1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 20 21 /* 22 * Check the RCU kernel configuration parameters and print informative 23 * messages about anything out of the ordinary. 24 */ 25 static void __init rcu_bootup_announce_oddness(void) 26 { 27 if (IS_ENABLED(CONFIG_RCU_TRACE)) 28 pr_info("\tRCU event tracing is enabled.\n"); 29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 32 RCU_FANOUT); 33 if (rcu_fanout_exact) 34 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 37 if (IS_ENABLED(CONFIG_PROVE_RCU)) 38 pr_info("\tRCU lockdep checking is enabled.\n"); 39 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 40 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); 41 if (RCU_NUM_LVLS >= 4) 42 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 43 if (RCU_FANOUT_LEAF != 16) 44 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 45 RCU_FANOUT_LEAF); 46 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 47 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 48 rcu_fanout_leaf); 49 if (nr_cpu_ids != NR_CPUS) 50 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 51 #ifdef CONFIG_RCU_BOOST 52 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 53 kthread_prio, CONFIG_RCU_BOOST_DELAY); 54 #endif 55 if (blimit != DEFAULT_RCU_BLIMIT) 56 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 57 if (qhimark != DEFAULT_RCU_QHIMARK) 58 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 59 if (qlowmark != DEFAULT_RCU_QLOMARK) 60 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 61 if (qovld != DEFAULT_RCU_QOVLD) 62 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 63 if (jiffies_till_first_fqs != ULONG_MAX) 64 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 65 if (jiffies_till_next_fqs != ULONG_MAX) 66 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 67 if (jiffies_till_sched_qs != ULONG_MAX) 68 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 69 if (rcu_kick_kthreads) 70 pr_info("\tKick kthreads if too-long grace period.\n"); 71 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 72 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 73 if (gp_preinit_delay) 74 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 75 if (gp_init_delay) 76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 77 if (gp_cleanup_delay) 78 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 79 if (!use_softirq) 80 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 81 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 82 pr_info("\tRCU debug extended QS entry/exit.\n"); 83 rcupdate_announce_bootup_oddness(); 84 } 85 86 #ifdef CONFIG_PREEMPT_RCU 87 88 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 89 static void rcu_read_unlock_special(struct task_struct *t); 90 91 /* 92 * Tell them what RCU they are running. 93 */ 94 static void __init rcu_bootup_announce(void) 95 { 96 pr_info("Preemptible hierarchical RCU implementation.\n"); 97 rcu_bootup_announce_oddness(); 98 } 99 100 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 101 #define RCU_GP_TASKS 0x8 102 #define RCU_EXP_TASKS 0x4 103 #define RCU_GP_BLKD 0x2 104 #define RCU_EXP_BLKD 0x1 105 106 /* 107 * Queues a task preempted within an RCU-preempt read-side critical 108 * section into the appropriate location within the ->blkd_tasks list, 109 * depending on the states of any ongoing normal and expedited grace 110 * periods. The ->gp_tasks pointer indicates which element the normal 111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 112 * indicates which element the expedited grace period is waiting on (again, 113 * NULL if none). If a grace period is waiting on a given element in the 114 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 115 * adding a task to the tail of the list blocks any grace period that is 116 * already waiting on one of the elements. In contrast, adding a task 117 * to the head of the list won't block any grace period that is already 118 * waiting on one of the elements. 119 * 120 * This queuing is imprecise, and can sometimes make an ongoing grace 121 * period wait for a task that is not strictly speaking blocking it. 122 * Given the choice, we needlessly block a normal grace period rather than 123 * blocking an expedited grace period. 124 * 125 * Note that an endless sequence of expedited grace periods still cannot 126 * indefinitely postpone a normal grace period. Eventually, all of the 127 * fixed number of preempted tasks blocking the normal grace period that are 128 * not also blocking the expedited grace period will resume and complete 129 * their RCU read-side critical sections. At that point, the ->gp_tasks 130 * pointer will equal the ->exp_tasks pointer, at which point the end of 131 * the corresponding expedited grace period will also be the end of the 132 * normal grace period. 133 */ 134 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 135 __releases(rnp->lock) /* But leaves rrupts disabled. */ 136 { 137 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 138 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 139 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 140 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 141 struct task_struct *t = current; 142 143 raw_lockdep_assert_held_rcu_node(rnp); 144 WARN_ON_ONCE(rdp->mynode != rnp); 145 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 146 /* RCU better not be waiting on newly onlined CPUs! */ 147 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 148 rdp->grpmask); 149 150 /* 151 * Decide where to queue the newly blocked task. In theory, 152 * this could be an if-statement. In practice, when I tried 153 * that, it was quite messy. 154 */ 155 switch (blkd_state) { 156 case 0: 157 case RCU_EXP_TASKS: 158 case RCU_EXP_TASKS + RCU_GP_BLKD: 159 case RCU_GP_TASKS: 160 case RCU_GP_TASKS + RCU_EXP_TASKS: 161 162 /* 163 * Blocking neither GP, or first task blocking the normal 164 * GP but not blocking the already-waiting expedited GP. 165 * Queue at the head of the list to avoid unnecessarily 166 * blocking the already-waiting GPs. 167 */ 168 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 169 break; 170 171 case RCU_EXP_BLKD: 172 case RCU_GP_BLKD: 173 case RCU_GP_BLKD + RCU_EXP_BLKD: 174 case RCU_GP_TASKS + RCU_EXP_BLKD: 175 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 176 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 177 178 /* 179 * First task arriving that blocks either GP, or first task 180 * arriving that blocks the expedited GP (with the normal 181 * GP already waiting), or a task arriving that blocks 182 * both GPs with both GPs already waiting. Queue at the 183 * tail of the list to avoid any GP waiting on any of the 184 * already queued tasks that are not blocking it. 185 */ 186 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 187 break; 188 189 case RCU_EXP_TASKS + RCU_EXP_BLKD: 190 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 191 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 192 193 /* 194 * Second or subsequent task blocking the expedited GP. 195 * The task either does not block the normal GP, or is the 196 * first task blocking the normal GP. Queue just after 197 * the first task blocking the expedited GP. 198 */ 199 list_add(&t->rcu_node_entry, rnp->exp_tasks); 200 break; 201 202 case RCU_GP_TASKS + RCU_GP_BLKD: 203 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 204 205 /* 206 * Second or subsequent task blocking the normal GP. 207 * The task does not block the expedited GP. Queue just 208 * after the first task blocking the normal GP. 209 */ 210 list_add(&t->rcu_node_entry, rnp->gp_tasks); 211 break; 212 213 default: 214 215 /* Yet another exercise in excessive paranoia. */ 216 WARN_ON_ONCE(1); 217 break; 218 } 219 220 /* 221 * We have now queued the task. If it was the first one to 222 * block either grace period, update the ->gp_tasks and/or 223 * ->exp_tasks pointers, respectively, to reference the newly 224 * blocked tasks. 225 */ 226 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 227 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 228 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 229 } 230 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 231 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 232 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 233 !(rnp->qsmask & rdp->grpmask)); 234 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 235 !(rnp->expmask & rdp->grpmask)); 236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 237 238 /* 239 * Report the quiescent state for the expedited GP. This expedited 240 * GP should not be able to end until we report, so there should be 241 * no need to check for a subsequent expedited GP. (Though we are 242 * still in a quiescent state in any case.) 243 */ 244 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) 245 rcu_report_exp_rdp(rdp); 246 else 247 WARN_ON_ONCE(rdp->exp_deferred_qs); 248 } 249 250 /* 251 * Record a preemptible-RCU quiescent state for the specified CPU. 252 * Note that this does not necessarily mean that the task currently running 253 * on the CPU is in a quiescent state: Instead, it means that the current 254 * grace period need not wait on any RCU read-side critical section that 255 * starts later on this CPU. It also means that if the current task is 256 * in an RCU read-side critical section, it has already added itself to 257 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 258 * current task, there might be any number of other tasks blocked while 259 * in an RCU read-side critical section. 260 * 261 * Callers to this function must disable preemption. 262 */ 263 static void rcu_qs(void) 264 { 265 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 266 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 267 trace_rcu_grace_period(TPS("rcu_preempt"), 268 __this_cpu_read(rcu_data.gp_seq), 269 TPS("cpuqs")); 270 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 271 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 272 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 273 } 274 } 275 276 /* 277 * We have entered the scheduler, and the current task might soon be 278 * context-switched away from. If this task is in an RCU read-side 279 * critical section, we will no longer be able to rely on the CPU to 280 * record that fact, so we enqueue the task on the blkd_tasks list. 281 * The task will dequeue itself when it exits the outermost enclosing 282 * RCU read-side critical section. Therefore, the current grace period 283 * cannot be permitted to complete until the blkd_tasks list entries 284 * predating the current grace period drain, in other words, until 285 * rnp->gp_tasks becomes NULL. 286 * 287 * Caller must disable interrupts. 288 */ 289 void rcu_note_context_switch(bool preempt) 290 { 291 struct task_struct *t = current; 292 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 293 struct rcu_node *rnp; 294 295 trace_rcu_utilization(TPS("Start context switch")); 296 lockdep_assert_irqs_disabled(); 297 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); 298 if (rcu_preempt_depth() > 0 && 299 !t->rcu_read_unlock_special.b.blocked) { 300 301 /* Possibly blocking in an RCU read-side critical section. */ 302 rnp = rdp->mynode; 303 raw_spin_lock_rcu_node(rnp); 304 t->rcu_read_unlock_special.b.blocked = true; 305 t->rcu_blocked_node = rnp; 306 307 /* 308 * Verify the CPU's sanity, trace the preemption, and 309 * then queue the task as required based on the states 310 * of any ongoing and expedited grace periods. 311 */ 312 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 313 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 314 trace_rcu_preempt_task(rcu_state.name, 315 t->pid, 316 (rnp->qsmask & rdp->grpmask) 317 ? rnp->gp_seq 318 : rcu_seq_snap(&rnp->gp_seq)); 319 rcu_preempt_ctxt_queue(rnp, rdp); 320 } else { 321 rcu_preempt_deferred_qs(t); 322 } 323 324 /* 325 * Either we were not in an RCU read-side critical section to 326 * begin with, or we have now recorded that critical section 327 * globally. Either way, we can now note a quiescent state 328 * for this CPU. Again, if we were in an RCU read-side critical 329 * section, and if that critical section was blocking the current 330 * grace period, then the fact that the task has been enqueued 331 * means that we continue to block the current grace period. 332 */ 333 rcu_qs(); 334 if (rdp->exp_deferred_qs) 335 rcu_report_exp_rdp(rdp); 336 rcu_tasks_qs(current, preempt); 337 trace_rcu_utilization(TPS("End context switch")); 338 } 339 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 340 341 /* 342 * Check for preempted RCU readers blocking the current grace period 343 * for the specified rcu_node structure. If the caller needs a reliable 344 * answer, it must hold the rcu_node's ->lock. 345 */ 346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 347 { 348 return READ_ONCE(rnp->gp_tasks) != NULL; 349 } 350 351 /* limit value for ->rcu_read_lock_nesting. */ 352 #define RCU_NEST_PMAX (INT_MAX / 2) 353 354 static void rcu_preempt_read_enter(void) 355 { 356 current->rcu_read_lock_nesting++; 357 } 358 359 static int rcu_preempt_read_exit(void) 360 { 361 return --current->rcu_read_lock_nesting; 362 } 363 364 static void rcu_preempt_depth_set(int val) 365 { 366 current->rcu_read_lock_nesting = val; 367 } 368 369 /* 370 * Preemptible RCU implementation for rcu_read_lock(). 371 * Just increment ->rcu_read_lock_nesting, shared state will be updated 372 * if we block. 373 */ 374 void __rcu_read_lock(void) 375 { 376 rcu_preempt_read_enter(); 377 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 378 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 379 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 380 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 381 barrier(); /* critical section after entry code. */ 382 } 383 EXPORT_SYMBOL_GPL(__rcu_read_lock); 384 385 /* 386 * Preemptible RCU implementation for rcu_read_unlock(). 387 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 388 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 389 * invoke rcu_read_unlock_special() to clean up after a context switch 390 * in an RCU read-side critical section and other special cases. 391 */ 392 void __rcu_read_unlock(void) 393 { 394 struct task_struct *t = current; 395 396 if (rcu_preempt_read_exit() == 0) { 397 barrier(); /* critical section before exit code. */ 398 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 399 rcu_read_unlock_special(t); 400 } 401 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 402 int rrln = rcu_preempt_depth(); 403 404 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 405 } 406 } 407 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 408 409 /* 410 * Advance a ->blkd_tasks-list pointer to the next entry, instead 411 * returning NULL if at the end of the list. 412 */ 413 static struct list_head *rcu_next_node_entry(struct task_struct *t, 414 struct rcu_node *rnp) 415 { 416 struct list_head *np; 417 418 np = t->rcu_node_entry.next; 419 if (np == &rnp->blkd_tasks) 420 np = NULL; 421 return np; 422 } 423 424 /* 425 * Return true if the specified rcu_node structure has tasks that were 426 * preempted within an RCU read-side critical section. 427 */ 428 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 429 { 430 return !list_empty(&rnp->blkd_tasks); 431 } 432 433 /* 434 * Report deferred quiescent states. The deferral time can 435 * be quite short, for example, in the case of the call from 436 * rcu_read_unlock_special(). 437 */ 438 static void 439 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 440 { 441 bool empty_exp; 442 bool empty_norm; 443 bool empty_exp_now; 444 struct list_head *np; 445 bool drop_boost_mutex = false; 446 struct rcu_data *rdp; 447 struct rcu_node *rnp; 448 union rcu_special special; 449 450 /* 451 * If RCU core is waiting for this CPU to exit its critical section, 452 * report the fact that it has exited. Because irqs are disabled, 453 * t->rcu_read_unlock_special cannot change. 454 */ 455 special = t->rcu_read_unlock_special; 456 rdp = this_cpu_ptr(&rcu_data); 457 if (!special.s && !rdp->exp_deferred_qs) { 458 local_irq_restore(flags); 459 return; 460 } 461 t->rcu_read_unlock_special.s = 0; 462 if (special.b.need_qs) { 463 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 464 rcu_report_qs_rdp(rdp); 465 udelay(rcu_unlock_delay); 466 } else { 467 rcu_qs(); 468 } 469 } 470 471 /* 472 * Respond to a request by an expedited grace period for a 473 * quiescent state from this CPU. Note that requests from 474 * tasks are handled when removing the task from the 475 * blocked-tasks list below. 476 */ 477 if (rdp->exp_deferred_qs) 478 rcu_report_exp_rdp(rdp); 479 480 /* Clean up if blocked during RCU read-side critical section. */ 481 if (special.b.blocked) { 482 483 /* 484 * Remove this task from the list it blocked on. The task 485 * now remains queued on the rcu_node corresponding to the 486 * CPU it first blocked on, so there is no longer any need 487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 488 */ 489 rnp = t->rcu_blocked_node; 490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 491 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 492 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 494 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 495 (!empty_norm || rnp->qsmask)); 496 empty_exp = sync_rcu_exp_done(rnp); 497 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 498 np = rcu_next_node_entry(t, rnp); 499 list_del_init(&t->rcu_node_entry); 500 t->rcu_blocked_node = NULL; 501 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 502 rnp->gp_seq, t->pid); 503 if (&t->rcu_node_entry == rnp->gp_tasks) 504 WRITE_ONCE(rnp->gp_tasks, np); 505 if (&t->rcu_node_entry == rnp->exp_tasks) 506 WRITE_ONCE(rnp->exp_tasks, np); 507 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 508 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 509 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 510 if (&t->rcu_node_entry == rnp->boost_tasks) 511 WRITE_ONCE(rnp->boost_tasks, np); 512 } 513 514 /* 515 * If this was the last task on the current list, and if 516 * we aren't waiting on any CPUs, report the quiescent state. 517 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 518 * so we must take a snapshot of the expedited state. 519 */ 520 empty_exp_now = sync_rcu_exp_done(rnp); 521 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 522 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 523 rnp->gp_seq, 524 0, rnp->qsmask, 525 rnp->level, 526 rnp->grplo, 527 rnp->grphi, 528 !!rnp->gp_tasks); 529 rcu_report_unblock_qs_rnp(rnp, flags); 530 } else { 531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 532 } 533 534 /* Unboost if we were boosted. */ 535 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 536 rt_mutex_futex_unlock(&rnp->boost_mtx); 537 538 /* 539 * If this was the last task on the expedited lists, 540 * then we need to report up the rcu_node hierarchy. 541 */ 542 if (!empty_exp && empty_exp_now) 543 rcu_report_exp_rnp(rnp, true); 544 } else { 545 local_irq_restore(flags); 546 } 547 } 548 549 /* 550 * Is a deferred quiescent-state pending, and are we also not in 551 * an RCU read-side critical section? It is the caller's responsibility 552 * to ensure it is otherwise safe to report any deferred quiescent 553 * states. The reason for this is that it is safe to report a 554 * quiescent state during context switch even though preemption 555 * is disabled. This function cannot be expected to understand these 556 * nuances, so the caller must handle them. 557 */ 558 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 559 { 560 return (__this_cpu_read(rcu_data.exp_deferred_qs) || 561 READ_ONCE(t->rcu_read_unlock_special.s)) && 562 rcu_preempt_depth() == 0; 563 } 564 565 /* 566 * Report a deferred quiescent state if needed and safe to do so. 567 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 568 * not being in an RCU read-side critical section. The caller must 569 * evaluate safety in terms of interrupt, softirq, and preemption 570 * disabling. 571 */ 572 static void rcu_preempt_deferred_qs(struct task_struct *t) 573 { 574 unsigned long flags; 575 576 if (!rcu_preempt_need_deferred_qs(t)) 577 return; 578 local_irq_save(flags); 579 rcu_preempt_deferred_qs_irqrestore(t, flags); 580 } 581 582 /* 583 * Minimal handler to give the scheduler a chance to re-evaluate. 584 */ 585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 586 { 587 struct rcu_data *rdp; 588 589 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 590 rdp->defer_qs_iw_pending = false; 591 } 592 593 /* 594 * Handle special cases during rcu_read_unlock(), such as needing to 595 * notify RCU core processing or task having blocked during the RCU 596 * read-side critical section. 597 */ 598 static void rcu_read_unlock_special(struct task_struct *t) 599 { 600 unsigned long flags; 601 bool preempt_bh_were_disabled = 602 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 603 bool irqs_were_disabled; 604 605 /* NMI handlers cannot block and cannot safely manipulate state. */ 606 if (in_nmi()) 607 return; 608 609 local_irq_save(flags); 610 irqs_were_disabled = irqs_disabled_flags(flags); 611 if (preempt_bh_were_disabled || irqs_were_disabled) { 612 bool exp; 613 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 614 struct rcu_node *rnp = rdp->mynode; 615 616 exp = (t->rcu_blocked_node && 617 READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 618 (rdp->grpmask & READ_ONCE(rnp->expmask)); 619 // Need to defer quiescent state until everything is enabled. 620 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) { 621 // Using softirq, safe to awaken, and either the 622 // wakeup is free or there is an expedited GP. 623 raise_softirq_irqoff(RCU_SOFTIRQ); 624 } else { 625 // Enabling BH or preempt does reschedule, so... 626 // Also if no expediting, slow is OK. 627 // Plus nohz_full CPUs eventually get tick enabled. 628 set_tsk_need_resched(current); 629 set_preempt_need_resched(); 630 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 631 !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) { 632 // Get scheduler to re-evaluate and call hooks. 633 // If !IRQ_WORK, FQS scan will eventually IPI. 634 init_irq_work(&rdp->defer_qs_iw, 635 rcu_preempt_deferred_qs_handler); 636 rdp->defer_qs_iw_pending = true; 637 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 638 } 639 } 640 local_irq_restore(flags); 641 return; 642 } 643 rcu_preempt_deferred_qs_irqrestore(t, flags); 644 } 645 646 /* 647 * Check that the list of blocked tasks for the newly completed grace 648 * period is in fact empty. It is a serious bug to complete a grace 649 * period that still has RCU readers blocked! This function must be 650 * invoked -before- updating this rnp's ->gp_seq. 651 * 652 * Also, if there are blocked tasks on the list, they automatically 653 * block the newly created grace period, so set up ->gp_tasks accordingly. 654 */ 655 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 656 { 657 struct task_struct *t; 658 659 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 660 raw_lockdep_assert_held_rcu_node(rnp); 661 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 662 dump_blkd_tasks(rnp, 10); 663 if (rcu_preempt_has_tasks(rnp) && 664 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 665 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 666 t = container_of(rnp->gp_tasks, struct task_struct, 667 rcu_node_entry); 668 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 669 rnp->gp_seq, t->pid); 670 } 671 WARN_ON_ONCE(rnp->qsmask); 672 } 673 674 /* 675 * Check for a quiescent state from the current CPU, including voluntary 676 * context switches for Tasks RCU. When a task blocks, the task is 677 * recorded in the corresponding CPU's rcu_node structure, which is checked 678 * elsewhere, hence this function need only check for quiescent states 679 * related to the current CPU, not to those related to tasks. 680 */ 681 static void rcu_flavor_sched_clock_irq(int user) 682 { 683 struct task_struct *t = current; 684 685 if (user || rcu_is_cpu_rrupt_from_idle()) { 686 rcu_note_voluntary_context_switch(current); 687 } 688 if (rcu_preempt_depth() > 0 || 689 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 690 /* No QS, force context switch if deferred. */ 691 if (rcu_preempt_need_deferred_qs(t)) { 692 set_tsk_need_resched(t); 693 set_preempt_need_resched(); 694 } 695 } else if (rcu_preempt_need_deferred_qs(t)) { 696 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 697 return; 698 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 699 rcu_qs(); /* Report immediate QS. */ 700 return; 701 } 702 703 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 704 if (rcu_preempt_depth() > 0 && 705 __this_cpu_read(rcu_data.core_needs_qs) && 706 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 707 !t->rcu_read_unlock_special.b.need_qs && 708 time_after(jiffies, rcu_state.gp_start + HZ)) 709 t->rcu_read_unlock_special.b.need_qs = true; 710 } 711 712 /* 713 * Check for a task exiting while in a preemptible-RCU read-side 714 * critical section, clean up if so. No need to issue warnings, as 715 * debug_check_no_locks_held() already does this if lockdep is enabled. 716 * Besides, if this function does anything other than just immediately 717 * return, there was a bug of some sort. Spewing warnings from this 718 * function is like as not to simply obscure important prior warnings. 719 */ 720 void exit_rcu(void) 721 { 722 struct task_struct *t = current; 723 724 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 725 rcu_preempt_depth_set(1); 726 barrier(); 727 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 728 } else if (unlikely(rcu_preempt_depth())) { 729 rcu_preempt_depth_set(1); 730 } else { 731 return; 732 } 733 __rcu_read_unlock(); 734 rcu_preempt_deferred_qs(current); 735 } 736 737 /* 738 * Dump the blocked-tasks state, but limit the list dump to the 739 * specified number of elements. 740 */ 741 static void 742 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 743 { 744 int cpu; 745 int i; 746 struct list_head *lhp; 747 bool onl; 748 struct rcu_data *rdp; 749 struct rcu_node *rnp1; 750 751 raw_lockdep_assert_held_rcu_node(rnp); 752 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 753 __func__, rnp->grplo, rnp->grphi, rnp->level, 754 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 755 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 756 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 757 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 758 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 759 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 760 READ_ONCE(rnp->exp_tasks)); 761 pr_info("%s: ->blkd_tasks", __func__); 762 i = 0; 763 list_for_each(lhp, &rnp->blkd_tasks) { 764 pr_cont(" %p", lhp); 765 if (++i >= ncheck) 766 break; 767 } 768 pr_cont("\n"); 769 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 770 rdp = per_cpu_ptr(&rcu_data, cpu); 771 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 772 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 773 cpu, ".o"[onl], 774 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 775 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 776 } 777 } 778 779 #else /* #ifdef CONFIG_PREEMPT_RCU */ 780 781 /* 782 * If strict grace periods are enabled, and if the calling 783 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 784 * report that quiescent state and, if requested, spin for a bit. 785 */ 786 void rcu_read_unlock_strict(void) 787 { 788 struct rcu_data *rdp; 789 790 if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 791 irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 792 return; 793 rdp = this_cpu_ptr(&rcu_data); 794 rcu_report_qs_rdp(rdp); 795 udelay(rcu_unlock_delay); 796 } 797 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 798 799 /* 800 * Tell them what RCU they are running. 801 */ 802 static void __init rcu_bootup_announce(void) 803 { 804 pr_info("Hierarchical RCU implementation.\n"); 805 rcu_bootup_announce_oddness(); 806 } 807 808 /* 809 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 810 * how many quiescent states passed, just if there was at least one since 811 * the start of the grace period, this just sets a flag. The caller must 812 * have disabled preemption. 813 */ 814 static void rcu_qs(void) 815 { 816 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 817 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 818 return; 819 trace_rcu_grace_period(TPS("rcu_sched"), 820 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 821 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 822 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 823 return; 824 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 825 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 826 } 827 828 /* 829 * Register an urgently needed quiescent state. If there is an 830 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 831 * dyntick-idle quiescent state visible to other CPUs, which will in 832 * some cases serve for expedited as well as normal grace periods. 833 * Either way, register a lightweight quiescent state. 834 */ 835 void rcu_all_qs(void) 836 { 837 unsigned long flags; 838 839 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 840 return; 841 preempt_disable(); 842 /* Load rcu_urgent_qs before other flags. */ 843 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 844 preempt_enable(); 845 return; 846 } 847 this_cpu_write(rcu_data.rcu_urgent_qs, false); 848 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 849 local_irq_save(flags); 850 rcu_momentary_dyntick_idle(); 851 local_irq_restore(flags); 852 } 853 rcu_qs(); 854 preempt_enable(); 855 } 856 EXPORT_SYMBOL_GPL(rcu_all_qs); 857 858 /* 859 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 860 */ 861 void rcu_note_context_switch(bool preempt) 862 { 863 trace_rcu_utilization(TPS("Start context switch")); 864 rcu_qs(); 865 /* Load rcu_urgent_qs before other flags. */ 866 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 867 goto out; 868 this_cpu_write(rcu_data.rcu_urgent_qs, false); 869 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 870 rcu_momentary_dyntick_idle(); 871 rcu_tasks_qs(current, preempt); 872 out: 873 trace_rcu_utilization(TPS("End context switch")); 874 } 875 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 876 877 /* 878 * Because preemptible RCU does not exist, there are never any preempted 879 * RCU readers. 880 */ 881 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 882 { 883 return 0; 884 } 885 886 /* 887 * Because there is no preemptible RCU, there can be no readers blocked. 888 */ 889 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 890 { 891 return false; 892 } 893 894 /* 895 * Because there is no preemptible RCU, there can be no deferred quiescent 896 * states. 897 */ 898 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 899 { 900 return false; 901 } 902 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 903 904 /* 905 * Because there is no preemptible RCU, there can be no readers blocked, 906 * so there is no need to check for blocked tasks. So check only for 907 * bogus qsmask values. 908 */ 909 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 910 { 911 WARN_ON_ONCE(rnp->qsmask); 912 } 913 914 /* 915 * Check to see if this CPU is in a non-context-switch quiescent state, 916 * namely user mode and idle loop. 917 */ 918 static void rcu_flavor_sched_clock_irq(int user) 919 { 920 if (user || rcu_is_cpu_rrupt_from_idle()) { 921 922 /* 923 * Get here if this CPU took its interrupt from user 924 * mode or from the idle loop, and if this is not a 925 * nested interrupt. In this case, the CPU is in 926 * a quiescent state, so note it. 927 * 928 * No memory barrier is required here because rcu_qs() 929 * references only CPU-local variables that other CPUs 930 * neither access nor modify, at least not while the 931 * corresponding CPU is online. 932 */ 933 934 rcu_qs(); 935 } 936 } 937 938 /* 939 * Because preemptible RCU does not exist, tasks cannot possibly exit 940 * while in preemptible RCU read-side critical sections. 941 */ 942 void exit_rcu(void) 943 { 944 } 945 946 /* 947 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 948 */ 949 static void 950 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 951 { 952 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 953 } 954 955 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 956 957 /* 958 * If boosting, set rcuc kthreads to realtime priority. 959 */ 960 static void rcu_cpu_kthread_setup(unsigned int cpu) 961 { 962 #ifdef CONFIG_RCU_BOOST 963 struct sched_param sp; 964 965 sp.sched_priority = kthread_prio; 966 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 967 #endif /* #ifdef CONFIG_RCU_BOOST */ 968 } 969 970 #ifdef CONFIG_RCU_BOOST 971 972 /* 973 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 974 * or ->boost_tasks, advancing the pointer to the next task in the 975 * ->blkd_tasks list. 976 * 977 * Note that irqs must be enabled: boosting the task can block. 978 * Returns 1 if there are more tasks needing to be boosted. 979 */ 980 static int rcu_boost(struct rcu_node *rnp) 981 { 982 unsigned long flags; 983 struct task_struct *t; 984 struct list_head *tb; 985 986 if (READ_ONCE(rnp->exp_tasks) == NULL && 987 READ_ONCE(rnp->boost_tasks) == NULL) 988 return 0; /* Nothing left to boost. */ 989 990 raw_spin_lock_irqsave_rcu_node(rnp, flags); 991 992 /* 993 * Recheck under the lock: all tasks in need of boosting 994 * might exit their RCU read-side critical sections on their own. 995 */ 996 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 998 return 0; 999 } 1000 1001 /* 1002 * Preferentially boost tasks blocking expedited grace periods. 1003 * This cannot starve the normal grace periods because a second 1004 * expedited grace period must boost all blocked tasks, including 1005 * those blocking the pre-existing normal grace period. 1006 */ 1007 if (rnp->exp_tasks != NULL) 1008 tb = rnp->exp_tasks; 1009 else 1010 tb = rnp->boost_tasks; 1011 1012 /* 1013 * We boost task t by manufacturing an rt_mutex that appears to 1014 * be held by task t. We leave a pointer to that rt_mutex where 1015 * task t can find it, and task t will release the mutex when it 1016 * exits its outermost RCU read-side critical section. Then 1017 * simply acquiring this artificial rt_mutex will boost task 1018 * t's priority. (Thanks to tglx for suggesting this approach!) 1019 * 1020 * Note that task t must acquire rnp->lock to remove itself from 1021 * the ->blkd_tasks list, which it will do from exit() if from 1022 * nowhere else. We therefore are guaranteed that task t will 1023 * stay around at least until we drop rnp->lock. Note that 1024 * rnp->lock also resolves races between our priority boosting 1025 * and task t's exiting its outermost RCU read-side critical 1026 * section. 1027 */ 1028 t = container_of(tb, struct task_struct, rcu_node_entry); 1029 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1030 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1031 /* Lock only for side effect: boosts task t's priority. */ 1032 rt_mutex_lock(&rnp->boost_mtx); 1033 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1034 1035 return READ_ONCE(rnp->exp_tasks) != NULL || 1036 READ_ONCE(rnp->boost_tasks) != NULL; 1037 } 1038 1039 /* 1040 * Priority-boosting kthread, one per leaf rcu_node. 1041 */ 1042 static int rcu_boost_kthread(void *arg) 1043 { 1044 struct rcu_node *rnp = (struct rcu_node *)arg; 1045 int spincnt = 0; 1046 int more2boost; 1047 1048 trace_rcu_utilization(TPS("Start boost kthread@init")); 1049 for (;;) { 1050 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1051 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1052 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1053 READ_ONCE(rnp->exp_tasks)); 1054 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1055 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1056 more2boost = rcu_boost(rnp); 1057 if (more2boost) 1058 spincnt++; 1059 else 1060 spincnt = 0; 1061 if (spincnt > 10) { 1062 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1063 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1064 schedule_timeout_idle(2); 1065 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1066 spincnt = 0; 1067 } 1068 } 1069 /* NOTREACHED */ 1070 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1071 return 0; 1072 } 1073 1074 /* 1075 * Check to see if it is time to start boosting RCU readers that are 1076 * blocking the current grace period, and, if so, tell the per-rcu_node 1077 * kthread to start boosting them. If there is an expedited grace 1078 * period in progress, it is always time to boost. 1079 * 1080 * The caller must hold rnp->lock, which this function releases. 1081 * The ->boost_kthread_task is immortal, so we don't need to worry 1082 * about it going away. 1083 */ 1084 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1085 __releases(rnp->lock) 1086 { 1087 raw_lockdep_assert_held_rcu_node(rnp); 1088 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1089 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1090 return; 1091 } 1092 if (rnp->exp_tasks != NULL || 1093 (rnp->gp_tasks != NULL && 1094 rnp->boost_tasks == NULL && 1095 rnp->qsmask == 0 && 1096 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { 1097 if (rnp->exp_tasks == NULL) 1098 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1099 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1100 rcu_wake_cond(rnp->boost_kthread_task, 1101 READ_ONCE(rnp->boost_kthread_status)); 1102 } else { 1103 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1104 } 1105 } 1106 1107 /* 1108 * Is the current CPU running the RCU-callbacks kthread? 1109 * Caller must have preemption disabled. 1110 */ 1111 static bool rcu_is_callbacks_kthread(void) 1112 { 1113 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1114 } 1115 1116 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1117 1118 /* 1119 * Do priority-boost accounting for the start of a new grace period. 1120 */ 1121 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1122 { 1123 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1124 } 1125 1126 /* 1127 * Create an RCU-boost kthread for the specified node if one does not 1128 * already exist. We only create this kthread for preemptible RCU. 1129 * Returns zero if all is well, a negated errno otherwise. 1130 */ 1131 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1132 { 1133 int rnp_index = rnp - rcu_get_root(); 1134 unsigned long flags; 1135 struct sched_param sp; 1136 struct task_struct *t; 1137 1138 if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) 1139 return; 1140 1141 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1142 return; 1143 1144 rcu_state.boost = 1; 1145 1146 if (rnp->boost_kthread_task != NULL) 1147 return; 1148 1149 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1150 "rcub/%d", rnp_index); 1151 if (WARN_ON_ONCE(IS_ERR(t))) 1152 return; 1153 1154 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1155 rnp->boost_kthread_task = t; 1156 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1157 sp.sched_priority = kthread_prio; 1158 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1159 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1160 } 1161 1162 /* 1163 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1164 * served by the rcu_node in question. The CPU hotplug lock is still 1165 * held, so the value of rnp->qsmaskinit will be stable. 1166 * 1167 * We don't include outgoingcpu in the affinity set, use -1 if there is 1168 * no outgoing CPU. If there are no CPUs left in the affinity set, 1169 * this function allows the kthread to execute on any CPU. 1170 */ 1171 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1172 { 1173 struct task_struct *t = rnp->boost_kthread_task; 1174 unsigned long mask = rcu_rnp_online_cpus(rnp); 1175 cpumask_var_t cm; 1176 int cpu; 1177 1178 if (!t) 1179 return; 1180 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1181 return; 1182 for_each_leaf_node_possible_cpu(rnp, cpu) 1183 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1184 cpu != outgoingcpu) 1185 cpumask_set_cpu(cpu, cm); 1186 if (cpumask_weight(cm) == 0) 1187 cpumask_setall(cm); 1188 set_cpus_allowed_ptr(t, cm); 1189 free_cpumask_var(cm); 1190 } 1191 1192 /* 1193 * Spawn boost kthreads -- called as soon as the scheduler is running. 1194 */ 1195 static void __init rcu_spawn_boost_kthreads(void) 1196 { 1197 struct rcu_node *rnp; 1198 1199 rcu_for_each_leaf_node(rnp) 1200 rcu_spawn_one_boost_kthread(rnp); 1201 } 1202 1203 static void rcu_prepare_kthreads(int cpu) 1204 { 1205 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1206 struct rcu_node *rnp = rdp->mynode; 1207 1208 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1209 if (rcu_scheduler_fully_active) 1210 rcu_spawn_one_boost_kthread(rnp); 1211 } 1212 1213 #else /* #ifdef CONFIG_RCU_BOOST */ 1214 1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1216 __releases(rnp->lock) 1217 { 1218 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1219 } 1220 1221 static bool rcu_is_callbacks_kthread(void) 1222 { 1223 return false; 1224 } 1225 1226 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1227 { 1228 } 1229 1230 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1231 { 1232 } 1233 1234 static void __init rcu_spawn_boost_kthreads(void) 1235 { 1236 } 1237 1238 static void rcu_prepare_kthreads(int cpu) 1239 { 1240 } 1241 1242 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1243 1244 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1245 1246 /* 1247 * Check to see if any future non-offloaded RCU-related work will need 1248 * to be done by the current CPU, even if none need be done immediately, 1249 * returning 1 if so. This function is part of the RCU implementation; 1250 * it is -not- an exported member of the RCU API. 1251 * 1252 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1253 * CPU has RCU callbacks queued. 1254 */ 1255 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1256 { 1257 *nextevt = KTIME_MAX; 1258 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1259 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); 1260 } 1261 1262 /* 1263 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1264 * after it. 1265 */ 1266 static void rcu_cleanup_after_idle(void) 1267 { 1268 } 1269 1270 /* 1271 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1272 * is nothing. 1273 */ 1274 static void rcu_prepare_for_idle(void) 1275 { 1276 } 1277 1278 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1279 1280 /* 1281 * This code is invoked when a CPU goes idle, at which point we want 1282 * to have the CPU do everything required for RCU so that it can enter 1283 * the energy-efficient dyntick-idle mode. 1284 * 1285 * The following preprocessor symbol controls this: 1286 * 1287 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1288 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1289 * is sized to be roughly one RCU grace period. Those energy-efficiency 1290 * benchmarkers who might otherwise be tempted to set this to a large 1291 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1292 * system. And if you are -that- concerned about energy efficiency, 1293 * just power the system down and be done with it! 1294 * 1295 * The value below works well in practice. If future workloads require 1296 * adjustment, they can be converted into kernel config parameters, though 1297 * making the state machine smarter might be a better option. 1298 */ 1299 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1300 1301 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1302 module_param(rcu_idle_gp_delay, int, 0644); 1303 1304 /* 1305 * Try to advance callbacks on the current CPU, but only if it has been 1306 * awhile since the last time we did so. Afterwards, if there are any 1307 * callbacks ready for immediate invocation, return true. 1308 */ 1309 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1310 { 1311 bool cbs_ready = false; 1312 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1313 struct rcu_node *rnp; 1314 1315 /* Exit early if we advanced recently. */ 1316 if (jiffies == rdp->last_advance_all) 1317 return false; 1318 rdp->last_advance_all = jiffies; 1319 1320 rnp = rdp->mynode; 1321 1322 /* 1323 * Don't bother checking unless a grace period has 1324 * completed since we last checked and there are 1325 * callbacks not yet ready to invoke. 1326 */ 1327 if ((rcu_seq_completed_gp(rdp->gp_seq, 1328 rcu_seq_current(&rnp->gp_seq)) || 1329 unlikely(READ_ONCE(rdp->gpwrap))) && 1330 rcu_segcblist_pend_cbs(&rdp->cblist)) 1331 note_gp_changes(rdp); 1332 1333 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1334 cbs_ready = true; 1335 return cbs_ready; 1336 } 1337 1338 /* 1339 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1340 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1341 * caller about what to set the timeout. 1342 * 1343 * The caller must have disabled interrupts. 1344 */ 1345 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1346 { 1347 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1348 unsigned long dj; 1349 1350 lockdep_assert_irqs_disabled(); 1351 1352 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ 1353 if (rcu_segcblist_empty(&rdp->cblist) || 1354 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { 1355 *nextevt = KTIME_MAX; 1356 return 0; 1357 } 1358 1359 /* Attempt to advance callbacks. */ 1360 if (rcu_try_advance_all_cbs()) { 1361 /* Some ready to invoke, so initiate later invocation. */ 1362 invoke_rcu_core(); 1363 return 1; 1364 } 1365 rdp->last_accelerate = jiffies; 1366 1367 /* Request timer and round. */ 1368 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; 1369 1370 *nextevt = basemono + dj * TICK_NSEC; 1371 return 0; 1372 } 1373 1374 /* 1375 * Prepare a CPU for idle from an RCU perspective. The first major task is to 1376 * sense whether nohz mode has been enabled or disabled via sysfs. The second 1377 * major task is to accelerate (that is, assign grace-period numbers to) any 1378 * recently arrived callbacks. 1379 * 1380 * The caller must have disabled interrupts. 1381 */ 1382 static void rcu_prepare_for_idle(void) 1383 { 1384 bool needwake; 1385 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1386 struct rcu_node *rnp; 1387 int tne; 1388 1389 lockdep_assert_irqs_disabled(); 1390 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1391 return; 1392 1393 /* Handle nohz enablement switches conservatively. */ 1394 tne = READ_ONCE(tick_nohz_active); 1395 if (tne != rdp->tick_nohz_enabled_snap) { 1396 if (!rcu_segcblist_empty(&rdp->cblist)) 1397 invoke_rcu_core(); /* force nohz to see update. */ 1398 rdp->tick_nohz_enabled_snap = tne; 1399 return; 1400 } 1401 if (!tne) 1402 return; 1403 1404 /* 1405 * If we have not yet accelerated this jiffy, accelerate all 1406 * callbacks on this CPU. 1407 */ 1408 if (rdp->last_accelerate == jiffies) 1409 return; 1410 rdp->last_accelerate = jiffies; 1411 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1412 rnp = rdp->mynode; 1413 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1414 needwake = rcu_accelerate_cbs(rnp, rdp); 1415 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1416 if (needwake) 1417 rcu_gp_kthread_wake(); 1418 } 1419 } 1420 1421 /* 1422 * Clean up for exit from idle. Attempt to advance callbacks based on 1423 * any grace periods that elapsed while the CPU was idle, and if any 1424 * callbacks are now ready to invoke, initiate invocation. 1425 */ 1426 static void rcu_cleanup_after_idle(void) 1427 { 1428 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1429 1430 lockdep_assert_irqs_disabled(); 1431 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1432 return; 1433 if (rcu_try_advance_all_cbs()) 1434 invoke_rcu_core(); 1435 } 1436 1437 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1438 1439 #ifdef CONFIG_RCU_NOCB_CPU 1440 1441 /* 1442 * Offload callback processing from the boot-time-specified set of CPUs 1443 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 1444 * created that pull the callbacks from the corresponding CPU, wait for 1445 * a grace period to elapse, and invoke the callbacks. These kthreads 1446 * are organized into GP kthreads, which manage incoming callbacks, wait for 1447 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 1448 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 1449 * do a wake_up() on their GP kthread when they insert a callback into any 1450 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 1451 * in which case each kthread actively polls its CPU. (Which isn't so great 1452 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 1453 * 1454 * This is intended to be used in conjunction with Frederic Weisbecker's 1455 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1456 * running CPU-bound user-mode computations. 1457 * 1458 * Offloading of callbacks can also be used as an energy-efficiency 1459 * measure because CPUs with no RCU callbacks queued are more aggressive 1460 * about entering dyntick-idle mode. 1461 */ 1462 1463 1464 /* 1465 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 1466 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a 1467 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is 1468 * given, a warning is emitted and all CPUs are offloaded. 1469 */ 1470 static int __init rcu_nocb_setup(char *str) 1471 { 1472 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1473 if (!strcasecmp(str, "all")) 1474 cpumask_setall(rcu_nocb_mask); 1475 else 1476 if (cpulist_parse(str, rcu_nocb_mask)) { 1477 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 1478 cpumask_setall(rcu_nocb_mask); 1479 } 1480 return 1; 1481 } 1482 __setup("rcu_nocbs=", rcu_nocb_setup); 1483 1484 static int __init parse_rcu_nocb_poll(char *arg) 1485 { 1486 rcu_nocb_poll = true; 1487 return 0; 1488 } 1489 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1490 1491 /* 1492 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 1493 * After all, the main point of bypassing is to avoid lock contention 1494 * on ->nocb_lock, which only can happen at high call_rcu() rates. 1495 */ 1496 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 1497 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 1498 1499 /* 1500 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 1501 * lock isn't immediately available, increment ->nocb_lock_contended to 1502 * flag the contention. 1503 */ 1504 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 1505 __acquires(&rdp->nocb_bypass_lock) 1506 { 1507 lockdep_assert_irqs_disabled(); 1508 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 1509 return; 1510 atomic_inc(&rdp->nocb_lock_contended); 1511 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1512 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 1513 raw_spin_lock(&rdp->nocb_bypass_lock); 1514 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 1515 atomic_dec(&rdp->nocb_lock_contended); 1516 } 1517 1518 /* 1519 * Spinwait until the specified rcu_data structure's ->nocb_lock is 1520 * not contended. Please note that this is extremely special-purpose, 1521 * relying on the fact that at most two kthreads and one CPU contend for 1522 * this lock, and also that the two kthreads are guaranteed to have frequent 1523 * grace-period-duration time intervals between successive acquisitions 1524 * of the lock. This allows us to use an extremely simple throttling 1525 * mechanism, and further to apply it only to the CPU doing floods of 1526 * call_rcu() invocations. Don't try this at home! 1527 */ 1528 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 1529 { 1530 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1531 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 1532 cpu_relax(); 1533 } 1534 1535 /* 1536 * Conditionally acquire the specified rcu_data structure's 1537 * ->nocb_bypass_lock. 1538 */ 1539 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 1540 { 1541 lockdep_assert_irqs_disabled(); 1542 return raw_spin_trylock(&rdp->nocb_bypass_lock); 1543 } 1544 1545 /* 1546 * Release the specified rcu_data structure's ->nocb_bypass_lock. 1547 */ 1548 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 1549 __releases(&rdp->nocb_bypass_lock) 1550 { 1551 lockdep_assert_irqs_disabled(); 1552 raw_spin_unlock(&rdp->nocb_bypass_lock); 1553 } 1554 1555 /* 1556 * Acquire the specified rcu_data structure's ->nocb_lock, but only 1557 * if it corresponds to a no-CBs CPU. 1558 */ 1559 static void rcu_nocb_lock(struct rcu_data *rdp) 1560 { 1561 lockdep_assert_irqs_disabled(); 1562 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1563 return; 1564 raw_spin_lock(&rdp->nocb_lock); 1565 } 1566 1567 /* 1568 * Release the specified rcu_data structure's ->nocb_lock, but only 1569 * if it corresponds to a no-CBs CPU. 1570 */ 1571 static void rcu_nocb_unlock(struct rcu_data *rdp) 1572 { 1573 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1574 lockdep_assert_irqs_disabled(); 1575 raw_spin_unlock(&rdp->nocb_lock); 1576 } 1577 } 1578 1579 /* 1580 * Release the specified rcu_data structure's ->nocb_lock and restore 1581 * interrupts, but only if it corresponds to a no-CBs CPU. 1582 */ 1583 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1584 unsigned long flags) 1585 { 1586 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1587 lockdep_assert_irqs_disabled(); 1588 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1589 } else { 1590 local_irq_restore(flags); 1591 } 1592 } 1593 1594 /* Lockdep check that ->cblist may be safely accessed. */ 1595 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1596 { 1597 lockdep_assert_irqs_disabled(); 1598 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1599 lockdep_assert_held(&rdp->nocb_lock); 1600 } 1601 1602 /* 1603 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1604 * grace period. 1605 */ 1606 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1607 { 1608 swake_up_all(sq); 1609 } 1610 1611 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1612 { 1613 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 1614 } 1615 1616 static void rcu_init_one_nocb(struct rcu_node *rnp) 1617 { 1618 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1619 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1620 } 1621 1622 /* Is the specified CPU a no-CBs CPU? */ 1623 bool rcu_is_nocb_cpu(int cpu) 1624 { 1625 if (cpumask_available(rcu_nocb_mask)) 1626 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1627 return false; 1628 } 1629 1630 /* 1631 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock 1632 * and this function releases it. 1633 */ 1634 static void wake_nocb_gp(struct rcu_data *rdp, bool force, 1635 unsigned long flags) 1636 __releases(rdp->nocb_lock) 1637 { 1638 bool needwake = false; 1639 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1640 1641 lockdep_assert_held(&rdp->nocb_lock); 1642 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 1643 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1644 TPS("AlreadyAwake")); 1645 rcu_nocb_unlock_irqrestore(rdp, flags); 1646 return; 1647 } 1648 del_timer(&rdp->nocb_timer); 1649 rcu_nocb_unlock_irqrestore(rdp, flags); 1650 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1651 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 1652 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 1653 needwake = true; 1654 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 1655 } 1656 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1657 if (needwake) 1658 wake_up_process(rdp_gp->nocb_gp_kthread); 1659 } 1660 1661 /* 1662 * Arrange to wake the GP kthread for this NOCB group at some future 1663 * time when it is safe to do so. 1664 */ 1665 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 1666 const char *reason) 1667 { 1668 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1669 mod_timer(&rdp->nocb_timer, jiffies + 1); 1670 if (rdp->nocb_defer_wakeup < waketype) 1671 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1672 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 1673 } 1674 1675 /* 1676 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1677 * However, if there is a callback to be enqueued and if ->nocb_bypass 1678 * proves to be initially empty, just return false because the no-CB GP 1679 * kthread may need to be awakened in this case. 1680 * 1681 * Note that this function always returns true if rhp is NULL. 1682 */ 1683 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1684 unsigned long j) 1685 { 1686 struct rcu_cblist rcl; 1687 1688 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); 1689 rcu_lockdep_assert_cblist_protected(rdp); 1690 lockdep_assert_held(&rdp->nocb_bypass_lock); 1691 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 1692 raw_spin_unlock(&rdp->nocb_bypass_lock); 1693 return false; 1694 } 1695 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 1696 if (rhp) 1697 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1698 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 1699 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 1700 WRITE_ONCE(rdp->nocb_bypass_first, j); 1701 rcu_nocb_bypass_unlock(rdp); 1702 return true; 1703 } 1704 1705 /* 1706 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1707 * However, if there is a callback to be enqueued and if ->nocb_bypass 1708 * proves to be initially empty, just return false because the no-CB GP 1709 * kthread may need to be awakened in this case. 1710 * 1711 * Note that this function always returns true if rhp is NULL. 1712 */ 1713 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1714 unsigned long j) 1715 { 1716 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1717 return true; 1718 rcu_lockdep_assert_cblist_protected(rdp); 1719 rcu_nocb_bypass_lock(rdp); 1720 return rcu_nocb_do_flush_bypass(rdp, rhp, j); 1721 } 1722 1723 /* 1724 * If the ->nocb_bypass_lock is immediately available, flush the 1725 * ->nocb_bypass queue into ->cblist. 1726 */ 1727 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 1728 { 1729 rcu_lockdep_assert_cblist_protected(rdp); 1730 if (!rcu_segcblist_is_offloaded(&rdp->cblist) || 1731 !rcu_nocb_bypass_trylock(rdp)) 1732 return; 1733 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); 1734 } 1735 1736 /* 1737 * See whether it is appropriate to use the ->nocb_bypass list in order 1738 * to control contention on ->nocb_lock. A limited number of direct 1739 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 1740 * is non-empty, further callbacks must be placed into ->nocb_bypass, 1741 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 1742 * back to direct use of ->cblist. However, ->nocb_bypass should not be 1743 * used if ->cblist is empty, because otherwise callbacks can be stranded 1744 * on ->nocb_bypass because we cannot count on the current CPU ever again 1745 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 1746 * non-empty, the corresponding no-CBs grace-period kthread must not be 1747 * in an indefinite sleep state. 1748 * 1749 * Finally, it is not permitted to use the bypass during early boot, 1750 * as doing so would confuse the auto-initialization code. Besides 1751 * which, there is no point in worrying about lock contention while 1752 * there is only one CPU in operation. 1753 */ 1754 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1755 bool *was_alldone, unsigned long flags) 1756 { 1757 unsigned long c; 1758 unsigned long cur_gp_seq; 1759 unsigned long j = jiffies; 1760 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1761 1762 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { 1763 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1764 return false; /* Not offloaded, no bypassing. */ 1765 } 1766 lockdep_assert_irqs_disabled(); 1767 1768 // Don't use ->nocb_bypass during early boot. 1769 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 1770 rcu_nocb_lock(rdp); 1771 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1772 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1773 return false; 1774 } 1775 1776 // If we have advanced to a new jiffy, reset counts to allow 1777 // moving back from ->nocb_bypass to ->cblist. 1778 if (j == rdp->nocb_nobypass_last) { 1779 c = rdp->nocb_nobypass_count + 1; 1780 } else { 1781 WRITE_ONCE(rdp->nocb_nobypass_last, j); 1782 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 1783 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 1784 nocb_nobypass_lim_per_jiffy)) 1785 c = 0; 1786 else if (c > nocb_nobypass_lim_per_jiffy) 1787 c = nocb_nobypass_lim_per_jiffy; 1788 } 1789 WRITE_ONCE(rdp->nocb_nobypass_count, c); 1790 1791 // If there hasn't yet been all that many ->cblist enqueues 1792 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 1793 // ->nocb_bypass first. 1794 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { 1795 rcu_nocb_lock(rdp); 1796 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1797 if (*was_alldone) 1798 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1799 TPS("FirstQ")); 1800 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); 1801 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1802 return false; // Caller must enqueue the callback. 1803 } 1804 1805 // If ->nocb_bypass has been used too long or is too full, 1806 // flush ->nocb_bypass to ->cblist. 1807 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || 1808 ncbs >= qhimark) { 1809 rcu_nocb_lock(rdp); 1810 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { 1811 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1812 if (*was_alldone) 1813 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1814 TPS("FirstQ")); 1815 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1816 return false; // Caller must enqueue the callback. 1817 } 1818 if (j != rdp->nocb_gp_adv_time && 1819 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1820 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1821 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1822 rdp->nocb_gp_adv_time = j; 1823 } 1824 rcu_nocb_unlock_irqrestore(rdp, flags); 1825 return true; // Callback already enqueued. 1826 } 1827 1828 // We need to use the bypass. 1829 rcu_nocb_wait_contended(rdp); 1830 rcu_nocb_bypass_lock(rdp); 1831 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1832 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1833 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 1834 if (!ncbs) { 1835 WRITE_ONCE(rdp->nocb_bypass_first, j); 1836 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 1837 } 1838 rcu_nocb_bypass_unlock(rdp); 1839 smp_mb(); /* Order enqueue before wake. */ 1840 if (ncbs) { 1841 local_irq_restore(flags); 1842 } else { 1843 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 1844 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 1845 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 1846 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1847 TPS("FirstBQwake")); 1848 __call_rcu_nocb_wake(rdp, true, flags); 1849 } else { 1850 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1851 TPS("FirstBQnoWake")); 1852 rcu_nocb_unlock_irqrestore(rdp, flags); 1853 } 1854 } 1855 return true; // Callback already enqueued. 1856 } 1857 1858 /* 1859 * Awaken the no-CBs grace-period kthead if needed, either due to it 1860 * legitimately being asleep or due to overload conditions. 1861 * 1862 * If warranted, also wake up the kthread servicing this CPUs queues. 1863 */ 1864 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 1865 unsigned long flags) 1866 __releases(rdp->nocb_lock) 1867 { 1868 unsigned long cur_gp_seq; 1869 unsigned long j; 1870 long len; 1871 struct task_struct *t; 1872 1873 // If we are being polled or there is no kthread, just leave. 1874 t = READ_ONCE(rdp->nocb_gp_kthread); 1875 if (rcu_nocb_poll || !t) { 1876 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1877 TPS("WakeNotPoll")); 1878 rcu_nocb_unlock_irqrestore(rdp, flags); 1879 return; 1880 } 1881 // Need to actually to a wakeup. 1882 len = rcu_segcblist_n_cbs(&rdp->cblist); 1883 if (was_alldone) { 1884 rdp->qlen_last_fqs_check = len; 1885 if (!irqs_disabled_flags(flags)) { 1886 /* ... if queue was empty ... */ 1887 wake_nocb_gp(rdp, false, flags); 1888 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1889 TPS("WakeEmpty")); 1890 } else { 1891 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 1892 TPS("WakeEmptyIsDeferred")); 1893 rcu_nocb_unlock_irqrestore(rdp, flags); 1894 } 1895 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1896 /* ... or if many callbacks queued. */ 1897 rdp->qlen_last_fqs_check = len; 1898 j = jiffies; 1899 if (j != rdp->nocb_gp_adv_time && 1900 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1901 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1902 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1903 rdp->nocb_gp_adv_time = j; 1904 } 1905 smp_mb(); /* Enqueue before timer_pending(). */ 1906 if ((rdp->nocb_cb_sleep || 1907 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 1908 !timer_pending(&rdp->nocb_bypass_timer)) 1909 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 1910 TPS("WakeOvfIsDeferred")); 1911 rcu_nocb_unlock_irqrestore(rdp, flags); 1912 } else { 1913 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 1914 rcu_nocb_unlock_irqrestore(rdp, flags); 1915 } 1916 return; 1917 } 1918 1919 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ 1920 static void do_nocb_bypass_wakeup_timer(struct timer_list *t) 1921 { 1922 unsigned long flags; 1923 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); 1924 1925 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1926 rcu_nocb_lock_irqsave(rdp, flags); 1927 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1928 __call_rcu_nocb_wake(rdp, true, flags); 1929 } 1930 1931 /* 1932 * No-CBs GP kthreads come here to wait for additional callbacks to show up 1933 * or for grace periods to end. 1934 */ 1935 static void nocb_gp_wait(struct rcu_data *my_rdp) 1936 { 1937 bool bypass = false; 1938 long bypass_ncbs; 1939 int __maybe_unused cpu = my_rdp->cpu; 1940 unsigned long cur_gp_seq; 1941 unsigned long flags; 1942 bool gotcbs = false; 1943 unsigned long j = jiffies; 1944 bool needwait_gp = false; // This prevents actual uninitialized use. 1945 bool needwake; 1946 bool needwake_gp; 1947 struct rcu_data *rdp; 1948 struct rcu_node *rnp; 1949 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 1950 bool wasempty = false; 1951 1952 /* 1953 * Each pass through the following loop checks for CBs and for the 1954 * nearest grace period (if any) to wait for next. The CB kthreads 1955 * and the global grace-period kthread are awakened if needed. 1956 */ 1957 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 1958 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { 1959 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 1960 rcu_nocb_lock_irqsave(rdp, flags); 1961 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1962 if (bypass_ncbs && 1963 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 1964 bypass_ncbs > 2 * qhimark)) { 1965 // Bypass full or old, so flush it. 1966 (void)rcu_nocb_try_flush_bypass(rdp, j); 1967 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1968 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 1969 rcu_nocb_unlock_irqrestore(rdp, flags); 1970 continue; /* No callbacks here, try next. */ 1971 } 1972 if (bypass_ncbs) { 1973 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1974 TPS("Bypass")); 1975 bypass = true; 1976 } 1977 rnp = rdp->mynode; 1978 if (bypass) { // Avoid race with first bypass CB. 1979 WRITE_ONCE(my_rdp->nocb_defer_wakeup, 1980 RCU_NOCB_WAKE_NOT); 1981 del_timer(&my_rdp->nocb_timer); 1982 } 1983 // Advance callbacks if helpful and low contention. 1984 needwake_gp = false; 1985 if (!rcu_segcblist_restempty(&rdp->cblist, 1986 RCU_NEXT_READY_TAIL) || 1987 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1988 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 1989 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 1990 needwake_gp = rcu_advance_cbs(rnp, rdp); 1991 wasempty = rcu_segcblist_restempty(&rdp->cblist, 1992 RCU_NEXT_READY_TAIL); 1993 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 1994 } 1995 // Need to wait on some grace period? 1996 WARN_ON_ONCE(wasempty && 1997 !rcu_segcblist_restempty(&rdp->cblist, 1998 RCU_NEXT_READY_TAIL)); 1999 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 2000 if (!needwait_gp || 2001 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 2002 wait_gp_seq = cur_gp_seq; 2003 needwait_gp = true; 2004 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2005 TPS("NeedWaitGP")); 2006 } 2007 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 2008 needwake = rdp->nocb_cb_sleep; 2009 WRITE_ONCE(rdp->nocb_cb_sleep, false); 2010 smp_mb(); /* CB invocation -after- GP end. */ 2011 } else { 2012 needwake = false; 2013 } 2014 rcu_nocb_unlock_irqrestore(rdp, flags); 2015 if (needwake) { 2016 swake_up_one(&rdp->nocb_cb_wq); 2017 gotcbs = true; 2018 } 2019 if (needwake_gp) 2020 rcu_gp_kthread_wake(); 2021 } 2022 2023 my_rdp->nocb_gp_bypass = bypass; 2024 my_rdp->nocb_gp_gp = needwait_gp; 2025 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 2026 if (bypass && !rcu_nocb_poll) { 2027 // At least one child with non-empty ->nocb_bypass, so set 2028 // timer in order to avoid stranding its callbacks. 2029 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2030 mod_timer(&my_rdp->nocb_bypass_timer, j + 2); 2031 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2032 } 2033 if (rcu_nocb_poll) { 2034 /* Polling, so trace if first poll in the series. */ 2035 if (gotcbs) 2036 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 2037 schedule_timeout_idle(1); 2038 } else if (!needwait_gp) { 2039 /* Wait for callbacks to appear. */ 2040 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 2041 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 2042 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2043 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 2044 } else { 2045 rnp = my_rdp->mynode; 2046 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 2047 swait_event_interruptible_exclusive( 2048 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 2049 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 2050 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2051 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 2052 } 2053 if (!rcu_nocb_poll) { 2054 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2055 if (bypass) 2056 del_timer(&my_rdp->nocb_bypass_timer); 2057 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 2058 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2059 } 2060 my_rdp->nocb_gp_seq = -1; 2061 WARN_ON(signal_pending(current)); 2062 } 2063 2064 /* 2065 * No-CBs grace-period-wait kthread. There is one of these per group 2066 * of CPUs, but only once at least one CPU in that group has come online 2067 * at least once since boot. This kthread checks for newly posted 2068 * callbacks from any of the CPUs it is responsible for, waits for a 2069 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 2070 * that then have callback-invocation work to do. 2071 */ 2072 static int rcu_nocb_gp_kthread(void *arg) 2073 { 2074 struct rcu_data *rdp = arg; 2075 2076 for (;;) { 2077 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 2078 nocb_gp_wait(rdp); 2079 cond_resched_tasks_rcu_qs(); 2080 } 2081 return 0; 2082 } 2083 2084 /* 2085 * Invoke any ready callbacks from the corresponding no-CBs CPU, 2086 * then, if there are no more, wait for more to appear. 2087 */ 2088 static void nocb_cb_wait(struct rcu_data *rdp) 2089 { 2090 unsigned long cur_gp_seq; 2091 unsigned long flags; 2092 bool needwake_gp = false; 2093 struct rcu_node *rnp = rdp->mynode; 2094 2095 local_irq_save(flags); 2096 rcu_momentary_dyntick_idle(); 2097 local_irq_restore(flags); 2098 local_bh_disable(); 2099 rcu_do_batch(rdp); 2100 local_bh_enable(); 2101 lockdep_assert_irqs_enabled(); 2102 rcu_nocb_lock_irqsave(rdp, flags); 2103 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 2104 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 2105 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 2106 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 2107 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2108 } 2109 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 2110 rcu_nocb_unlock_irqrestore(rdp, flags); 2111 if (needwake_gp) 2112 rcu_gp_kthread_wake(); 2113 return; 2114 } 2115 2116 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 2117 WRITE_ONCE(rdp->nocb_cb_sleep, true); 2118 rcu_nocb_unlock_irqrestore(rdp, flags); 2119 if (needwake_gp) 2120 rcu_gp_kthread_wake(); 2121 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 2122 !READ_ONCE(rdp->nocb_cb_sleep)); 2123 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */ 2124 /* ^^^ Ensure CB invocation follows _sleep test. */ 2125 return; 2126 } 2127 WARN_ON(signal_pending(current)); 2128 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 2129 } 2130 2131 /* 2132 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 2133 * nocb_cb_wait() to do the dirty work. 2134 */ 2135 static int rcu_nocb_cb_kthread(void *arg) 2136 { 2137 struct rcu_data *rdp = arg; 2138 2139 // Each pass through this loop does one callback batch, and, 2140 // if there are no more ready callbacks, waits for them. 2141 for (;;) { 2142 nocb_cb_wait(rdp); 2143 cond_resched_tasks_rcu_qs(); 2144 } 2145 return 0; 2146 } 2147 2148 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2149 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2150 { 2151 return READ_ONCE(rdp->nocb_defer_wakeup); 2152 } 2153 2154 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2155 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2156 { 2157 unsigned long flags; 2158 int ndw; 2159 2160 rcu_nocb_lock_irqsave(rdp, flags); 2161 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2162 rcu_nocb_unlock_irqrestore(rdp, flags); 2163 return; 2164 } 2165 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2166 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2167 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2168 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 2169 } 2170 2171 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2172 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2173 { 2174 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2175 2176 do_nocb_deferred_wakeup_common(rdp); 2177 } 2178 2179 /* 2180 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2181 * This means we do an inexact common-case check. Note that if 2182 * we miss, ->nocb_timer will eventually clean things up. 2183 */ 2184 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2185 { 2186 if (rcu_nocb_need_deferred_wakeup(rdp)) 2187 do_nocb_deferred_wakeup_common(rdp); 2188 } 2189 2190 void __init rcu_init_nohz(void) 2191 { 2192 int cpu; 2193 bool need_rcu_nocb_mask = false; 2194 struct rcu_data *rdp; 2195 2196 #if defined(CONFIG_NO_HZ_FULL) 2197 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2198 need_rcu_nocb_mask = true; 2199 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2200 2201 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2202 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2203 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2204 return; 2205 } 2206 } 2207 if (!cpumask_available(rcu_nocb_mask)) 2208 return; 2209 2210 #if defined(CONFIG_NO_HZ_FULL) 2211 if (tick_nohz_full_running) 2212 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2213 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2214 2215 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2216 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2217 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2218 rcu_nocb_mask); 2219 } 2220 if (cpumask_empty(rcu_nocb_mask)) 2221 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2222 else 2223 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2224 cpumask_pr_args(rcu_nocb_mask)); 2225 if (rcu_nocb_poll) 2226 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2227 2228 for_each_cpu(cpu, rcu_nocb_mask) { 2229 rdp = per_cpu_ptr(&rcu_data, cpu); 2230 if (rcu_segcblist_empty(&rdp->cblist)) 2231 rcu_segcblist_init(&rdp->cblist); 2232 rcu_segcblist_offload(&rdp->cblist); 2233 } 2234 rcu_organize_nocb_kthreads(); 2235 } 2236 2237 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2238 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2239 { 2240 init_swait_queue_head(&rdp->nocb_cb_wq); 2241 init_swait_queue_head(&rdp->nocb_gp_wq); 2242 raw_spin_lock_init(&rdp->nocb_lock); 2243 raw_spin_lock_init(&rdp->nocb_bypass_lock); 2244 raw_spin_lock_init(&rdp->nocb_gp_lock); 2245 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2246 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); 2247 rcu_cblist_init(&rdp->nocb_bypass); 2248 } 2249 2250 /* 2251 * If the specified CPU is a no-CBs CPU that does not already have its 2252 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 2253 * for this CPU's group has not yet been created, spawn it as well. 2254 */ 2255 static void rcu_spawn_one_nocb_kthread(int cpu) 2256 { 2257 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2258 struct rcu_data *rdp_gp; 2259 struct task_struct *t; 2260 2261 /* 2262 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2263 * then nothing to do. 2264 */ 2265 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) 2266 return; 2267 2268 /* If we didn't spawn the GP kthread first, reorganize! */ 2269 rdp_gp = rdp->nocb_gp_rdp; 2270 if (!rdp_gp->nocb_gp_kthread) { 2271 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 2272 "rcuog/%d", rdp_gp->cpu); 2273 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) 2274 return; 2275 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 2276 } 2277 2278 /* Spawn the kthread for this CPU. */ 2279 t = kthread_run(rcu_nocb_cb_kthread, rdp, 2280 "rcuo%c/%d", rcu_state.abbr, cpu); 2281 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 2282 return; 2283 WRITE_ONCE(rdp->nocb_cb_kthread, t); 2284 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 2285 } 2286 2287 /* 2288 * If the specified CPU is a no-CBs CPU that does not already have its 2289 * rcuo kthread, spawn it. 2290 */ 2291 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2292 { 2293 if (rcu_scheduler_fully_active) 2294 rcu_spawn_one_nocb_kthread(cpu); 2295 } 2296 2297 /* 2298 * Once the scheduler is running, spawn rcuo kthreads for all online 2299 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2300 * non-boot CPUs come online -- if this changes, we will need to add 2301 * some mutual exclusion. 2302 */ 2303 static void __init rcu_spawn_nocb_kthreads(void) 2304 { 2305 int cpu; 2306 2307 for_each_online_cpu(cpu) 2308 rcu_spawn_cpu_nocb_kthread(cpu); 2309 } 2310 2311 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 2312 static int rcu_nocb_gp_stride = -1; 2313 module_param(rcu_nocb_gp_stride, int, 0444); 2314 2315 /* 2316 * Initialize GP-CB relationships for all no-CBs CPU. 2317 */ 2318 static void __init rcu_organize_nocb_kthreads(void) 2319 { 2320 int cpu; 2321 bool firsttime = true; 2322 bool gotnocbs = false; 2323 bool gotnocbscbs = true; 2324 int ls = rcu_nocb_gp_stride; 2325 int nl = 0; /* Next GP kthread. */ 2326 struct rcu_data *rdp; 2327 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 2328 struct rcu_data *rdp_prev = NULL; 2329 2330 if (!cpumask_available(rcu_nocb_mask)) 2331 return; 2332 if (ls == -1) { 2333 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 2334 rcu_nocb_gp_stride = ls; 2335 } 2336 2337 /* 2338 * Each pass through this loop sets up one rcu_data structure. 2339 * Should the corresponding CPU come online in the future, then 2340 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2341 */ 2342 for_each_cpu(cpu, rcu_nocb_mask) { 2343 rdp = per_cpu_ptr(&rcu_data, cpu); 2344 if (rdp->cpu >= nl) { 2345 /* New GP kthread, set up for CBs & next GP. */ 2346 gotnocbs = true; 2347 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2348 rdp->nocb_gp_rdp = rdp; 2349 rdp_gp = rdp; 2350 if (dump_tree) { 2351 if (!firsttime) 2352 pr_cont("%s\n", gotnocbscbs 2353 ? "" : " (self only)"); 2354 gotnocbscbs = false; 2355 firsttime = false; 2356 pr_alert("%s: No-CB GP kthread CPU %d:", 2357 __func__, cpu); 2358 } 2359 } else { 2360 /* Another CB kthread, link to previous GP kthread. */ 2361 gotnocbscbs = true; 2362 rdp->nocb_gp_rdp = rdp_gp; 2363 rdp_prev->nocb_next_cb_rdp = rdp; 2364 if (dump_tree) 2365 pr_cont(" %d", cpu); 2366 } 2367 rdp_prev = rdp; 2368 } 2369 if (gotnocbs && dump_tree) 2370 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 2371 } 2372 2373 /* 2374 * Bind the current task to the offloaded CPUs. If there are no offloaded 2375 * CPUs, leave the task unbound. Splat if the bind attempt fails. 2376 */ 2377 void rcu_bind_current_to_nocb(void) 2378 { 2379 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) 2380 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 2381 } 2382 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 2383 2384 /* 2385 * Dump out nocb grace-period kthread state for the specified rcu_data 2386 * structure. 2387 */ 2388 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 2389 { 2390 struct rcu_node *rnp = rdp->mynode; 2391 2392 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n", 2393 rdp->cpu, 2394 "kK"[!!rdp->nocb_gp_kthread], 2395 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 2396 "dD"[!!rdp->nocb_defer_wakeup], 2397 "tT"[timer_pending(&rdp->nocb_timer)], 2398 "bB"[timer_pending(&rdp->nocb_bypass_timer)], 2399 "sS"[!!rdp->nocb_gp_sleep], 2400 ".W"[swait_active(&rdp->nocb_gp_wq)], 2401 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 2402 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 2403 ".B"[!!rdp->nocb_gp_bypass], 2404 ".G"[!!rdp->nocb_gp_gp], 2405 (long)rdp->nocb_gp_seq, 2406 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops)); 2407 } 2408 2409 /* Dump out nocb kthread state for the specified rcu_data structure. */ 2410 static void show_rcu_nocb_state(struct rcu_data *rdp) 2411 { 2412 struct rcu_segcblist *rsclp = &rdp->cblist; 2413 bool waslocked; 2414 bool wastimer; 2415 bool wassleep; 2416 2417 if (rdp->nocb_gp_rdp == rdp) 2418 show_rcu_nocb_gp_state(rdp); 2419 2420 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n", 2421 rdp->cpu, rdp->nocb_gp_rdp->cpu, 2422 "kK"[!!rdp->nocb_cb_kthread], 2423 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 2424 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 2425 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 2426 "sS"[!!rdp->nocb_cb_sleep], 2427 ".W"[swait_active(&rdp->nocb_cb_wq)], 2428 jiffies - rdp->nocb_bypass_first, 2429 jiffies - rdp->nocb_nobypass_last, 2430 rdp->nocb_nobypass_count, 2431 ".D"[rcu_segcblist_ready_cbs(rsclp)], 2432 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)], 2433 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)], 2434 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)], 2435 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 2436 rcu_segcblist_n_cbs(&rdp->cblist)); 2437 2438 /* It is OK for GP kthreads to have GP state. */ 2439 if (rdp->nocb_gp_rdp == rdp) 2440 return; 2441 2442 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 2443 wastimer = timer_pending(&rdp->nocb_bypass_timer); 2444 wassleep = swait_active(&rdp->nocb_gp_wq); 2445 if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep) 2446 return; /* Nothing untowards. */ 2447 2448 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n", 2449 "lL"[waslocked], 2450 "dD"[!!rdp->nocb_defer_wakeup], 2451 "tT"[wastimer], 2452 "sS"[!!rdp->nocb_gp_sleep], 2453 ".W"[wassleep]); 2454 } 2455 2456 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2457 2458 /* No ->nocb_lock to acquire. */ 2459 static void rcu_nocb_lock(struct rcu_data *rdp) 2460 { 2461 } 2462 2463 /* No ->nocb_lock to release. */ 2464 static void rcu_nocb_unlock(struct rcu_data *rdp) 2465 { 2466 } 2467 2468 /* No ->nocb_lock to release. */ 2469 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 2470 unsigned long flags) 2471 { 2472 local_irq_restore(flags); 2473 } 2474 2475 /* Lockdep check that ->cblist may be safely accessed. */ 2476 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 2477 { 2478 lockdep_assert_irqs_disabled(); 2479 } 2480 2481 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2482 { 2483 } 2484 2485 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2486 { 2487 return NULL; 2488 } 2489 2490 static void rcu_init_one_nocb(struct rcu_node *rnp) 2491 { 2492 } 2493 2494 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2495 unsigned long j) 2496 { 2497 return true; 2498 } 2499 2500 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2501 bool *was_alldone, unsigned long flags) 2502 { 2503 return false; 2504 } 2505 2506 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 2507 unsigned long flags) 2508 { 2509 WARN_ON_ONCE(1); /* Should be dead code! */ 2510 } 2511 2512 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2513 { 2514 } 2515 2516 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2517 { 2518 return false; 2519 } 2520 2521 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2522 { 2523 } 2524 2525 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2526 { 2527 } 2528 2529 static void __init rcu_spawn_nocb_kthreads(void) 2530 { 2531 } 2532 2533 static void show_rcu_nocb_state(struct rcu_data *rdp) 2534 { 2535 } 2536 2537 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2538 2539 /* 2540 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2541 * grace-period kthread will do force_quiescent_state() processing? 2542 * The idea is to avoid waking up RCU core processing on such a 2543 * CPU unless the grace period has extended for too long. 2544 * 2545 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2546 * CONFIG_RCU_NOCB_CPU CPUs. 2547 */ 2548 static bool rcu_nohz_full_cpu(void) 2549 { 2550 #ifdef CONFIG_NO_HZ_FULL 2551 if (tick_nohz_full_cpu(smp_processor_id()) && 2552 (!rcu_gp_in_progress() || 2553 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 2554 return true; 2555 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2556 return false; 2557 } 2558 2559 /* 2560 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2561 */ 2562 static void rcu_bind_gp_kthread(void) 2563 { 2564 if (!tick_nohz_full_enabled()) 2565 return; 2566 housekeeping_affine(current, HK_FLAG_RCU); 2567 } 2568 2569 /* Record the current task on dyntick-idle entry. */ 2570 static void noinstr rcu_dynticks_task_enter(void) 2571 { 2572 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2573 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2574 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2575 } 2576 2577 /* Record no current task on dyntick-idle exit. */ 2578 static void noinstr rcu_dynticks_task_exit(void) 2579 { 2580 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2581 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2582 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2583 } 2584 2585 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 2586 static void rcu_dynticks_task_trace_enter(void) 2587 { 2588 #ifdef CONFIG_TASKS_RCU_TRACE 2589 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 2590 current->trc_reader_special.b.need_mb = true; 2591 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 2592 } 2593 2594 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 2595 static void rcu_dynticks_task_trace_exit(void) 2596 { 2597 #ifdef CONFIG_TASKS_RCU_TRACE 2598 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 2599 current->trc_reader_special.b.need_mb = false; 2600 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 2601 } 2602