1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <uapi/linux/sched/types.h> 33 #include "../time/tick-internal.h" 34 35 #ifdef CONFIG_RCU_BOOST 36 37 #include "../locking/rtmutex_common.h" 38 39 /* 40 * Control variables for per-CPU and per-rcu_node kthreads. These 41 * handle all flavors of RCU. 42 */ 43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 46 DEFINE_PER_CPU(char, rcu_cpu_has_work); 47 48 #else /* #ifdef CONFIG_RCU_BOOST */ 49 50 /* 51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 52 * all uses are in dead code. Provide a definition to keep the compiler 53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 54 * This probably needs to be excluded from -rt builds. 55 */ 56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 57 58 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 59 60 #ifdef CONFIG_RCU_NOCB_CPU 61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 62 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 63 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 65 66 /* 67 * Check the RCU kernel configuration parameters and print informative 68 * messages about anything out of the ordinary. 69 */ 70 static void __init rcu_bootup_announce_oddness(void) 71 { 72 if (IS_ENABLED(CONFIG_RCU_TRACE)) 73 pr_info("\tRCU event tracing is enabled.\n"); 74 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 75 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 77 RCU_FANOUT); 78 if (rcu_fanout_exact) 79 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 82 if (IS_ENABLED(CONFIG_PROVE_RCU)) 83 pr_info("\tRCU lockdep checking is enabled.\n"); 84 if (RCU_NUM_LVLS >= 4) 85 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 86 if (RCU_FANOUT_LEAF != 16) 87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 88 RCU_FANOUT_LEAF); 89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 91 if (nr_cpu_ids != NR_CPUS) 92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 93 #ifdef CONFIG_RCU_BOOST 94 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY); 95 #endif 96 if (blimit != DEFAULT_RCU_BLIMIT) 97 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 98 if (qhimark != DEFAULT_RCU_QHIMARK) 99 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 100 if (qlowmark != DEFAULT_RCU_QLOMARK) 101 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 102 if (jiffies_till_first_fqs != ULONG_MAX) 103 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 104 if (jiffies_till_next_fqs != ULONG_MAX) 105 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 106 if (rcu_kick_kthreads) 107 pr_info("\tKick kthreads if too-long grace period.\n"); 108 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 109 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 110 if (gp_preinit_delay) 111 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 112 if (gp_init_delay) 113 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 114 if (gp_cleanup_delay) 115 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 116 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 117 pr_info("\tRCU debug extended QS entry/exit.\n"); 118 rcupdate_announce_bootup_oddness(); 119 } 120 121 #ifdef CONFIG_PREEMPT_RCU 122 123 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 124 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 125 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 126 127 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 128 bool wake); 129 130 /* 131 * Tell them what RCU they are running. 132 */ 133 static void __init rcu_bootup_announce(void) 134 { 135 pr_info("Preemptible hierarchical RCU implementation.\n"); 136 rcu_bootup_announce_oddness(); 137 } 138 139 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 140 #define RCU_GP_TASKS 0x8 141 #define RCU_EXP_TASKS 0x4 142 #define RCU_GP_BLKD 0x2 143 #define RCU_EXP_BLKD 0x1 144 145 /* 146 * Queues a task preempted within an RCU-preempt read-side critical 147 * section into the appropriate location within the ->blkd_tasks list, 148 * depending on the states of any ongoing normal and expedited grace 149 * periods. The ->gp_tasks pointer indicates which element the normal 150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 151 * indicates which element the expedited grace period is waiting on (again, 152 * NULL if none). If a grace period is waiting on a given element in the 153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 154 * adding a task to the tail of the list blocks any grace period that is 155 * already waiting on one of the elements. In contrast, adding a task 156 * to the head of the list won't block any grace period that is already 157 * waiting on one of the elements. 158 * 159 * This queuing is imprecise, and can sometimes make an ongoing grace 160 * period wait for a task that is not strictly speaking blocking it. 161 * Given the choice, we needlessly block a normal grace period rather than 162 * blocking an expedited grace period. 163 * 164 * Note that an endless sequence of expedited grace periods still cannot 165 * indefinitely postpone a normal grace period. Eventually, all of the 166 * fixed number of preempted tasks blocking the normal grace period that are 167 * not also blocking the expedited grace period will resume and complete 168 * their RCU read-side critical sections. At that point, the ->gp_tasks 169 * pointer will equal the ->exp_tasks pointer, at which point the end of 170 * the corresponding expedited grace period will also be the end of the 171 * normal grace period. 172 */ 173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 174 __releases(rnp->lock) /* But leaves rrupts disabled. */ 175 { 176 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 177 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 178 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 179 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 180 struct task_struct *t = current; 181 182 lockdep_assert_held(&rnp->lock); 183 WARN_ON_ONCE(rdp->mynode != rnp); 184 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1); 185 186 /* 187 * Decide where to queue the newly blocked task. In theory, 188 * this could be an if-statement. In practice, when I tried 189 * that, it was quite messy. 190 */ 191 switch (blkd_state) { 192 case 0: 193 case RCU_EXP_TASKS: 194 case RCU_EXP_TASKS + RCU_GP_BLKD: 195 case RCU_GP_TASKS: 196 case RCU_GP_TASKS + RCU_EXP_TASKS: 197 198 /* 199 * Blocking neither GP, or first task blocking the normal 200 * GP but not blocking the already-waiting expedited GP. 201 * Queue at the head of the list to avoid unnecessarily 202 * blocking the already-waiting GPs. 203 */ 204 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 205 break; 206 207 case RCU_EXP_BLKD: 208 case RCU_GP_BLKD: 209 case RCU_GP_BLKD + RCU_EXP_BLKD: 210 case RCU_GP_TASKS + RCU_EXP_BLKD: 211 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 212 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 213 214 /* 215 * First task arriving that blocks either GP, or first task 216 * arriving that blocks the expedited GP (with the normal 217 * GP already waiting), or a task arriving that blocks 218 * both GPs with both GPs already waiting. Queue at the 219 * tail of the list to avoid any GP waiting on any of the 220 * already queued tasks that are not blocking it. 221 */ 222 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 223 break; 224 225 case RCU_EXP_TASKS + RCU_EXP_BLKD: 226 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 227 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 228 229 /* 230 * Second or subsequent task blocking the expedited GP. 231 * The task either does not block the normal GP, or is the 232 * first task blocking the normal GP. Queue just after 233 * the first task blocking the expedited GP. 234 */ 235 list_add(&t->rcu_node_entry, rnp->exp_tasks); 236 break; 237 238 case RCU_GP_TASKS + RCU_GP_BLKD: 239 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 240 241 /* 242 * Second or subsequent task blocking the normal GP. 243 * The task does not block the expedited GP. Queue just 244 * after the first task blocking the normal GP. 245 */ 246 list_add(&t->rcu_node_entry, rnp->gp_tasks); 247 break; 248 249 default: 250 251 /* Yet another exercise in excessive paranoia. */ 252 WARN_ON_ONCE(1); 253 break; 254 } 255 256 /* 257 * We have now queued the task. If it was the first one to 258 * block either grace period, update the ->gp_tasks and/or 259 * ->exp_tasks pointers, respectively, to reference the newly 260 * blocked tasks. 261 */ 262 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 263 rnp->gp_tasks = &t->rcu_node_entry; 264 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 265 rnp->exp_tasks = &t->rcu_node_entry; 266 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 267 !(rnp->qsmask & rdp->grpmask)); 268 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 269 !(rnp->expmask & rdp->grpmask)); 270 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 271 272 /* 273 * Report the quiescent state for the expedited GP. This expedited 274 * GP should not be able to end until we report, so there should be 275 * no need to check for a subsequent expedited GP. (Though we are 276 * still in a quiescent state in any case.) 277 */ 278 if (blkd_state & RCU_EXP_BLKD && 279 t->rcu_read_unlock_special.b.exp_need_qs) { 280 t->rcu_read_unlock_special.b.exp_need_qs = false; 281 rcu_report_exp_rdp(rdp->rsp, rdp, true); 282 } else { 283 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 284 } 285 } 286 287 /* 288 * Record a preemptible-RCU quiescent state for the specified CPU. Note 289 * that this just means that the task currently running on the CPU is 290 * not in a quiescent state. There might be any number of tasks blocked 291 * while in an RCU read-side critical section. 292 * 293 * As with the other rcu_*_qs() functions, callers to this function 294 * must disable preemption. 295 */ 296 static void rcu_preempt_qs(void) 297 { 298 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n"); 299 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 300 trace_rcu_grace_period(TPS("rcu_preempt"), 301 __this_cpu_read(rcu_data_p->gpnum), 302 TPS("cpuqs")); 303 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 304 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 305 current->rcu_read_unlock_special.b.need_qs = false; 306 } 307 } 308 309 /* 310 * We have entered the scheduler, and the current task might soon be 311 * context-switched away from. If this task is in an RCU read-side 312 * critical section, we will no longer be able to rely on the CPU to 313 * record that fact, so we enqueue the task on the blkd_tasks list. 314 * The task will dequeue itself when it exits the outermost enclosing 315 * RCU read-side critical section. Therefore, the current grace period 316 * cannot be permitted to complete until the blkd_tasks list entries 317 * predating the current grace period drain, in other words, until 318 * rnp->gp_tasks becomes NULL. 319 * 320 * Caller must disable interrupts. 321 */ 322 static void rcu_preempt_note_context_switch(bool preempt) 323 { 324 struct task_struct *t = current; 325 struct rcu_data *rdp; 326 struct rcu_node *rnp; 327 328 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n"); 329 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); 330 if (t->rcu_read_lock_nesting > 0 && 331 !t->rcu_read_unlock_special.b.blocked) { 332 333 /* Possibly blocking in an RCU read-side critical section. */ 334 rdp = this_cpu_ptr(rcu_state_p->rda); 335 rnp = rdp->mynode; 336 raw_spin_lock_rcu_node(rnp); 337 t->rcu_read_unlock_special.b.blocked = true; 338 t->rcu_blocked_node = rnp; 339 340 /* 341 * Verify the CPU's sanity, trace the preemption, and 342 * then queue the task as required based on the states 343 * of any ongoing and expedited grace periods. 344 */ 345 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 346 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 347 trace_rcu_preempt_task(rdp->rsp->name, 348 t->pid, 349 (rnp->qsmask & rdp->grpmask) 350 ? rnp->gpnum 351 : rnp->gpnum + 1); 352 rcu_preempt_ctxt_queue(rnp, rdp); 353 } else if (t->rcu_read_lock_nesting < 0 && 354 t->rcu_read_unlock_special.s) { 355 356 /* 357 * Complete exit from RCU read-side critical section on 358 * behalf of preempted instance of __rcu_read_unlock(). 359 */ 360 rcu_read_unlock_special(t); 361 } 362 363 /* 364 * Either we were not in an RCU read-side critical section to 365 * begin with, or we have now recorded that critical section 366 * globally. Either way, we can now note a quiescent state 367 * for this CPU. Again, if we were in an RCU read-side critical 368 * section, and if that critical section was blocking the current 369 * grace period, then the fact that the task has been enqueued 370 * means that we continue to block the current grace period. 371 */ 372 rcu_preempt_qs(); 373 } 374 375 /* 376 * Check for preempted RCU readers blocking the current grace period 377 * for the specified rcu_node structure. If the caller needs a reliable 378 * answer, it must hold the rcu_node's ->lock. 379 */ 380 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 381 { 382 return rnp->gp_tasks != NULL; 383 } 384 385 /* 386 * Advance a ->blkd_tasks-list pointer to the next entry, instead 387 * returning NULL if at the end of the list. 388 */ 389 static struct list_head *rcu_next_node_entry(struct task_struct *t, 390 struct rcu_node *rnp) 391 { 392 struct list_head *np; 393 394 np = t->rcu_node_entry.next; 395 if (np == &rnp->blkd_tasks) 396 np = NULL; 397 return np; 398 } 399 400 /* 401 * Return true if the specified rcu_node structure has tasks that were 402 * preempted within an RCU read-side critical section. 403 */ 404 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 405 { 406 return !list_empty(&rnp->blkd_tasks); 407 } 408 409 /* 410 * Handle special cases during rcu_read_unlock(), such as needing to 411 * notify RCU core processing or task having blocked during the RCU 412 * read-side critical section. 413 */ 414 void rcu_read_unlock_special(struct task_struct *t) 415 { 416 bool empty_exp; 417 bool empty_norm; 418 bool empty_exp_now; 419 unsigned long flags; 420 struct list_head *np; 421 bool drop_boost_mutex = false; 422 struct rcu_data *rdp; 423 struct rcu_node *rnp; 424 union rcu_special special; 425 426 /* NMI handlers cannot block and cannot safely manipulate state. */ 427 if (in_nmi()) 428 return; 429 430 local_irq_save(flags); 431 432 /* 433 * If RCU core is waiting for this CPU to exit its critical section, 434 * report the fact that it has exited. Because irqs are disabled, 435 * t->rcu_read_unlock_special cannot change. 436 */ 437 special = t->rcu_read_unlock_special; 438 if (special.b.need_qs) { 439 rcu_preempt_qs(); 440 t->rcu_read_unlock_special.b.need_qs = false; 441 if (!t->rcu_read_unlock_special.s) { 442 local_irq_restore(flags); 443 return; 444 } 445 } 446 447 /* 448 * Respond to a request for an expedited grace period, but only if 449 * we were not preempted, meaning that we were running on the same 450 * CPU throughout. If we were preempted, the exp_need_qs flag 451 * would have been cleared at the time of the first preemption, 452 * and the quiescent state would be reported when we were dequeued. 453 */ 454 if (special.b.exp_need_qs) { 455 WARN_ON_ONCE(special.b.blocked); 456 t->rcu_read_unlock_special.b.exp_need_qs = false; 457 rdp = this_cpu_ptr(rcu_state_p->rda); 458 rcu_report_exp_rdp(rcu_state_p, rdp, true); 459 if (!t->rcu_read_unlock_special.s) { 460 local_irq_restore(flags); 461 return; 462 } 463 } 464 465 /* Hardware IRQ handlers cannot block, complain if they get here. */ 466 if (in_irq() || in_serving_softirq()) { 467 lockdep_rcu_suspicious(__FILE__, __LINE__, 468 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 469 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 470 t->rcu_read_unlock_special.s, 471 t->rcu_read_unlock_special.b.blocked, 472 t->rcu_read_unlock_special.b.exp_need_qs, 473 t->rcu_read_unlock_special.b.need_qs); 474 local_irq_restore(flags); 475 return; 476 } 477 478 /* Clean up if blocked during RCU read-side critical section. */ 479 if (special.b.blocked) { 480 t->rcu_read_unlock_special.b.blocked = false; 481 482 /* 483 * Remove this task from the list it blocked on. The task 484 * now remains queued on the rcu_node corresponding to the 485 * CPU it first blocked on, so there is no longer any need 486 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 487 */ 488 rnp = t->rcu_blocked_node; 489 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 490 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 491 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1); 492 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 493 empty_exp = sync_rcu_preempt_exp_done(rnp); 494 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 495 np = rcu_next_node_entry(t, rnp); 496 list_del_init(&t->rcu_node_entry); 497 t->rcu_blocked_node = NULL; 498 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 499 rnp->gpnum, t->pid); 500 if (&t->rcu_node_entry == rnp->gp_tasks) 501 rnp->gp_tasks = np; 502 if (&t->rcu_node_entry == rnp->exp_tasks) 503 rnp->exp_tasks = np; 504 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 505 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 506 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 507 if (&t->rcu_node_entry == rnp->boost_tasks) 508 rnp->boost_tasks = np; 509 } 510 511 /* 512 * If this was the last task on the current list, and if 513 * we aren't waiting on any CPUs, report the quiescent state. 514 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 515 * so we must take a snapshot of the expedited state. 516 */ 517 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 518 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 519 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 520 rnp->gpnum, 521 0, rnp->qsmask, 522 rnp->level, 523 rnp->grplo, 524 rnp->grphi, 525 !!rnp->gp_tasks); 526 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 527 } else { 528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 529 } 530 531 /* Unboost if we were boosted. */ 532 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 533 rt_mutex_unlock(&rnp->boost_mtx); 534 535 /* 536 * If this was the last task on the expedited lists, 537 * then we need to report up the rcu_node hierarchy. 538 */ 539 if (!empty_exp && empty_exp_now) 540 rcu_report_exp_rnp(rcu_state_p, rnp, true); 541 } else { 542 local_irq_restore(flags); 543 } 544 } 545 546 /* 547 * Dump detailed information for all tasks blocking the current RCU 548 * grace period on the specified rcu_node structure. 549 */ 550 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 551 { 552 unsigned long flags; 553 struct task_struct *t; 554 555 raw_spin_lock_irqsave_rcu_node(rnp, flags); 556 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 558 return; 559 } 560 t = list_entry(rnp->gp_tasks->prev, 561 struct task_struct, rcu_node_entry); 562 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 563 sched_show_task(t); 564 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 565 } 566 567 /* 568 * Dump detailed information for all tasks blocking the current RCU 569 * grace period. 570 */ 571 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 572 { 573 struct rcu_node *rnp = rcu_get_root(rsp); 574 575 rcu_print_detail_task_stall_rnp(rnp); 576 rcu_for_each_leaf_node(rsp, rnp) 577 rcu_print_detail_task_stall_rnp(rnp); 578 } 579 580 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 581 { 582 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 583 rnp->level, rnp->grplo, rnp->grphi); 584 } 585 586 static void rcu_print_task_stall_end(void) 587 { 588 pr_cont("\n"); 589 } 590 591 /* 592 * Scan the current list of tasks blocked within RCU read-side critical 593 * sections, printing out the tid of each. 594 */ 595 static int rcu_print_task_stall(struct rcu_node *rnp) 596 { 597 struct task_struct *t; 598 int ndetected = 0; 599 600 if (!rcu_preempt_blocked_readers_cgp(rnp)) 601 return 0; 602 rcu_print_task_stall_begin(rnp); 603 t = list_entry(rnp->gp_tasks->prev, 604 struct task_struct, rcu_node_entry); 605 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 606 pr_cont(" P%d", t->pid); 607 ndetected++; 608 } 609 rcu_print_task_stall_end(); 610 return ndetected; 611 } 612 613 /* 614 * Scan the current list of tasks blocked within RCU read-side critical 615 * sections, printing out the tid of each that is blocking the current 616 * expedited grace period. 617 */ 618 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 619 { 620 struct task_struct *t; 621 int ndetected = 0; 622 623 if (!rnp->exp_tasks) 624 return 0; 625 t = list_entry(rnp->exp_tasks->prev, 626 struct task_struct, rcu_node_entry); 627 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 628 pr_cont(" P%d", t->pid); 629 ndetected++; 630 } 631 return ndetected; 632 } 633 634 /* 635 * Check that the list of blocked tasks for the newly completed grace 636 * period is in fact empty. It is a serious bug to complete a grace 637 * period that still has RCU readers blocked! This function must be 638 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 639 * must be held by the caller. 640 * 641 * Also, if there are blocked tasks on the list, they automatically 642 * block the newly created grace period, so set up ->gp_tasks accordingly. 643 */ 644 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 645 { 646 struct task_struct *t; 647 648 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 649 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 650 if (rcu_preempt_has_tasks(rnp)) { 651 rnp->gp_tasks = rnp->blkd_tasks.next; 652 t = container_of(rnp->gp_tasks, struct task_struct, 653 rcu_node_entry); 654 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 655 rnp->gpnum, t->pid); 656 } 657 WARN_ON_ONCE(rnp->qsmask); 658 } 659 660 /* 661 * Check for a quiescent state from the current CPU. When a task blocks, 662 * the task is recorded in the corresponding CPU's rcu_node structure, 663 * which is checked elsewhere. 664 * 665 * Caller must disable hard irqs. 666 */ 667 static void rcu_preempt_check_callbacks(void) 668 { 669 struct task_struct *t = current; 670 671 if (t->rcu_read_lock_nesting == 0) { 672 rcu_preempt_qs(); 673 return; 674 } 675 if (t->rcu_read_lock_nesting > 0 && 676 __this_cpu_read(rcu_data_p->core_needs_qs) && 677 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 678 t->rcu_read_unlock_special.b.need_qs = true; 679 } 680 681 #ifdef CONFIG_RCU_BOOST 682 683 static void rcu_preempt_do_callbacks(void) 684 { 685 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 686 } 687 688 #endif /* #ifdef CONFIG_RCU_BOOST */ 689 690 /** 691 * call_rcu() - Queue an RCU callback for invocation after a grace period. 692 * @head: structure to be used for queueing the RCU updates. 693 * @func: actual callback function to be invoked after the grace period 694 * 695 * The callback function will be invoked some time after a full grace 696 * period elapses, in other words after all pre-existing RCU read-side 697 * critical sections have completed. However, the callback function 698 * might well execute concurrently with RCU read-side critical sections 699 * that started after call_rcu() was invoked. RCU read-side critical 700 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 701 * and may be nested. 702 * 703 * Note that all CPUs must agree that the grace period extended beyond 704 * all pre-existing RCU read-side critical section. On systems with more 705 * than one CPU, this means that when "func()" is invoked, each CPU is 706 * guaranteed to have executed a full memory barrier since the end of its 707 * last RCU read-side critical section whose beginning preceded the call 708 * to call_rcu(). It also means that each CPU executing an RCU read-side 709 * critical section that continues beyond the start of "func()" must have 710 * executed a memory barrier after the call_rcu() but before the beginning 711 * of that RCU read-side critical section. Note that these guarantees 712 * include CPUs that are offline, idle, or executing in user mode, as 713 * well as CPUs that are executing in the kernel. 714 * 715 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 716 * resulting RCU callback function "func()", then both CPU A and CPU B are 717 * guaranteed to execute a full memory barrier during the time interval 718 * between the call to call_rcu() and the invocation of "func()" -- even 719 * if CPU A and CPU B are the same CPU (but again only if the system has 720 * more than one CPU). 721 */ 722 void call_rcu(struct rcu_head *head, rcu_callback_t func) 723 { 724 __call_rcu(head, func, rcu_state_p, -1, 0); 725 } 726 EXPORT_SYMBOL_GPL(call_rcu); 727 728 /** 729 * synchronize_rcu - wait until a grace period has elapsed. 730 * 731 * Control will return to the caller some time after a full grace 732 * period has elapsed, in other words after all currently executing RCU 733 * read-side critical sections have completed. Note, however, that 734 * upon return from synchronize_rcu(), the caller might well be executing 735 * concurrently with new RCU read-side critical sections that began while 736 * synchronize_rcu() was waiting. RCU read-side critical sections are 737 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 738 * 739 * See the description of synchronize_sched() for more detailed 740 * information on memory-ordering guarantees. However, please note 741 * that -only- the memory-ordering guarantees apply. For example, 742 * synchronize_rcu() is -not- guaranteed to wait on things like code 743 * protected by preempt_disable(), instead, synchronize_rcu() is -only- 744 * guaranteed to wait on RCU read-side critical sections, that is, sections 745 * of code protected by rcu_read_lock(). 746 */ 747 void synchronize_rcu(void) 748 { 749 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 750 lock_is_held(&rcu_lock_map) || 751 lock_is_held(&rcu_sched_lock_map), 752 "Illegal synchronize_rcu() in RCU read-side critical section"); 753 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 754 return; 755 if (rcu_gp_is_expedited()) 756 synchronize_rcu_expedited(); 757 else 758 wait_rcu_gp(call_rcu); 759 } 760 EXPORT_SYMBOL_GPL(synchronize_rcu); 761 762 /** 763 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 764 * 765 * Note that this primitive does not necessarily wait for an RCU grace period 766 * to complete. For example, if there are no RCU callbacks queued anywhere 767 * in the system, then rcu_barrier() is within its rights to return 768 * immediately, without waiting for anything, much less an RCU grace period. 769 */ 770 void rcu_barrier(void) 771 { 772 _rcu_barrier(rcu_state_p); 773 } 774 EXPORT_SYMBOL_GPL(rcu_barrier); 775 776 /* 777 * Initialize preemptible RCU's state structures. 778 */ 779 static void __init __rcu_init_preempt(void) 780 { 781 rcu_init_one(rcu_state_p); 782 } 783 784 /* 785 * Check for a task exiting while in a preemptible-RCU read-side 786 * critical section, clean up if so. No need to issue warnings, 787 * as debug_check_no_locks_held() already does this if lockdep 788 * is enabled. 789 */ 790 void exit_rcu(void) 791 { 792 struct task_struct *t = current; 793 794 if (likely(list_empty(¤t->rcu_node_entry))) 795 return; 796 t->rcu_read_lock_nesting = 1; 797 barrier(); 798 t->rcu_read_unlock_special.b.blocked = true; 799 __rcu_read_unlock(); 800 } 801 802 #else /* #ifdef CONFIG_PREEMPT_RCU */ 803 804 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 805 806 /* 807 * Tell them what RCU they are running. 808 */ 809 static void __init rcu_bootup_announce(void) 810 { 811 pr_info("Hierarchical RCU implementation.\n"); 812 rcu_bootup_announce_oddness(); 813 } 814 815 /* 816 * Because preemptible RCU does not exist, we never have to check for 817 * CPUs being in quiescent states. 818 */ 819 static void rcu_preempt_note_context_switch(bool preempt) 820 { 821 } 822 823 /* 824 * Because preemptible RCU does not exist, there are never any preempted 825 * RCU readers. 826 */ 827 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 828 { 829 return 0; 830 } 831 832 /* 833 * Because there is no preemptible RCU, there can be no readers blocked. 834 */ 835 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 836 { 837 return false; 838 } 839 840 /* 841 * Because preemptible RCU does not exist, we never have to check for 842 * tasks blocked within RCU read-side critical sections. 843 */ 844 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 845 { 846 } 847 848 /* 849 * Because preemptible RCU does not exist, we never have to check for 850 * tasks blocked within RCU read-side critical sections. 851 */ 852 static int rcu_print_task_stall(struct rcu_node *rnp) 853 { 854 return 0; 855 } 856 857 /* 858 * Because preemptible RCU does not exist, we never have to check for 859 * tasks blocked within RCU read-side critical sections that are 860 * blocking the current expedited grace period. 861 */ 862 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 863 { 864 return 0; 865 } 866 867 /* 868 * Because there is no preemptible RCU, there can be no readers blocked, 869 * so there is no need to check for blocked tasks. So check only for 870 * bogus qsmask values. 871 */ 872 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 873 { 874 WARN_ON_ONCE(rnp->qsmask); 875 } 876 877 /* 878 * Because preemptible RCU does not exist, it never has any callbacks 879 * to check. 880 */ 881 static void rcu_preempt_check_callbacks(void) 882 { 883 } 884 885 /* 886 * Because preemptible RCU does not exist, rcu_barrier() is just 887 * another name for rcu_barrier_sched(). 888 */ 889 void rcu_barrier(void) 890 { 891 rcu_barrier_sched(); 892 } 893 EXPORT_SYMBOL_GPL(rcu_barrier); 894 895 /* 896 * Because preemptible RCU does not exist, it need not be initialized. 897 */ 898 static void __init __rcu_init_preempt(void) 899 { 900 } 901 902 /* 903 * Because preemptible RCU does not exist, tasks cannot possibly exit 904 * while in preemptible RCU read-side critical sections. 905 */ 906 void exit_rcu(void) 907 { 908 } 909 910 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 911 912 #ifdef CONFIG_RCU_BOOST 913 914 #include "../locking/rtmutex_common.h" 915 916 static void rcu_wake_cond(struct task_struct *t, int status) 917 { 918 /* 919 * If the thread is yielding, only wake it when this 920 * is invoked from idle 921 */ 922 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 923 wake_up_process(t); 924 } 925 926 /* 927 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 928 * or ->boost_tasks, advancing the pointer to the next task in the 929 * ->blkd_tasks list. 930 * 931 * Note that irqs must be enabled: boosting the task can block. 932 * Returns 1 if there are more tasks needing to be boosted. 933 */ 934 static int rcu_boost(struct rcu_node *rnp) 935 { 936 unsigned long flags; 937 struct task_struct *t; 938 struct list_head *tb; 939 940 if (READ_ONCE(rnp->exp_tasks) == NULL && 941 READ_ONCE(rnp->boost_tasks) == NULL) 942 return 0; /* Nothing left to boost. */ 943 944 raw_spin_lock_irqsave_rcu_node(rnp, flags); 945 946 /* 947 * Recheck under the lock: all tasks in need of boosting 948 * might exit their RCU read-side critical sections on their own. 949 */ 950 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 951 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 952 return 0; 953 } 954 955 /* 956 * Preferentially boost tasks blocking expedited grace periods. 957 * This cannot starve the normal grace periods because a second 958 * expedited grace period must boost all blocked tasks, including 959 * those blocking the pre-existing normal grace period. 960 */ 961 if (rnp->exp_tasks != NULL) { 962 tb = rnp->exp_tasks; 963 rnp->n_exp_boosts++; 964 } else { 965 tb = rnp->boost_tasks; 966 rnp->n_normal_boosts++; 967 } 968 rnp->n_tasks_boosted++; 969 970 /* 971 * We boost task t by manufacturing an rt_mutex that appears to 972 * be held by task t. We leave a pointer to that rt_mutex where 973 * task t can find it, and task t will release the mutex when it 974 * exits its outermost RCU read-side critical section. Then 975 * simply acquiring this artificial rt_mutex will boost task 976 * t's priority. (Thanks to tglx for suggesting this approach!) 977 * 978 * Note that task t must acquire rnp->lock to remove itself from 979 * the ->blkd_tasks list, which it will do from exit() if from 980 * nowhere else. We therefore are guaranteed that task t will 981 * stay around at least until we drop rnp->lock. Note that 982 * rnp->lock also resolves races between our priority boosting 983 * and task t's exiting its outermost RCU read-side critical 984 * section. 985 */ 986 t = container_of(tb, struct task_struct, rcu_node_entry); 987 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 988 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 989 /* Lock only for side effect: boosts task t's priority. */ 990 rt_mutex_lock(&rnp->boost_mtx); 991 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 992 993 return READ_ONCE(rnp->exp_tasks) != NULL || 994 READ_ONCE(rnp->boost_tasks) != NULL; 995 } 996 997 /* 998 * Priority-boosting kthread, one per leaf rcu_node. 999 */ 1000 static int rcu_boost_kthread(void *arg) 1001 { 1002 struct rcu_node *rnp = (struct rcu_node *)arg; 1003 int spincnt = 0; 1004 int more2boost; 1005 1006 trace_rcu_utilization(TPS("Start boost kthread@init")); 1007 for (;;) { 1008 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1009 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1010 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1011 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1012 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1013 more2boost = rcu_boost(rnp); 1014 if (more2boost) 1015 spincnt++; 1016 else 1017 spincnt = 0; 1018 if (spincnt > 10) { 1019 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1020 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1021 schedule_timeout_interruptible(2); 1022 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1023 spincnt = 0; 1024 } 1025 } 1026 /* NOTREACHED */ 1027 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1028 return 0; 1029 } 1030 1031 /* 1032 * Check to see if it is time to start boosting RCU readers that are 1033 * blocking the current grace period, and, if so, tell the per-rcu_node 1034 * kthread to start boosting them. If there is an expedited grace 1035 * period in progress, it is always time to boost. 1036 * 1037 * The caller must hold rnp->lock, which this function releases. 1038 * The ->boost_kthread_task is immortal, so we don't need to worry 1039 * about it going away. 1040 */ 1041 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1042 __releases(rnp->lock) 1043 { 1044 struct task_struct *t; 1045 1046 lockdep_assert_held(&rnp->lock); 1047 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1048 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1049 return; 1050 } 1051 if (rnp->exp_tasks != NULL || 1052 (rnp->gp_tasks != NULL && 1053 rnp->boost_tasks == NULL && 1054 rnp->qsmask == 0 && 1055 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1056 if (rnp->exp_tasks == NULL) 1057 rnp->boost_tasks = rnp->gp_tasks; 1058 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1059 t = rnp->boost_kthread_task; 1060 if (t) 1061 rcu_wake_cond(t, rnp->boost_kthread_status); 1062 } else { 1063 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1064 } 1065 } 1066 1067 /* 1068 * Wake up the per-CPU kthread to invoke RCU callbacks. 1069 */ 1070 static void invoke_rcu_callbacks_kthread(void) 1071 { 1072 unsigned long flags; 1073 1074 local_irq_save(flags); 1075 __this_cpu_write(rcu_cpu_has_work, 1); 1076 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1077 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1078 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1079 __this_cpu_read(rcu_cpu_kthread_status)); 1080 } 1081 local_irq_restore(flags); 1082 } 1083 1084 /* 1085 * Is the current CPU running the RCU-callbacks kthread? 1086 * Caller must have preemption disabled. 1087 */ 1088 static bool rcu_is_callbacks_kthread(void) 1089 { 1090 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1091 } 1092 1093 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1094 1095 /* 1096 * Do priority-boost accounting for the start of a new grace period. 1097 */ 1098 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1099 { 1100 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1101 } 1102 1103 /* 1104 * Create an RCU-boost kthread for the specified node if one does not 1105 * already exist. We only create this kthread for preemptible RCU. 1106 * Returns zero if all is well, a negated errno otherwise. 1107 */ 1108 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1109 struct rcu_node *rnp) 1110 { 1111 int rnp_index = rnp - &rsp->node[0]; 1112 unsigned long flags; 1113 struct sched_param sp; 1114 struct task_struct *t; 1115 1116 if (rcu_state_p != rsp) 1117 return 0; 1118 1119 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1120 return 0; 1121 1122 rsp->boost = 1; 1123 if (rnp->boost_kthread_task != NULL) 1124 return 0; 1125 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1126 "rcub/%d", rnp_index); 1127 if (IS_ERR(t)) 1128 return PTR_ERR(t); 1129 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1130 rnp->boost_kthread_task = t; 1131 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1132 sp.sched_priority = kthread_prio; 1133 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1134 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1135 return 0; 1136 } 1137 1138 static void rcu_kthread_do_work(void) 1139 { 1140 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1141 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1142 rcu_preempt_do_callbacks(); 1143 } 1144 1145 static void rcu_cpu_kthread_setup(unsigned int cpu) 1146 { 1147 struct sched_param sp; 1148 1149 sp.sched_priority = kthread_prio; 1150 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1151 } 1152 1153 static void rcu_cpu_kthread_park(unsigned int cpu) 1154 { 1155 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1156 } 1157 1158 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1159 { 1160 return __this_cpu_read(rcu_cpu_has_work); 1161 } 1162 1163 /* 1164 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1165 * RCU softirq used in flavors and configurations of RCU that do not 1166 * support RCU priority boosting. 1167 */ 1168 static void rcu_cpu_kthread(unsigned int cpu) 1169 { 1170 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1171 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1172 int spincnt; 1173 1174 for (spincnt = 0; spincnt < 10; spincnt++) { 1175 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1176 local_bh_disable(); 1177 *statusp = RCU_KTHREAD_RUNNING; 1178 this_cpu_inc(rcu_cpu_kthread_loops); 1179 local_irq_disable(); 1180 work = *workp; 1181 *workp = 0; 1182 local_irq_enable(); 1183 if (work) 1184 rcu_kthread_do_work(); 1185 local_bh_enable(); 1186 if (*workp == 0) { 1187 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1188 *statusp = RCU_KTHREAD_WAITING; 1189 return; 1190 } 1191 } 1192 *statusp = RCU_KTHREAD_YIELDING; 1193 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1194 schedule_timeout_interruptible(2); 1195 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1196 *statusp = RCU_KTHREAD_WAITING; 1197 } 1198 1199 /* 1200 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1201 * served by the rcu_node in question. The CPU hotplug lock is still 1202 * held, so the value of rnp->qsmaskinit will be stable. 1203 * 1204 * We don't include outgoingcpu in the affinity set, use -1 if there is 1205 * no outgoing CPU. If there are no CPUs left in the affinity set, 1206 * this function allows the kthread to execute on any CPU. 1207 */ 1208 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1209 { 1210 struct task_struct *t = rnp->boost_kthread_task; 1211 unsigned long mask = rcu_rnp_online_cpus(rnp); 1212 cpumask_var_t cm; 1213 int cpu; 1214 1215 if (!t) 1216 return; 1217 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1218 return; 1219 for_each_leaf_node_possible_cpu(rnp, cpu) 1220 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1221 cpu != outgoingcpu) 1222 cpumask_set_cpu(cpu, cm); 1223 if (cpumask_weight(cm) == 0) 1224 cpumask_setall(cm); 1225 set_cpus_allowed_ptr(t, cm); 1226 free_cpumask_var(cm); 1227 } 1228 1229 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1230 .store = &rcu_cpu_kthread_task, 1231 .thread_should_run = rcu_cpu_kthread_should_run, 1232 .thread_fn = rcu_cpu_kthread, 1233 .thread_comm = "rcuc/%u", 1234 .setup = rcu_cpu_kthread_setup, 1235 .park = rcu_cpu_kthread_park, 1236 }; 1237 1238 /* 1239 * Spawn boost kthreads -- called as soon as the scheduler is running. 1240 */ 1241 static void __init rcu_spawn_boost_kthreads(void) 1242 { 1243 struct rcu_node *rnp; 1244 int cpu; 1245 1246 for_each_possible_cpu(cpu) 1247 per_cpu(rcu_cpu_has_work, cpu) = 0; 1248 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1249 rcu_for_each_leaf_node(rcu_state_p, rnp) 1250 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1251 } 1252 1253 static void rcu_prepare_kthreads(int cpu) 1254 { 1255 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1256 struct rcu_node *rnp = rdp->mynode; 1257 1258 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1259 if (rcu_scheduler_fully_active) 1260 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1261 } 1262 1263 #else /* #ifdef CONFIG_RCU_BOOST */ 1264 1265 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1266 __releases(rnp->lock) 1267 { 1268 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1269 } 1270 1271 static void invoke_rcu_callbacks_kthread(void) 1272 { 1273 WARN_ON_ONCE(1); 1274 } 1275 1276 static bool rcu_is_callbacks_kthread(void) 1277 { 1278 return false; 1279 } 1280 1281 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1282 { 1283 } 1284 1285 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1286 { 1287 } 1288 1289 static void __init rcu_spawn_boost_kthreads(void) 1290 { 1291 } 1292 1293 static void rcu_prepare_kthreads(int cpu) 1294 { 1295 } 1296 1297 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1298 1299 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1300 1301 /* 1302 * Check to see if any future RCU-related work will need to be done 1303 * by the current CPU, even if none need be done immediately, returning 1304 * 1 if so. This function is part of the RCU implementation; it is -not- 1305 * an exported member of the RCU API. 1306 * 1307 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1308 * any flavor of RCU. 1309 */ 1310 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1311 { 1312 *nextevt = KTIME_MAX; 1313 return rcu_cpu_has_callbacks(NULL); 1314 } 1315 1316 /* 1317 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1318 * after it. 1319 */ 1320 static void rcu_cleanup_after_idle(void) 1321 { 1322 } 1323 1324 /* 1325 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1326 * is nothing. 1327 */ 1328 static void rcu_prepare_for_idle(void) 1329 { 1330 } 1331 1332 /* 1333 * Don't bother keeping a running count of the number of RCU callbacks 1334 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1335 */ 1336 static void rcu_idle_count_callbacks_posted(void) 1337 { 1338 } 1339 1340 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1341 1342 /* 1343 * This code is invoked when a CPU goes idle, at which point we want 1344 * to have the CPU do everything required for RCU so that it can enter 1345 * the energy-efficient dyntick-idle mode. This is handled by a 1346 * state machine implemented by rcu_prepare_for_idle() below. 1347 * 1348 * The following three proprocessor symbols control this state machine: 1349 * 1350 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1351 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1352 * is sized to be roughly one RCU grace period. Those energy-efficiency 1353 * benchmarkers who might otherwise be tempted to set this to a large 1354 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1355 * system. And if you are -that- concerned about energy efficiency, 1356 * just power the system down and be done with it! 1357 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1358 * permitted to sleep in dyntick-idle mode with only lazy RCU 1359 * callbacks pending. Setting this too high can OOM your system. 1360 * 1361 * The values below work well in practice. If future workloads require 1362 * adjustment, they can be converted into kernel config parameters, though 1363 * making the state machine smarter might be a better option. 1364 */ 1365 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1366 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1367 1368 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1369 module_param(rcu_idle_gp_delay, int, 0644); 1370 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1371 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1372 1373 /* 1374 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1375 * only if it has been awhile since the last time we did so. Afterwards, 1376 * if there are any callbacks ready for immediate invocation, return true. 1377 */ 1378 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1379 { 1380 bool cbs_ready = false; 1381 struct rcu_data *rdp; 1382 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1383 struct rcu_node *rnp; 1384 struct rcu_state *rsp; 1385 1386 /* Exit early if we advanced recently. */ 1387 if (jiffies == rdtp->last_advance_all) 1388 return false; 1389 rdtp->last_advance_all = jiffies; 1390 1391 for_each_rcu_flavor(rsp) { 1392 rdp = this_cpu_ptr(rsp->rda); 1393 rnp = rdp->mynode; 1394 1395 /* 1396 * Don't bother checking unless a grace period has 1397 * completed since we last checked and there are 1398 * callbacks not yet ready to invoke. 1399 */ 1400 if ((rdp->completed != rnp->completed || 1401 unlikely(READ_ONCE(rdp->gpwrap))) && 1402 rcu_segcblist_pend_cbs(&rdp->cblist)) 1403 note_gp_changes(rsp, rdp); 1404 1405 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1406 cbs_ready = true; 1407 } 1408 return cbs_ready; 1409 } 1410 1411 /* 1412 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1413 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1414 * caller to set the timeout based on whether or not there are non-lazy 1415 * callbacks. 1416 * 1417 * The caller must have disabled interrupts. 1418 */ 1419 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1420 { 1421 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1422 unsigned long dj; 1423 1424 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!"); 1425 1426 /* Snapshot to detect later posting of non-lazy callback. */ 1427 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1428 1429 /* If no callbacks, RCU doesn't need the CPU. */ 1430 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1431 *nextevt = KTIME_MAX; 1432 return 0; 1433 } 1434 1435 /* Attempt to advance callbacks. */ 1436 if (rcu_try_advance_all_cbs()) { 1437 /* Some ready to invoke, so initiate later invocation. */ 1438 invoke_rcu_core(); 1439 return 1; 1440 } 1441 rdtp->last_accelerate = jiffies; 1442 1443 /* Request timer delay depending on laziness, and round. */ 1444 if (!rdtp->all_lazy) { 1445 dj = round_up(rcu_idle_gp_delay + jiffies, 1446 rcu_idle_gp_delay) - jiffies; 1447 } else { 1448 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1449 } 1450 *nextevt = basemono + dj * TICK_NSEC; 1451 return 0; 1452 } 1453 1454 /* 1455 * Prepare a CPU for idle from an RCU perspective. The first major task 1456 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1457 * The second major task is to check to see if a non-lazy callback has 1458 * arrived at a CPU that previously had only lazy callbacks. The third 1459 * major task is to accelerate (that is, assign grace-period numbers to) 1460 * any recently arrived callbacks. 1461 * 1462 * The caller must have disabled interrupts. 1463 */ 1464 static void rcu_prepare_for_idle(void) 1465 { 1466 bool needwake; 1467 struct rcu_data *rdp; 1468 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1469 struct rcu_node *rnp; 1470 struct rcu_state *rsp; 1471 int tne; 1472 1473 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!"); 1474 if (rcu_is_nocb_cpu(smp_processor_id())) 1475 return; 1476 1477 /* Handle nohz enablement switches conservatively. */ 1478 tne = READ_ONCE(tick_nohz_active); 1479 if (tne != rdtp->tick_nohz_enabled_snap) { 1480 if (rcu_cpu_has_callbacks(NULL)) 1481 invoke_rcu_core(); /* force nohz to see update. */ 1482 rdtp->tick_nohz_enabled_snap = tne; 1483 return; 1484 } 1485 if (!tne) 1486 return; 1487 1488 /* 1489 * If a non-lazy callback arrived at a CPU having only lazy 1490 * callbacks, invoke RCU core for the side-effect of recalculating 1491 * idle duration on re-entry to idle. 1492 */ 1493 if (rdtp->all_lazy && 1494 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1495 rdtp->all_lazy = false; 1496 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1497 invoke_rcu_core(); 1498 return; 1499 } 1500 1501 /* 1502 * If we have not yet accelerated this jiffy, accelerate all 1503 * callbacks on this CPU. 1504 */ 1505 if (rdtp->last_accelerate == jiffies) 1506 return; 1507 rdtp->last_accelerate = jiffies; 1508 for_each_rcu_flavor(rsp) { 1509 rdp = this_cpu_ptr(rsp->rda); 1510 if (rcu_segcblist_pend_cbs(&rdp->cblist)) 1511 continue; 1512 rnp = rdp->mynode; 1513 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1514 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1515 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1516 if (needwake) 1517 rcu_gp_kthread_wake(rsp); 1518 } 1519 } 1520 1521 /* 1522 * Clean up for exit from idle. Attempt to advance callbacks based on 1523 * any grace periods that elapsed while the CPU was idle, and if any 1524 * callbacks are now ready to invoke, initiate invocation. 1525 */ 1526 static void rcu_cleanup_after_idle(void) 1527 { 1528 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!"); 1529 if (rcu_is_nocb_cpu(smp_processor_id())) 1530 return; 1531 if (rcu_try_advance_all_cbs()) 1532 invoke_rcu_core(); 1533 } 1534 1535 /* 1536 * Keep a running count of the number of non-lazy callbacks posted 1537 * on this CPU. This running counter (which is never decremented) allows 1538 * rcu_prepare_for_idle() to detect when something out of the idle loop 1539 * posts a callback, even if an equal number of callbacks are invoked. 1540 * Of course, callbacks should only be posted from within a trace event 1541 * designed to be called from idle or from within RCU_NONIDLE(). 1542 */ 1543 static void rcu_idle_count_callbacks_posted(void) 1544 { 1545 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1546 } 1547 1548 /* 1549 * Data for flushing lazy RCU callbacks at OOM time. 1550 */ 1551 static atomic_t oom_callback_count; 1552 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1553 1554 /* 1555 * RCU OOM callback -- decrement the outstanding count and deliver the 1556 * wake-up if we are the last one. 1557 */ 1558 static void rcu_oom_callback(struct rcu_head *rhp) 1559 { 1560 if (atomic_dec_and_test(&oom_callback_count)) 1561 wake_up(&oom_callback_wq); 1562 } 1563 1564 /* 1565 * Post an rcu_oom_notify callback on the current CPU if it has at 1566 * least one lazy callback. This will unnecessarily post callbacks 1567 * to CPUs that already have a non-lazy callback at the end of their 1568 * callback list, but this is an infrequent operation, so accept some 1569 * extra overhead to keep things simple. 1570 */ 1571 static void rcu_oom_notify_cpu(void *unused) 1572 { 1573 struct rcu_state *rsp; 1574 struct rcu_data *rdp; 1575 1576 for_each_rcu_flavor(rsp) { 1577 rdp = raw_cpu_ptr(rsp->rda); 1578 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { 1579 atomic_inc(&oom_callback_count); 1580 rsp->call(&rdp->oom_head, rcu_oom_callback); 1581 } 1582 } 1583 } 1584 1585 /* 1586 * If low on memory, ensure that each CPU has a non-lazy callback. 1587 * This will wake up CPUs that have only lazy callbacks, in turn 1588 * ensuring that they free up the corresponding memory in a timely manner. 1589 * Because an uncertain amount of memory will be freed in some uncertain 1590 * timeframe, we do not claim to have freed anything. 1591 */ 1592 static int rcu_oom_notify(struct notifier_block *self, 1593 unsigned long notused, void *nfreed) 1594 { 1595 int cpu; 1596 1597 /* Wait for callbacks from earlier instance to complete. */ 1598 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1599 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1600 1601 /* 1602 * Prevent premature wakeup: ensure that all increments happen 1603 * before there is a chance of the counter reaching zero. 1604 */ 1605 atomic_set(&oom_callback_count, 1); 1606 1607 for_each_online_cpu(cpu) { 1608 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1609 cond_resched_rcu_qs(); 1610 } 1611 1612 /* Unconditionally decrement: no need to wake ourselves up. */ 1613 atomic_dec(&oom_callback_count); 1614 1615 return NOTIFY_OK; 1616 } 1617 1618 static struct notifier_block rcu_oom_nb = { 1619 .notifier_call = rcu_oom_notify 1620 }; 1621 1622 static int __init rcu_register_oom_notifier(void) 1623 { 1624 register_oom_notifier(&rcu_oom_nb); 1625 return 0; 1626 } 1627 early_initcall(rcu_register_oom_notifier); 1628 1629 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1630 1631 #ifdef CONFIG_RCU_FAST_NO_HZ 1632 1633 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1634 { 1635 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1636 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1637 1638 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1639 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1640 ulong2long(nlpd), 1641 rdtp->all_lazy ? 'L' : '.', 1642 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1643 } 1644 1645 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1646 1647 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1648 { 1649 *cp = '\0'; 1650 } 1651 1652 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1653 1654 /* Initiate the stall-info list. */ 1655 static void print_cpu_stall_info_begin(void) 1656 { 1657 pr_cont("\n"); 1658 } 1659 1660 /* 1661 * Print out diagnostic information for the specified stalled CPU. 1662 * 1663 * If the specified CPU is aware of the current RCU grace period 1664 * (flavor specified by rsp), then print the number of scheduling 1665 * clock interrupts the CPU has taken during the time that it has 1666 * been aware. Otherwise, print the number of RCU grace periods 1667 * that this CPU is ignorant of, for example, "1" if the CPU was 1668 * aware of the previous grace period. 1669 * 1670 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1671 */ 1672 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1673 { 1674 char fast_no_hz[72]; 1675 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1676 struct rcu_dynticks *rdtp = rdp->dynticks; 1677 char *ticks_title; 1678 unsigned long ticks_value; 1679 1680 if (rsp->gpnum == rdp->gpnum) { 1681 ticks_title = "ticks this GP"; 1682 ticks_value = rdp->ticks_this_gp; 1683 } else { 1684 ticks_title = "GPs behind"; 1685 ticks_value = rsp->gpnum - rdp->gpnum; 1686 } 1687 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1688 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1689 cpu, 1690 "O."[!!cpu_online(cpu)], 1691 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1692 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1693 ticks_value, ticks_title, 1694 rcu_dynticks_snap(rdtp) & 0xfff, 1695 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1696 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1697 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1698 fast_no_hz); 1699 } 1700 1701 /* Terminate the stall-info list. */ 1702 static void print_cpu_stall_info_end(void) 1703 { 1704 pr_err("\t"); 1705 } 1706 1707 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1708 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1709 { 1710 rdp->ticks_this_gp = 0; 1711 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1712 } 1713 1714 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1715 static void increment_cpu_stall_ticks(void) 1716 { 1717 struct rcu_state *rsp; 1718 1719 for_each_rcu_flavor(rsp) 1720 raw_cpu_inc(rsp->rda->ticks_this_gp); 1721 } 1722 1723 #ifdef CONFIG_RCU_NOCB_CPU 1724 1725 /* 1726 * Offload callback processing from the boot-time-specified set of CPUs 1727 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1728 * kthread created that pulls the callbacks from the corresponding CPU, 1729 * waits for a grace period to elapse, and invokes the callbacks. 1730 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1731 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1732 * has been specified, in which case each kthread actively polls its 1733 * CPU. (Which isn't so great for energy efficiency, but which does 1734 * reduce RCU's overhead on that CPU.) 1735 * 1736 * This is intended to be used in conjunction with Frederic Weisbecker's 1737 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1738 * running CPU-bound user-mode computations. 1739 * 1740 * Offloading of callback processing could also in theory be used as 1741 * an energy-efficiency measure because CPUs with no RCU callbacks 1742 * queued are more aggressive about entering dyntick-idle mode. 1743 */ 1744 1745 1746 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1747 static int __init rcu_nocb_setup(char *str) 1748 { 1749 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1750 have_rcu_nocb_mask = true; 1751 cpulist_parse(str, rcu_nocb_mask); 1752 return 1; 1753 } 1754 __setup("rcu_nocbs=", rcu_nocb_setup); 1755 1756 static int __init parse_rcu_nocb_poll(char *arg) 1757 { 1758 rcu_nocb_poll = true; 1759 return 0; 1760 } 1761 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1762 1763 /* 1764 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1765 * grace period. 1766 */ 1767 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1768 { 1769 swake_up_all(sq); 1770 } 1771 1772 /* 1773 * Set the root rcu_node structure's ->need_future_gp field 1774 * based on the sum of those of all rcu_node structures. This does 1775 * double-count the root rcu_node structure's requests, but this 1776 * is necessary to handle the possibility of a rcu_nocb_kthread() 1777 * having awakened during the time that the rcu_node structures 1778 * were being updated for the end of the previous grace period. 1779 */ 1780 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1781 { 1782 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1783 } 1784 1785 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1786 { 1787 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1788 } 1789 1790 static void rcu_init_one_nocb(struct rcu_node *rnp) 1791 { 1792 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1793 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1794 } 1795 1796 /* Is the specified CPU a no-CBs CPU? */ 1797 bool rcu_is_nocb_cpu(int cpu) 1798 { 1799 if (have_rcu_nocb_mask) 1800 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1801 return false; 1802 } 1803 1804 /* 1805 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock 1806 * and this function releases it. 1807 */ 1808 static void __wake_nocb_leader(struct rcu_data *rdp, bool force, 1809 unsigned long flags) 1810 __releases(rdp->nocb_lock) 1811 { 1812 struct rcu_data *rdp_leader = rdp->nocb_leader; 1813 1814 lockdep_assert_held(&rdp->nocb_lock); 1815 if (!READ_ONCE(rdp_leader->nocb_kthread)) { 1816 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1817 return; 1818 } 1819 if (rdp_leader->nocb_leader_sleep || force) { 1820 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1821 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1822 del_timer(&rdp->nocb_timer); 1823 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1824 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */ 1825 swake_up(&rdp_leader->nocb_wq); 1826 } else { 1827 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1828 } 1829 } 1830 1831 /* 1832 * Kick the leader kthread for this NOCB group, but caller has not 1833 * acquired locks. 1834 */ 1835 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1836 { 1837 unsigned long flags; 1838 1839 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1840 __wake_nocb_leader(rdp, force, flags); 1841 } 1842 1843 /* 1844 * Arrange to wake the leader kthread for this NOCB group at some 1845 * future time when it is safe to do so. 1846 */ 1847 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, 1848 const char *reason) 1849 { 1850 unsigned long flags; 1851 1852 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1853 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1854 mod_timer(&rdp->nocb_timer, jiffies + 1); 1855 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1856 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason); 1857 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1858 } 1859 1860 /* 1861 * Does the specified CPU need an RCU callback for the specified flavor 1862 * of rcu_barrier()? 1863 */ 1864 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1865 { 1866 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1867 unsigned long ret; 1868 #ifdef CONFIG_PROVE_RCU 1869 struct rcu_head *rhp; 1870 #endif /* #ifdef CONFIG_PROVE_RCU */ 1871 1872 /* 1873 * Check count of all no-CBs callbacks awaiting invocation. 1874 * There needs to be a barrier before this function is called, 1875 * but associated with a prior determination that no more 1876 * callbacks would be posted. In the worst case, the first 1877 * barrier in _rcu_barrier() suffices (but the caller cannot 1878 * necessarily rely on this, not a substitute for the caller 1879 * getting the concurrency design right!). There must also be 1880 * a barrier between the following load an posting of a callback 1881 * (if a callback is in fact needed). This is associated with an 1882 * atomic_inc() in the caller. 1883 */ 1884 ret = atomic_long_read(&rdp->nocb_q_count); 1885 1886 #ifdef CONFIG_PROVE_RCU 1887 rhp = READ_ONCE(rdp->nocb_head); 1888 if (!rhp) 1889 rhp = READ_ONCE(rdp->nocb_gp_head); 1890 if (!rhp) 1891 rhp = READ_ONCE(rdp->nocb_follower_head); 1892 1893 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1894 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1895 rcu_scheduler_fully_active) { 1896 /* RCU callback enqueued before CPU first came online??? */ 1897 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1898 cpu, rhp->func); 1899 WARN_ON_ONCE(1); 1900 } 1901 #endif /* #ifdef CONFIG_PROVE_RCU */ 1902 1903 return !!ret; 1904 } 1905 1906 /* 1907 * Enqueue the specified string of rcu_head structures onto the specified 1908 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1909 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1910 * counts are supplied by rhcount and rhcount_lazy. 1911 * 1912 * If warranted, also wake up the kthread servicing this CPUs queues. 1913 */ 1914 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1915 struct rcu_head *rhp, 1916 struct rcu_head **rhtp, 1917 int rhcount, int rhcount_lazy, 1918 unsigned long flags) 1919 { 1920 int len; 1921 struct rcu_head **old_rhpp; 1922 struct task_struct *t; 1923 1924 /* Enqueue the callback on the nocb list and update counts. */ 1925 atomic_long_add(rhcount, &rdp->nocb_q_count); 1926 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1927 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1928 WRITE_ONCE(*old_rhpp, rhp); 1929 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1930 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1931 1932 /* If we are not being polled and there is a kthread, awaken it ... */ 1933 t = READ_ONCE(rdp->nocb_kthread); 1934 if (rcu_nocb_poll || !t) { 1935 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1936 TPS("WakeNotPoll")); 1937 return; 1938 } 1939 len = atomic_long_read(&rdp->nocb_q_count); 1940 if (old_rhpp == &rdp->nocb_head) { 1941 if (!irqs_disabled_flags(flags)) { 1942 /* ... if queue was empty ... */ 1943 wake_nocb_leader(rdp, false); 1944 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1945 TPS("WakeEmpty")); 1946 } else { 1947 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 1948 TPS("WakeEmptyIsDeferred")); 1949 } 1950 rdp->qlen_last_fqs_check = 0; 1951 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1952 /* ... or if many callbacks queued. */ 1953 if (!irqs_disabled_flags(flags)) { 1954 wake_nocb_leader(rdp, true); 1955 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1956 TPS("WakeOvf")); 1957 } else { 1958 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 1959 TPS("WakeOvfIsDeferred")); 1960 } 1961 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1962 } else { 1963 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1964 } 1965 return; 1966 } 1967 1968 /* 1969 * This is a helper for __call_rcu(), which invokes this when the normal 1970 * callback queue is inoperable. If this is not a no-CBs CPU, this 1971 * function returns failure back to __call_rcu(), which can complain 1972 * appropriately. 1973 * 1974 * Otherwise, this function queues the callback where the corresponding 1975 * "rcuo" kthread can find it. 1976 */ 1977 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1978 bool lazy, unsigned long flags) 1979 { 1980 1981 if (!rcu_is_nocb_cpu(rdp->cpu)) 1982 return false; 1983 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1984 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1985 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1986 (unsigned long)rhp->func, 1987 -atomic_long_read(&rdp->nocb_q_count_lazy), 1988 -atomic_long_read(&rdp->nocb_q_count)); 1989 else 1990 trace_rcu_callback(rdp->rsp->name, rhp, 1991 -atomic_long_read(&rdp->nocb_q_count_lazy), 1992 -atomic_long_read(&rdp->nocb_q_count)); 1993 1994 /* 1995 * If called from an extended quiescent state with interrupts 1996 * disabled, invoke the RCU core in order to allow the idle-entry 1997 * deferred-wakeup check to function. 1998 */ 1999 if (irqs_disabled_flags(flags) && 2000 !rcu_is_watching() && 2001 cpu_online(smp_processor_id())) 2002 invoke_rcu_core(); 2003 2004 return true; 2005 } 2006 2007 /* 2008 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2009 * not a no-CBs CPU. 2010 */ 2011 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2012 struct rcu_data *rdp, 2013 unsigned long flags) 2014 { 2015 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_nocb_adopt_orphan_cbs() invoked with irqs enabled!!!"); 2016 if (!rcu_is_nocb_cpu(smp_processor_id())) 2017 return false; /* Not NOCBs CPU, caller must migrate CBs. */ 2018 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist), 2019 rcu_segcblist_tail(&rdp->cblist), 2020 rcu_segcblist_n_cbs(&rdp->cblist), 2021 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags); 2022 rcu_segcblist_init(&rdp->cblist); 2023 rcu_segcblist_disable(&rdp->cblist); 2024 return true; 2025 } 2026 2027 /* 2028 * If necessary, kick off a new grace period, and either way wait 2029 * for a subsequent grace period to complete. 2030 */ 2031 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2032 { 2033 unsigned long c; 2034 bool d; 2035 unsigned long flags; 2036 bool needwake; 2037 struct rcu_node *rnp = rdp->mynode; 2038 2039 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2040 needwake = rcu_start_future_gp(rnp, rdp, &c); 2041 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2042 if (needwake) 2043 rcu_gp_kthread_wake(rdp->rsp); 2044 2045 /* 2046 * Wait for the grace period. Do so interruptibly to avoid messing 2047 * up the load average. 2048 */ 2049 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2050 for (;;) { 2051 swait_event_interruptible( 2052 rnp->nocb_gp_wq[c & 0x1], 2053 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2054 if (likely(d)) 2055 break; 2056 WARN_ON(signal_pending(current)); 2057 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2058 } 2059 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2060 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2061 } 2062 2063 /* 2064 * Leaders come here to wait for additional callbacks to show up. 2065 * This function does not return until callbacks appear. 2066 */ 2067 static void nocb_leader_wait(struct rcu_data *my_rdp) 2068 { 2069 bool firsttime = true; 2070 unsigned long flags; 2071 bool gotcbs; 2072 struct rcu_data *rdp; 2073 struct rcu_head **tail; 2074 2075 wait_again: 2076 2077 /* Wait for callbacks to appear. */ 2078 if (!rcu_nocb_poll) { 2079 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep")); 2080 swait_event_interruptible(my_rdp->nocb_wq, 2081 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2082 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2083 my_rdp->nocb_leader_sleep = true; 2084 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2085 del_timer(&my_rdp->nocb_timer); 2086 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2087 } else if (firsttime) { 2088 firsttime = false; /* Don't drown trace log with "Poll"! */ 2089 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll")); 2090 } 2091 2092 /* 2093 * Each pass through the following loop checks a follower for CBs. 2094 * We are our own first follower. Any CBs found are moved to 2095 * nocb_gp_head, where they await a grace period. 2096 */ 2097 gotcbs = false; 2098 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */ 2099 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2100 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2101 if (!rdp->nocb_gp_head) 2102 continue; /* No CBs here, try next follower. */ 2103 2104 /* Move callbacks to wait-for-GP list, which is empty. */ 2105 WRITE_ONCE(rdp->nocb_head, NULL); 2106 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2107 gotcbs = true; 2108 } 2109 2110 /* No callbacks? Sleep a bit if polling, and go retry. */ 2111 if (unlikely(!gotcbs)) { 2112 WARN_ON(signal_pending(current)); 2113 if (rcu_nocb_poll) { 2114 schedule_timeout_interruptible(1); 2115 } else { 2116 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2117 TPS("WokeEmpty")); 2118 } 2119 goto wait_again; 2120 } 2121 2122 /* Wait for one grace period. */ 2123 rcu_nocb_wait_gp(my_rdp); 2124 2125 /* Each pass through the following loop wakes a follower, if needed. */ 2126 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2127 if (!rcu_nocb_poll && 2128 READ_ONCE(rdp->nocb_head) && 2129 READ_ONCE(my_rdp->nocb_leader_sleep)) { 2130 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2131 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2132 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2133 } 2134 if (!rdp->nocb_gp_head) 2135 continue; /* No CBs, so no need to wake follower. */ 2136 2137 /* Append callbacks to follower's "done" list. */ 2138 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2139 tail = rdp->nocb_follower_tail; 2140 rdp->nocb_follower_tail = rdp->nocb_gp_tail; 2141 *tail = rdp->nocb_gp_head; 2142 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2143 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2144 /* List was empty, so wake up the follower. */ 2145 swake_up(&rdp->nocb_wq); 2146 } 2147 } 2148 2149 /* If we (the leader) don't have CBs, go wait some more. */ 2150 if (!my_rdp->nocb_follower_head) 2151 goto wait_again; 2152 } 2153 2154 /* 2155 * Followers come here to wait for additional callbacks to show up. 2156 * This function does not return until callbacks appear. 2157 */ 2158 static void nocb_follower_wait(struct rcu_data *rdp) 2159 { 2160 for (;;) { 2161 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep")); 2162 swait_event_interruptible(rdp->nocb_wq, 2163 READ_ONCE(rdp->nocb_follower_head)); 2164 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2165 /* ^^^ Ensure CB invocation follows _head test. */ 2166 return; 2167 } 2168 WARN_ON(signal_pending(current)); 2169 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty")); 2170 } 2171 } 2172 2173 /* 2174 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2175 * callbacks queued by the corresponding no-CBs CPU, however, there is 2176 * an optional leader-follower relationship so that the grace-period 2177 * kthreads don't have to do quite so many wakeups. 2178 */ 2179 static int rcu_nocb_kthread(void *arg) 2180 { 2181 int c, cl; 2182 unsigned long flags; 2183 struct rcu_head *list; 2184 struct rcu_head *next; 2185 struct rcu_head **tail; 2186 struct rcu_data *rdp = arg; 2187 2188 /* Each pass through this loop invokes one batch of callbacks */ 2189 for (;;) { 2190 /* Wait for callbacks. */ 2191 if (rdp->nocb_leader == rdp) 2192 nocb_leader_wait(rdp); 2193 else 2194 nocb_follower_wait(rdp); 2195 2196 /* Pull the ready-to-invoke callbacks onto local list. */ 2197 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2198 list = rdp->nocb_follower_head; 2199 rdp->nocb_follower_head = NULL; 2200 tail = rdp->nocb_follower_tail; 2201 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2202 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2203 BUG_ON(!list); 2204 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty")); 2205 2206 /* Each pass through the following loop invokes a callback. */ 2207 trace_rcu_batch_start(rdp->rsp->name, 2208 atomic_long_read(&rdp->nocb_q_count_lazy), 2209 atomic_long_read(&rdp->nocb_q_count), -1); 2210 c = cl = 0; 2211 while (list) { 2212 next = list->next; 2213 /* Wait for enqueuing to complete, if needed. */ 2214 while (next == NULL && &list->next != tail) { 2215 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2216 TPS("WaitQueue")); 2217 schedule_timeout_interruptible(1); 2218 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2219 TPS("WokeQueue")); 2220 next = list->next; 2221 } 2222 debug_rcu_head_unqueue(list); 2223 local_bh_disable(); 2224 if (__rcu_reclaim(rdp->rsp->name, list)) 2225 cl++; 2226 c++; 2227 local_bh_enable(); 2228 cond_resched_rcu_qs(); 2229 list = next; 2230 } 2231 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2232 smp_mb__before_atomic(); /* _add after CB invocation. */ 2233 atomic_long_add(-c, &rdp->nocb_q_count); 2234 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2235 rdp->n_nocbs_invoked += c; 2236 } 2237 return 0; 2238 } 2239 2240 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2241 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2242 { 2243 return READ_ONCE(rdp->nocb_defer_wakeup); 2244 } 2245 2246 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2247 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2248 { 2249 unsigned long flags; 2250 int ndw; 2251 2252 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2253 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2254 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2255 return; 2256 } 2257 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2258 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2259 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2260 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2261 } 2262 2263 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2264 static void do_nocb_deferred_wakeup_timer(unsigned long x) 2265 { 2266 do_nocb_deferred_wakeup_common((struct rcu_data *)x); 2267 } 2268 2269 /* 2270 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2271 * This means we do an inexact common-case check. Note that if 2272 * we miss, ->nocb_timer will eventually clean things up. 2273 */ 2274 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2275 { 2276 if (rcu_nocb_need_deferred_wakeup(rdp)) 2277 do_nocb_deferred_wakeup_common(rdp); 2278 } 2279 2280 void __init rcu_init_nohz(void) 2281 { 2282 int cpu; 2283 bool need_rcu_nocb_mask = true; 2284 struct rcu_state *rsp; 2285 2286 #if defined(CONFIG_NO_HZ_FULL) 2287 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2288 need_rcu_nocb_mask = true; 2289 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2290 2291 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2292 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2293 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2294 return; 2295 } 2296 have_rcu_nocb_mask = true; 2297 } 2298 if (!have_rcu_nocb_mask) 2299 return; 2300 2301 #if defined(CONFIG_NO_HZ_FULL) 2302 if (tick_nohz_full_running) 2303 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2304 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2305 2306 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2307 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2308 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2309 rcu_nocb_mask); 2310 } 2311 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2312 cpumask_pr_args(rcu_nocb_mask)); 2313 if (rcu_nocb_poll) 2314 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2315 2316 for_each_rcu_flavor(rsp) { 2317 for_each_cpu(cpu, rcu_nocb_mask) 2318 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2319 rcu_organize_nocb_kthreads(rsp); 2320 } 2321 } 2322 2323 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2324 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2325 { 2326 rdp->nocb_tail = &rdp->nocb_head; 2327 init_swait_queue_head(&rdp->nocb_wq); 2328 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2329 raw_spin_lock_init(&rdp->nocb_lock); 2330 setup_timer(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 2331 (unsigned long)rdp); 2332 } 2333 2334 /* 2335 * If the specified CPU is a no-CBs CPU that does not already have its 2336 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2337 * brought online out of order, this can require re-organizing the 2338 * leader-follower relationships. 2339 */ 2340 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2341 { 2342 struct rcu_data *rdp; 2343 struct rcu_data *rdp_last; 2344 struct rcu_data *rdp_old_leader; 2345 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2346 struct task_struct *t; 2347 2348 /* 2349 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2350 * then nothing to do. 2351 */ 2352 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2353 return; 2354 2355 /* If we didn't spawn the leader first, reorganize! */ 2356 rdp_old_leader = rdp_spawn->nocb_leader; 2357 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2358 rdp_last = NULL; 2359 rdp = rdp_old_leader; 2360 do { 2361 rdp->nocb_leader = rdp_spawn; 2362 if (rdp_last && rdp != rdp_spawn) 2363 rdp_last->nocb_next_follower = rdp; 2364 if (rdp == rdp_spawn) { 2365 rdp = rdp->nocb_next_follower; 2366 } else { 2367 rdp_last = rdp; 2368 rdp = rdp->nocb_next_follower; 2369 rdp_last->nocb_next_follower = NULL; 2370 } 2371 } while (rdp); 2372 rdp_spawn->nocb_next_follower = rdp_old_leader; 2373 } 2374 2375 /* Spawn the kthread for this CPU and RCU flavor. */ 2376 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2377 "rcuo%c/%d", rsp->abbr, cpu); 2378 BUG_ON(IS_ERR(t)); 2379 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2380 } 2381 2382 /* 2383 * If the specified CPU is a no-CBs CPU that does not already have its 2384 * rcuo kthreads, spawn them. 2385 */ 2386 static void rcu_spawn_all_nocb_kthreads(int cpu) 2387 { 2388 struct rcu_state *rsp; 2389 2390 if (rcu_scheduler_fully_active) 2391 for_each_rcu_flavor(rsp) 2392 rcu_spawn_one_nocb_kthread(rsp, cpu); 2393 } 2394 2395 /* 2396 * Once the scheduler is running, spawn rcuo kthreads for all online 2397 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2398 * non-boot CPUs come online -- if this changes, we will need to add 2399 * some mutual exclusion. 2400 */ 2401 static void __init rcu_spawn_nocb_kthreads(void) 2402 { 2403 int cpu; 2404 2405 for_each_online_cpu(cpu) 2406 rcu_spawn_all_nocb_kthreads(cpu); 2407 } 2408 2409 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2410 static int rcu_nocb_leader_stride = -1; 2411 module_param(rcu_nocb_leader_stride, int, 0444); 2412 2413 /* 2414 * Initialize leader-follower relationships for all no-CBs CPU. 2415 */ 2416 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2417 { 2418 int cpu; 2419 int ls = rcu_nocb_leader_stride; 2420 int nl = 0; /* Next leader. */ 2421 struct rcu_data *rdp; 2422 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2423 struct rcu_data *rdp_prev = NULL; 2424 2425 if (!have_rcu_nocb_mask) 2426 return; 2427 if (ls == -1) { 2428 ls = int_sqrt(nr_cpu_ids); 2429 rcu_nocb_leader_stride = ls; 2430 } 2431 2432 /* 2433 * Each pass through this loop sets up one rcu_data structure. 2434 * Should the corresponding CPU come online in the future, then 2435 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2436 */ 2437 for_each_cpu(cpu, rcu_nocb_mask) { 2438 rdp = per_cpu_ptr(rsp->rda, cpu); 2439 if (rdp->cpu >= nl) { 2440 /* New leader, set up for followers & next leader. */ 2441 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2442 rdp->nocb_leader = rdp; 2443 rdp_leader = rdp; 2444 } else { 2445 /* Another follower, link to previous leader. */ 2446 rdp->nocb_leader = rdp_leader; 2447 rdp_prev->nocb_next_follower = rdp; 2448 } 2449 rdp_prev = rdp; 2450 } 2451 } 2452 2453 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2454 static bool init_nocb_callback_list(struct rcu_data *rdp) 2455 { 2456 if (!rcu_is_nocb_cpu(rdp->cpu)) 2457 return false; 2458 2459 /* If there are early-boot callbacks, move them to nocb lists. */ 2460 if (!rcu_segcblist_empty(&rdp->cblist)) { 2461 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2462 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2463 atomic_long_set(&rdp->nocb_q_count, 2464 rcu_segcblist_n_cbs(&rdp->cblist)); 2465 atomic_long_set(&rdp->nocb_q_count_lazy, 2466 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2467 rcu_segcblist_init(&rdp->cblist); 2468 } 2469 rcu_segcblist_disable(&rdp->cblist); 2470 return true; 2471 } 2472 2473 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2474 2475 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2476 { 2477 WARN_ON_ONCE(1); /* Should be dead code. */ 2478 return false; 2479 } 2480 2481 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2482 { 2483 } 2484 2485 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2486 { 2487 } 2488 2489 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2490 { 2491 return NULL; 2492 } 2493 2494 static void rcu_init_one_nocb(struct rcu_node *rnp) 2495 { 2496 } 2497 2498 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2499 bool lazy, unsigned long flags) 2500 { 2501 return false; 2502 } 2503 2504 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2505 struct rcu_data *rdp, 2506 unsigned long flags) 2507 { 2508 return false; 2509 } 2510 2511 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2512 { 2513 } 2514 2515 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2516 { 2517 return false; 2518 } 2519 2520 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2521 { 2522 } 2523 2524 static void rcu_spawn_all_nocb_kthreads(int cpu) 2525 { 2526 } 2527 2528 static void __init rcu_spawn_nocb_kthreads(void) 2529 { 2530 } 2531 2532 static bool init_nocb_callback_list(struct rcu_data *rdp) 2533 { 2534 return false; 2535 } 2536 2537 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2538 2539 /* 2540 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2541 * arbitrarily long period of time with the scheduling-clock tick turned 2542 * off. RCU will be paying attention to this CPU because it is in the 2543 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2544 * machine because the scheduling-clock tick has been disabled. Therefore, 2545 * if an adaptive-ticks CPU is failing to respond to the current grace 2546 * period and has not be idle from an RCU perspective, kick it. 2547 */ 2548 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2549 { 2550 #ifdef CONFIG_NO_HZ_FULL 2551 if (tick_nohz_full_cpu(cpu)) 2552 smp_send_reschedule(cpu); 2553 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2554 } 2555 2556 /* 2557 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2558 * grace-period kthread will do force_quiescent_state() processing? 2559 * The idea is to avoid waking up RCU core processing on such a 2560 * CPU unless the grace period has extended for too long. 2561 * 2562 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2563 * CONFIG_RCU_NOCB_CPU CPUs. 2564 */ 2565 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2566 { 2567 #ifdef CONFIG_NO_HZ_FULL 2568 if (tick_nohz_full_cpu(smp_processor_id()) && 2569 (!rcu_gp_in_progress(rsp) || 2570 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2571 return true; 2572 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2573 return false; 2574 } 2575 2576 /* 2577 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2578 * timekeeping CPU. 2579 */ 2580 static void rcu_bind_gp_kthread(void) 2581 { 2582 int __maybe_unused cpu; 2583 2584 if (!tick_nohz_full_enabled()) 2585 return; 2586 housekeeping_affine(current); 2587 } 2588 2589 /* Record the current task on dyntick-idle entry. */ 2590 static void rcu_dynticks_task_enter(void) 2591 { 2592 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2593 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2594 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2595 } 2596 2597 /* Record no current task on dyntick-idle exit. */ 2598 static void rcu_dynticks_task_exit(void) 2599 { 2600 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2601 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2602 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2603 } 2604