1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 20 21 /* 22 * Check the RCU kernel configuration parameters and print informative 23 * messages about anything out of the ordinary. 24 */ 25 static void __init rcu_bootup_announce_oddness(void) 26 { 27 if (IS_ENABLED(CONFIG_RCU_TRACE)) 28 pr_info("\tRCU event tracing is enabled.\n"); 29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 32 RCU_FANOUT); 33 if (rcu_fanout_exact) 34 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 37 if (IS_ENABLED(CONFIG_PROVE_RCU)) 38 pr_info("\tRCU lockdep checking is enabled.\n"); 39 if (RCU_NUM_LVLS >= 4) 40 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 41 if (RCU_FANOUT_LEAF != 16) 42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 43 RCU_FANOUT_LEAF); 44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 46 rcu_fanout_leaf); 47 if (nr_cpu_ids != NR_CPUS) 48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 49 #ifdef CONFIG_RCU_BOOST 50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 51 kthread_prio, CONFIG_RCU_BOOST_DELAY); 52 #endif 53 if (blimit != DEFAULT_RCU_BLIMIT) 54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 55 if (qhimark != DEFAULT_RCU_QHIMARK) 56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 57 if (qlowmark != DEFAULT_RCU_QLOMARK) 58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 59 if (qovld != DEFAULT_RCU_QOVLD) 60 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 61 if (jiffies_till_first_fqs != ULONG_MAX) 62 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 63 if (jiffies_till_next_fqs != ULONG_MAX) 64 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 65 if (jiffies_till_sched_qs != ULONG_MAX) 66 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 67 if (rcu_kick_kthreads) 68 pr_info("\tKick kthreads if too-long grace period.\n"); 69 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 70 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 71 if (gp_preinit_delay) 72 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 73 if (gp_init_delay) 74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 75 if (gp_cleanup_delay) 76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 77 if (!use_softirq) 78 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 79 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 80 pr_info("\tRCU debug extended QS entry/exit.\n"); 81 rcupdate_announce_bootup_oddness(); 82 } 83 84 #ifdef CONFIG_PREEMPT_RCU 85 86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 87 static void rcu_read_unlock_special(struct task_struct *t); 88 89 /* 90 * Tell them what RCU they are running. 91 */ 92 static void __init rcu_bootup_announce(void) 93 { 94 pr_info("Preemptible hierarchical RCU implementation.\n"); 95 rcu_bootup_announce_oddness(); 96 } 97 98 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 99 #define RCU_GP_TASKS 0x8 100 #define RCU_EXP_TASKS 0x4 101 #define RCU_GP_BLKD 0x2 102 #define RCU_EXP_BLKD 0x1 103 104 /* 105 * Queues a task preempted within an RCU-preempt read-side critical 106 * section into the appropriate location within the ->blkd_tasks list, 107 * depending on the states of any ongoing normal and expedited grace 108 * periods. The ->gp_tasks pointer indicates which element the normal 109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 110 * indicates which element the expedited grace period is waiting on (again, 111 * NULL if none). If a grace period is waiting on a given element in the 112 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 113 * adding a task to the tail of the list blocks any grace period that is 114 * already waiting on one of the elements. In contrast, adding a task 115 * to the head of the list won't block any grace period that is already 116 * waiting on one of the elements. 117 * 118 * This queuing is imprecise, and can sometimes make an ongoing grace 119 * period wait for a task that is not strictly speaking blocking it. 120 * Given the choice, we needlessly block a normal grace period rather than 121 * blocking an expedited grace period. 122 * 123 * Note that an endless sequence of expedited grace periods still cannot 124 * indefinitely postpone a normal grace period. Eventually, all of the 125 * fixed number of preempted tasks blocking the normal grace period that are 126 * not also blocking the expedited grace period will resume and complete 127 * their RCU read-side critical sections. At that point, the ->gp_tasks 128 * pointer will equal the ->exp_tasks pointer, at which point the end of 129 * the corresponding expedited grace period will also be the end of the 130 * normal grace period. 131 */ 132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 133 __releases(rnp->lock) /* But leaves rrupts disabled. */ 134 { 135 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 136 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 137 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 138 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 139 struct task_struct *t = current; 140 141 raw_lockdep_assert_held_rcu_node(rnp); 142 WARN_ON_ONCE(rdp->mynode != rnp); 143 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 144 /* RCU better not be waiting on newly onlined CPUs! */ 145 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 146 rdp->grpmask); 147 148 /* 149 * Decide where to queue the newly blocked task. In theory, 150 * this could be an if-statement. In practice, when I tried 151 * that, it was quite messy. 152 */ 153 switch (blkd_state) { 154 case 0: 155 case RCU_EXP_TASKS: 156 case RCU_EXP_TASKS + RCU_GP_BLKD: 157 case RCU_GP_TASKS: 158 case RCU_GP_TASKS + RCU_EXP_TASKS: 159 160 /* 161 * Blocking neither GP, or first task blocking the normal 162 * GP but not blocking the already-waiting expedited GP. 163 * Queue at the head of the list to avoid unnecessarily 164 * blocking the already-waiting GPs. 165 */ 166 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 167 break; 168 169 case RCU_EXP_BLKD: 170 case RCU_GP_BLKD: 171 case RCU_GP_BLKD + RCU_EXP_BLKD: 172 case RCU_GP_TASKS + RCU_EXP_BLKD: 173 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 174 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 175 176 /* 177 * First task arriving that blocks either GP, or first task 178 * arriving that blocks the expedited GP (with the normal 179 * GP already waiting), or a task arriving that blocks 180 * both GPs with both GPs already waiting. Queue at the 181 * tail of the list to avoid any GP waiting on any of the 182 * already queued tasks that are not blocking it. 183 */ 184 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 185 break; 186 187 case RCU_EXP_TASKS + RCU_EXP_BLKD: 188 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 189 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 190 191 /* 192 * Second or subsequent task blocking the expedited GP. 193 * The task either does not block the normal GP, or is the 194 * first task blocking the normal GP. Queue just after 195 * the first task blocking the expedited GP. 196 */ 197 list_add(&t->rcu_node_entry, rnp->exp_tasks); 198 break; 199 200 case RCU_GP_TASKS + RCU_GP_BLKD: 201 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 202 203 /* 204 * Second or subsequent task blocking the normal GP. 205 * The task does not block the expedited GP. Queue just 206 * after the first task blocking the normal GP. 207 */ 208 list_add(&t->rcu_node_entry, rnp->gp_tasks); 209 break; 210 211 default: 212 213 /* Yet another exercise in excessive paranoia. */ 214 WARN_ON_ONCE(1); 215 break; 216 } 217 218 /* 219 * We have now queued the task. If it was the first one to 220 * block either grace period, update the ->gp_tasks and/or 221 * ->exp_tasks pointers, respectively, to reference the newly 222 * blocked tasks. 223 */ 224 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 225 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 226 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 227 } 228 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 229 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 230 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 231 !(rnp->qsmask & rdp->grpmask)); 232 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 233 !(rnp->expmask & rdp->grpmask)); 234 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 235 236 /* 237 * Report the quiescent state for the expedited GP. This expedited 238 * GP should not be able to end until we report, so there should be 239 * no need to check for a subsequent expedited GP. (Though we are 240 * still in a quiescent state in any case.) 241 */ 242 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) 243 rcu_report_exp_rdp(rdp); 244 else 245 WARN_ON_ONCE(rdp->exp_deferred_qs); 246 } 247 248 /* 249 * Record a preemptible-RCU quiescent state for the specified CPU. 250 * Note that this does not necessarily mean that the task currently running 251 * on the CPU is in a quiescent state: Instead, it means that the current 252 * grace period need not wait on any RCU read-side critical section that 253 * starts later on this CPU. It also means that if the current task is 254 * in an RCU read-side critical section, it has already added itself to 255 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 256 * current task, there might be any number of other tasks blocked while 257 * in an RCU read-side critical section. 258 * 259 * Callers to this function must disable preemption. 260 */ 261 static void rcu_qs(void) 262 { 263 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 264 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 265 trace_rcu_grace_period(TPS("rcu_preempt"), 266 __this_cpu_read(rcu_data.gp_seq), 267 TPS("cpuqs")); 268 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 269 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 270 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 271 } 272 } 273 274 /* 275 * We have entered the scheduler, and the current task might soon be 276 * context-switched away from. If this task is in an RCU read-side 277 * critical section, we will no longer be able to rely on the CPU to 278 * record that fact, so we enqueue the task on the blkd_tasks list. 279 * The task will dequeue itself when it exits the outermost enclosing 280 * RCU read-side critical section. Therefore, the current grace period 281 * cannot be permitted to complete until the blkd_tasks list entries 282 * predating the current grace period drain, in other words, until 283 * rnp->gp_tasks becomes NULL. 284 * 285 * Caller must disable interrupts. 286 */ 287 void rcu_note_context_switch(bool preempt) 288 { 289 struct task_struct *t = current; 290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 291 struct rcu_node *rnp; 292 293 trace_rcu_utilization(TPS("Start context switch")); 294 lockdep_assert_irqs_disabled(); 295 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); 296 if (rcu_preempt_depth() > 0 && 297 !t->rcu_read_unlock_special.b.blocked) { 298 299 /* Possibly blocking in an RCU read-side critical section. */ 300 rnp = rdp->mynode; 301 raw_spin_lock_rcu_node(rnp); 302 t->rcu_read_unlock_special.b.blocked = true; 303 t->rcu_blocked_node = rnp; 304 305 /* 306 * Verify the CPU's sanity, trace the preemption, and 307 * then queue the task as required based on the states 308 * of any ongoing and expedited grace periods. 309 */ 310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 312 trace_rcu_preempt_task(rcu_state.name, 313 t->pid, 314 (rnp->qsmask & rdp->grpmask) 315 ? rnp->gp_seq 316 : rcu_seq_snap(&rnp->gp_seq)); 317 rcu_preempt_ctxt_queue(rnp, rdp); 318 } else { 319 rcu_preempt_deferred_qs(t); 320 } 321 322 /* 323 * Either we were not in an RCU read-side critical section to 324 * begin with, or we have now recorded that critical section 325 * globally. Either way, we can now note a quiescent state 326 * for this CPU. Again, if we were in an RCU read-side critical 327 * section, and if that critical section was blocking the current 328 * grace period, then the fact that the task has been enqueued 329 * means that we continue to block the current grace period. 330 */ 331 rcu_qs(); 332 if (rdp->exp_deferred_qs) 333 rcu_report_exp_rdp(rdp); 334 rcu_tasks_qs(current, preempt); 335 trace_rcu_utilization(TPS("End context switch")); 336 } 337 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 338 339 /* 340 * Check for preempted RCU readers blocking the current grace period 341 * for the specified rcu_node structure. If the caller needs a reliable 342 * answer, it must hold the rcu_node's ->lock. 343 */ 344 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 345 { 346 return READ_ONCE(rnp->gp_tasks) != NULL; 347 } 348 349 /* limit value for ->rcu_read_lock_nesting. */ 350 #define RCU_NEST_PMAX (INT_MAX / 2) 351 352 static void rcu_preempt_read_enter(void) 353 { 354 current->rcu_read_lock_nesting++; 355 } 356 357 static int rcu_preempt_read_exit(void) 358 { 359 return --current->rcu_read_lock_nesting; 360 } 361 362 static void rcu_preempt_depth_set(int val) 363 { 364 current->rcu_read_lock_nesting = val; 365 } 366 367 /* 368 * Preemptible RCU implementation for rcu_read_lock(). 369 * Just increment ->rcu_read_lock_nesting, shared state will be updated 370 * if we block. 371 */ 372 void __rcu_read_lock(void) 373 { 374 rcu_preempt_read_enter(); 375 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 376 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 377 barrier(); /* critical section after entry code. */ 378 } 379 EXPORT_SYMBOL_GPL(__rcu_read_lock); 380 381 /* 382 * Preemptible RCU implementation for rcu_read_unlock(). 383 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 384 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 385 * invoke rcu_read_unlock_special() to clean up after a context switch 386 * in an RCU read-side critical section and other special cases. 387 */ 388 void __rcu_read_unlock(void) 389 { 390 struct task_struct *t = current; 391 392 if (rcu_preempt_read_exit() == 0) { 393 barrier(); /* critical section before exit code. */ 394 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 395 rcu_read_unlock_special(t); 396 } 397 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 398 int rrln = rcu_preempt_depth(); 399 400 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 401 } 402 } 403 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 404 405 /* 406 * Advance a ->blkd_tasks-list pointer to the next entry, instead 407 * returning NULL if at the end of the list. 408 */ 409 static struct list_head *rcu_next_node_entry(struct task_struct *t, 410 struct rcu_node *rnp) 411 { 412 struct list_head *np; 413 414 np = t->rcu_node_entry.next; 415 if (np == &rnp->blkd_tasks) 416 np = NULL; 417 return np; 418 } 419 420 /* 421 * Return true if the specified rcu_node structure has tasks that were 422 * preempted within an RCU read-side critical section. 423 */ 424 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 425 { 426 return !list_empty(&rnp->blkd_tasks); 427 } 428 429 /* 430 * Report deferred quiescent states. The deferral time can 431 * be quite short, for example, in the case of the call from 432 * rcu_read_unlock_special(). 433 */ 434 static void 435 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 436 { 437 bool empty_exp; 438 bool empty_norm; 439 bool empty_exp_now; 440 struct list_head *np; 441 bool drop_boost_mutex = false; 442 struct rcu_data *rdp; 443 struct rcu_node *rnp; 444 union rcu_special special; 445 446 /* 447 * If RCU core is waiting for this CPU to exit its critical section, 448 * report the fact that it has exited. Because irqs are disabled, 449 * t->rcu_read_unlock_special cannot change. 450 */ 451 special = t->rcu_read_unlock_special; 452 rdp = this_cpu_ptr(&rcu_data); 453 if (!special.s && !rdp->exp_deferred_qs) { 454 local_irq_restore(flags); 455 return; 456 } 457 t->rcu_read_unlock_special.s = 0; 458 if (special.b.need_qs) 459 rcu_qs(); 460 461 /* 462 * Respond to a request by an expedited grace period for a 463 * quiescent state from this CPU. Note that requests from 464 * tasks are handled when removing the task from the 465 * blocked-tasks list below. 466 */ 467 if (rdp->exp_deferred_qs) 468 rcu_report_exp_rdp(rdp); 469 470 /* Clean up if blocked during RCU read-side critical section. */ 471 if (special.b.blocked) { 472 473 /* 474 * Remove this task from the list it blocked on. The task 475 * now remains queued on the rcu_node corresponding to the 476 * CPU it first blocked on, so there is no longer any need 477 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 478 */ 479 rnp = t->rcu_blocked_node; 480 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 481 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 482 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 483 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 484 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 485 (!empty_norm || rnp->qsmask)); 486 empty_exp = sync_rcu_exp_done(rnp); 487 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 488 np = rcu_next_node_entry(t, rnp); 489 list_del_init(&t->rcu_node_entry); 490 t->rcu_blocked_node = NULL; 491 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 492 rnp->gp_seq, t->pid); 493 if (&t->rcu_node_entry == rnp->gp_tasks) 494 WRITE_ONCE(rnp->gp_tasks, np); 495 if (&t->rcu_node_entry == rnp->exp_tasks) 496 WRITE_ONCE(rnp->exp_tasks, np); 497 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 498 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 499 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 500 if (&t->rcu_node_entry == rnp->boost_tasks) 501 WRITE_ONCE(rnp->boost_tasks, np); 502 } 503 504 /* 505 * If this was the last task on the current list, and if 506 * we aren't waiting on any CPUs, report the quiescent state. 507 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 508 * so we must take a snapshot of the expedited state. 509 */ 510 empty_exp_now = sync_rcu_exp_done(rnp); 511 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 512 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 513 rnp->gp_seq, 514 0, rnp->qsmask, 515 rnp->level, 516 rnp->grplo, 517 rnp->grphi, 518 !!rnp->gp_tasks); 519 rcu_report_unblock_qs_rnp(rnp, flags); 520 } else { 521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 522 } 523 524 /* Unboost if we were boosted. */ 525 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 526 rt_mutex_futex_unlock(&rnp->boost_mtx); 527 528 /* 529 * If this was the last task on the expedited lists, 530 * then we need to report up the rcu_node hierarchy. 531 */ 532 if (!empty_exp && empty_exp_now) 533 rcu_report_exp_rnp(rnp, true); 534 } else { 535 local_irq_restore(flags); 536 } 537 } 538 539 /* 540 * Is a deferred quiescent-state pending, and are we also not in 541 * an RCU read-side critical section? It is the caller's responsibility 542 * to ensure it is otherwise safe to report any deferred quiescent 543 * states. The reason for this is that it is safe to report a 544 * quiescent state during context switch even though preemption 545 * is disabled. This function cannot be expected to understand these 546 * nuances, so the caller must handle them. 547 */ 548 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 549 { 550 return (__this_cpu_read(rcu_data.exp_deferred_qs) || 551 READ_ONCE(t->rcu_read_unlock_special.s)) && 552 rcu_preempt_depth() == 0; 553 } 554 555 /* 556 * Report a deferred quiescent state if needed and safe to do so. 557 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 558 * not being in an RCU read-side critical section. The caller must 559 * evaluate safety in terms of interrupt, softirq, and preemption 560 * disabling. 561 */ 562 static void rcu_preempt_deferred_qs(struct task_struct *t) 563 { 564 unsigned long flags; 565 566 if (!rcu_preempt_need_deferred_qs(t)) 567 return; 568 local_irq_save(flags); 569 rcu_preempt_deferred_qs_irqrestore(t, flags); 570 } 571 572 /* 573 * Minimal handler to give the scheduler a chance to re-evaluate. 574 */ 575 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 576 { 577 struct rcu_data *rdp; 578 579 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 580 rdp->defer_qs_iw_pending = false; 581 } 582 583 /* 584 * Handle special cases during rcu_read_unlock(), such as needing to 585 * notify RCU core processing or task having blocked during the RCU 586 * read-side critical section. 587 */ 588 static void rcu_read_unlock_special(struct task_struct *t) 589 { 590 unsigned long flags; 591 bool preempt_bh_were_disabled = 592 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 593 bool irqs_were_disabled; 594 595 /* NMI handlers cannot block and cannot safely manipulate state. */ 596 if (in_nmi()) 597 return; 598 599 local_irq_save(flags); 600 irqs_were_disabled = irqs_disabled_flags(flags); 601 if (preempt_bh_were_disabled || irqs_were_disabled) { 602 bool exp; 603 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 604 struct rcu_node *rnp = rdp->mynode; 605 606 exp = (t->rcu_blocked_node && 607 READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 608 (rdp->grpmask & READ_ONCE(rnp->expmask)); 609 // Need to defer quiescent state until everything is enabled. 610 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) { 611 // Using softirq, safe to awaken, and either the 612 // wakeup is free or there is an expedited GP. 613 raise_softirq_irqoff(RCU_SOFTIRQ); 614 } else { 615 // Enabling BH or preempt does reschedule, so... 616 // Also if no expediting, slow is OK. 617 // Plus nohz_full CPUs eventually get tick enabled. 618 set_tsk_need_resched(current); 619 set_preempt_need_resched(); 620 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 621 !rdp->defer_qs_iw_pending && exp) { 622 // Get scheduler to re-evaluate and call hooks. 623 // If !IRQ_WORK, FQS scan will eventually IPI. 624 init_irq_work(&rdp->defer_qs_iw, 625 rcu_preempt_deferred_qs_handler); 626 rdp->defer_qs_iw_pending = true; 627 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 628 } 629 } 630 local_irq_restore(flags); 631 return; 632 } 633 rcu_preempt_deferred_qs_irqrestore(t, flags); 634 } 635 636 /* 637 * Check that the list of blocked tasks for the newly completed grace 638 * period is in fact empty. It is a serious bug to complete a grace 639 * period that still has RCU readers blocked! This function must be 640 * invoked -before- updating this rnp's ->gp_seq. 641 * 642 * Also, if there are blocked tasks on the list, they automatically 643 * block the newly created grace period, so set up ->gp_tasks accordingly. 644 */ 645 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 646 { 647 struct task_struct *t; 648 649 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 650 raw_lockdep_assert_held_rcu_node(rnp); 651 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 652 dump_blkd_tasks(rnp, 10); 653 if (rcu_preempt_has_tasks(rnp) && 654 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 655 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 656 t = container_of(rnp->gp_tasks, struct task_struct, 657 rcu_node_entry); 658 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 659 rnp->gp_seq, t->pid); 660 } 661 WARN_ON_ONCE(rnp->qsmask); 662 } 663 664 /* 665 * Check for a quiescent state from the current CPU, including voluntary 666 * context switches for Tasks RCU. When a task blocks, the task is 667 * recorded in the corresponding CPU's rcu_node structure, which is checked 668 * elsewhere, hence this function need only check for quiescent states 669 * related to the current CPU, not to those related to tasks. 670 */ 671 static void rcu_flavor_sched_clock_irq(int user) 672 { 673 struct task_struct *t = current; 674 675 if (user || rcu_is_cpu_rrupt_from_idle()) { 676 rcu_note_voluntary_context_switch(current); 677 } 678 if (rcu_preempt_depth() > 0 || 679 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 680 /* No QS, force context switch if deferred. */ 681 if (rcu_preempt_need_deferred_qs(t)) { 682 set_tsk_need_resched(t); 683 set_preempt_need_resched(); 684 } 685 } else if (rcu_preempt_need_deferred_qs(t)) { 686 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 687 return; 688 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 689 rcu_qs(); /* Report immediate QS. */ 690 return; 691 } 692 693 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 694 if (rcu_preempt_depth() > 0 && 695 __this_cpu_read(rcu_data.core_needs_qs) && 696 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 697 !t->rcu_read_unlock_special.b.need_qs && 698 time_after(jiffies, rcu_state.gp_start + HZ)) 699 t->rcu_read_unlock_special.b.need_qs = true; 700 } 701 702 /* 703 * Check for a task exiting while in a preemptible-RCU read-side 704 * critical section, clean up if so. No need to issue warnings, as 705 * debug_check_no_locks_held() already does this if lockdep is enabled. 706 * Besides, if this function does anything other than just immediately 707 * return, there was a bug of some sort. Spewing warnings from this 708 * function is like as not to simply obscure important prior warnings. 709 */ 710 void exit_rcu(void) 711 { 712 struct task_struct *t = current; 713 714 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 715 rcu_preempt_depth_set(1); 716 barrier(); 717 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 718 } else if (unlikely(rcu_preempt_depth())) { 719 rcu_preempt_depth_set(1); 720 } else { 721 return; 722 } 723 __rcu_read_unlock(); 724 rcu_preempt_deferred_qs(current); 725 } 726 727 /* 728 * Dump the blocked-tasks state, but limit the list dump to the 729 * specified number of elements. 730 */ 731 static void 732 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 733 { 734 int cpu; 735 int i; 736 struct list_head *lhp; 737 bool onl; 738 struct rcu_data *rdp; 739 struct rcu_node *rnp1; 740 741 raw_lockdep_assert_held_rcu_node(rnp); 742 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 743 __func__, rnp->grplo, rnp->grphi, rnp->level, 744 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 745 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 746 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 747 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 748 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 749 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 750 READ_ONCE(rnp->exp_tasks)); 751 pr_info("%s: ->blkd_tasks", __func__); 752 i = 0; 753 list_for_each(lhp, &rnp->blkd_tasks) { 754 pr_cont(" %p", lhp); 755 if (++i >= ncheck) 756 break; 757 } 758 pr_cont("\n"); 759 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 760 rdp = per_cpu_ptr(&rcu_data, cpu); 761 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 762 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 763 cpu, ".o"[onl], 764 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 765 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 766 } 767 } 768 769 #else /* #ifdef CONFIG_PREEMPT_RCU */ 770 771 /* 772 * Tell them what RCU they are running. 773 */ 774 static void __init rcu_bootup_announce(void) 775 { 776 pr_info("Hierarchical RCU implementation.\n"); 777 rcu_bootup_announce_oddness(); 778 } 779 780 /* 781 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 782 * how many quiescent states passed, just if there was at least one since 783 * the start of the grace period, this just sets a flag. The caller must 784 * have disabled preemption. 785 */ 786 static void rcu_qs(void) 787 { 788 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 789 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 790 return; 791 trace_rcu_grace_period(TPS("rcu_sched"), 792 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 793 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 794 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 795 return; 796 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 797 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 798 } 799 800 /* 801 * Register an urgently needed quiescent state. If there is an 802 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 803 * dyntick-idle quiescent state visible to other CPUs, which will in 804 * some cases serve for expedited as well as normal grace periods. 805 * Either way, register a lightweight quiescent state. 806 */ 807 void rcu_all_qs(void) 808 { 809 unsigned long flags; 810 811 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 812 return; 813 preempt_disable(); 814 /* Load rcu_urgent_qs before other flags. */ 815 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 816 preempt_enable(); 817 return; 818 } 819 this_cpu_write(rcu_data.rcu_urgent_qs, false); 820 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 821 local_irq_save(flags); 822 rcu_momentary_dyntick_idle(); 823 local_irq_restore(flags); 824 } 825 rcu_qs(); 826 preempt_enable(); 827 } 828 EXPORT_SYMBOL_GPL(rcu_all_qs); 829 830 /* 831 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 832 */ 833 void rcu_note_context_switch(bool preempt) 834 { 835 trace_rcu_utilization(TPS("Start context switch")); 836 rcu_qs(); 837 /* Load rcu_urgent_qs before other flags. */ 838 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 839 goto out; 840 this_cpu_write(rcu_data.rcu_urgent_qs, false); 841 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 842 rcu_momentary_dyntick_idle(); 843 rcu_tasks_qs(current, preempt); 844 out: 845 trace_rcu_utilization(TPS("End context switch")); 846 } 847 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 848 849 /* 850 * Because preemptible RCU does not exist, there are never any preempted 851 * RCU readers. 852 */ 853 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 854 { 855 return 0; 856 } 857 858 /* 859 * Because there is no preemptible RCU, there can be no readers blocked. 860 */ 861 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 862 { 863 return false; 864 } 865 866 /* 867 * Because there is no preemptible RCU, there can be no deferred quiescent 868 * states. 869 */ 870 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 871 { 872 return false; 873 } 874 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 875 876 /* 877 * Because there is no preemptible RCU, there can be no readers blocked, 878 * so there is no need to check for blocked tasks. So check only for 879 * bogus qsmask values. 880 */ 881 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 882 { 883 WARN_ON_ONCE(rnp->qsmask); 884 } 885 886 /* 887 * Check to see if this CPU is in a non-context-switch quiescent state, 888 * namely user mode and idle loop. 889 */ 890 static void rcu_flavor_sched_clock_irq(int user) 891 { 892 if (user || rcu_is_cpu_rrupt_from_idle()) { 893 894 /* 895 * Get here if this CPU took its interrupt from user 896 * mode or from the idle loop, and if this is not a 897 * nested interrupt. In this case, the CPU is in 898 * a quiescent state, so note it. 899 * 900 * No memory barrier is required here because rcu_qs() 901 * references only CPU-local variables that other CPUs 902 * neither access nor modify, at least not while the 903 * corresponding CPU is online. 904 */ 905 906 rcu_qs(); 907 } 908 } 909 910 /* 911 * Because preemptible RCU does not exist, tasks cannot possibly exit 912 * while in preemptible RCU read-side critical sections. 913 */ 914 void exit_rcu(void) 915 { 916 } 917 918 /* 919 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 920 */ 921 static void 922 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 923 { 924 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 925 } 926 927 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 928 929 /* 930 * If boosting, set rcuc kthreads to realtime priority. 931 */ 932 static void rcu_cpu_kthread_setup(unsigned int cpu) 933 { 934 #ifdef CONFIG_RCU_BOOST 935 struct sched_param sp; 936 937 sp.sched_priority = kthread_prio; 938 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 939 #endif /* #ifdef CONFIG_RCU_BOOST */ 940 } 941 942 #ifdef CONFIG_RCU_BOOST 943 944 /* 945 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 946 * or ->boost_tasks, advancing the pointer to the next task in the 947 * ->blkd_tasks list. 948 * 949 * Note that irqs must be enabled: boosting the task can block. 950 * Returns 1 if there are more tasks needing to be boosted. 951 */ 952 static int rcu_boost(struct rcu_node *rnp) 953 { 954 unsigned long flags; 955 struct task_struct *t; 956 struct list_head *tb; 957 958 if (READ_ONCE(rnp->exp_tasks) == NULL && 959 READ_ONCE(rnp->boost_tasks) == NULL) 960 return 0; /* Nothing left to boost. */ 961 962 raw_spin_lock_irqsave_rcu_node(rnp, flags); 963 964 /* 965 * Recheck under the lock: all tasks in need of boosting 966 * might exit their RCU read-side critical sections on their own. 967 */ 968 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 969 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 970 return 0; 971 } 972 973 /* 974 * Preferentially boost tasks blocking expedited grace periods. 975 * This cannot starve the normal grace periods because a second 976 * expedited grace period must boost all blocked tasks, including 977 * those blocking the pre-existing normal grace period. 978 */ 979 if (rnp->exp_tasks != NULL) 980 tb = rnp->exp_tasks; 981 else 982 tb = rnp->boost_tasks; 983 984 /* 985 * We boost task t by manufacturing an rt_mutex that appears to 986 * be held by task t. We leave a pointer to that rt_mutex where 987 * task t can find it, and task t will release the mutex when it 988 * exits its outermost RCU read-side critical section. Then 989 * simply acquiring this artificial rt_mutex will boost task 990 * t's priority. (Thanks to tglx for suggesting this approach!) 991 * 992 * Note that task t must acquire rnp->lock to remove itself from 993 * the ->blkd_tasks list, which it will do from exit() if from 994 * nowhere else. We therefore are guaranteed that task t will 995 * stay around at least until we drop rnp->lock. Note that 996 * rnp->lock also resolves races between our priority boosting 997 * and task t's exiting its outermost RCU read-side critical 998 * section. 999 */ 1000 t = container_of(tb, struct task_struct, rcu_node_entry); 1001 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1002 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1003 /* Lock only for side effect: boosts task t's priority. */ 1004 rt_mutex_lock(&rnp->boost_mtx); 1005 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1006 1007 return READ_ONCE(rnp->exp_tasks) != NULL || 1008 READ_ONCE(rnp->boost_tasks) != NULL; 1009 } 1010 1011 /* 1012 * Priority-boosting kthread, one per leaf rcu_node. 1013 */ 1014 static int rcu_boost_kthread(void *arg) 1015 { 1016 struct rcu_node *rnp = (struct rcu_node *)arg; 1017 int spincnt = 0; 1018 int more2boost; 1019 1020 trace_rcu_utilization(TPS("Start boost kthread@init")); 1021 for (;;) { 1022 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1023 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1024 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1025 READ_ONCE(rnp->exp_tasks)); 1026 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1027 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1028 more2boost = rcu_boost(rnp); 1029 if (more2boost) 1030 spincnt++; 1031 else 1032 spincnt = 0; 1033 if (spincnt > 10) { 1034 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1035 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1036 schedule_timeout_interruptible(2); 1037 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1038 spincnt = 0; 1039 } 1040 } 1041 /* NOTREACHED */ 1042 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1043 return 0; 1044 } 1045 1046 /* 1047 * Check to see if it is time to start boosting RCU readers that are 1048 * blocking the current grace period, and, if so, tell the per-rcu_node 1049 * kthread to start boosting them. If there is an expedited grace 1050 * period in progress, it is always time to boost. 1051 * 1052 * The caller must hold rnp->lock, which this function releases. 1053 * The ->boost_kthread_task is immortal, so we don't need to worry 1054 * about it going away. 1055 */ 1056 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1057 __releases(rnp->lock) 1058 { 1059 raw_lockdep_assert_held_rcu_node(rnp); 1060 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1061 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1062 return; 1063 } 1064 if (rnp->exp_tasks != NULL || 1065 (rnp->gp_tasks != NULL && 1066 rnp->boost_tasks == NULL && 1067 rnp->qsmask == 0 && 1068 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { 1069 if (rnp->exp_tasks == NULL) 1070 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1071 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1072 rcu_wake_cond(rnp->boost_kthread_task, 1073 READ_ONCE(rnp->boost_kthread_status)); 1074 } else { 1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1076 } 1077 } 1078 1079 /* 1080 * Is the current CPU running the RCU-callbacks kthread? 1081 * Caller must have preemption disabled. 1082 */ 1083 static bool rcu_is_callbacks_kthread(void) 1084 { 1085 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1086 } 1087 1088 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1089 1090 /* 1091 * Do priority-boost accounting for the start of a new grace period. 1092 */ 1093 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1094 { 1095 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1096 } 1097 1098 /* 1099 * Create an RCU-boost kthread for the specified node if one does not 1100 * already exist. We only create this kthread for preemptible RCU. 1101 * Returns zero if all is well, a negated errno otherwise. 1102 */ 1103 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1104 { 1105 int rnp_index = rnp - rcu_get_root(); 1106 unsigned long flags; 1107 struct sched_param sp; 1108 struct task_struct *t; 1109 1110 if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) 1111 return; 1112 1113 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1114 return; 1115 1116 rcu_state.boost = 1; 1117 1118 if (rnp->boost_kthread_task != NULL) 1119 return; 1120 1121 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1122 "rcub/%d", rnp_index); 1123 if (WARN_ON_ONCE(IS_ERR(t))) 1124 return; 1125 1126 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1127 rnp->boost_kthread_task = t; 1128 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1129 sp.sched_priority = kthread_prio; 1130 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1131 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1132 } 1133 1134 /* 1135 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1136 * served by the rcu_node in question. The CPU hotplug lock is still 1137 * held, so the value of rnp->qsmaskinit will be stable. 1138 * 1139 * We don't include outgoingcpu in the affinity set, use -1 if there is 1140 * no outgoing CPU. If there are no CPUs left in the affinity set, 1141 * this function allows the kthread to execute on any CPU. 1142 */ 1143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1144 { 1145 struct task_struct *t = rnp->boost_kthread_task; 1146 unsigned long mask = rcu_rnp_online_cpus(rnp); 1147 cpumask_var_t cm; 1148 int cpu; 1149 1150 if (!t) 1151 return; 1152 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1153 return; 1154 for_each_leaf_node_possible_cpu(rnp, cpu) 1155 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1156 cpu != outgoingcpu) 1157 cpumask_set_cpu(cpu, cm); 1158 if (cpumask_weight(cm) == 0) 1159 cpumask_setall(cm); 1160 set_cpus_allowed_ptr(t, cm); 1161 free_cpumask_var(cm); 1162 } 1163 1164 /* 1165 * Spawn boost kthreads -- called as soon as the scheduler is running. 1166 */ 1167 static void __init rcu_spawn_boost_kthreads(void) 1168 { 1169 struct rcu_node *rnp; 1170 1171 rcu_for_each_leaf_node(rnp) 1172 rcu_spawn_one_boost_kthread(rnp); 1173 } 1174 1175 static void rcu_prepare_kthreads(int cpu) 1176 { 1177 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1178 struct rcu_node *rnp = rdp->mynode; 1179 1180 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1181 if (rcu_scheduler_fully_active) 1182 rcu_spawn_one_boost_kthread(rnp); 1183 } 1184 1185 #else /* #ifdef CONFIG_RCU_BOOST */ 1186 1187 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1188 __releases(rnp->lock) 1189 { 1190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1191 } 1192 1193 static bool rcu_is_callbacks_kthread(void) 1194 { 1195 return false; 1196 } 1197 1198 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1199 { 1200 } 1201 1202 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1203 { 1204 } 1205 1206 static void __init rcu_spawn_boost_kthreads(void) 1207 { 1208 } 1209 1210 static void rcu_prepare_kthreads(int cpu) 1211 { 1212 } 1213 1214 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1215 1216 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1217 1218 /* 1219 * Check to see if any future non-offloaded RCU-related work will need 1220 * to be done by the current CPU, even if none need be done immediately, 1221 * returning 1 if so. This function is part of the RCU implementation; 1222 * it is -not- an exported member of the RCU API. 1223 * 1224 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1225 * CPU has RCU callbacks queued. 1226 */ 1227 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1228 { 1229 *nextevt = KTIME_MAX; 1230 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1231 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); 1232 } 1233 1234 /* 1235 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1236 * after it. 1237 */ 1238 static void rcu_cleanup_after_idle(void) 1239 { 1240 } 1241 1242 /* 1243 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1244 * is nothing. 1245 */ 1246 static void rcu_prepare_for_idle(void) 1247 { 1248 } 1249 1250 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1251 1252 /* 1253 * This code is invoked when a CPU goes idle, at which point we want 1254 * to have the CPU do everything required for RCU so that it can enter 1255 * the energy-efficient dyntick-idle mode. 1256 * 1257 * The following preprocessor symbol controls this: 1258 * 1259 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1260 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1261 * is sized to be roughly one RCU grace period. Those energy-efficiency 1262 * benchmarkers who might otherwise be tempted to set this to a large 1263 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1264 * system. And if you are -that- concerned about energy efficiency, 1265 * just power the system down and be done with it! 1266 * 1267 * The value below works well in practice. If future workloads require 1268 * adjustment, they can be converted into kernel config parameters, though 1269 * making the state machine smarter might be a better option. 1270 */ 1271 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1272 1273 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1274 module_param(rcu_idle_gp_delay, int, 0644); 1275 1276 /* 1277 * Try to advance callbacks on the current CPU, but only if it has been 1278 * awhile since the last time we did so. Afterwards, if there are any 1279 * callbacks ready for immediate invocation, return true. 1280 */ 1281 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1282 { 1283 bool cbs_ready = false; 1284 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1285 struct rcu_node *rnp; 1286 1287 /* Exit early if we advanced recently. */ 1288 if (jiffies == rdp->last_advance_all) 1289 return false; 1290 rdp->last_advance_all = jiffies; 1291 1292 rnp = rdp->mynode; 1293 1294 /* 1295 * Don't bother checking unless a grace period has 1296 * completed since we last checked and there are 1297 * callbacks not yet ready to invoke. 1298 */ 1299 if ((rcu_seq_completed_gp(rdp->gp_seq, 1300 rcu_seq_current(&rnp->gp_seq)) || 1301 unlikely(READ_ONCE(rdp->gpwrap))) && 1302 rcu_segcblist_pend_cbs(&rdp->cblist)) 1303 note_gp_changes(rdp); 1304 1305 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1306 cbs_ready = true; 1307 return cbs_ready; 1308 } 1309 1310 /* 1311 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1312 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1313 * caller about what to set the timeout. 1314 * 1315 * The caller must have disabled interrupts. 1316 */ 1317 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1318 { 1319 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1320 unsigned long dj; 1321 1322 lockdep_assert_irqs_disabled(); 1323 1324 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ 1325 if (rcu_segcblist_empty(&rdp->cblist) || 1326 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { 1327 *nextevt = KTIME_MAX; 1328 return 0; 1329 } 1330 1331 /* Attempt to advance callbacks. */ 1332 if (rcu_try_advance_all_cbs()) { 1333 /* Some ready to invoke, so initiate later invocation. */ 1334 invoke_rcu_core(); 1335 return 1; 1336 } 1337 rdp->last_accelerate = jiffies; 1338 1339 /* Request timer and round. */ 1340 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; 1341 1342 *nextevt = basemono + dj * TICK_NSEC; 1343 return 0; 1344 } 1345 1346 /* 1347 * Prepare a CPU for idle from an RCU perspective. The first major task is to 1348 * sense whether nohz mode has been enabled or disabled via sysfs. The second 1349 * major task is to accelerate (that is, assign grace-period numbers to) any 1350 * recently arrived callbacks. 1351 * 1352 * The caller must have disabled interrupts. 1353 */ 1354 static void rcu_prepare_for_idle(void) 1355 { 1356 bool needwake; 1357 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1358 struct rcu_node *rnp; 1359 int tne; 1360 1361 lockdep_assert_irqs_disabled(); 1362 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1363 return; 1364 1365 /* Handle nohz enablement switches conservatively. */ 1366 tne = READ_ONCE(tick_nohz_active); 1367 if (tne != rdp->tick_nohz_enabled_snap) { 1368 if (!rcu_segcblist_empty(&rdp->cblist)) 1369 invoke_rcu_core(); /* force nohz to see update. */ 1370 rdp->tick_nohz_enabled_snap = tne; 1371 return; 1372 } 1373 if (!tne) 1374 return; 1375 1376 /* 1377 * If we have not yet accelerated this jiffy, accelerate all 1378 * callbacks on this CPU. 1379 */ 1380 if (rdp->last_accelerate == jiffies) 1381 return; 1382 rdp->last_accelerate = jiffies; 1383 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1384 rnp = rdp->mynode; 1385 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1386 needwake = rcu_accelerate_cbs(rnp, rdp); 1387 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1388 if (needwake) 1389 rcu_gp_kthread_wake(); 1390 } 1391 } 1392 1393 /* 1394 * Clean up for exit from idle. Attempt to advance callbacks based on 1395 * any grace periods that elapsed while the CPU was idle, and if any 1396 * callbacks are now ready to invoke, initiate invocation. 1397 */ 1398 static void rcu_cleanup_after_idle(void) 1399 { 1400 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1401 1402 lockdep_assert_irqs_disabled(); 1403 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1404 return; 1405 if (rcu_try_advance_all_cbs()) 1406 invoke_rcu_core(); 1407 } 1408 1409 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1410 1411 #ifdef CONFIG_RCU_NOCB_CPU 1412 1413 /* 1414 * Offload callback processing from the boot-time-specified set of CPUs 1415 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 1416 * created that pull the callbacks from the corresponding CPU, wait for 1417 * a grace period to elapse, and invoke the callbacks. These kthreads 1418 * are organized into GP kthreads, which manage incoming callbacks, wait for 1419 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 1420 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 1421 * do a wake_up() on their GP kthread when they insert a callback into any 1422 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 1423 * in which case each kthread actively polls its CPU. (Which isn't so great 1424 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 1425 * 1426 * This is intended to be used in conjunction with Frederic Weisbecker's 1427 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1428 * running CPU-bound user-mode computations. 1429 * 1430 * Offloading of callbacks can also be used as an energy-efficiency 1431 * measure because CPUs with no RCU callbacks queued are more aggressive 1432 * about entering dyntick-idle mode. 1433 */ 1434 1435 1436 /* 1437 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 1438 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a 1439 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is 1440 * given, a warning is emitted and all CPUs are offloaded. 1441 */ 1442 static int __init rcu_nocb_setup(char *str) 1443 { 1444 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1445 if (!strcasecmp(str, "all")) 1446 cpumask_setall(rcu_nocb_mask); 1447 else 1448 if (cpulist_parse(str, rcu_nocb_mask)) { 1449 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 1450 cpumask_setall(rcu_nocb_mask); 1451 } 1452 return 1; 1453 } 1454 __setup("rcu_nocbs=", rcu_nocb_setup); 1455 1456 static int __init parse_rcu_nocb_poll(char *arg) 1457 { 1458 rcu_nocb_poll = true; 1459 return 0; 1460 } 1461 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1462 1463 /* 1464 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 1465 * After all, the main point of bypassing is to avoid lock contention 1466 * on ->nocb_lock, which only can happen at high call_rcu() rates. 1467 */ 1468 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 1469 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 1470 1471 /* 1472 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 1473 * lock isn't immediately available, increment ->nocb_lock_contended to 1474 * flag the contention. 1475 */ 1476 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 1477 __acquires(&rdp->nocb_bypass_lock) 1478 { 1479 lockdep_assert_irqs_disabled(); 1480 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 1481 return; 1482 atomic_inc(&rdp->nocb_lock_contended); 1483 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1484 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 1485 raw_spin_lock(&rdp->nocb_bypass_lock); 1486 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 1487 atomic_dec(&rdp->nocb_lock_contended); 1488 } 1489 1490 /* 1491 * Spinwait until the specified rcu_data structure's ->nocb_lock is 1492 * not contended. Please note that this is extremely special-purpose, 1493 * relying on the fact that at most two kthreads and one CPU contend for 1494 * this lock, and also that the two kthreads are guaranteed to have frequent 1495 * grace-period-duration time intervals between successive acquisitions 1496 * of the lock. This allows us to use an extremely simple throttling 1497 * mechanism, and further to apply it only to the CPU doing floods of 1498 * call_rcu() invocations. Don't try this at home! 1499 */ 1500 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 1501 { 1502 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1503 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 1504 cpu_relax(); 1505 } 1506 1507 /* 1508 * Conditionally acquire the specified rcu_data structure's 1509 * ->nocb_bypass_lock. 1510 */ 1511 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 1512 { 1513 lockdep_assert_irqs_disabled(); 1514 return raw_spin_trylock(&rdp->nocb_bypass_lock); 1515 } 1516 1517 /* 1518 * Release the specified rcu_data structure's ->nocb_bypass_lock. 1519 */ 1520 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 1521 __releases(&rdp->nocb_bypass_lock) 1522 { 1523 lockdep_assert_irqs_disabled(); 1524 raw_spin_unlock(&rdp->nocb_bypass_lock); 1525 } 1526 1527 /* 1528 * Acquire the specified rcu_data structure's ->nocb_lock, but only 1529 * if it corresponds to a no-CBs CPU. 1530 */ 1531 static void rcu_nocb_lock(struct rcu_data *rdp) 1532 { 1533 lockdep_assert_irqs_disabled(); 1534 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1535 return; 1536 raw_spin_lock(&rdp->nocb_lock); 1537 } 1538 1539 /* 1540 * Release the specified rcu_data structure's ->nocb_lock, but only 1541 * if it corresponds to a no-CBs CPU. 1542 */ 1543 static void rcu_nocb_unlock(struct rcu_data *rdp) 1544 { 1545 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1546 lockdep_assert_irqs_disabled(); 1547 raw_spin_unlock(&rdp->nocb_lock); 1548 } 1549 } 1550 1551 /* 1552 * Release the specified rcu_data structure's ->nocb_lock and restore 1553 * interrupts, but only if it corresponds to a no-CBs CPU. 1554 */ 1555 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1556 unsigned long flags) 1557 { 1558 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1559 lockdep_assert_irqs_disabled(); 1560 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1561 } else { 1562 local_irq_restore(flags); 1563 } 1564 } 1565 1566 /* Lockdep check that ->cblist may be safely accessed. */ 1567 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1568 { 1569 lockdep_assert_irqs_disabled(); 1570 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1571 lockdep_assert_held(&rdp->nocb_lock); 1572 } 1573 1574 /* 1575 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1576 * grace period. 1577 */ 1578 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1579 { 1580 swake_up_all(sq); 1581 } 1582 1583 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1584 { 1585 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 1586 } 1587 1588 static void rcu_init_one_nocb(struct rcu_node *rnp) 1589 { 1590 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1591 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1592 } 1593 1594 /* Is the specified CPU a no-CBs CPU? */ 1595 bool rcu_is_nocb_cpu(int cpu) 1596 { 1597 if (cpumask_available(rcu_nocb_mask)) 1598 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1599 return false; 1600 } 1601 1602 /* 1603 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock 1604 * and this function releases it. 1605 */ 1606 static void wake_nocb_gp(struct rcu_data *rdp, bool force, 1607 unsigned long flags) 1608 __releases(rdp->nocb_lock) 1609 { 1610 bool needwake = false; 1611 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1612 1613 lockdep_assert_held(&rdp->nocb_lock); 1614 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 1615 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1616 TPS("AlreadyAwake")); 1617 rcu_nocb_unlock_irqrestore(rdp, flags); 1618 return; 1619 } 1620 del_timer(&rdp->nocb_timer); 1621 rcu_nocb_unlock_irqrestore(rdp, flags); 1622 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1623 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 1624 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 1625 needwake = true; 1626 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 1627 } 1628 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1629 if (needwake) 1630 wake_up_process(rdp_gp->nocb_gp_kthread); 1631 } 1632 1633 /* 1634 * Arrange to wake the GP kthread for this NOCB group at some future 1635 * time when it is safe to do so. 1636 */ 1637 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 1638 const char *reason) 1639 { 1640 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1641 mod_timer(&rdp->nocb_timer, jiffies + 1); 1642 if (rdp->nocb_defer_wakeup < waketype) 1643 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1644 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 1645 } 1646 1647 /* 1648 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1649 * However, if there is a callback to be enqueued and if ->nocb_bypass 1650 * proves to be initially empty, just return false because the no-CB GP 1651 * kthread may need to be awakened in this case. 1652 * 1653 * Note that this function always returns true if rhp is NULL. 1654 */ 1655 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1656 unsigned long j) 1657 { 1658 struct rcu_cblist rcl; 1659 1660 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); 1661 rcu_lockdep_assert_cblist_protected(rdp); 1662 lockdep_assert_held(&rdp->nocb_bypass_lock); 1663 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 1664 raw_spin_unlock(&rdp->nocb_bypass_lock); 1665 return false; 1666 } 1667 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 1668 if (rhp) 1669 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1670 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 1671 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 1672 WRITE_ONCE(rdp->nocb_bypass_first, j); 1673 rcu_nocb_bypass_unlock(rdp); 1674 return true; 1675 } 1676 1677 /* 1678 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1679 * However, if there is a callback to be enqueued and if ->nocb_bypass 1680 * proves to be initially empty, just return false because the no-CB GP 1681 * kthread may need to be awakened in this case. 1682 * 1683 * Note that this function always returns true if rhp is NULL. 1684 */ 1685 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1686 unsigned long j) 1687 { 1688 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1689 return true; 1690 rcu_lockdep_assert_cblist_protected(rdp); 1691 rcu_nocb_bypass_lock(rdp); 1692 return rcu_nocb_do_flush_bypass(rdp, rhp, j); 1693 } 1694 1695 /* 1696 * If the ->nocb_bypass_lock is immediately available, flush the 1697 * ->nocb_bypass queue into ->cblist. 1698 */ 1699 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 1700 { 1701 rcu_lockdep_assert_cblist_protected(rdp); 1702 if (!rcu_segcblist_is_offloaded(&rdp->cblist) || 1703 !rcu_nocb_bypass_trylock(rdp)) 1704 return; 1705 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); 1706 } 1707 1708 /* 1709 * See whether it is appropriate to use the ->nocb_bypass list in order 1710 * to control contention on ->nocb_lock. A limited number of direct 1711 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 1712 * is non-empty, further callbacks must be placed into ->nocb_bypass, 1713 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 1714 * back to direct use of ->cblist. However, ->nocb_bypass should not be 1715 * used if ->cblist is empty, because otherwise callbacks can be stranded 1716 * on ->nocb_bypass because we cannot count on the current CPU ever again 1717 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 1718 * non-empty, the corresponding no-CBs grace-period kthread must not be 1719 * in an indefinite sleep state. 1720 * 1721 * Finally, it is not permitted to use the bypass during early boot, 1722 * as doing so would confuse the auto-initialization code. Besides 1723 * which, there is no point in worrying about lock contention while 1724 * there is only one CPU in operation. 1725 */ 1726 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1727 bool *was_alldone, unsigned long flags) 1728 { 1729 unsigned long c; 1730 unsigned long cur_gp_seq; 1731 unsigned long j = jiffies; 1732 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1733 1734 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { 1735 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1736 return false; /* Not offloaded, no bypassing. */ 1737 } 1738 lockdep_assert_irqs_disabled(); 1739 1740 // Don't use ->nocb_bypass during early boot. 1741 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 1742 rcu_nocb_lock(rdp); 1743 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1744 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1745 return false; 1746 } 1747 1748 // If we have advanced to a new jiffy, reset counts to allow 1749 // moving back from ->nocb_bypass to ->cblist. 1750 if (j == rdp->nocb_nobypass_last) { 1751 c = rdp->nocb_nobypass_count + 1; 1752 } else { 1753 WRITE_ONCE(rdp->nocb_nobypass_last, j); 1754 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 1755 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 1756 nocb_nobypass_lim_per_jiffy)) 1757 c = 0; 1758 else if (c > nocb_nobypass_lim_per_jiffy) 1759 c = nocb_nobypass_lim_per_jiffy; 1760 } 1761 WRITE_ONCE(rdp->nocb_nobypass_count, c); 1762 1763 // If there hasn't yet been all that many ->cblist enqueues 1764 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 1765 // ->nocb_bypass first. 1766 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { 1767 rcu_nocb_lock(rdp); 1768 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1769 if (*was_alldone) 1770 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1771 TPS("FirstQ")); 1772 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); 1773 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1774 return false; // Caller must enqueue the callback. 1775 } 1776 1777 // If ->nocb_bypass has been used too long or is too full, 1778 // flush ->nocb_bypass to ->cblist. 1779 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || 1780 ncbs >= qhimark) { 1781 rcu_nocb_lock(rdp); 1782 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { 1783 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1784 if (*was_alldone) 1785 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1786 TPS("FirstQ")); 1787 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1788 return false; // Caller must enqueue the callback. 1789 } 1790 if (j != rdp->nocb_gp_adv_time && 1791 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1792 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1793 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1794 rdp->nocb_gp_adv_time = j; 1795 } 1796 rcu_nocb_unlock_irqrestore(rdp, flags); 1797 return true; // Callback already enqueued. 1798 } 1799 1800 // We need to use the bypass. 1801 rcu_nocb_wait_contended(rdp); 1802 rcu_nocb_bypass_lock(rdp); 1803 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1804 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1805 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 1806 if (!ncbs) { 1807 WRITE_ONCE(rdp->nocb_bypass_first, j); 1808 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 1809 } 1810 rcu_nocb_bypass_unlock(rdp); 1811 smp_mb(); /* Order enqueue before wake. */ 1812 if (ncbs) { 1813 local_irq_restore(flags); 1814 } else { 1815 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 1816 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 1817 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 1818 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1819 TPS("FirstBQwake")); 1820 __call_rcu_nocb_wake(rdp, true, flags); 1821 } else { 1822 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1823 TPS("FirstBQnoWake")); 1824 rcu_nocb_unlock_irqrestore(rdp, flags); 1825 } 1826 } 1827 return true; // Callback already enqueued. 1828 } 1829 1830 /* 1831 * Awaken the no-CBs grace-period kthead if needed, either due to it 1832 * legitimately being asleep or due to overload conditions. 1833 * 1834 * If warranted, also wake up the kthread servicing this CPUs queues. 1835 */ 1836 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 1837 unsigned long flags) 1838 __releases(rdp->nocb_lock) 1839 { 1840 unsigned long cur_gp_seq; 1841 unsigned long j; 1842 long len; 1843 struct task_struct *t; 1844 1845 // If we are being polled or there is no kthread, just leave. 1846 t = READ_ONCE(rdp->nocb_gp_kthread); 1847 if (rcu_nocb_poll || !t) { 1848 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1849 TPS("WakeNotPoll")); 1850 rcu_nocb_unlock_irqrestore(rdp, flags); 1851 return; 1852 } 1853 // Need to actually to a wakeup. 1854 len = rcu_segcblist_n_cbs(&rdp->cblist); 1855 if (was_alldone) { 1856 rdp->qlen_last_fqs_check = len; 1857 if (!irqs_disabled_flags(flags)) { 1858 /* ... if queue was empty ... */ 1859 wake_nocb_gp(rdp, false, flags); 1860 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1861 TPS("WakeEmpty")); 1862 } else { 1863 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 1864 TPS("WakeEmptyIsDeferred")); 1865 rcu_nocb_unlock_irqrestore(rdp, flags); 1866 } 1867 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1868 /* ... or if many callbacks queued. */ 1869 rdp->qlen_last_fqs_check = len; 1870 j = jiffies; 1871 if (j != rdp->nocb_gp_adv_time && 1872 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1873 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1874 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1875 rdp->nocb_gp_adv_time = j; 1876 } 1877 smp_mb(); /* Enqueue before timer_pending(). */ 1878 if ((rdp->nocb_cb_sleep || 1879 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 1880 !timer_pending(&rdp->nocb_bypass_timer)) 1881 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 1882 TPS("WakeOvfIsDeferred")); 1883 rcu_nocb_unlock_irqrestore(rdp, flags); 1884 } else { 1885 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 1886 rcu_nocb_unlock_irqrestore(rdp, flags); 1887 } 1888 return; 1889 } 1890 1891 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ 1892 static void do_nocb_bypass_wakeup_timer(struct timer_list *t) 1893 { 1894 unsigned long flags; 1895 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); 1896 1897 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1898 rcu_nocb_lock_irqsave(rdp, flags); 1899 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1900 __call_rcu_nocb_wake(rdp, true, flags); 1901 } 1902 1903 /* 1904 * No-CBs GP kthreads come here to wait for additional callbacks to show up 1905 * or for grace periods to end. 1906 */ 1907 static void nocb_gp_wait(struct rcu_data *my_rdp) 1908 { 1909 bool bypass = false; 1910 long bypass_ncbs; 1911 int __maybe_unused cpu = my_rdp->cpu; 1912 unsigned long cur_gp_seq; 1913 unsigned long flags; 1914 bool gotcbs = false; 1915 unsigned long j = jiffies; 1916 bool needwait_gp = false; // This prevents actual uninitialized use. 1917 bool needwake; 1918 bool needwake_gp; 1919 struct rcu_data *rdp; 1920 struct rcu_node *rnp; 1921 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 1922 bool wasempty = false; 1923 1924 /* 1925 * Each pass through the following loop checks for CBs and for the 1926 * nearest grace period (if any) to wait for next. The CB kthreads 1927 * and the global grace-period kthread are awakened if needed. 1928 */ 1929 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { 1930 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 1931 rcu_nocb_lock_irqsave(rdp, flags); 1932 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1933 if (bypass_ncbs && 1934 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 1935 bypass_ncbs > 2 * qhimark)) { 1936 // Bypass full or old, so flush it. 1937 (void)rcu_nocb_try_flush_bypass(rdp, j); 1938 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1939 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 1940 rcu_nocb_unlock_irqrestore(rdp, flags); 1941 continue; /* No callbacks here, try next. */ 1942 } 1943 if (bypass_ncbs) { 1944 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1945 TPS("Bypass")); 1946 bypass = true; 1947 } 1948 rnp = rdp->mynode; 1949 if (bypass) { // Avoid race with first bypass CB. 1950 WRITE_ONCE(my_rdp->nocb_defer_wakeup, 1951 RCU_NOCB_WAKE_NOT); 1952 del_timer(&my_rdp->nocb_timer); 1953 } 1954 // Advance callbacks if helpful and low contention. 1955 needwake_gp = false; 1956 if (!rcu_segcblist_restempty(&rdp->cblist, 1957 RCU_NEXT_READY_TAIL) || 1958 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1959 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 1960 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 1961 needwake_gp = rcu_advance_cbs(rnp, rdp); 1962 wasempty = rcu_segcblist_restempty(&rdp->cblist, 1963 RCU_NEXT_READY_TAIL); 1964 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 1965 } 1966 // Need to wait on some grace period? 1967 WARN_ON_ONCE(wasempty && 1968 !rcu_segcblist_restempty(&rdp->cblist, 1969 RCU_NEXT_READY_TAIL)); 1970 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 1971 if (!needwait_gp || 1972 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 1973 wait_gp_seq = cur_gp_seq; 1974 needwait_gp = true; 1975 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1976 TPS("NeedWaitGP")); 1977 } 1978 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 1979 needwake = rdp->nocb_cb_sleep; 1980 WRITE_ONCE(rdp->nocb_cb_sleep, false); 1981 smp_mb(); /* CB invocation -after- GP end. */ 1982 } else { 1983 needwake = false; 1984 } 1985 rcu_nocb_unlock_irqrestore(rdp, flags); 1986 if (needwake) { 1987 swake_up_one(&rdp->nocb_cb_wq); 1988 gotcbs = true; 1989 } 1990 if (needwake_gp) 1991 rcu_gp_kthread_wake(); 1992 } 1993 1994 my_rdp->nocb_gp_bypass = bypass; 1995 my_rdp->nocb_gp_gp = needwait_gp; 1996 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 1997 if (bypass && !rcu_nocb_poll) { 1998 // At least one child with non-empty ->nocb_bypass, so set 1999 // timer in order to avoid stranding its callbacks. 2000 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2001 mod_timer(&my_rdp->nocb_bypass_timer, j + 2); 2002 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2003 } 2004 if (rcu_nocb_poll) { 2005 /* Polling, so trace if first poll in the series. */ 2006 if (gotcbs) 2007 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 2008 schedule_timeout_interruptible(1); 2009 } else if (!needwait_gp) { 2010 /* Wait for callbacks to appear. */ 2011 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 2012 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 2013 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2014 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 2015 } else { 2016 rnp = my_rdp->mynode; 2017 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 2018 swait_event_interruptible_exclusive( 2019 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 2020 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 2021 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2022 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 2023 } 2024 if (!rcu_nocb_poll) { 2025 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2026 if (bypass) 2027 del_timer(&my_rdp->nocb_bypass_timer); 2028 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 2029 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2030 } 2031 my_rdp->nocb_gp_seq = -1; 2032 WARN_ON(signal_pending(current)); 2033 } 2034 2035 /* 2036 * No-CBs grace-period-wait kthread. There is one of these per group 2037 * of CPUs, but only once at least one CPU in that group has come online 2038 * at least once since boot. This kthread checks for newly posted 2039 * callbacks from any of the CPUs it is responsible for, waits for a 2040 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 2041 * that then have callback-invocation work to do. 2042 */ 2043 static int rcu_nocb_gp_kthread(void *arg) 2044 { 2045 struct rcu_data *rdp = arg; 2046 2047 for (;;) { 2048 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 2049 nocb_gp_wait(rdp); 2050 cond_resched_tasks_rcu_qs(); 2051 } 2052 return 0; 2053 } 2054 2055 /* 2056 * Invoke any ready callbacks from the corresponding no-CBs CPU, 2057 * then, if there are no more, wait for more to appear. 2058 */ 2059 static void nocb_cb_wait(struct rcu_data *rdp) 2060 { 2061 unsigned long cur_gp_seq; 2062 unsigned long flags; 2063 bool needwake_gp = false; 2064 struct rcu_node *rnp = rdp->mynode; 2065 2066 local_irq_save(flags); 2067 rcu_momentary_dyntick_idle(); 2068 local_irq_restore(flags); 2069 local_bh_disable(); 2070 rcu_do_batch(rdp); 2071 local_bh_enable(); 2072 lockdep_assert_irqs_enabled(); 2073 rcu_nocb_lock_irqsave(rdp, flags); 2074 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 2075 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 2076 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 2077 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 2078 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2079 } 2080 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 2081 rcu_nocb_unlock_irqrestore(rdp, flags); 2082 if (needwake_gp) 2083 rcu_gp_kthread_wake(); 2084 return; 2085 } 2086 2087 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 2088 WRITE_ONCE(rdp->nocb_cb_sleep, true); 2089 rcu_nocb_unlock_irqrestore(rdp, flags); 2090 if (needwake_gp) 2091 rcu_gp_kthread_wake(); 2092 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 2093 !READ_ONCE(rdp->nocb_cb_sleep)); 2094 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */ 2095 /* ^^^ Ensure CB invocation follows _sleep test. */ 2096 return; 2097 } 2098 WARN_ON(signal_pending(current)); 2099 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 2100 } 2101 2102 /* 2103 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 2104 * nocb_cb_wait() to do the dirty work. 2105 */ 2106 static int rcu_nocb_cb_kthread(void *arg) 2107 { 2108 struct rcu_data *rdp = arg; 2109 2110 // Each pass through this loop does one callback batch, and, 2111 // if there are no more ready callbacks, waits for them. 2112 for (;;) { 2113 nocb_cb_wait(rdp); 2114 cond_resched_tasks_rcu_qs(); 2115 } 2116 return 0; 2117 } 2118 2119 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2120 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2121 { 2122 return READ_ONCE(rdp->nocb_defer_wakeup); 2123 } 2124 2125 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2126 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2127 { 2128 unsigned long flags; 2129 int ndw; 2130 2131 rcu_nocb_lock_irqsave(rdp, flags); 2132 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2133 rcu_nocb_unlock_irqrestore(rdp, flags); 2134 return; 2135 } 2136 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2137 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2138 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2139 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 2140 } 2141 2142 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2143 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2144 { 2145 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2146 2147 do_nocb_deferred_wakeup_common(rdp); 2148 } 2149 2150 /* 2151 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2152 * This means we do an inexact common-case check. Note that if 2153 * we miss, ->nocb_timer will eventually clean things up. 2154 */ 2155 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2156 { 2157 if (rcu_nocb_need_deferred_wakeup(rdp)) 2158 do_nocb_deferred_wakeup_common(rdp); 2159 } 2160 2161 void __init rcu_init_nohz(void) 2162 { 2163 int cpu; 2164 bool need_rcu_nocb_mask = false; 2165 struct rcu_data *rdp; 2166 2167 #if defined(CONFIG_NO_HZ_FULL) 2168 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2169 need_rcu_nocb_mask = true; 2170 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2171 2172 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2173 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2174 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2175 return; 2176 } 2177 } 2178 if (!cpumask_available(rcu_nocb_mask)) 2179 return; 2180 2181 #if defined(CONFIG_NO_HZ_FULL) 2182 if (tick_nohz_full_running) 2183 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2185 2186 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2187 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2188 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2189 rcu_nocb_mask); 2190 } 2191 if (cpumask_empty(rcu_nocb_mask)) 2192 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2193 else 2194 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2195 cpumask_pr_args(rcu_nocb_mask)); 2196 if (rcu_nocb_poll) 2197 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2198 2199 for_each_cpu(cpu, rcu_nocb_mask) { 2200 rdp = per_cpu_ptr(&rcu_data, cpu); 2201 if (rcu_segcblist_empty(&rdp->cblist)) 2202 rcu_segcblist_init(&rdp->cblist); 2203 rcu_segcblist_offload(&rdp->cblist); 2204 } 2205 rcu_organize_nocb_kthreads(); 2206 } 2207 2208 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2209 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2210 { 2211 init_swait_queue_head(&rdp->nocb_cb_wq); 2212 init_swait_queue_head(&rdp->nocb_gp_wq); 2213 raw_spin_lock_init(&rdp->nocb_lock); 2214 raw_spin_lock_init(&rdp->nocb_bypass_lock); 2215 raw_spin_lock_init(&rdp->nocb_gp_lock); 2216 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2217 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); 2218 rcu_cblist_init(&rdp->nocb_bypass); 2219 } 2220 2221 /* 2222 * If the specified CPU is a no-CBs CPU that does not already have its 2223 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 2224 * for this CPU's group has not yet been created, spawn it as well. 2225 */ 2226 static void rcu_spawn_one_nocb_kthread(int cpu) 2227 { 2228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2229 struct rcu_data *rdp_gp; 2230 struct task_struct *t; 2231 2232 /* 2233 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2234 * then nothing to do. 2235 */ 2236 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) 2237 return; 2238 2239 /* If we didn't spawn the GP kthread first, reorganize! */ 2240 rdp_gp = rdp->nocb_gp_rdp; 2241 if (!rdp_gp->nocb_gp_kthread) { 2242 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 2243 "rcuog/%d", rdp_gp->cpu); 2244 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) 2245 return; 2246 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 2247 } 2248 2249 /* Spawn the kthread for this CPU. */ 2250 t = kthread_run(rcu_nocb_cb_kthread, rdp, 2251 "rcuo%c/%d", rcu_state.abbr, cpu); 2252 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 2253 return; 2254 WRITE_ONCE(rdp->nocb_cb_kthread, t); 2255 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 2256 } 2257 2258 /* 2259 * If the specified CPU is a no-CBs CPU that does not already have its 2260 * rcuo kthread, spawn it. 2261 */ 2262 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2263 { 2264 if (rcu_scheduler_fully_active) 2265 rcu_spawn_one_nocb_kthread(cpu); 2266 } 2267 2268 /* 2269 * Once the scheduler is running, spawn rcuo kthreads for all online 2270 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2271 * non-boot CPUs come online -- if this changes, we will need to add 2272 * some mutual exclusion. 2273 */ 2274 static void __init rcu_spawn_nocb_kthreads(void) 2275 { 2276 int cpu; 2277 2278 for_each_online_cpu(cpu) 2279 rcu_spawn_cpu_nocb_kthread(cpu); 2280 } 2281 2282 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 2283 static int rcu_nocb_gp_stride = -1; 2284 module_param(rcu_nocb_gp_stride, int, 0444); 2285 2286 /* 2287 * Initialize GP-CB relationships for all no-CBs CPU. 2288 */ 2289 static void __init rcu_organize_nocb_kthreads(void) 2290 { 2291 int cpu; 2292 bool firsttime = true; 2293 bool gotnocbs = false; 2294 bool gotnocbscbs = true; 2295 int ls = rcu_nocb_gp_stride; 2296 int nl = 0; /* Next GP kthread. */ 2297 struct rcu_data *rdp; 2298 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 2299 struct rcu_data *rdp_prev = NULL; 2300 2301 if (!cpumask_available(rcu_nocb_mask)) 2302 return; 2303 if (ls == -1) { 2304 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 2305 rcu_nocb_gp_stride = ls; 2306 } 2307 2308 /* 2309 * Each pass through this loop sets up one rcu_data structure. 2310 * Should the corresponding CPU come online in the future, then 2311 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2312 */ 2313 for_each_cpu(cpu, rcu_nocb_mask) { 2314 rdp = per_cpu_ptr(&rcu_data, cpu); 2315 if (rdp->cpu >= nl) { 2316 /* New GP kthread, set up for CBs & next GP. */ 2317 gotnocbs = true; 2318 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2319 rdp->nocb_gp_rdp = rdp; 2320 rdp_gp = rdp; 2321 if (dump_tree) { 2322 if (!firsttime) 2323 pr_cont("%s\n", gotnocbscbs 2324 ? "" : " (self only)"); 2325 gotnocbscbs = false; 2326 firsttime = false; 2327 pr_alert("%s: No-CB GP kthread CPU %d:", 2328 __func__, cpu); 2329 } 2330 } else { 2331 /* Another CB kthread, link to previous GP kthread. */ 2332 gotnocbscbs = true; 2333 rdp->nocb_gp_rdp = rdp_gp; 2334 rdp_prev->nocb_next_cb_rdp = rdp; 2335 if (dump_tree) 2336 pr_cont(" %d", cpu); 2337 } 2338 rdp_prev = rdp; 2339 } 2340 if (gotnocbs && dump_tree) 2341 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 2342 } 2343 2344 /* 2345 * Bind the current task to the offloaded CPUs. If there are no offloaded 2346 * CPUs, leave the task unbound. Splat if the bind attempt fails. 2347 */ 2348 void rcu_bind_current_to_nocb(void) 2349 { 2350 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) 2351 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 2352 } 2353 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 2354 2355 /* 2356 * Dump out nocb grace-period kthread state for the specified rcu_data 2357 * structure. 2358 */ 2359 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 2360 { 2361 struct rcu_node *rnp = rdp->mynode; 2362 2363 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n", 2364 rdp->cpu, 2365 "kK"[!!rdp->nocb_gp_kthread], 2366 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 2367 "dD"[!!rdp->nocb_defer_wakeup], 2368 "tT"[timer_pending(&rdp->nocb_timer)], 2369 "bB"[timer_pending(&rdp->nocb_bypass_timer)], 2370 "sS"[!!rdp->nocb_gp_sleep], 2371 ".W"[swait_active(&rdp->nocb_gp_wq)], 2372 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 2373 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 2374 ".B"[!!rdp->nocb_gp_bypass], 2375 ".G"[!!rdp->nocb_gp_gp], 2376 (long)rdp->nocb_gp_seq, 2377 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops)); 2378 } 2379 2380 /* Dump out nocb kthread state for the specified rcu_data structure. */ 2381 static void show_rcu_nocb_state(struct rcu_data *rdp) 2382 { 2383 struct rcu_segcblist *rsclp = &rdp->cblist; 2384 bool waslocked; 2385 bool wastimer; 2386 bool wassleep; 2387 2388 if (rdp->nocb_gp_rdp == rdp) 2389 show_rcu_nocb_gp_state(rdp); 2390 2391 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n", 2392 rdp->cpu, rdp->nocb_gp_rdp->cpu, 2393 "kK"[!!rdp->nocb_cb_kthread], 2394 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 2395 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 2396 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 2397 "sS"[!!rdp->nocb_cb_sleep], 2398 ".W"[swait_active(&rdp->nocb_cb_wq)], 2399 jiffies - rdp->nocb_bypass_first, 2400 jiffies - rdp->nocb_nobypass_last, 2401 rdp->nocb_nobypass_count, 2402 ".D"[rcu_segcblist_ready_cbs(rsclp)], 2403 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)], 2404 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)], 2405 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)], 2406 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 2407 rcu_segcblist_n_cbs(&rdp->cblist)); 2408 2409 /* It is OK for GP kthreads to have GP state. */ 2410 if (rdp->nocb_gp_rdp == rdp) 2411 return; 2412 2413 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 2414 wastimer = timer_pending(&rdp->nocb_timer); 2415 wassleep = swait_active(&rdp->nocb_gp_wq); 2416 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep && 2417 !waslocked && !wastimer && !wassleep) 2418 return; /* Nothing untowards. */ 2419 2420 pr_info(" !!! %c%c%c%c %c\n", 2421 "lL"[waslocked], 2422 "dD"[!!rdp->nocb_defer_wakeup], 2423 "tT"[wastimer], 2424 "sS"[!!rdp->nocb_gp_sleep], 2425 ".W"[wassleep]); 2426 } 2427 2428 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2429 2430 /* No ->nocb_lock to acquire. */ 2431 static void rcu_nocb_lock(struct rcu_data *rdp) 2432 { 2433 } 2434 2435 /* No ->nocb_lock to release. */ 2436 static void rcu_nocb_unlock(struct rcu_data *rdp) 2437 { 2438 } 2439 2440 /* No ->nocb_lock to release. */ 2441 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 2442 unsigned long flags) 2443 { 2444 local_irq_restore(flags); 2445 } 2446 2447 /* Lockdep check that ->cblist may be safely accessed. */ 2448 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 2449 { 2450 lockdep_assert_irqs_disabled(); 2451 } 2452 2453 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2454 { 2455 } 2456 2457 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2458 { 2459 return NULL; 2460 } 2461 2462 static void rcu_init_one_nocb(struct rcu_node *rnp) 2463 { 2464 } 2465 2466 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2467 unsigned long j) 2468 { 2469 return true; 2470 } 2471 2472 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2473 bool *was_alldone, unsigned long flags) 2474 { 2475 return false; 2476 } 2477 2478 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 2479 unsigned long flags) 2480 { 2481 WARN_ON_ONCE(1); /* Should be dead code! */ 2482 } 2483 2484 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2485 { 2486 } 2487 2488 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2489 { 2490 return false; 2491 } 2492 2493 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2494 { 2495 } 2496 2497 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2498 { 2499 } 2500 2501 static void __init rcu_spawn_nocb_kthreads(void) 2502 { 2503 } 2504 2505 static void show_rcu_nocb_state(struct rcu_data *rdp) 2506 { 2507 } 2508 2509 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2510 2511 /* 2512 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2513 * grace-period kthread will do force_quiescent_state() processing? 2514 * The idea is to avoid waking up RCU core processing on such a 2515 * CPU unless the grace period has extended for too long. 2516 * 2517 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2518 * CONFIG_RCU_NOCB_CPU CPUs. 2519 */ 2520 static bool rcu_nohz_full_cpu(void) 2521 { 2522 #ifdef CONFIG_NO_HZ_FULL 2523 if (tick_nohz_full_cpu(smp_processor_id()) && 2524 (!rcu_gp_in_progress() || 2525 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 2526 return true; 2527 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2528 return false; 2529 } 2530 2531 /* 2532 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2533 */ 2534 static void rcu_bind_gp_kthread(void) 2535 { 2536 if (!tick_nohz_full_enabled()) 2537 return; 2538 housekeeping_affine(current, HK_FLAG_RCU); 2539 } 2540 2541 /* Record the current task on dyntick-idle entry. */ 2542 static void noinstr rcu_dynticks_task_enter(void) 2543 { 2544 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2545 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2546 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2547 } 2548 2549 /* Record no current task on dyntick-idle exit. */ 2550 static void noinstr rcu_dynticks_task_exit(void) 2551 { 2552 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2553 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2554 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2555 } 2556 2557 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 2558 static void rcu_dynticks_task_trace_enter(void) 2559 { 2560 #ifdef CONFIG_TASKS_RCU_TRACE 2561 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 2562 current->trc_reader_special.b.need_mb = true; 2563 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 2564 } 2565 2566 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 2567 static void rcu_dynticks_task_trace_exit(void) 2568 { 2569 #ifdef CONFIG_TASKS_RCU_TRACE 2570 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 2571 current->trc_reader_special.b.need_mb = false; 2572 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 2573 } 2574