xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision b8265621)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20 
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 	if (IS_ENABLED(CONFIG_RCU_TRACE))
28 		pr_info("\tRCU event tracing is enabled.\n");
29 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 			RCU_FANOUT);
33 	if (rcu_fanout_exact)
34 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 	if (IS_ENABLED(CONFIG_PROVE_RCU))
38 		pr_info("\tRCU lockdep checking is enabled.\n");
39 	if (RCU_NUM_LVLS >= 4)
40 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 	if (RCU_FANOUT_LEAF != 16)
42 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 			RCU_FANOUT_LEAF);
44 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 			rcu_fanout_leaf);
47 	if (nr_cpu_ids != NR_CPUS)
48 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 	if (blimit != DEFAULT_RCU_BLIMIT)
54 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 	if (qhimark != DEFAULT_RCU_QHIMARK)
56 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 	if (qlowmark != DEFAULT_RCU_QLOMARK)
58 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 	if (qovld != DEFAULT_RCU_QOVLD)
60 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
61 	if (jiffies_till_first_fqs != ULONG_MAX)
62 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63 	if (jiffies_till_next_fqs != ULONG_MAX)
64 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
65 	if (jiffies_till_sched_qs != ULONG_MAX)
66 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
67 	if (rcu_kick_kthreads)
68 		pr_info("\tKick kthreads if too-long grace period.\n");
69 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
71 	if (gp_preinit_delay)
72 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
73 	if (gp_init_delay)
74 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
75 	if (gp_cleanup_delay)
76 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
77 	if (!use_softirq)
78 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80 		pr_info("\tRCU debug extended QS entry/exit.\n");
81 	rcupdate_announce_bootup_oddness();
82 }
83 
84 #ifdef CONFIG_PREEMPT_RCU
85 
86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
87 static void rcu_read_unlock_special(struct task_struct *t);
88 
89 /*
90  * Tell them what RCU they are running.
91  */
92 static void __init rcu_bootup_announce(void)
93 {
94 	pr_info("Preemptible hierarchical RCU implementation.\n");
95 	rcu_bootup_announce_oddness();
96 }
97 
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS	0x8
100 #define RCU_EXP_TASKS	0x4
101 #define RCU_GP_BLKD	0x2
102 #define RCU_EXP_BLKD	0x1
103 
104 /*
105  * Queues a task preempted within an RCU-preempt read-side critical
106  * section into the appropriate location within the ->blkd_tasks list,
107  * depending on the states of any ongoing normal and expedited grace
108  * periods.  The ->gp_tasks pointer indicates which element the normal
109  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110  * indicates which element the expedited grace period is waiting on (again,
111  * NULL if none).  If a grace period is waiting on a given element in the
112  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
113  * adding a task to the tail of the list blocks any grace period that is
114  * already waiting on one of the elements.  In contrast, adding a task
115  * to the head of the list won't block any grace period that is already
116  * waiting on one of the elements.
117  *
118  * This queuing is imprecise, and can sometimes make an ongoing grace
119  * period wait for a task that is not strictly speaking blocking it.
120  * Given the choice, we needlessly block a normal grace period rather than
121  * blocking an expedited grace period.
122  *
123  * Note that an endless sequence of expedited grace periods still cannot
124  * indefinitely postpone a normal grace period.  Eventually, all of the
125  * fixed number of preempted tasks blocking the normal grace period that are
126  * not also blocking the expedited grace period will resume and complete
127  * their RCU read-side critical sections.  At that point, the ->gp_tasks
128  * pointer will equal the ->exp_tasks pointer, at which point the end of
129  * the corresponding expedited grace period will also be the end of the
130  * normal grace period.
131  */
132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133 	__releases(rnp->lock) /* But leaves rrupts disabled. */
134 {
135 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139 	struct task_struct *t = current;
140 
141 	raw_lockdep_assert_held_rcu_node(rnp);
142 	WARN_ON_ONCE(rdp->mynode != rnp);
143 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
144 	/* RCU better not be waiting on newly onlined CPUs! */
145 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146 		     rdp->grpmask);
147 
148 	/*
149 	 * Decide where to queue the newly blocked task.  In theory,
150 	 * this could be an if-statement.  In practice, when I tried
151 	 * that, it was quite messy.
152 	 */
153 	switch (blkd_state) {
154 	case 0:
155 	case                RCU_EXP_TASKS:
156 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
157 	case RCU_GP_TASKS:
158 	case RCU_GP_TASKS + RCU_EXP_TASKS:
159 
160 		/*
161 		 * Blocking neither GP, or first task blocking the normal
162 		 * GP but not blocking the already-waiting expedited GP.
163 		 * Queue at the head of the list to avoid unnecessarily
164 		 * blocking the already-waiting GPs.
165 		 */
166 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167 		break;
168 
169 	case                                              RCU_EXP_BLKD:
170 	case                                RCU_GP_BLKD:
171 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
172 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
173 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
174 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175 
176 		/*
177 		 * First task arriving that blocks either GP, or first task
178 		 * arriving that blocks the expedited GP (with the normal
179 		 * GP already waiting), or a task arriving that blocks
180 		 * both GPs with both GPs already waiting.  Queue at the
181 		 * tail of the list to avoid any GP waiting on any of the
182 		 * already queued tasks that are not blocking it.
183 		 */
184 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185 		break;
186 
187 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
188 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
190 
191 		/*
192 		 * Second or subsequent task blocking the expedited GP.
193 		 * The task either does not block the normal GP, or is the
194 		 * first task blocking the normal GP.  Queue just after
195 		 * the first task blocking the expedited GP.
196 		 */
197 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
198 		break;
199 
200 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
201 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202 
203 		/*
204 		 * Second or subsequent task blocking the normal GP.
205 		 * The task does not block the expedited GP. Queue just
206 		 * after the first task blocking the normal GP.
207 		 */
208 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
209 		break;
210 
211 	default:
212 
213 		/* Yet another exercise in excessive paranoia. */
214 		WARN_ON_ONCE(1);
215 		break;
216 	}
217 
218 	/*
219 	 * We have now queued the task.  If it was the first one to
220 	 * block either grace period, update the ->gp_tasks and/or
221 	 * ->exp_tasks pointers, respectively, to reference the newly
222 	 * blocked tasks.
223 	 */
224 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
225 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
226 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
227 	}
228 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
230 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231 		     !(rnp->qsmask & rdp->grpmask));
232 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233 		     !(rnp->expmask & rdp->grpmask));
234 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
235 
236 	/*
237 	 * Report the quiescent state for the expedited GP.  This expedited
238 	 * GP should not be able to end until we report, so there should be
239 	 * no need to check for a subsequent expedited GP.  (Though we are
240 	 * still in a quiescent state in any case.)
241 	 */
242 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
243 		rcu_report_exp_rdp(rdp);
244 	else
245 		WARN_ON_ONCE(rdp->exp_deferred_qs);
246 }
247 
248 /*
249  * Record a preemptible-RCU quiescent state for the specified CPU.
250  * Note that this does not necessarily mean that the task currently running
251  * on the CPU is in a quiescent state:  Instead, it means that the current
252  * grace period need not wait on any RCU read-side critical section that
253  * starts later on this CPU.  It also means that if the current task is
254  * in an RCU read-side critical section, it has already added itself to
255  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
256  * current task, there might be any number of other tasks blocked while
257  * in an RCU read-side critical section.
258  *
259  * Callers to this function must disable preemption.
260  */
261 static void rcu_qs(void)
262 {
263 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
265 		trace_rcu_grace_period(TPS("rcu_preempt"),
266 				       __this_cpu_read(rcu_data.gp_seq),
267 				       TPS("cpuqs"));
268 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
269 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
271 	}
272 }
273 
274 /*
275  * We have entered the scheduler, and the current task might soon be
276  * context-switched away from.  If this task is in an RCU read-side
277  * critical section, we will no longer be able to rely on the CPU to
278  * record that fact, so we enqueue the task on the blkd_tasks list.
279  * The task will dequeue itself when it exits the outermost enclosing
280  * RCU read-side critical section.  Therefore, the current grace period
281  * cannot be permitted to complete until the blkd_tasks list entries
282  * predating the current grace period drain, in other words, until
283  * rnp->gp_tasks becomes NULL.
284  *
285  * Caller must disable interrupts.
286  */
287 void rcu_note_context_switch(bool preempt)
288 {
289 	struct task_struct *t = current;
290 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291 	struct rcu_node *rnp;
292 
293 	trace_rcu_utilization(TPS("Start context switch"));
294 	lockdep_assert_irqs_disabled();
295 	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296 	if (rcu_preempt_depth() > 0 &&
297 	    !t->rcu_read_unlock_special.b.blocked) {
298 
299 		/* Possibly blocking in an RCU read-side critical section. */
300 		rnp = rdp->mynode;
301 		raw_spin_lock_rcu_node(rnp);
302 		t->rcu_read_unlock_special.b.blocked = true;
303 		t->rcu_blocked_node = rnp;
304 
305 		/*
306 		 * Verify the CPU's sanity, trace the preemption, and
307 		 * then queue the task as required based on the states
308 		 * of any ongoing and expedited grace periods.
309 		 */
310 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 		trace_rcu_preempt_task(rcu_state.name,
313 				       t->pid,
314 				       (rnp->qsmask & rdp->grpmask)
315 				       ? rnp->gp_seq
316 				       : rcu_seq_snap(&rnp->gp_seq));
317 		rcu_preempt_ctxt_queue(rnp, rdp);
318 	} else {
319 		rcu_preempt_deferred_qs(t);
320 	}
321 
322 	/*
323 	 * Either we were not in an RCU read-side critical section to
324 	 * begin with, or we have now recorded that critical section
325 	 * globally.  Either way, we can now note a quiescent state
326 	 * for this CPU.  Again, if we were in an RCU read-side critical
327 	 * section, and if that critical section was blocking the current
328 	 * grace period, then the fact that the task has been enqueued
329 	 * means that we continue to block the current grace period.
330 	 */
331 	rcu_qs();
332 	if (rdp->exp_deferred_qs)
333 		rcu_report_exp_rdp(rdp);
334 	rcu_tasks_qs(current, preempt);
335 	trace_rcu_utilization(TPS("End context switch"));
336 }
337 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
338 
339 /*
340  * Check for preempted RCU readers blocking the current grace period
341  * for the specified rcu_node structure.  If the caller needs a reliable
342  * answer, it must hold the rcu_node's ->lock.
343  */
344 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
345 {
346 	return READ_ONCE(rnp->gp_tasks) != NULL;
347 }
348 
349 /* limit value for ->rcu_read_lock_nesting. */
350 #define RCU_NEST_PMAX (INT_MAX / 2)
351 
352 static void rcu_preempt_read_enter(void)
353 {
354 	current->rcu_read_lock_nesting++;
355 }
356 
357 static int rcu_preempt_read_exit(void)
358 {
359 	return --current->rcu_read_lock_nesting;
360 }
361 
362 static void rcu_preempt_depth_set(int val)
363 {
364 	current->rcu_read_lock_nesting = val;
365 }
366 
367 /*
368  * Preemptible RCU implementation for rcu_read_lock().
369  * Just increment ->rcu_read_lock_nesting, shared state will be updated
370  * if we block.
371  */
372 void __rcu_read_lock(void)
373 {
374 	rcu_preempt_read_enter();
375 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
376 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
377 	barrier();  /* critical section after entry code. */
378 }
379 EXPORT_SYMBOL_GPL(__rcu_read_lock);
380 
381 /*
382  * Preemptible RCU implementation for rcu_read_unlock().
383  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
384  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
385  * invoke rcu_read_unlock_special() to clean up after a context switch
386  * in an RCU read-side critical section and other special cases.
387  */
388 void __rcu_read_unlock(void)
389 {
390 	struct task_struct *t = current;
391 
392 	if (rcu_preempt_read_exit() == 0) {
393 		barrier();  /* critical section before exit code. */
394 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
395 			rcu_read_unlock_special(t);
396 	}
397 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
398 		int rrln = rcu_preempt_depth();
399 
400 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
401 	}
402 }
403 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
404 
405 /*
406  * Advance a ->blkd_tasks-list pointer to the next entry, instead
407  * returning NULL if at the end of the list.
408  */
409 static struct list_head *rcu_next_node_entry(struct task_struct *t,
410 					     struct rcu_node *rnp)
411 {
412 	struct list_head *np;
413 
414 	np = t->rcu_node_entry.next;
415 	if (np == &rnp->blkd_tasks)
416 		np = NULL;
417 	return np;
418 }
419 
420 /*
421  * Return true if the specified rcu_node structure has tasks that were
422  * preempted within an RCU read-side critical section.
423  */
424 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
425 {
426 	return !list_empty(&rnp->blkd_tasks);
427 }
428 
429 /*
430  * Report deferred quiescent states.  The deferral time can
431  * be quite short, for example, in the case of the call from
432  * rcu_read_unlock_special().
433  */
434 static void
435 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
436 {
437 	bool empty_exp;
438 	bool empty_norm;
439 	bool empty_exp_now;
440 	struct list_head *np;
441 	bool drop_boost_mutex = false;
442 	struct rcu_data *rdp;
443 	struct rcu_node *rnp;
444 	union rcu_special special;
445 
446 	/*
447 	 * If RCU core is waiting for this CPU to exit its critical section,
448 	 * report the fact that it has exited.  Because irqs are disabled,
449 	 * t->rcu_read_unlock_special cannot change.
450 	 */
451 	special = t->rcu_read_unlock_special;
452 	rdp = this_cpu_ptr(&rcu_data);
453 	if (!special.s && !rdp->exp_deferred_qs) {
454 		local_irq_restore(flags);
455 		return;
456 	}
457 	t->rcu_read_unlock_special.s = 0;
458 	if (special.b.need_qs)
459 		rcu_qs();
460 
461 	/*
462 	 * Respond to a request by an expedited grace period for a
463 	 * quiescent state from this CPU.  Note that requests from
464 	 * tasks are handled when removing the task from the
465 	 * blocked-tasks list below.
466 	 */
467 	if (rdp->exp_deferred_qs)
468 		rcu_report_exp_rdp(rdp);
469 
470 	/* Clean up if blocked during RCU read-side critical section. */
471 	if (special.b.blocked) {
472 
473 		/*
474 		 * Remove this task from the list it blocked on.  The task
475 		 * now remains queued on the rcu_node corresponding to the
476 		 * CPU it first blocked on, so there is no longer any need
477 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
478 		 */
479 		rnp = t->rcu_blocked_node;
480 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
481 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
482 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
483 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
484 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
485 			     (!empty_norm || rnp->qsmask));
486 		empty_exp = sync_rcu_exp_done(rnp);
487 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
488 		np = rcu_next_node_entry(t, rnp);
489 		list_del_init(&t->rcu_node_entry);
490 		t->rcu_blocked_node = NULL;
491 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
492 						rnp->gp_seq, t->pid);
493 		if (&t->rcu_node_entry == rnp->gp_tasks)
494 			WRITE_ONCE(rnp->gp_tasks, np);
495 		if (&t->rcu_node_entry == rnp->exp_tasks)
496 			WRITE_ONCE(rnp->exp_tasks, np);
497 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
498 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
499 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
500 			if (&t->rcu_node_entry == rnp->boost_tasks)
501 				WRITE_ONCE(rnp->boost_tasks, np);
502 		}
503 
504 		/*
505 		 * If this was the last task on the current list, and if
506 		 * we aren't waiting on any CPUs, report the quiescent state.
507 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
508 		 * so we must take a snapshot of the expedited state.
509 		 */
510 		empty_exp_now = sync_rcu_exp_done(rnp);
511 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
512 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
513 							 rnp->gp_seq,
514 							 0, rnp->qsmask,
515 							 rnp->level,
516 							 rnp->grplo,
517 							 rnp->grphi,
518 							 !!rnp->gp_tasks);
519 			rcu_report_unblock_qs_rnp(rnp, flags);
520 		} else {
521 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 		}
523 
524 		/* Unboost if we were boosted. */
525 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
526 			rt_mutex_futex_unlock(&rnp->boost_mtx);
527 
528 		/*
529 		 * If this was the last task on the expedited lists,
530 		 * then we need to report up the rcu_node hierarchy.
531 		 */
532 		if (!empty_exp && empty_exp_now)
533 			rcu_report_exp_rnp(rnp, true);
534 	} else {
535 		local_irq_restore(flags);
536 	}
537 }
538 
539 /*
540  * Is a deferred quiescent-state pending, and are we also not in
541  * an RCU read-side critical section?  It is the caller's responsibility
542  * to ensure it is otherwise safe to report any deferred quiescent
543  * states.  The reason for this is that it is safe to report a
544  * quiescent state during context switch even though preemption
545  * is disabled.  This function cannot be expected to understand these
546  * nuances, so the caller must handle them.
547  */
548 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
549 {
550 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
551 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
552 	       rcu_preempt_depth() == 0;
553 }
554 
555 /*
556  * Report a deferred quiescent state if needed and safe to do so.
557  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
558  * not being in an RCU read-side critical section.  The caller must
559  * evaluate safety in terms of interrupt, softirq, and preemption
560  * disabling.
561  */
562 static void rcu_preempt_deferred_qs(struct task_struct *t)
563 {
564 	unsigned long flags;
565 
566 	if (!rcu_preempt_need_deferred_qs(t))
567 		return;
568 	local_irq_save(flags);
569 	rcu_preempt_deferred_qs_irqrestore(t, flags);
570 }
571 
572 /*
573  * Minimal handler to give the scheduler a chance to re-evaluate.
574  */
575 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
576 {
577 	struct rcu_data *rdp;
578 
579 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
580 	rdp->defer_qs_iw_pending = false;
581 }
582 
583 /*
584  * Handle special cases during rcu_read_unlock(), such as needing to
585  * notify RCU core processing or task having blocked during the RCU
586  * read-side critical section.
587  */
588 static void rcu_read_unlock_special(struct task_struct *t)
589 {
590 	unsigned long flags;
591 	bool preempt_bh_were_disabled =
592 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
593 	bool irqs_were_disabled;
594 
595 	/* NMI handlers cannot block and cannot safely manipulate state. */
596 	if (in_nmi())
597 		return;
598 
599 	local_irq_save(flags);
600 	irqs_were_disabled = irqs_disabled_flags(flags);
601 	if (preempt_bh_were_disabled || irqs_were_disabled) {
602 		bool exp;
603 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
604 		struct rcu_node *rnp = rdp->mynode;
605 
606 		exp = (t->rcu_blocked_node &&
607 		       READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
608 		      (rdp->grpmask & READ_ONCE(rnp->expmask));
609 		// Need to defer quiescent state until everything is enabled.
610 		if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
611 			// Using softirq, safe to awaken, and either the
612 			// wakeup is free or there is an expedited GP.
613 			raise_softirq_irqoff(RCU_SOFTIRQ);
614 		} else {
615 			// Enabling BH or preempt does reschedule, so...
616 			// Also if no expediting, slow is OK.
617 			// Plus nohz_full CPUs eventually get tick enabled.
618 			set_tsk_need_resched(current);
619 			set_preempt_need_resched();
620 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
621 			    !rdp->defer_qs_iw_pending && exp) {
622 				// Get scheduler to re-evaluate and call hooks.
623 				// If !IRQ_WORK, FQS scan will eventually IPI.
624 				init_irq_work(&rdp->defer_qs_iw,
625 					      rcu_preempt_deferred_qs_handler);
626 				rdp->defer_qs_iw_pending = true;
627 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
628 			}
629 		}
630 		local_irq_restore(flags);
631 		return;
632 	}
633 	rcu_preempt_deferred_qs_irqrestore(t, flags);
634 }
635 
636 /*
637  * Check that the list of blocked tasks for the newly completed grace
638  * period is in fact empty.  It is a serious bug to complete a grace
639  * period that still has RCU readers blocked!  This function must be
640  * invoked -before- updating this rnp's ->gp_seq.
641  *
642  * Also, if there are blocked tasks on the list, they automatically
643  * block the newly created grace period, so set up ->gp_tasks accordingly.
644  */
645 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
646 {
647 	struct task_struct *t;
648 
649 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
650 	raw_lockdep_assert_held_rcu_node(rnp);
651 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
652 		dump_blkd_tasks(rnp, 10);
653 	if (rcu_preempt_has_tasks(rnp) &&
654 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
655 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
656 		t = container_of(rnp->gp_tasks, struct task_struct,
657 				 rcu_node_entry);
658 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
659 						rnp->gp_seq, t->pid);
660 	}
661 	WARN_ON_ONCE(rnp->qsmask);
662 }
663 
664 /*
665  * Check for a quiescent state from the current CPU, including voluntary
666  * context switches for Tasks RCU.  When a task blocks, the task is
667  * recorded in the corresponding CPU's rcu_node structure, which is checked
668  * elsewhere, hence this function need only check for quiescent states
669  * related to the current CPU, not to those related to tasks.
670  */
671 static void rcu_flavor_sched_clock_irq(int user)
672 {
673 	struct task_struct *t = current;
674 
675 	if (user || rcu_is_cpu_rrupt_from_idle()) {
676 		rcu_note_voluntary_context_switch(current);
677 	}
678 	if (rcu_preempt_depth() > 0 ||
679 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
680 		/* No QS, force context switch if deferred. */
681 		if (rcu_preempt_need_deferred_qs(t)) {
682 			set_tsk_need_resched(t);
683 			set_preempt_need_resched();
684 		}
685 	} else if (rcu_preempt_need_deferred_qs(t)) {
686 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
687 		return;
688 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
689 		rcu_qs(); /* Report immediate QS. */
690 		return;
691 	}
692 
693 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
694 	if (rcu_preempt_depth() > 0 &&
695 	    __this_cpu_read(rcu_data.core_needs_qs) &&
696 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
697 	    !t->rcu_read_unlock_special.b.need_qs &&
698 	    time_after(jiffies, rcu_state.gp_start + HZ))
699 		t->rcu_read_unlock_special.b.need_qs = true;
700 }
701 
702 /*
703  * Check for a task exiting while in a preemptible-RCU read-side
704  * critical section, clean up if so.  No need to issue warnings, as
705  * debug_check_no_locks_held() already does this if lockdep is enabled.
706  * Besides, if this function does anything other than just immediately
707  * return, there was a bug of some sort.  Spewing warnings from this
708  * function is like as not to simply obscure important prior warnings.
709  */
710 void exit_rcu(void)
711 {
712 	struct task_struct *t = current;
713 
714 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
715 		rcu_preempt_depth_set(1);
716 		barrier();
717 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
718 	} else if (unlikely(rcu_preempt_depth())) {
719 		rcu_preempt_depth_set(1);
720 	} else {
721 		return;
722 	}
723 	__rcu_read_unlock();
724 	rcu_preempt_deferred_qs(current);
725 }
726 
727 /*
728  * Dump the blocked-tasks state, but limit the list dump to the
729  * specified number of elements.
730  */
731 static void
732 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
733 {
734 	int cpu;
735 	int i;
736 	struct list_head *lhp;
737 	bool onl;
738 	struct rcu_data *rdp;
739 	struct rcu_node *rnp1;
740 
741 	raw_lockdep_assert_held_rcu_node(rnp);
742 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
743 		__func__, rnp->grplo, rnp->grphi, rnp->level,
744 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
745 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
746 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
747 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
748 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
749 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
750 		READ_ONCE(rnp->exp_tasks));
751 	pr_info("%s: ->blkd_tasks", __func__);
752 	i = 0;
753 	list_for_each(lhp, &rnp->blkd_tasks) {
754 		pr_cont(" %p", lhp);
755 		if (++i >= ncheck)
756 			break;
757 	}
758 	pr_cont("\n");
759 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
760 		rdp = per_cpu_ptr(&rcu_data, cpu);
761 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
762 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
763 			cpu, ".o"[onl],
764 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
765 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
766 	}
767 }
768 
769 #else /* #ifdef CONFIG_PREEMPT_RCU */
770 
771 /*
772  * Tell them what RCU they are running.
773  */
774 static void __init rcu_bootup_announce(void)
775 {
776 	pr_info("Hierarchical RCU implementation.\n");
777 	rcu_bootup_announce_oddness();
778 }
779 
780 /*
781  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
782  * how many quiescent states passed, just if there was at least one since
783  * the start of the grace period, this just sets a flag.  The caller must
784  * have disabled preemption.
785  */
786 static void rcu_qs(void)
787 {
788 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
789 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
790 		return;
791 	trace_rcu_grace_period(TPS("rcu_sched"),
792 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
793 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
794 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
795 		return;
796 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
797 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
798 }
799 
800 /*
801  * Register an urgently needed quiescent state.  If there is an
802  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
803  * dyntick-idle quiescent state visible to other CPUs, which will in
804  * some cases serve for expedited as well as normal grace periods.
805  * Either way, register a lightweight quiescent state.
806  */
807 void rcu_all_qs(void)
808 {
809 	unsigned long flags;
810 
811 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
812 		return;
813 	preempt_disable();
814 	/* Load rcu_urgent_qs before other flags. */
815 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
816 		preempt_enable();
817 		return;
818 	}
819 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
820 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
821 		local_irq_save(flags);
822 		rcu_momentary_dyntick_idle();
823 		local_irq_restore(flags);
824 	}
825 	rcu_qs();
826 	preempt_enable();
827 }
828 EXPORT_SYMBOL_GPL(rcu_all_qs);
829 
830 /*
831  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
832  */
833 void rcu_note_context_switch(bool preempt)
834 {
835 	trace_rcu_utilization(TPS("Start context switch"));
836 	rcu_qs();
837 	/* Load rcu_urgent_qs before other flags. */
838 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
839 		goto out;
840 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
841 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
842 		rcu_momentary_dyntick_idle();
843 	rcu_tasks_qs(current, preempt);
844 out:
845 	trace_rcu_utilization(TPS("End context switch"));
846 }
847 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
848 
849 /*
850  * Because preemptible RCU does not exist, there are never any preempted
851  * RCU readers.
852  */
853 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
854 {
855 	return 0;
856 }
857 
858 /*
859  * Because there is no preemptible RCU, there can be no readers blocked.
860  */
861 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
862 {
863 	return false;
864 }
865 
866 /*
867  * Because there is no preemptible RCU, there can be no deferred quiescent
868  * states.
869  */
870 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
871 {
872 	return false;
873 }
874 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
875 
876 /*
877  * Because there is no preemptible RCU, there can be no readers blocked,
878  * so there is no need to check for blocked tasks.  So check only for
879  * bogus qsmask values.
880  */
881 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
882 {
883 	WARN_ON_ONCE(rnp->qsmask);
884 }
885 
886 /*
887  * Check to see if this CPU is in a non-context-switch quiescent state,
888  * namely user mode and idle loop.
889  */
890 static void rcu_flavor_sched_clock_irq(int user)
891 {
892 	if (user || rcu_is_cpu_rrupt_from_idle()) {
893 
894 		/*
895 		 * Get here if this CPU took its interrupt from user
896 		 * mode or from the idle loop, and if this is not a
897 		 * nested interrupt.  In this case, the CPU is in
898 		 * a quiescent state, so note it.
899 		 *
900 		 * No memory barrier is required here because rcu_qs()
901 		 * references only CPU-local variables that other CPUs
902 		 * neither access nor modify, at least not while the
903 		 * corresponding CPU is online.
904 		 */
905 
906 		rcu_qs();
907 	}
908 }
909 
910 /*
911  * Because preemptible RCU does not exist, tasks cannot possibly exit
912  * while in preemptible RCU read-side critical sections.
913  */
914 void exit_rcu(void)
915 {
916 }
917 
918 /*
919  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
920  */
921 static void
922 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
923 {
924 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
925 }
926 
927 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
928 
929 /*
930  * If boosting, set rcuc kthreads to realtime priority.
931  */
932 static void rcu_cpu_kthread_setup(unsigned int cpu)
933 {
934 #ifdef CONFIG_RCU_BOOST
935 	struct sched_param sp;
936 
937 	sp.sched_priority = kthread_prio;
938 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
939 #endif /* #ifdef CONFIG_RCU_BOOST */
940 }
941 
942 #ifdef CONFIG_RCU_BOOST
943 
944 /*
945  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
946  * or ->boost_tasks, advancing the pointer to the next task in the
947  * ->blkd_tasks list.
948  *
949  * Note that irqs must be enabled: boosting the task can block.
950  * Returns 1 if there are more tasks needing to be boosted.
951  */
952 static int rcu_boost(struct rcu_node *rnp)
953 {
954 	unsigned long flags;
955 	struct task_struct *t;
956 	struct list_head *tb;
957 
958 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
959 	    READ_ONCE(rnp->boost_tasks) == NULL)
960 		return 0;  /* Nothing left to boost. */
961 
962 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
963 
964 	/*
965 	 * Recheck under the lock: all tasks in need of boosting
966 	 * might exit their RCU read-side critical sections on their own.
967 	 */
968 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
969 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
970 		return 0;
971 	}
972 
973 	/*
974 	 * Preferentially boost tasks blocking expedited grace periods.
975 	 * This cannot starve the normal grace periods because a second
976 	 * expedited grace period must boost all blocked tasks, including
977 	 * those blocking the pre-existing normal grace period.
978 	 */
979 	if (rnp->exp_tasks != NULL)
980 		tb = rnp->exp_tasks;
981 	else
982 		tb = rnp->boost_tasks;
983 
984 	/*
985 	 * We boost task t by manufacturing an rt_mutex that appears to
986 	 * be held by task t.  We leave a pointer to that rt_mutex where
987 	 * task t can find it, and task t will release the mutex when it
988 	 * exits its outermost RCU read-side critical section.  Then
989 	 * simply acquiring this artificial rt_mutex will boost task
990 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
991 	 *
992 	 * Note that task t must acquire rnp->lock to remove itself from
993 	 * the ->blkd_tasks list, which it will do from exit() if from
994 	 * nowhere else.  We therefore are guaranteed that task t will
995 	 * stay around at least until we drop rnp->lock.  Note that
996 	 * rnp->lock also resolves races between our priority boosting
997 	 * and task t's exiting its outermost RCU read-side critical
998 	 * section.
999 	 */
1000 	t = container_of(tb, struct task_struct, rcu_node_entry);
1001 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1002 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1003 	/* Lock only for side effect: boosts task t's priority. */
1004 	rt_mutex_lock(&rnp->boost_mtx);
1005 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1006 
1007 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1008 	       READ_ONCE(rnp->boost_tasks) != NULL;
1009 }
1010 
1011 /*
1012  * Priority-boosting kthread, one per leaf rcu_node.
1013  */
1014 static int rcu_boost_kthread(void *arg)
1015 {
1016 	struct rcu_node *rnp = (struct rcu_node *)arg;
1017 	int spincnt = 0;
1018 	int more2boost;
1019 
1020 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1021 	for (;;) {
1022 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1023 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1024 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1025 			 READ_ONCE(rnp->exp_tasks));
1026 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1027 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1028 		more2boost = rcu_boost(rnp);
1029 		if (more2boost)
1030 			spincnt++;
1031 		else
1032 			spincnt = 0;
1033 		if (spincnt > 10) {
1034 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1035 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1036 			schedule_timeout_interruptible(2);
1037 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1038 			spincnt = 0;
1039 		}
1040 	}
1041 	/* NOTREACHED */
1042 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1043 	return 0;
1044 }
1045 
1046 /*
1047  * Check to see if it is time to start boosting RCU readers that are
1048  * blocking the current grace period, and, if so, tell the per-rcu_node
1049  * kthread to start boosting them.  If there is an expedited grace
1050  * period in progress, it is always time to boost.
1051  *
1052  * The caller must hold rnp->lock, which this function releases.
1053  * The ->boost_kthread_task is immortal, so we don't need to worry
1054  * about it going away.
1055  */
1056 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1057 	__releases(rnp->lock)
1058 {
1059 	raw_lockdep_assert_held_rcu_node(rnp);
1060 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1061 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1062 		return;
1063 	}
1064 	if (rnp->exp_tasks != NULL ||
1065 	    (rnp->gp_tasks != NULL &&
1066 	     rnp->boost_tasks == NULL &&
1067 	     rnp->qsmask == 0 &&
1068 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1069 		if (rnp->exp_tasks == NULL)
1070 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1071 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072 		rcu_wake_cond(rnp->boost_kthread_task,
1073 			      READ_ONCE(rnp->boost_kthread_status));
1074 	} else {
1075 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076 	}
1077 }
1078 
1079 /*
1080  * Is the current CPU running the RCU-callbacks kthread?
1081  * Caller must have preemption disabled.
1082  */
1083 static bool rcu_is_callbacks_kthread(void)
1084 {
1085 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1086 }
1087 
1088 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1089 
1090 /*
1091  * Do priority-boost accounting for the start of a new grace period.
1092  */
1093 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1094 {
1095 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1096 }
1097 
1098 /*
1099  * Create an RCU-boost kthread for the specified node if one does not
1100  * already exist.  We only create this kthread for preemptible RCU.
1101  * Returns zero if all is well, a negated errno otherwise.
1102  */
1103 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1104 {
1105 	int rnp_index = rnp - rcu_get_root();
1106 	unsigned long flags;
1107 	struct sched_param sp;
1108 	struct task_struct *t;
1109 
1110 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1111 		return;
1112 
1113 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1114 		return;
1115 
1116 	rcu_state.boost = 1;
1117 
1118 	if (rnp->boost_kthread_task != NULL)
1119 		return;
1120 
1121 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1122 			   "rcub/%d", rnp_index);
1123 	if (WARN_ON_ONCE(IS_ERR(t)))
1124 		return;
1125 
1126 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1127 	rnp->boost_kthread_task = t;
1128 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1129 	sp.sched_priority = kthread_prio;
1130 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1131 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1132 }
1133 
1134 /*
1135  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1136  * served by the rcu_node in question.  The CPU hotplug lock is still
1137  * held, so the value of rnp->qsmaskinit will be stable.
1138  *
1139  * We don't include outgoingcpu in the affinity set, use -1 if there is
1140  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1141  * this function allows the kthread to execute on any CPU.
1142  */
1143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1144 {
1145 	struct task_struct *t = rnp->boost_kthread_task;
1146 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1147 	cpumask_var_t cm;
1148 	int cpu;
1149 
1150 	if (!t)
1151 		return;
1152 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1153 		return;
1154 	for_each_leaf_node_possible_cpu(rnp, cpu)
1155 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1156 		    cpu != outgoingcpu)
1157 			cpumask_set_cpu(cpu, cm);
1158 	if (cpumask_weight(cm) == 0)
1159 		cpumask_setall(cm);
1160 	set_cpus_allowed_ptr(t, cm);
1161 	free_cpumask_var(cm);
1162 }
1163 
1164 /*
1165  * Spawn boost kthreads -- called as soon as the scheduler is running.
1166  */
1167 static void __init rcu_spawn_boost_kthreads(void)
1168 {
1169 	struct rcu_node *rnp;
1170 
1171 	rcu_for_each_leaf_node(rnp)
1172 		rcu_spawn_one_boost_kthread(rnp);
1173 }
1174 
1175 static void rcu_prepare_kthreads(int cpu)
1176 {
1177 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1178 	struct rcu_node *rnp = rdp->mynode;
1179 
1180 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1181 	if (rcu_scheduler_fully_active)
1182 		rcu_spawn_one_boost_kthread(rnp);
1183 }
1184 
1185 #else /* #ifdef CONFIG_RCU_BOOST */
1186 
1187 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1188 	__releases(rnp->lock)
1189 {
1190 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1191 }
1192 
1193 static bool rcu_is_callbacks_kthread(void)
1194 {
1195 	return false;
1196 }
1197 
1198 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1199 {
1200 }
1201 
1202 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1203 {
1204 }
1205 
1206 static void __init rcu_spawn_boost_kthreads(void)
1207 {
1208 }
1209 
1210 static void rcu_prepare_kthreads(int cpu)
1211 {
1212 }
1213 
1214 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1215 
1216 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1217 
1218 /*
1219  * Check to see if any future non-offloaded RCU-related work will need
1220  * to be done by the current CPU, even if none need be done immediately,
1221  * returning 1 if so.  This function is part of the RCU implementation;
1222  * it is -not- an exported member of the RCU API.
1223  *
1224  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1225  * CPU has RCU callbacks queued.
1226  */
1227 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1228 {
1229 	*nextevt = KTIME_MAX;
1230 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1231 	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1232 }
1233 
1234 /*
1235  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1236  * after it.
1237  */
1238 static void rcu_cleanup_after_idle(void)
1239 {
1240 }
1241 
1242 /*
1243  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1244  * is nothing.
1245  */
1246 static void rcu_prepare_for_idle(void)
1247 {
1248 }
1249 
1250 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1251 
1252 /*
1253  * This code is invoked when a CPU goes idle, at which point we want
1254  * to have the CPU do everything required for RCU so that it can enter
1255  * the energy-efficient dyntick-idle mode.
1256  *
1257  * The following preprocessor symbol controls this:
1258  *
1259  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1260  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1261  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1262  *	benchmarkers who might otherwise be tempted to set this to a large
1263  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1264  *	system.  And if you are -that- concerned about energy efficiency,
1265  *	just power the system down and be done with it!
1266  *
1267  * The value below works well in practice.  If future workloads require
1268  * adjustment, they can be converted into kernel config parameters, though
1269  * making the state machine smarter might be a better option.
1270  */
1271 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1272 
1273 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1274 module_param(rcu_idle_gp_delay, int, 0644);
1275 
1276 /*
1277  * Try to advance callbacks on the current CPU, but only if it has been
1278  * awhile since the last time we did so.  Afterwards, if there are any
1279  * callbacks ready for immediate invocation, return true.
1280  */
1281 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1282 {
1283 	bool cbs_ready = false;
1284 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1285 	struct rcu_node *rnp;
1286 
1287 	/* Exit early if we advanced recently. */
1288 	if (jiffies == rdp->last_advance_all)
1289 		return false;
1290 	rdp->last_advance_all = jiffies;
1291 
1292 	rnp = rdp->mynode;
1293 
1294 	/*
1295 	 * Don't bother checking unless a grace period has
1296 	 * completed since we last checked and there are
1297 	 * callbacks not yet ready to invoke.
1298 	 */
1299 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1300 				  rcu_seq_current(&rnp->gp_seq)) ||
1301 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1302 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1303 		note_gp_changes(rdp);
1304 
1305 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1306 		cbs_ready = true;
1307 	return cbs_ready;
1308 }
1309 
1310 /*
1311  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1312  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1313  * caller about what to set the timeout.
1314  *
1315  * The caller must have disabled interrupts.
1316  */
1317 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1318 {
1319 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1320 	unsigned long dj;
1321 
1322 	lockdep_assert_irqs_disabled();
1323 
1324 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1325 	if (rcu_segcblist_empty(&rdp->cblist) ||
1326 	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1327 		*nextevt = KTIME_MAX;
1328 		return 0;
1329 	}
1330 
1331 	/* Attempt to advance callbacks. */
1332 	if (rcu_try_advance_all_cbs()) {
1333 		/* Some ready to invoke, so initiate later invocation. */
1334 		invoke_rcu_core();
1335 		return 1;
1336 	}
1337 	rdp->last_accelerate = jiffies;
1338 
1339 	/* Request timer and round. */
1340 	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1341 
1342 	*nextevt = basemono + dj * TICK_NSEC;
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1348  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1349  * major task is to accelerate (that is, assign grace-period numbers to) any
1350  * recently arrived callbacks.
1351  *
1352  * The caller must have disabled interrupts.
1353  */
1354 static void rcu_prepare_for_idle(void)
1355 {
1356 	bool needwake;
1357 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1358 	struct rcu_node *rnp;
1359 	int tne;
1360 
1361 	lockdep_assert_irqs_disabled();
1362 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1363 		return;
1364 
1365 	/* Handle nohz enablement switches conservatively. */
1366 	tne = READ_ONCE(tick_nohz_active);
1367 	if (tne != rdp->tick_nohz_enabled_snap) {
1368 		if (!rcu_segcblist_empty(&rdp->cblist))
1369 			invoke_rcu_core(); /* force nohz to see update. */
1370 		rdp->tick_nohz_enabled_snap = tne;
1371 		return;
1372 	}
1373 	if (!tne)
1374 		return;
1375 
1376 	/*
1377 	 * If we have not yet accelerated this jiffy, accelerate all
1378 	 * callbacks on this CPU.
1379 	 */
1380 	if (rdp->last_accelerate == jiffies)
1381 		return;
1382 	rdp->last_accelerate = jiffies;
1383 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1384 		rnp = rdp->mynode;
1385 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1386 		needwake = rcu_accelerate_cbs(rnp, rdp);
1387 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1388 		if (needwake)
1389 			rcu_gp_kthread_wake();
1390 	}
1391 }
1392 
1393 /*
1394  * Clean up for exit from idle.  Attempt to advance callbacks based on
1395  * any grace periods that elapsed while the CPU was idle, and if any
1396  * callbacks are now ready to invoke, initiate invocation.
1397  */
1398 static void rcu_cleanup_after_idle(void)
1399 {
1400 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1401 
1402 	lockdep_assert_irqs_disabled();
1403 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1404 		return;
1405 	if (rcu_try_advance_all_cbs())
1406 		invoke_rcu_core();
1407 }
1408 
1409 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1410 
1411 #ifdef CONFIG_RCU_NOCB_CPU
1412 
1413 /*
1414  * Offload callback processing from the boot-time-specified set of CPUs
1415  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1416  * created that pull the callbacks from the corresponding CPU, wait for
1417  * a grace period to elapse, and invoke the callbacks.  These kthreads
1418  * are organized into GP kthreads, which manage incoming callbacks, wait for
1419  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1420  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1421  * do a wake_up() on their GP kthread when they insert a callback into any
1422  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1423  * in which case each kthread actively polls its CPU.  (Which isn't so great
1424  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1425  *
1426  * This is intended to be used in conjunction with Frederic Weisbecker's
1427  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1428  * running CPU-bound user-mode computations.
1429  *
1430  * Offloading of callbacks can also be used as an energy-efficiency
1431  * measure because CPUs with no RCU callbacks queued are more aggressive
1432  * about entering dyntick-idle mode.
1433  */
1434 
1435 
1436 /*
1437  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1438  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1439  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1440  * given, a warning is emitted and all CPUs are offloaded.
1441  */
1442 static int __init rcu_nocb_setup(char *str)
1443 {
1444 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1445 	if (!strcasecmp(str, "all"))
1446 		cpumask_setall(rcu_nocb_mask);
1447 	else
1448 		if (cpulist_parse(str, rcu_nocb_mask)) {
1449 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1450 			cpumask_setall(rcu_nocb_mask);
1451 		}
1452 	return 1;
1453 }
1454 __setup("rcu_nocbs=", rcu_nocb_setup);
1455 
1456 static int __init parse_rcu_nocb_poll(char *arg)
1457 {
1458 	rcu_nocb_poll = true;
1459 	return 0;
1460 }
1461 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1462 
1463 /*
1464  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1465  * After all, the main point of bypassing is to avoid lock contention
1466  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1467  */
1468 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1469 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1470 
1471 /*
1472  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1473  * lock isn't immediately available, increment ->nocb_lock_contended to
1474  * flag the contention.
1475  */
1476 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1477 	__acquires(&rdp->nocb_bypass_lock)
1478 {
1479 	lockdep_assert_irqs_disabled();
1480 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1481 		return;
1482 	atomic_inc(&rdp->nocb_lock_contended);
1483 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1484 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1485 	raw_spin_lock(&rdp->nocb_bypass_lock);
1486 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1487 	atomic_dec(&rdp->nocb_lock_contended);
1488 }
1489 
1490 /*
1491  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1492  * not contended.  Please note that this is extremely special-purpose,
1493  * relying on the fact that at most two kthreads and one CPU contend for
1494  * this lock, and also that the two kthreads are guaranteed to have frequent
1495  * grace-period-duration time intervals between successive acquisitions
1496  * of the lock.  This allows us to use an extremely simple throttling
1497  * mechanism, and further to apply it only to the CPU doing floods of
1498  * call_rcu() invocations.  Don't try this at home!
1499  */
1500 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1501 {
1502 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1503 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1504 		cpu_relax();
1505 }
1506 
1507 /*
1508  * Conditionally acquire the specified rcu_data structure's
1509  * ->nocb_bypass_lock.
1510  */
1511 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1512 {
1513 	lockdep_assert_irqs_disabled();
1514 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1515 }
1516 
1517 /*
1518  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1519  */
1520 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1521 	__releases(&rdp->nocb_bypass_lock)
1522 {
1523 	lockdep_assert_irqs_disabled();
1524 	raw_spin_unlock(&rdp->nocb_bypass_lock);
1525 }
1526 
1527 /*
1528  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1529  * if it corresponds to a no-CBs CPU.
1530  */
1531 static void rcu_nocb_lock(struct rcu_data *rdp)
1532 {
1533 	lockdep_assert_irqs_disabled();
1534 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1535 		return;
1536 	raw_spin_lock(&rdp->nocb_lock);
1537 }
1538 
1539 /*
1540  * Release the specified rcu_data structure's ->nocb_lock, but only
1541  * if it corresponds to a no-CBs CPU.
1542  */
1543 static void rcu_nocb_unlock(struct rcu_data *rdp)
1544 {
1545 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1546 		lockdep_assert_irqs_disabled();
1547 		raw_spin_unlock(&rdp->nocb_lock);
1548 	}
1549 }
1550 
1551 /*
1552  * Release the specified rcu_data structure's ->nocb_lock and restore
1553  * interrupts, but only if it corresponds to a no-CBs CPU.
1554  */
1555 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1556 				       unsigned long flags)
1557 {
1558 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1559 		lockdep_assert_irqs_disabled();
1560 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1561 	} else {
1562 		local_irq_restore(flags);
1563 	}
1564 }
1565 
1566 /* Lockdep check that ->cblist may be safely accessed. */
1567 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1568 {
1569 	lockdep_assert_irqs_disabled();
1570 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1571 		lockdep_assert_held(&rdp->nocb_lock);
1572 }
1573 
1574 /*
1575  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1576  * grace period.
1577  */
1578 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1579 {
1580 	swake_up_all(sq);
1581 }
1582 
1583 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1584 {
1585 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1586 }
1587 
1588 static void rcu_init_one_nocb(struct rcu_node *rnp)
1589 {
1590 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1591 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1592 }
1593 
1594 /* Is the specified CPU a no-CBs CPU? */
1595 bool rcu_is_nocb_cpu(int cpu)
1596 {
1597 	if (cpumask_available(rcu_nocb_mask))
1598 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1599 	return false;
1600 }
1601 
1602 /*
1603  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1604  * and this function releases it.
1605  */
1606 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1607 			   unsigned long flags)
1608 	__releases(rdp->nocb_lock)
1609 {
1610 	bool needwake = false;
1611 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1612 
1613 	lockdep_assert_held(&rdp->nocb_lock);
1614 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1615 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1616 				    TPS("AlreadyAwake"));
1617 		rcu_nocb_unlock_irqrestore(rdp, flags);
1618 		return;
1619 	}
1620 	del_timer(&rdp->nocb_timer);
1621 	rcu_nocb_unlock_irqrestore(rdp, flags);
1622 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1623 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1624 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1625 		needwake = true;
1626 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1627 	}
1628 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1629 	if (needwake)
1630 		wake_up_process(rdp_gp->nocb_gp_kthread);
1631 }
1632 
1633 /*
1634  * Arrange to wake the GP kthread for this NOCB group at some future
1635  * time when it is safe to do so.
1636  */
1637 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1638 			       const char *reason)
1639 {
1640 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1641 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1642 	if (rdp->nocb_defer_wakeup < waketype)
1643 		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1644 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1645 }
1646 
1647 /*
1648  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1649  * However, if there is a callback to be enqueued and if ->nocb_bypass
1650  * proves to be initially empty, just return false because the no-CB GP
1651  * kthread may need to be awakened in this case.
1652  *
1653  * Note that this function always returns true if rhp is NULL.
1654  */
1655 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1656 				     unsigned long j)
1657 {
1658 	struct rcu_cblist rcl;
1659 
1660 	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1661 	rcu_lockdep_assert_cblist_protected(rdp);
1662 	lockdep_assert_held(&rdp->nocb_bypass_lock);
1663 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1664 		raw_spin_unlock(&rdp->nocb_bypass_lock);
1665 		return false;
1666 	}
1667 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1668 	if (rhp)
1669 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1670 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1671 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1672 	WRITE_ONCE(rdp->nocb_bypass_first, j);
1673 	rcu_nocb_bypass_unlock(rdp);
1674 	return true;
1675 }
1676 
1677 /*
1678  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1679  * However, if there is a callback to be enqueued and if ->nocb_bypass
1680  * proves to be initially empty, just return false because the no-CB GP
1681  * kthread may need to be awakened in this case.
1682  *
1683  * Note that this function always returns true if rhp is NULL.
1684  */
1685 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1686 				  unsigned long j)
1687 {
1688 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1689 		return true;
1690 	rcu_lockdep_assert_cblist_protected(rdp);
1691 	rcu_nocb_bypass_lock(rdp);
1692 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1693 }
1694 
1695 /*
1696  * If the ->nocb_bypass_lock is immediately available, flush the
1697  * ->nocb_bypass queue into ->cblist.
1698  */
1699 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1700 {
1701 	rcu_lockdep_assert_cblist_protected(rdp);
1702 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1703 	    !rcu_nocb_bypass_trylock(rdp))
1704 		return;
1705 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1706 }
1707 
1708 /*
1709  * See whether it is appropriate to use the ->nocb_bypass list in order
1710  * to control contention on ->nocb_lock.  A limited number of direct
1711  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1712  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1713  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1714  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1715  * used if ->cblist is empty, because otherwise callbacks can be stranded
1716  * on ->nocb_bypass because we cannot count on the current CPU ever again
1717  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1718  * non-empty, the corresponding no-CBs grace-period kthread must not be
1719  * in an indefinite sleep state.
1720  *
1721  * Finally, it is not permitted to use the bypass during early boot,
1722  * as doing so would confuse the auto-initialization code.  Besides
1723  * which, there is no point in worrying about lock contention while
1724  * there is only one CPU in operation.
1725  */
1726 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1727 				bool *was_alldone, unsigned long flags)
1728 {
1729 	unsigned long c;
1730 	unsigned long cur_gp_seq;
1731 	unsigned long j = jiffies;
1732 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1733 
1734 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1735 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1736 		return false; /* Not offloaded, no bypassing. */
1737 	}
1738 	lockdep_assert_irqs_disabled();
1739 
1740 	// Don't use ->nocb_bypass during early boot.
1741 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1742 		rcu_nocb_lock(rdp);
1743 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1744 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1745 		return false;
1746 	}
1747 
1748 	// If we have advanced to a new jiffy, reset counts to allow
1749 	// moving back from ->nocb_bypass to ->cblist.
1750 	if (j == rdp->nocb_nobypass_last) {
1751 		c = rdp->nocb_nobypass_count + 1;
1752 	} else {
1753 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1754 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1755 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1756 				 nocb_nobypass_lim_per_jiffy))
1757 			c = 0;
1758 		else if (c > nocb_nobypass_lim_per_jiffy)
1759 			c = nocb_nobypass_lim_per_jiffy;
1760 	}
1761 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1762 
1763 	// If there hasn't yet been all that many ->cblist enqueues
1764 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1765 	// ->nocb_bypass first.
1766 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1767 		rcu_nocb_lock(rdp);
1768 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1769 		if (*was_alldone)
1770 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1771 					    TPS("FirstQ"));
1772 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1773 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1774 		return false; // Caller must enqueue the callback.
1775 	}
1776 
1777 	// If ->nocb_bypass has been used too long or is too full,
1778 	// flush ->nocb_bypass to ->cblist.
1779 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1780 	    ncbs >= qhimark) {
1781 		rcu_nocb_lock(rdp);
1782 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1783 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1784 			if (*was_alldone)
1785 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1786 						    TPS("FirstQ"));
1787 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788 			return false; // Caller must enqueue the callback.
1789 		}
1790 		if (j != rdp->nocb_gp_adv_time &&
1791 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1792 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1793 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1794 			rdp->nocb_gp_adv_time = j;
1795 		}
1796 		rcu_nocb_unlock_irqrestore(rdp, flags);
1797 		return true; // Callback already enqueued.
1798 	}
1799 
1800 	// We need to use the bypass.
1801 	rcu_nocb_wait_contended(rdp);
1802 	rcu_nocb_bypass_lock(rdp);
1803 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1804 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1805 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1806 	if (!ncbs) {
1807 		WRITE_ONCE(rdp->nocb_bypass_first, j);
1808 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1809 	}
1810 	rcu_nocb_bypass_unlock(rdp);
1811 	smp_mb(); /* Order enqueue before wake. */
1812 	if (ncbs) {
1813 		local_irq_restore(flags);
1814 	} else {
1815 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1816 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1817 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1818 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1819 					    TPS("FirstBQwake"));
1820 			__call_rcu_nocb_wake(rdp, true, flags);
1821 		} else {
1822 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823 					    TPS("FirstBQnoWake"));
1824 			rcu_nocb_unlock_irqrestore(rdp, flags);
1825 		}
1826 	}
1827 	return true; // Callback already enqueued.
1828 }
1829 
1830 /*
1831  * Awaken the no-CBs grace-period kthead if needed, either due to it
1832  * legitimately being asleep or due to overload conditions.
1833  *
1834  * If warranted, also wake up the kthread servicing this CPUs queues.
1835  */
1836 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1837 				 unsigned long flags)
1838 				 __releases(rdp->nocb_lock)
1839 {
1840 	unsigned long cur_gp_seq;
1841 	unsigned long j;
1842 	long len;
1843 	struct task_struct *t;
1844 
1845 	// If we are being polled or there is no kthread, just leave.
1846 	t = READ_ONCE(rdp->nocb_gp_kthread);
1847 	if (rcu_nocb_poll || !t) {
1848 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1849 				    TPS("WakeNotPoll"));
1850 		rcu_nocb_unlock_irqrestore(rdp, flags);
1851 		return;
1852 	}
1853 	// Need to actually to a wakeup.
1854 	len = rcu_segcblist_n_cbs(&rdp->cblist);
1855 	if (was_alldone) {
1856 		rdp->qlen_last_fqs_check = len;
1857 		if (!irqs_disabled_flags(flags)) {
1858 			/* ... if queue was empty ... */
1859 			wake_nocb_gp(rdp, false, flags);
1860 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1861 					    TPS("WakeEmpty"));
1862 		} else {
1863 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1864 					   TPS("WakeEmptyIsDeferred"));
1865 			rcu_nocb_unlock_irqrestore(rdp, flags);
1866 		}
1867 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1868 		/* ... or if many callbacks queued. */
1869 		rdp->qlen_last_fqs_check = len;
1870 		j = jiffies;
1871 		if (j != rdp->nocb_gp_adv_time &&
1872 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1873 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1874 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1875 			rdp->nocb_gp_adv_time = j;
1876 		}
1877 		smp_mb(); /* Enqueue before timer_pending(). */
1878 		if ((rdp->nocb_cb_sleep ||
1879 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1880 		    !timer_pending(&rdp->nocb_bypass_timer))
1881 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1882 					   TPS("WakeOvfIsDeferred"));
1883 		rcu_nocb_unlock_irqrestore(rdp, flags);
1884 	} else {
1885 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1886 		rcu_nocb_unlock_irqrestore(rdp, flags);
1887 	}
1888 	return;
1889 }
1890 
1891 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1892 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1893 {
1894 	unsigned long flags;
1895 	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1896 
1897 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1898 	rcu_nocb_lock_irqsave(rdp, flags);
1899 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1900 	__call_rcu_nocb_wake(rdp, true, flags);
1901 }
1902 
1903 /*
1904  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1905  * or for grace periods to end.
1906  */
1907 static void nocb_gp_wait(struct rcu_data *my_rdp)
1908 {
1909 	bool bypass = false;
1910 	long bypass_ncbs;
1911 	int __maybe_unused cpu = my_rdp->cpu;
1912 	unsigned long cur_gp_seq;
1913 	unsigned long flags;
1914 	bool gotcbs = false;
1915 	unsigned long j = jiffies;
1916 	bool needwait_gp = false; // This prevents actual uninitialized use.
1917 	bool needwake;
1918 	bool needwake_gp;
1919 	struct rcu_data *rdp;
1920 	struct rcu_node *rnp;
1921 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1922 	bool wasempty = false;
1923 
1924 	/*
1925 	 * Each pass through the following loop checks for CBs and for the
1926 	 * nearest grace period (if any) to wait for next.  The CB kthreads
1927 	 * and the global grace-period kthread are awakened if needed.
1928 	 */
1929 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1930 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1931 		rcu_nocb_lock_irqsave(rdp, flags);
1932 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1933 		if (bypass_ncbs &&
1934 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1935 		     bypass_ncbs > 2 * qhimark)) {
1936 			// Bypass full or old, so flush it.
1937 			(void)rcu_nocb_try_flush_bypass(rdp, j);
1938 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1939 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1940 			rcu_nocb_unlock_irqrestore(rdp, flags);
1941 			continue; /* No callbacks here, try next. */
1942 		}
1943 		if (bypass_ncbs) {
1944 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1945 					    TPS("Bypass"));
1946 			bypass = true;
1947 		}
1948 		rnp = rdp->mynode;
1949 		if (bypass) {  // Avoid race with first bypass CB.
1950 			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1951 				   RCU_NOCB_WAKE_NOT);
1952 			del_timer(&my_rdp->nocb_timer);
1953 		}
1954 		// Advance callbacks if helpful and low contention.
1955 		needwake_gp = false;
1956 		if (!rcu_segcblist_restempty(&rdp->cblist,
1957 					     RCU_NEXT_READY_TAIL) ||
1958 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1959 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1960 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1961 			needwake_gp = rcu_advance_cbs(rnp, rdp);
1962 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
1963 							   RCU_NEXT_READY_TAIL);
1964 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1965 		}
1966 		// Need to wait on some grace period?
1967 		WARN_ON_ONCE(wasempty &&
1968 			     !rcu_segcblist_restempty(&rdp->cblist,
1969 						      RCU_NEXT_READY_TAIL));
1970 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1971 			if (!needwait_gp ||
1972 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1973 				wait_gp_seq = cur_gp_seq;
1974 			needwait_gp = true;
1975 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1976 					    TPS("NeedWaitGP"));
1977 		}
1978 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1979 			needwake = rdp->nocb_cb_sleep;
1980 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
1981 			smp_mb(); /* CB invocation -after- GP end. */
1982 		} else {
1983 			needwake = false;
1984 		}
1985 		rcu_nocb_unlock_irqrestore(rdp, flags);
1986 		if (needwake) {
1987 			swake_up_one(&rdp->nocb_cb_wq);
1988 			gotcbs = true;
1989 		}
1990 		if (needwake_gp)
1991 			rcu_gp_kthread_wake();
1992 	}
1993 
1994 	my_rdp->nocb_gp_bypass = bypass;
1995 	my_rdp->nocb_gp_gp = needwait_gp;
1996 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
1997 	if (bypass && !rcu_nocb_poll) {
1998 		// At least one child with non-empty ->nocb_bypass, so set
1999 		// timer in order to avoid stranding its callbacks.
2000 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2001 		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2002 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2003 	}
2004 	if (rcu_nocb_poll) {
2005 		/* Polling, so trace if first poll in the series. */
2006 		if (gotcbs)
2007 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2008 		schedule_timeout_interruptible(1);
2009 	} else if (!needwait_gp) {
2010 		/* Wait for callbacks to appear. */
2011 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2012 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2013 				!READ_ONCE(my_rdp->nocb_gp_sleep));
2014 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2015 	} else {
2016 		rnp = my_rdp->mynode;
2017 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2018 		swait_event_interruptible_exclusive(
2019 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2020 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2021 			!READ_ONCE(my_rdp->nocb_gp_sleep));
2022 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2023 	}
2024 	if (!rcu_nocb_poll) {
2025 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2026 		if (bypass)
2027 			del_timer(&my_rdp->nocb_bypass_timer);
2028 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2029 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2030 	}
2031 	my_rdp->nocb_gp_seq = -1;
2032 	WARN_ON(signal_pending(current));
2033 }
2034 
2035 /*
2036  * No-CBs grace-period-wait kthread.  There is one of these per group
2037  * of CPUs, but only once at least one CPU in that group has come online
2038  * at least once since boot.  This kthread checks for newly posted
2039  * callbacks from any of the CPUs it is responsible for, waits for a
2040  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2041  * that then have callback-invocation work to do.
2042  */
2043 static int rcu_nocb_gp_kthread(void *arg)
2044 {
2045 	struct rcu_data *rdp = arg;
2046 
2047 	for (;;) {
2048 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2049 		nocb_gp_wait(rdp);
2050 		cond_resched_tasks_rcu_qs();
2051 	}
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2057  * then, if there are no more, wait for more to appear.
2058  */
2059 static void nocb_cb_wait(struct rcu_data *rdp)
2060 {
2061 	unsigned long cur_gp_seq;
2062 	unsigned long flags;
2063 	bool needwake_gp = false;
2064 	struct rcu_node *rnp = rdp->mynode;
2065 
2066 	local_irq_save(flags);
2067 	rcu_momentary_dyntick_idle();
2068 	local_irq_restore(flags);
2069 	local_bh_disable();
2070 	rcu_do_batch(rdp);
2071 	local_bh_enable();
2072 	lockdep_assert_irqs_enabled();
2073 	rcu_nocb_lock_irqsave(rdp, flags);
2074 	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2075 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2076 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2077 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2078 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2079 	}
2080 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2081 		rcu_nocb_unlock_irqrestore(rdp, flags);
2082 		if (needwake_gp)
2083 			rcu_gp_kthread_wake();
2084 		return;
2085 	}
2086 
2087 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2088 	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2089 	rcu_nocb_unlock_irqrestore(rdp, flags);
2090 	if (needwake_gp)
2091 		rcu_gp_kthread_wake();
2092 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2093 				 !READ_ONCE(rdp->nocb_cb_sleep));
2094 	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2095 		/* ^^^ Ensure CB invocation follows _sleep test. */
2096 		return;
2097 	}
2098 	WARN_ON(signal_pending(current));
2099 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2100 }
2101 
2102 /*
2103  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2104  * nocb_cb_wait() to do the dirty work.
2105  */
2106 static int rcu_nocb_cb_kthread(void *arg)
2107 {
2108 	struct rcu_data *rdp = arg;
2109 
2110 	// Each pass through this loop does one callback batch, and,
2111 	// if there are no more ready callbacks, waits for them.
2112 	for (;;) {
2113 		nocb_cb_wait(rdp);
2114 		cond_resched_tasks_rcu_qs();
2115 	}
2116 	return 0;
2117 }
2118 
2119 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2120 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2121 {
2122 	return READ_ONCE(rdp->nocb_defer_wakeup);
2123 }
2124 
2125 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2126 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2127 {
2128 	unsigned long flags;
2129 	int ndw;
2130 
2131 	rcu_nocb_lock_irqsave(rdp, flags);
2132 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2133 		rcu_nocb_unlock_irqrestore(rdp, flags);
2134 		return;
2135 	}
2136 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2137 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2138 	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2139 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2140 }
2141 
2142 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2143 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2144 {
2145 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2146 
2147 	do_nocb_deferred_wakeup_common(rdp);
2148 }
2149 
2150 /*
2151  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2152  * This means we do an inexact common-case check.  Note that if
2153  * we miss, ->nocb_timer will eventually clean things up.
2154  */
2155 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2156 {
2157 	if (rcu_nocb_need_deferred_wakeup(rdp))
2158 		do_nocb_deferred_wakeup_common(rdp);
2159 }
2160 
2161 void __init rcu_init_nohz(void)
2162 {
2163 	int cpu;
2164 	bool need_rcu_nocb_mask = false;
2165 	struct rcu_data *rdp;
2166 
2167 #if defined(CONFIG_NO_HZ_FULL)
2168 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2169 		need_rcu_nocb_mask = true;
2170 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2171 
2172 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2173 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2174 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2175 			return;
2176 		}
2177 	}
2178 	if (!cpumask_available(rcu_nocb_mask))
2179 		return;
2180 
2181 #if defined(CONFIG_NO_HZ_FULL)
2182 	if (tick_nohz_full_running)
2183 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2185 
2186 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2187 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2188 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2189 			    rcu_nocb_mask);
2190 	}
2191 	if (cpumask_empty(rcu_nocb_mask))
2192 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2193 	else
2194 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2195 			cpumask_pr_args(rcu_nocb_mask));
2196 	if (rcu_nocb_poll)
2197 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2198 
2199 	for_each_cpu(cpu, rcu_nocb_mask) {
2200 		rdp = per_cpu_ptr(&rcu_data, cpu);
2201 		if (rcu_segcblist_empty(&rdp->cblist))
2202 			rcu_segcblist_init(&rdp->cblist);
2203 		rcu_segcblist_offload(&rdp->cblist);
2204 	}
2205 	rcu_organize_nocb_kthreads();
2206 }
2207 
2208 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2209 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2210 {
2211 	init_swait_queue_head(&rdp->nocb_cb_wq);
2212 	init_swait_queue_head(&rdp->nocb_gp_wq);
2213 	raw_spin_lock_init(&rdp->nocb_lock);
2214 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2215 	raw_spin_lock_init(&rdp->nocb_gp_lock);
2216 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2217 	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2218 	rcu_cblist_init(&rdp->nocb_bypass);
2219 }
2220 
2221 /*
2222  * If the specified CPU is a no-CBs CPU that does not already have its
2223  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2224  * for this CPU's group has not yet been created, spawn it as well.
2225  */
2226 static void rcu_spawn_one_nocb_kthread(int cpu)
2227 {
2228 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2229 	struct rcu_data *rdp_gp;
2230 	struct task_struct *t;
2231 
2232 	/*
2233 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2234 	 * then nothing to do.
2235 	 */
2236 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2237 		return;
2238 
2239 	/* If we didn't spawn the GP kthread first, reorganize! */
2240 	rdp_gp = rdp->nocb_gp_rdp;
2241 	if (!rdp_gp->nocb_gp_kthread) {
2242 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2243 				"rcuog/%d", rdp_gp->cpu);
2244 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2245 			return;
2246 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2247 	}
2248 
2249 	/* Spawn the kthread for this CPU. */
2250 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2251 			"rcuo%c/%d", rcu_state.abbr, cpu);
2252 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2253 		return;
2254 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2255 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2256 }
2257 
2258 /*
2259  * If the specified CPU is a no-CBs CPU that does not already have its
2260  * rcuo kthread, spawn it.
2261  */
2262 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2263 {
2264 	if (rcu_scheduler_fully_active)
2265 		rcu_spawn_one_nocb_kthread(cpu);
2266 }
2267 
2268 /*
2269  * Once the scheduler is running, spawn rcuo kthreads for all online
2270  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2271  * non-boot CPUs come online -- if this changes, we will need to add
2272  * some mutual exclusion.
2273  */
2274 static void __init rcu_spawn_nocb_kthreads(void)
2275 {
2276 	int cpu;
2277 
2278 	for_each_online_cpu(cpu)
2279 		rcu_spawn_cpu_nocb_kthread(cpu);
2280 }
2281 
2282 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2283 static int rcu_nocb_gp_stride = -1;
2284 module_param(rcu_nocb_gp_stride, int, 0444);
2285 
2286 /*
2287  * Initialize GP-CB relationships for all no-CBs CPU.
2288  */
2289 static void __init rcu_organize_nocb_kthreads(void)
2290 {
2291 	int cpu;
2292 	bool firsttime = true;
2293 	bool gotnocbs = false;
2294 	bool gotnocbscbs = true;
2295 	int ls = rcu_nocb_gp_stride;
2296 	int nl = 0;  /* Next GP kthread. */
2297 	struct rcu_data *rdp;
2298 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2299 	struct rcu_data *rdp_prev = NULL;
2300 
2301 	if (!cpumask_available(rcu_nocb_mask))
2302 		return;
2303 	if (ls == -1) {
2304 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2305 		rcu_nocb_gp_stride = ls;
2306 	}
2307 
2308 	/*
2309 	 * Each pass through this loop sets up one rcu_data structure.
2310 	 * Should the corresponding CPU come online in the future, then
2311 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2312 	 */
2313 	for_each_cpu(cpu, rcu_nocb_mask) {
2314 		rdp = per_cpu_ptr(&rcu_data, cpu);
2315 		if (rdp->cpu >= nl) {
2316 			/* New GP kthread, set up for CBs & next GP. */
2317 			gotnocbs = true;
2318 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2319 			rdp->nocb_gp_rdp = rdp;
2320 			rdp_gp = rdp;
2321 			if (dump_tree) {
2322 				if (!firsttime)
2323 					pr_cont("%s\n", gotnocbscbs
2324 							? "" : " (self only)");
2325 				gotnocbscbs = false;
2326 				firsttime = false;
2327 				pr_alert("%s: No-CB GP kthread CPU %d:",
2328 					 __func__, cpu);
2329 			}
2330 		} else {
2331 			/* Another CB kthread, link to previous GP kthread. */
2332 			gotnocbscbs = true;
2333 			rdp->nocb_gp_rdp = rdp_gp;
2334 			rdp_prev->nocb_next_cb_rdp = rdp;
2335 			if (dump_tree)
2336 				pr_cont(" %d", cpu);
2337 		}
2338 		rdp_prev = rdp;
2339 	}
2340 	if (gotnocbs && dump_tree)
2341 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2342 }
2343 
2344 /*
2345  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2346  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2347  */
2348 void rcu_bind_current_to_nocb(void)
2349 {
2350 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2351 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2352 }
2353 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2354 
2355 /*
2356  * Dump out nocb grace-period kthread state for the specified rcu_data
2357  * structure.
2358  */
2359 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2360 {
2361 	struct rcu_node *rnp = rdp->mynode;
2362 
2363 	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2364 		rdp->cpu,
2365 		"kK"[!!rdp->nocb_gp_kthread],
2366 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2367 		"dD"[!!rdp->nocb_defer_wakeup],
2368 		"tT"[timer_pending(&rdp->nocb_timer)],
2369 		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2370 		"sS"[!!rdp->nocb_gp_sleep],
2371 		".W"[swait_active(&rdp->nocb_gp_wq)],
2372 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2373 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2374 		".B"[!!rdp->nocb_gp_bypass],
2375 		".G"[!!rdp->nocb_gp_gp],
2376 		(long)rdp->nocb_gp_seq,
2377 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2378 }
2379 
2380 /* Dump out nocb kthread state for the specified rcu_data structure. */
2381 static void show_rcu_nocb_state(struct rcu_data *rdp)
2382 {
2383 	struct rcu_segcblist *rsclp = &rdp->cblist;
2384 	bool waslocked;
2385 	bool wastimer;
2386 	bool wassleep;
2387 
2388 	if (rdp->nocb_gp_rdp == rdp)
2389 		show_rcu_nocb_gp_state(rdp);
2390 
2391 	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2392 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2393 		"kK"[!!rdp->nocb_cb_kthread],
2394 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2395 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2396 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2397 		"sS"[!!rdp->nocb_cb_sleep],
2398 		".W"[swait_active(&rdp->nocb_cb_wq)],
2399 		jiffies - rdp->nocb_bypass_first,
2400 		jiffies - rdp->nocb_nobypass_last,
2401 		rdp->nocb_nobypass_count,
2402 		".D"[rcu_segcblist_ready_cbs(rsclp)],
2403 		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2404 		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2405 		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2406 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2407 		rcu_segcblist_n_cbs(&rdp->cblist));
2408 
2409 	/* It is OK for GP kthreads to have GP state. */
2410 	if (rdp->nocb_gp_rdp == rdp)
2411 		return;
2412 
2413 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2414 	wastimer = timer_pending(&rdp->nocb_timer);
2415 	wassleep = swait_active(&rdp->nocb_gp_wq);
2416 	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2417 	    !waslocked && !wastimer && !wassleep)
2418 		return;  /* Nothing untowards. */
2419 
2420 	pr_info("   !!! %c%c%c%c %c\n",
2421 		"lL"[waslocked],
2422 		"dD"[!!rdp->nocb_defer_wakeup],
2423 		"tT"[wastimer],
2424 		"sS"[!!rdp->nocb_gp_sleep],
2425 		".W"[wassleep]);
2426 }
2427 
2428 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2429 
2430 /* No ->nocb_lock to acquire.  */
2431 static void rcu_nocb_lock(struct rcu_data *rdp)
2432 {
2433 }
2434 
2435 /* No ->nocb_lock to release.  */
2436 static void rcu_nocb_unlock(struct rcu_data *rdp)
2437 {
2438 }
2439 
2440 /* No ->nocb_lock to release.  */
2441 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2442 				       unsigned long flags)
2443 {
2444 	local_irq_restore(flags);
2445 }
2446 
2447 /* Lockdep check that ->cblist may be safely accessed. */
2448 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2449 {
2450 	lockdep_assert_irqs_disabled();
2451 }
2452 
2453 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2454 {
2455 }
2456 
2457 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2458 {
2459 	return NULL;
2460 }
2461 
2462 static void rcu_init_one_nocb(struct rcu_node *rnp)
2463 {
2464 }
2465 
2466 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2467 				  unsigned long j)
2468 {
2469 	return true;
2470 }
2471 
2472 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2473 				bool *was_alldone, unsigned long flags)
2474 {
2475 	return false;
2476 }
2477 
2478 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2479 				 unsigned long flags)
2480 {
2481 	WARN_ON_ONCE(1);  /* Should be dead code! */
2482 }
2483 
2484 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2485 {
2486 }
2487 
2488 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2489 {
2490 	return false;
2491 }
2492 
2493 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2494 {
2495 }
2496 
2497 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2498 {
2499 }
2500 
2501 static void __init rcu_spawn_nocb_kthreads(void)
2502 {
2503 }
2504 
2505 static void show_rcu_nocb_state(struct rcu_data *rdp)
2506 {
2507 }
2508 
2509 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2510 
2511 /*
2512  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2513  * grace-period kthread will do force_quiescent_state() processing?
2514  * The idea is to avoid waking up RCU core processing on such a
2515  * CPU unless the grace period has extended for too long.
2516  *
2517  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2518  * CONFIG_RCU_NOCB_CPU CPUs.
2519  */
2520 static bool rcu_nohz_full_cpu(void)
2521 {
2522 #ifdef CONFIG_NO_HZ_FULL
2523 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2524 	    (!rcu_gp_in_progress() ||
2525 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2526 		return true;
2527 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2528 	return false;
2529 }
2530 
2531 /*
2532  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2533  */
2534 static void rcu_bind_gp_kthread(void)
2535 {
2536 	if (!tick_nohz_full_enabled())
2537 		return;
2538 	housekeeping_affine(current, HK_FLAG_RCU);
2539 }
2540 
2541 /* Record the current task on dyntick-idle entry. */
2542 static void noinstr rcu_dynticks_task_enter(void)
2543 {
2544 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2545 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2546 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2547 }
2548 
2549 /* Record no current task on dyntick-idle exit. */
2550 static void noinstr rcu_dynticks_task_exit(void)
2551 {
2552 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2553 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2554 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2555 }
2556 
2557 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2558 static void rcu_dynticks_task_trace_enter(void)
2559 {
2560 #ifdef CONFIG_TASKS_RCU_TRACE
2561 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2562 		current->trc_reader_special.b.need_mb = true;
2563 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2564 }
2565 
2566 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2567 static void rcu_dynticks_task_trace_exit(void)
2568 {
2569 #ifdef CONFIG_TASKS_RCU_TRACE
2570 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2571 		current->trc_reader_special.b.need_mb = false;
2572 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2573 }
2574