu_nocb_mask) { 2396 rdp = per_cpu_ptr(rsp->rda, cpu); 2397 if (rdp->cpu >= nl) { 2398 /* New leader, set up for followers & next leader. */ 2399 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2400 rdp->nocb_leader = rdp; 2401 rdp_leader = rdp; 2402 } else { 2403 /* Another follower, link to previous leader. */ 2404 rdp->nocb_leader = rdp_leader; 2405 rdp_prev->nocb_next_follower = rdp; 2406 } 2407 rdp_prev = rdp; 2408 } 2409 } 2410 2411 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2412 static bool init_nocb_callback_list(struct rcu_data *rdp) 2413 { 2414 if (!rcu_is_nocb_cpu(rdp->cpu)) 2415 return false; 2416 2417 /* If there are early-boot callbacks, move them to nocb lists. */ 2418 if (!rcu_segcblist_empty(&rdp->cblist)) { 2419 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2420 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2421 atomic_long_set(&rdp->nocb_q_count, 2422 rcu_segcblist_n_cbs(&rdp->cblist)); 2423 atomic_long_set(&rdp->nocb_q_count_lazy, 2424 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2425 rcu_segcblist_init(&rdp->cblist); 2426 } 2427 rcu_segcblist_disable(&rdp->cblist); 2428 return true; 2429 } 2430 2431 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2432 2433 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2434 { 2435 WARN_ON_ONCE(1); /* Should be dead code. */ 2436 return false; 2437 } 2438 2439 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2440 { 2441 } 2442 2443 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2444 { 2445 } 2446 2447 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2448 { 2449 return NULL; 2450 } 2451 2452 static void rcu_init_one_nocb(struct rcu_node *rnp) 2453 { 2454 } 2455 2456 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2457 bool lazy, unsigned long flags) 2458 { 2459 return false; 2460 } 2461 2462 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2463 struct rcu_data *rdp, 2464 unsigned long flags) 2465 { 2466 return false; 2467 } 2468 2469 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2470 { 2471 } 2472 2473 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2474 { 2475 return false; 2476 } 2477 2478 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2479 { 2480 } 2481 2482 static void rcu_spawn_all_nocb_kthreads(int cpu) 2483 { 2484 } 2485 2486 static void __init rcu_spawn_nocb_kthreads(void) 2487 { 2488 } 2489 2490 static bool init_nocb_callback_list(struct rcu_data *rdp) 2491 { 2492 return false; 2493 } 2494 2495 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2496 2497 /* 2498 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2499 * arbitrarily long period of time with the scheduling-clock tick turned 2500 * off. RCU will be paying attention to this CPU because it is in the 2501 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2502 * machine because the scheduling-clock tick has been disabled. Therefore, 2503 * if an adaptive-ticks CPU is failing to respond to the current grace 2504 * period and has not be idle from an RCU perspective, kick it. 2505 */ 2506 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2507 { 2508 #ifdef CONFIG_NO_HZ_FULL 2509 if (tick_nohz_full_cpu(cpu)) 2510 smp_send_reschedule(cpu); 2511 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2512 } 2513 2514 /* 2515 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2516 * grace-period kthread will do force_quiescent_state() processing? 2517 * The idea is to avoid waking up RCU core processing on such a 2518 * CPU unless the grace period has extended for too long. 2519 * 2520 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2521 * CONFIG_RCU_NOCB_CPU CPUs. 2522 */ 2523 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2524 { 2525 #ifdef CONFIG_NO_HZ_FULL 2526 if (tick_nohz_full_cpu(smp_processor_id()) && 2527 (!rcu_gp_in_progress(rsp) || 2528 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2529 return true; 2530 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2531 return false; 2532 } 2533 2534 /* 2535 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2536 * timekeeping CPU. 2537 */ 2538 static void rcu_bind_gp_kthread(void) 2539 { 2540 int __maybe_unused cpu; 2541 2542 if (!tick_nohz_full_enabled()) 2543 return; 2544 housekeeping_affine(current); 2545 } 2546 2547 /* Record the current task on dyntick-idle entry. */ 2548 static void rcu_dynticks_task_enter(void) 2549 { 2550 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2551 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2552 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2553 } 2554 2555 /* Record no current task on dyntick-idle exit. */ 2556 static void rcu_dynticks_task_exit(void) 2557 { 2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2559 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2561 } 2562