xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision a8fe58ce)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #ifdef CONFIG_RCU_BOOST
34 
35 #include "../locking/rtmutex_common.h"
36 
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45 
46 #else /* #ifdef CONFIG_RCU_BOOST */
47 
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55 
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57 
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63 
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.
67  */
68 static void __init rcu_bootup_announce_oddness(void)
69 {
70 	if (IS_ENABLED(CONFIG_RCU_TRACE))
71 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75 		       RCU_FANOUT);
76 	if (rcu_fanout_exact)
77 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 	if (IS_ENABLED(CONFIG_PROVE_RCU))
81 		pr_info("\tRCU lockdep checking is enabled.\n");
82 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
83 		pr_info("\tRCU torture testing starts during boot.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 	if (nr_cpu_ids != NR_CPUS)
92 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 	if (IS_ENABLED(CONFIG_RCU_BOOST))
94 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96 
97 #ifdef CONFIG_PREEMPT_RCU
98 
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102 
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 			       bool wake);
105 
106 /*
107  * Tell them what RCU they are running.
108  */
109 static void __init rcu_bootup_announce(void)
110 {
111 	pr_info("Preemptible hierarchical RCU implementation.\n");
112 	rcu_bootup_announce_oddness();
113 }
114 
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS	0x8
117 #define RCU_EXP_TASKS	0x4
118 #define RCU_GP_BLKD	0x2
119 #define RCU_EXP_BLKD	0x1
120 
121 /*
122  * Queues a task preempted within an RCU-preempt read-side critical
123  * section into the appropriate location within the ->blkd_tasks list,
124  * depending on the states of any ongoing normal and expedited grace
125  * periods.  The ->gp_tasks pointer indicates which element the normal
126  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127  * indicates which element the expedited grace period is waiting on (again,
128  * NULL if none).  If a grace period is waiting on a given element in the
129  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
130  * adding a task to the tail of the list blocks any grace period that is
131  * already waiting on one of the elements.  In contrast, adding a task
132  * to the head of the list won't block any grace period that is already
133  * waiting on one of the elements.
134  *
135  * This queuing is imprecise, and can sometimes make an ongoing grace
136  * period wait for a task that is not strictly speaking blocking it.
137  * Given the choice, we needlessly block a normal grace period rather than
138  * blocking an expedited grace period.
139  *
140  * Note that an endless sequence of expedited grace periods still cannot
141  * indefinitely postpone a normal grace period.  Eventually, all of the
142  * fixed number of preempted tasks blocking the normal grace period that are
143  * not also blocking the expedited grace period will resume and complete
144  * their RCU read-side critical sections.  At that point, the ->gp_tasks
145  * pointer will equal the ->exp_tasks pointer, at which point the end of
146  * the corresponding expedited grace period will also be the end of the
147  * normal grace period.
148  */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 	__releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 	struct task_struct *t = current;
157 
158 	/*
159 	 * Decide where to queue the newly blocked task.  In theory,
160 	 * this could be an if-statement.  In practice, when I tried
161 	 * that, it was quite messy.
162 	 */
163 	switch (blkd_state) {
164 	case 0:
165 	case                RCU_EXP_TASKS:
166 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
167 	case RCU_GP_TASKS:
168 	case RCU_GP_TASKS + RCU_EXP_TASKS:
169 
170 		/*
171 		 * Blocking neither GP, or first task blocking the normal
172 		 * GP but not blocking the already-waiting expedited GP.
173 		 * Queue at the head of the list to avoid unnecessarily
174 		 * blocking the already-waiting GPs.
175 		 */
176 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 		break;
178 
179 	case                                              RCU_EXP_BLKD:
180 	case                                RCU_GP_BLKD:
181 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
182 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
183 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
184 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 
186 		/*
187 		 * First task arriving that blocks either GP, or first task
188 		 * arriving that blocks the expedited GP (with the normal
189 		 * GP already waiting), or a task arriving that blocks
190 		 * both GPs with both GPs already waiting.  Queue at the
191 		 * tail of the list to avoid any GP waiting on any of the
192 		 * already queued tasks that are not blocking it.
193 		 */
194 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 		break;
196 
197 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
198 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the expedited GP.
203 		 * The task either does not block the normal GP, or is the
204 		 * first task blocking the normal GP.  Queue just after
205 		 * the first task blocking the expedited GP.
206 		 */
207 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 		break;
209 
210 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
211 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212 
213 		/*
214 		 * Second or subsequent task blocking the normal GP.
215 		 * The task does not block the expedited GP. Queue just
216 		 * after the first task blocking the normal GP.
217 		 */
218 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 		break;
220 
221 	default:
222 
223 		/* Yet another exercise in excessive paranoia. */
224 		WARN_ON_ONCE(1);
225 		break;
226 	}
227 
228 	/*
229 	 * We have now queued the task.  If it was the first one to
230 	 * block either grace period, update the ->gp_tasks and/or
231 	 * ->exp_tasks pointers, respectively, to reference the newly
232 	 * blocked tasks.
233 	 */
234 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 		rnp->gp_tasks = &t->rcu_node_entry;
236 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 		rnp->exp_tasks = &t->rcu_node_entry;
238 	raw_spin_unlock(&rnp->lock); /* rrupts remain disabled. */
239 
240 	/*
241 	 * Report the quiescent state for the expedited GP.  This expedited
242 	 * GP should not be able to end until we report, so there should be
243 	 * no need to check for a subsequent expedited GP.  (Though we are
244 	 * still in a quiescent state in any case.)
245 	 */
246 	if (blkd_state & RCU_EXP_BLKD &&
247 	    t->rcu_read_unlock_special.b.exp_need_qs) {
248 		t->rcu_read_unlock_special.b.exp_need_qs = false;
249 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 	} else {
251 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 	}
253 }
254 
255 /*
256  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
257  * that this just means that the task currently running on the CPU is
258  * not in a quiescent state.  There might be any number of tasks blocked
259  * while in an RCU read-side critical section.
260  *
261  * As with the other rcu_*_qs() functions, callers to this function
262  * must disable preemption.
263  */
264 static void rcu_preempt_qs(void)
265 {
266 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267 		trace_rcu_grace_period(TPS("rcu_preempt"),
268 				       __this_cpu_read(rcu_data_p->gpnum),
269 				       TPS("cpuqs"));
270 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 		current->rcu_read_unlock_special.b.need_qs = false;
273 	}
274 }
275 
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 static void rcu_preempt_note_context_switch(void)
290 {
291 	struct task_struct *t = current;
292 	struct rcu_data *rdp;
293 	struct rcu_node *rnp;
294 
295 	if (t->rcu_read_lock_nesting > 0 &&
296 	    !t->rcu_read_unlock_special.b.blocked) {
297 
298 		/* Possibly blocking in an RCU read-side critical section. */
299 		rdp = this_cpu_ptr(rcu_state_p->rda);
300 		rnp = rdp->mynode;
301 		raw_spin_lock_rcu_node(rnp);
302 		t->rcu_read_unlock_special.b.blocked = true;
303 		t->rcu_blocked_node = rnp;
304 
305 		/*
306 		 * Verify the CPU's sanity, trace the preemption, and
307 		 * then queue the task as required based on the states
308 		 * of any ongoing and expedited grace periods.
309 		 */
310 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 		trace_rcu_preempt_task(rdp->rsp->name,
313 				       t->pid,
314 				       (rnp->qsmask & rdp->grpmask)
315 				       ? rnp->gpnum
316 				       : rnp->gpnum + 1);
317 		rcu_preempt_ctxt_queue(rnp, rdp);
318 	} else if (t->rcu_read_lock_nesting < 0 &&
319 		   t->rcu_read_unlock_special.s) {
320 
321 		/*
322 		 * Complete exit from RCU read-side critical section on
323 		 * behalf of preempted instance of __rcu_read_unlock().
324 		 */
325 		rcu_read_unlock_special(t);
326 	}
327 
328 	/*
329 	 * Either we were not in an RCU read-side critical section to
330 	 * begin with, or we have now recorded that critical section
331 	 * globally.  Either way, we can now note a quiescent state
332 	 * for this CPU.  Again, if we were in an RCU read-side critical
333 	 * section, and if that critical section was blocking the current
334 	 * grace period, then the fact that the task has been enqueued
335 	 * means that we continue to block the current grace period.
336 	 */
337 	rcu_preempt_qs();
338 }
339 
340 /*
341  * Check for preempted RCU readers blocking the current grace period
342  * for the specified rcu_node structure.  If the caller needs a reliable
343  * answer, it must hold the rcu_node's ->lock.
344  */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347 	return rnp->gp_tasks != NULL;
348 }
349 
350 /*
351  * Advance a ->blkd_tasks-list pointer to the next entry, instead
352  * returning NULL if at the end of the list.
353  */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 					     struct rcu_node *rnp)
356 {
357 	struct list_head *np;
358 
359 	np = t->rcu_node_entry.next;
360 	if (np == &rnp->blkd_tasks)
361 		np = NULL;
362 	return np;
363 }
364 
365 /*
366  * Return true if the specified rcu_node structure has tasks that were
367  * preempted within an RCU read-side critical section.
368  */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371 	return !list_empty(&rnp->blkd_tasks);
372 }
373 
374 /*
375  * Handle special cases during rcu_read_unlock(), such as needing to
376  * notify RCU core processing or task having blocked during the RCU
377  * read-side critical section.
378  */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381 	bool empty_exp;
382 	bool empty_norm;
383 	bool empty_exp_now;
384 	unsigned long flags;
385 	struct list_head *np;
386 	bool drop_boost_mutex = false;
387 	struct rcu_data *rdp;
388 	struct rcu_node *rnp;
389 	union rcu_special special;
390 
391 	/* NMI handlers cannot block and cannot safely manipulate state. */
392 	if (in_nmi())
393 		return;
394 
395 	local_irq_save(flags);
396 
397 	/*
398 	 * If RCU core is waiting for this CPU to exit its critical section,
399 	 * report the fact that it has exited.  Because irqs are disabled,
400 	 * t->rcu_read_unlock_special cannot change.
401 	 */
402 	special = t->rcu_read_unlock_special;
403 	if (special.b.need_qs) {
404 		rcu_preempt_qs();
405 		t->rcu_read_unlock_special.b.need_qs = false;
406 		if (!t->rcu_read_unlock_special.s) {
407 			local_irq_restore(flags);
408 			return;
409 		}
410 	}
411 
412 	/*
413 	 * Respond to a request for an expedited grace period, but only if
414 	 * we were not preempted, meaning that we were running on the same
415 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
416 	 * would have been cleared at the time of the first preemption,
417 	 * and the quiescent state would be reported when we were dequeued.
418 	 */
419 	if (special.b.exp_need_qs) {
420 		WARN_ON_ONCE(special.b.blocked);
421 		t->rcu_read_unlock_special.b.exp_need_qs = false;
422 		rdp = this_cpu_ptr(rcu_state_p->rda);
423 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 		if (!t->rcu_read_unlock_special.s) {
425 			local_irq_restore(flags);
426 			return;
427 		}
428 	}
429 
430 	/* Hardware IRQ handlers cannot block, complain if they get here. */
431 	if (in_irq() || in_serving_softirq()) {
432 		lockdep_rcu_suspicious(__FILE__, __LINE__,
433 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 			 t->rcu_read_unlock_special.s,
436 			 t->rcu_read_unlock_special.b.blocked,
437 			 t->rcu_read_unlock_special.b.exp_need_qs,
438 			 t->rcu_read_unlock_special.b.need_qs);
439 		local_irq_restore(flags);
440 		return;
441 	}
442 
443 	/* Clean up if blocked during RCU read-side critical section. */
444 	if (special.b.blocked) {
445 		t->rcu_read_unlock_special.b.blocked = false;
446 
447 		/*
448 		 * Remove this task from the list it blocked on.  The task
449 		 * now remains queued on the rcu_node corresponding to the
450 		 * CPU it first blocked on, so there is no longer any need
451 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
452 		 */
453 		rnp = t->rcu_blocked_node;
454 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457 		empty_exp = sync_rcu_preempt_exp_done(rnp);
458 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 		np = rcu_next_node_entry(t, rnp);
460 		list_del_init(&t->rcu_node_entry);
461 		t->rcu_blocked_node = NULL;
462 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463 						rnp->gpnum, t->pid);
464 		if (&t->rcu_node_entry == rnp->gp_tasks)
465 			rnp->gp_tasks = np;
466 		if (&t->rcu_node_entry == rnp->exp_tasks)
467 			rnp->exp_tasks = np;
468 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 			if (&t->rcu_node_entry == rnp->boost_tasks)
470 				rnp->boost_tasks = np;
471 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 		}
474 
475 		/*
476 		 * If this was the last task on the current list, and if
477 		 * we aren't waiting on any CPUs, report the quiescent state.
478 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 		 * so we must take a snapshot of the expedited state.
480 		 */
481 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484 							 rnp->gpnum,
485 							 0, rnp->qsmask,
486 							 rnp->level,
487 							 rnp->grplo,
488 							 rnp->grphi,
489 							 !!rnp->gp_tasks);
490 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491 		} else {
492 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
493 		}
494 
495 		/* Unboost if we were boosted. */
496 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497 			rt_mutex_unlock(&rnp->boost_mtx);
498 
499 		/*
500 		 * If this was the last task on the expedited lists,
501 		 * then we need to report up the rcu_node hierarchy.
502 		 */
503 		if (!empty_exp && empty_exp_now)
504 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
505 	} else {
506 		local_irq_restore(flags);
507 	}
508 }
509 
510 /*
511  * Dump detailed information for all tasks blocking the current RCU
512  * grace period on the specified rcu_node structure.
513  */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516 	unsigned long flags;
517 	struct task_struct *t;
518 
519 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
520 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
522 		return;
523 	}
524 	t = list_entry(rnp->gp_tasks->prev,
525 		       struct task_struct, rcu_node_entry);
526 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 		sched_show_task(t);
528 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
529 }
530 
531 /*
532  * Dump detailed information for all tasks blocking the current RCU
533  * grace period.
534  */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537 	struct rcu_node *rnp = rcu_get_root(rsp);
538 
539 	rcu_print_detail_task_stall_rnp(rnp);
540 	rcu_for_each_leaf_node(rsp, rnp)
541 		rcu_print_detail_task_stall_rnp(rnp);
542 }
543 
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 	       rnp->level, rnp->grplo, rnp->grphi);
548 }
549 
550 static void rcu_print_task_stall_end(void)
551 {
552 	pr_cont("\n");
553 }
554 
555 /*
556  * Scan the current list of tasks blocked within RCU read-side critical
557  * sections, printing out the tid of each.
558  */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561 	struct task_struct *t;
562 	int ndetected = 0;
563 
564 	if (!rcu_preempt_blocked_readers_cgp(rnp))
565 		return 0;
566 	rcu_print_task_stall_begin(rnp);
567 	t = list_entry(rnp->gp_tasks->prev,
568 		       struct task_struct, rcu_node_entry);
569 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570 		pr_cont(" P%d", t->pid);
571 		ndetected++;
572 	}
573 	rcu_print_task_stall_end();
574 	return ndetected;
575 }
576 
577 /*
578  * Scan the current list of tasks blocked within RCU read-side critical
579  * sections, printing out the tid of each that is blocking the current
580  * expedited grace period.
581  */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584 	struct task_struct *t;
585 	int ndetected = 0;
586 
587 	if (!rnp->exp_tasks)
588 		return 0;
589 	t = list_entry(rnp->exp_tasks->prev,
590 		       struct task_struct, rcu_node_entry);
591 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 		pr_cont(" P%d", t->pid);
593 		ndetected++;
594 	}
595 	return ndetected;
596 }
597 
598 /*
599  * Check that the list of blocked tasks for the newly completed grace
600  * period is in fact empty.  It is a serious bug to complete a grace
601  * period that still has RCU readers blocked!  This function must be
602  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603  * must be held by the caller.
604  *
605  * Also, if there are blocked tasks on the list, they automatically
606  * block the newly created grace period, so set up ->gp_tasks accordingly.
607  */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611 	if (rcu_preempt_has_tasks(rnp))
612 		rnp->gp_tasks = rnp->blkd_tasks.next;
613 	WARN_ON_ONCE(rnp->qsmask);
614 }
615 
616 /*
617  * Check for a quiescent state from the current CPU.  When a task blocks,
618  * the task is recorded in the corresponding CPU's rcu_node structure,
619  * which is checked elsewhere.
620  *
621  * Caller must disable hard irqs.
622  */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 	struct task_struct *t = current;
626 
627 	if (t->rcu_read_lock_nesting == 0) {
628 		rcu_preempt_qs();
629 		return;
630 	}
631 	if (t->rcu_read_lock_nesting > 0 &&
632 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
633 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634 		t->rcu_read_unlock_special.b.need_qs = true;
635 }
636 
637 #ifdef CONFIG_RCU_BOOST
638 
639 static void rcu_preempt_do_callbacks(void)
640 {
641 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643 
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645 
646 /*
647  * Queue a preemptible-RCU callback for invocation after a grace period.
648  */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651 	__call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654 
655 /**
656  * synchronize_rcu - wait until a grace period has elapsed.
657  *
658  * Control will return to the caller some time after a full grace
659  * period has elapsed, in other words after all currently executing RCU
660  * read-side critical sections have completed.  Note, however, that
661  * upon return from synchronize_rcu(), the caller might well be executing
662  * concurrently with new RCU read-side critical sections that began while
663  * synchronize_rcu() was waiting.  RCU read-side critical sections are
664  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665  *
666  * See the description of synchronize_sched() for more detailed information
667  * on memory ordering guarantees.
668  */
669 void synchronize_rcu(void)
670 {
671 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 			 lock_is_held(&rcu_lock_map) ||
673 			 lock_is_held(&rcu_sched_lock_map),
674 			 "Illegal synchronize_rcu() in RCU read-side critical section");
675 	if (!rcu_scheduler_active)
676 		return;
677 	if (rcu_gp_is_expedited())
678 		synchronize_rcu_expedited();
679 	else
680 		wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683 
684 /*
685  * Remote handler for smp_call_function_single().  If there is an
686  * RCU read-side critical section in effect, request that the
687  * next rcu_read_unlock() record the quiescent state up the
688  * ->expmask fields in the rcu_node tree.  Otherwise, immediately
689  * report the quiescent state.
690  */
691 static void sync_rcu_exp_handler(void *info)
692 {
693 	struct rcu_data *rdp;
694 	struct rcu_state *rsp = info;
695 	struct task_struct *t = current;
696 
697 	/*
698 	 * Within an RCU read-side critical section, request that the next
699 	 * rcu_read_unlock() report.  Unless this RCU read-side critical
700 	 * section has already blocked, in which case it is already set
701 	 * up for the expedited grace period to wait on it.
702 	 */
703 	if (t->rcu_read_lock_nesting > 0 &&
704 	    !t->rcu_read_unlock_special.b.blocked) {
705 		t->rcu_read_unlock_special.b.exp_need_qs = true;
706 		return;
707 	}
708 
709 	/*
710 	 * We are either exiting an RCU read-side critical section (negative
711 	 * values of t->rcu_read_lock_nesting) or are not in one at all
712 	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
713 	 * read-side critical section that blocked before this expedited
714 	 * grace period started.  Either way, we can immediately report
715 	 * the quiescent state.
716 	 */
717 	rdp = this_cpu_ptr(rsp->rda);
718 	rcu_report_exp_rdp(rsp, rdp, true);
719 }
720 
721 /**
722  * synchronize_rcu_expedited - Brute-force RCU grace period
723  *
724  * Wait for an RCU-preempt grace period, but expedite it.  The basic
725  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
726  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
727  * significant time on all CPUs and is unfriendly to real-time workloads,
728  * so is thus not recommended for any sort of common-case code.
729  * In fact, if you are using synchronize_rcu_expedited() in a loop,
730  * please restructure your code to batch your updates, and then Use a
731  * single synchronize_rcu() instead.
732  */
733 void synchronize_rcu_expedited(void)
734 {
735 	struct rcu_node *rnp;
736 	struct rcu_node *rnp_unlock;
737 	struct rcu_state *rsp = rcu_state_p;
738 	unsigned long s;
739 
740 	/* If expedited grace periods are prohibited, fall back to normal. */
741 	if (rcu_gp_is_normal()) {
742 		wait_rcu_gp(call_rcu);
743 		return;
744 	}
745 
746 	s = rcu_exp_gp_seq_snap(rsp);
747 
748 	rnp_unlock = exp_funnel_lock(rsp, s);
749 	if (rnp_unlock == NULL)
750 		return;  /* Someone else did our work for us. */
751 
752 	rcu_exp_gp_seq_start(rsp);
753 
754 	/* Initialize the rcu_node tree in preparation for the wait. */
755 	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
756 
757 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
758 	rnp = rcu_get_root(rsp);
759 	synchronize_sched_expedited_wait(rsp);
760 
761 	/* Clean up and exit. */
762 	rcu_exp_gp_seq_end(rsp);
763 	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
764 }
765 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
766 
767 /**
768  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
769  *
770  * Note that this primitive does not necessarily wait for an RCU grace period
771  * to complete.  For example, if there are no RCU callbacks queued anywhere
772  * in the system, then rcu_barrier() is within its rights to return
773  * immediately, without waiting for anything, much less an RCU grace period.
774  */
775 void rcu_barrier(void)
776 {
777 	_rcu_barrier(rcu_state_p);
778 }
779 EXPORT_SYMBOL_GPL(rcu_barrier);
780 
781 /*
782  * Initialize preemptible RCU's state structures.
783  */
784 static void __init __rcu_init_preempt(void)
785 {
786 	rcu_init_one(rcu_state_p);
787 }
788 
789 /*
790  * Check for a task exiting while in a preemptible-RCU read-side
791  * critical section, clean up if so.  No need to issue warnings,
792  * as debug_check_no_locks_held() already does this if lockdep
793  * is enabled.
794  */
795 void exit_rcu(void)
796 {
797 	struct task_struct *t = current;
798 
799 	if (likely(list_empty(&current->rcu_node_entry)))
800 		return;
801 	t->rcu_read_lock_nesting = 1;
802 	barrier();
803 	t->rcu_read_unlock_special.b.blocked = true;
804 	__rcu_read_unlock();
805 }
806 
807 #else /* #ifdef CONFIG_PREEMPT_RCU */
808 
809 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
810 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
811 
812 /*
813  * Tell them what RCU they are running.
814  */
815 static void __init rcu_bootup_announce(void)
816 {
817 	pr_info("Hierarchical RCU implementation.\n");
818 	rcu_bootup_announce_oddness();
819 }
820 
821 /*
822  * Because preemptible RCU does not exist, we never have to check for
823  * CPUs being in quiescent states.
824  */
825 static void rcu_preempt_note_context_switch(void)
826 {
827 }
828 
829 /*
830  * Because preemptible RCU does not exist, there are never any preempted
831  * RCU readers.
832  */
833 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
834 {
835 	return 0;
836 }
837 
838 /*
839  * Because there is no preemptible RCU, there can be no readers blocked.
840  */
841 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
842 {
843 	return false;
844 }
845 
846 /*
847  * Because preemptible RCU does not exist, we never have to check for
848  * tasks blocked within RCU read-side critical sections.
849  */
850 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
851 {
852 }
853 
854 /*
855  * Because preemptible RCU does not exist, we never have to check for
856  * tasks blocked within RCU read-side critical sections.
857  */
858 static int rcu_print_task_stall(struct rcu_node *rnp)
859 {
860 	return 0;
861 }
862 
863 /*
864  * Because preemptible RCU does not exist, we never have to check for
865  * tasks blocked within RCU read-side critical sections that are
866  * blocking the current expedited grace period.
867  */
868 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
869 {
870 	return 0;
871 }
872 
873 /*
874  * Because there is no preemptible RCU, there can be no readers blocked,
875  * so there is no need to check for blocked tasks.  So check only for
876  * bogus qsmask values.
877  */
878 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
879 {
880 	WARN_ON_ONCE(rnp->qsmask);
881 }
882 
883 /*
884  * Because preemptible RCU does not exist, it never has any callbacks
885  * to check.
886  */
887 static void rcu_preempt_check_callbacks(void)
888 {
889 }
890 
891 /*
892  * Wait for an rcu-preempt grace period, but make it happen quickly.
893  * But because preemptible RCU does not exist, map to rcu-sched.
894  */
895 void synchronize_rcu_expedited(void)
896 {
897 	synchronize_sched_expedited();
898 }
899 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
900 
901 /*
902  * Because preemptible RCU does not exist, rcu_barrier() is just
903  * another name for rcu_barrier_sched().
904  */
905 void rcu_barrier(void)
906 {
907 	rcu_barrier_sched();
908 }
909 EXPORT_SYMBOL_GPL(rcu_barrier);
910 
911 /*
912  * Because preemptible RCU does not exist, it need not be initialized.
913  */
914 static void __init __rcu_init_preempt(void)
915 {
916 }
917 
918 /*
919  * Because preemptible RCU does not exist, tasks cannot possibly exit
920  * while in preemptible RCU read-side critical sections.
921  */
922 void exit_rcu(void)
923 {
924 }
925 
926 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
927 
928 #ifdef CONFIG_RCU_BOOST
929 
930 #include "../locking/rtmutex_common.h"
931 
932 #ifdef CONFIG_RCU_TRACE
933 
934 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
935 {
936 	if (!rcu_preempt_has_tasks(rnp))
937 		rnp->n_balk_blkd_tasks++;
938 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
939 		rnp->n_balk_exp_gp_tasks++;
940 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
941 		rnp->n_balk_boost_tasks++;
942 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
943 		rnp->n_balk_notblocked++;
944 	else if (rnp->gp_tasks != NULL &&
945 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
946 		rnp->n_balk_notyet++;
947 	else
948 		rnp->n_balk_nos++;
949 }
950 
951 #else /* #ifdef CONFIG_RCU_TRACE */
952 
953 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
954 {
955 }
956 
957 #endif /* #else #ifdef CONFIG_RCU_TRACE */
958 
959 static void rcu_wake_cond(struct task_struct *t, int status)
960 {
961 	/*
962 	 * If the thread is yielding, only wake it when this
963 	 * is invoked from idle
964 	 */
965 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
966 		wake_up_process(t);
967 }
968 
969 /*
970  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
971  * or ->boost_tasks, advancing the pointer to the next task in the
972  * ->blkd_tasks list.
973  *
974  * Note that irqs must be enabled: boosting the task can block.
975  * Returns 1 if there are more tasks needing to be boosted.
976  */
977 static int rcu_boost(struct rcu_node *rnp)
978 {
979 	unsigned long flags;
980 	struct task_struct *t;
981 	struct list_head *tb;
982 
983 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
984 	    READ_ONCE(rnp->boost_tasks) == NULL)
985 		return 0;  /* Nothing left to boost. */
986 
987 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
988 
989 	/*
990 	 * Recheck under the lock: all tasks in need of boosting
991 	 * might exit their RCU read-side critical sections on their own.
992 	 */
993 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
994 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
995 		return 0;
996 	}
997 
998 	/*
999 	 * Preferentially boost tasks blocking expedited grace periods.
1000 	 * This cannot starve the normal grace periods because a second
1001 	 * expedited grace period must boost all blocked tasks, including
1002 	 * those blocking the pre-existing normal grace period.
1003 	 */
1004 	if (rnp->exp_tasks != NULL) {
1005 		tb = rnp->exp_tasks;
1006 		rnp->n_exp_boosts++;
1007 	} else {
1008 		tb = rnp->boost_tasks;
1009 		rnp->n_normal_boosts++;
1010 	}
1011 	rnp->n_tasks_boosted++;
1012 
1013 	/*
1014 	 * We boost task t by manufacturing an rt_mutex that appears to
1015 	 * be held by task t.  We leave a pointer to that rt_mutex where
1016 	 * task t can find it, and task t will release the mutex when it
1017 	 * exits its outermost RCU read-side critical section.  Then
1018 	 * simply acquiring this artificial rt_mutex will boost task
1019 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1020 	 *
1021 	 * Note that task t must acquire rnp->lock to remove itself from
1022 	 * the ->blkd_tasks list, which it will do from exit() if from
1023 	 * nowhere else.  We therefore are guaranteed that task t will
1024 	 * stay around at least until we drop rnp->lock.  Note that
1025 	 * rnp->lock also resolves races between our priority boosting
1026 	 * and task t's exiting its outermost RCU read-side critical
1027 	 * section.
1028 	 */
1029 	t = container_of(tb, struct task_struct, rcu_node_entry);
1030 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1031 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1032 	/* Lock only for side effect: boosts task t's priority. */
1033 	rt_mutex_lock(&rnp->boost_mtx);
1034 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1035 
1036 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1037 	       READ_ONCE(rnp->boost_tasks) != NULL;
1038 }
1039 
1040 /*
1041  * Priority-boosting kthread, one per leaf rcu_node.
1042  */
1043 static int rcu_boost_kthread(void *arg)
1044 {
1045 	struct rcu_node *rnp = (struct rcu_node *)arg;
1046 	int spincnt = 0;
1047 	int more2boost;
1048 
1049 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1050 	for (;;) {
1051 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1052 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1053 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1054 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1055 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1056 		more2boost = rcu_boost(rnp);
1057 		if (more2boost)
1058 			spincnt++;
1059 		else
1060 			spincnt = 0;
1061 		if (spincnt > 10) {
1062 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1063 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1064 			schedule_timeout_interruptible(2);
1065 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1066 			spincnt = 0;
1067 		}
1068 	}
1069 	/* NOTREACHED */
1070 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Check to see if it is time to start boosting RCU readers that are
1076  * blocking the current grace period, and, if so, tell the per-rcu_node
1077  * kthread to start boosting them.  If there is an expedited grace
1078  * period in progress, it is always time to boost.
1079  *
1080  * The caller must hold rnp->lock, which this function releases.
1081  * The ->boost_kthread_task is immortal, so we don't need to worry
1082  * about it going away.
1083  */
1084 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1085 	__releases(rnp->lock)
1086 {
1087 	struct task_struct *t;
1088 
1089 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1090 		rnp->n_balk_exp_gp_tasks++;
1091 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1092 		return;
1093 	}
1094 	if (rnp->exp_tasks != NULL ||
1095 	    (rnp->gp_tasks != NULL &&
1096 	     rnp->boost_tasks == NULL &&
1097 	     rnp->qsmask == 0 &&
1098 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1099 		if (rnp->exp_tasks == NULL)
1100 			rnp->boost_tasks = rnp->gp_tasks;
1101 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1102 		t = rnp->boost_kthread_task;
1103 		if (t)
1104 			rcu_wake_cond(t, rnp->boost_kthread_status);
1105 	} else {
1106 		rcu_initiate_boost_trace(rnp);
1107 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108 	}
1109 }
1110 
1111 /*
1112  * Wake up the per-CPU kthread to invoke RCU callbacks.
1113  */
1114 static void invoke_rcu_callbacks_kthread(void)
1115 {
1116 	unsigned long flags;
1117 
1118 	local_irq_save(flags);
1119 	__this_cpu_write(rcu_cpu_has_work, 1);
1120 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1121 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1122 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1123 			      __this_cpu_read(rcu_cpu_kthread_status));
1124 	}
1125 	local_irq_restore(flags);
1126 }
1127 
1128 /*
1129  * Is the current CPU running the RCU-callbacks kthread?
1130  * Caller must have preemption disabled.
1131  */
1132 static bool rcu_is_callbacks_kthread(void)
1133 {
1134 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1135 }
1136 
1137 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1138 
1139 /*
1140  * Do priority-boost accounting for the start of a new grace period.
1141  */
1142 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1143 {
1144 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1145 }
1146 
1147 /*
1148  * Create an RCU-boost kthread for the specified node if one does not
1149  * already exist.  We only create this kthread for preemptible RCU.
1150  * Returns zero if all is well, a negated errno otherwise.
1151  */
1152 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1153 				       struct rcu_node *rnp)
1154 {
1155 	int rnp_index = rnp - &rsp->node[0];
1156 	unsigned long flags;
1157 	struct sched_param sp;
1158 	struct task_struct *t;
1159 
1160 	if (rcu_state_p != rsp)
1161 		return 0;
1162 
1163 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1164 		return 0;
1165 
1166 	rsp->boost = 1;
1167 	if (rnp->boost_kthread_task != NULL)
1168 		return 0;
1169 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1170 			   "rcub/%d", rnp_index);
1171 	if (IS_ERR(t))
1172 		return PTR_ERR(t);
1173 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1174 	rnp->boost_kthread_task = t;
1175 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1176 	sp.sched_priority = kthread_prio;
1177 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1178 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1179 	return 0;
1180 }
1181 
1182 static void rcu_kthread_do_work(void)
1183 {
1184 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1185 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1186 	rcu_preempt_do_callbacks();
1187 }
1188 
1189 static void rcu_cpu_kthread_setup(unsigned int cpu)
1190 {
1191 	struct sched_param sp;
1192 
1193 	sp.sched_priority = kthread_prio;
1194 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1195 }
1196 
1197 static void rcu_cpu_kthread_park(unsigned int cpu)
1198 {
1199 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1200 }
1201 
1202 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1203 {
1204 	return __this_cpu_read(rcu_cpu_has_work);
1205 }
1206 
1207 /*
1208  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1209  * RCU softirq used in flavors and configurations of RCU that do not
1210  * support RCU priority boosting.
1211  */
1212 static void rcu_cpu_kthread(unsigned int cpu)
1213 {
1214 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1215 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1216 	int spincnt;
1217 
1218 	for (spincnt = 0; spincnt < 10; spincnt++) {
1219 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1220 		local_bh_disable();
1221 		*statusp = RCU_KTHREAD_RUNNING;
1222 		this_cpu_inc(rcu_cpu_kthread_loops);
1223 		local_irq_disable();
1224 		work = *workp;
1225 		*workp = 0;
1226 		local_irq_enable();
1227 		if (work)
1228 			rcu_kthread_do_work();
1229 		local_bh_enable();
1230 		if (*workp == 0) {
1231 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1232 			*statusp = RCU_KTHREAD_WAITING;
1233 			return;
1234 		}
1235 	}
1236 	*statusp = RCU_KTHREAD_YIELDING;
1237 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1238 	schedule_timeout_interruptible(2);
1239 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1240 	*statusp = RCU_KTHREAD_WAITING;
1241 }
1242 
1243 /*
1244  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1245  * served by the rcu_node in question.  The CPU hotplug lock is still
1246  * held, so the value of rnp->qsmaskinit will be stable.
1247  *
1248  * We don't include outgoingcpu in the affinity set, use -1 if there is
1249  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1250  * this function allows the kthread to execute on any CPU.
1251  */
1252 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1253 {
1254 	struct task_struct *t = rnp->boost_kthread_task;
1255 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1256 	cpumask_var_t cm;
1257 	int cpu;
1258 
1259 	if (!t)
1260 		return;
1261 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1262 		return;
1263 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1264 		if ((mask & 0x1) && cpu != outgoingcpu)
1265 			cpumask_set_cpu(cpu, cm);
1266 	if (cpumask_weight(cm) == 0)
1267 		cpumask_setall(cm);
1268 	set_cpus_allowed_ptr(t, cm);
1269 	free_cpumask_var(cm);
1270 }
1271 
1272 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1273 	.store			= &rcu_cpu_kthread_task,
1274 	.thread_should_run	= rcu_cpu_kthread_should_run,
1275 	.thread_fn		= rcu_cpu_kthread,
1276 	.thread_comm		= "rcuc/%u",
1277 	.setup			= rcu_cpu_kthread_setup,
1278 	.park			= rcu_cpu_kthread_park,
1279 };
1280 
1281 /*
1282  * Spawn boost kthreads -- called as soon as the scheduler is running.
1283  */
1284 static void __init rcu_spawn_boost_kthreads(void)
1285 {
1286 	struct rcu_node *rnp;
1287 	int cpu;
1288 
1289 	for_each_possible_cpu(cpu)
1290 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1291 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1292 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1293 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1294 }
1295 
1296 static void rcu_prepare_kthreads(int cpu)
1297 {
1298 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1299 	struct rcu_node *rnp = rdp->mynode;
1300 
1301 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1302 	if (rcu_scheduler_fully_active)
1303 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1304 }
1305 
1306 #else /* #ifdef CONFIG_RCU_BOOST */
1307 
1308 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1309 	__releases(rnp->lock)
1310 {
1311 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1312 }
1313 
1314 static void invoke_rcu_callbacks_kthread(void)
1315 {
1316 	WARN_ON_ONCE(1);
1317 }
1318 
1319 static bool rcu_is_callbacks_kthread(void)
1320 {
1321 	return false;
1322 }
1323 
1324 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1325 {
1326 }
1327 
1328 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1329 {
1330 }
1331 
1332 static void __init rcu_spawn_boost_kthreads(void)
1333 {
1334 }
1335 
1336 static void rcu_prepare_kthreads(int cpu)
1337 {
1338 }
1339 
1340 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1341 
1342 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1343 
1344 /*
1345  * Check to see if any future RCU-related work will need to be done
1346  * by the current CPU, even if none need be done immediately, returning
1347  * 1 if so.  This function is part of the RCU implementation; it is -not-
1348  * an exported member of the RCU API.
1349  *
1350  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1351  * any flavor of RCU.
1352  */
1353 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1354 {
1355 	*nextevt = KTIME_MAX;
1356 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1357 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1358 }
1359 
1360 /*
1361  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1362  * after it.
1363  */
1364 static void rcu_cleanup_after_idle(void)
1365 {
1366 }
1367 
1368 /*
1369  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1370  * is nothing.
1371  */
1372 static void rcu_prepare_for_idle(void)
1373 {
1374 }
1375 
1376 /*
1377  * Don't bother keeping a running count of the number of RCU callbacks
1378  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1379  */
1380 static void rcu_idle_count_callbacks_posted(void)
1381 {
1382 }
1383 
1384 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1385 
1386 /*
1387  * This code is invoked when a CPU goes idle, at which point we want
1388  * to have the CPU do everything required for RCU so that it can enter
1389  * the energy-efficient dyntick-idle mode.  This is handled by a
1390  * state machine implemented by rcu_prepare_for_idle() below.
1391  *
1392  * The following three proprocessor symbols control this state machine:
1393  *
1394  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1395  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1396  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1397  *	benchmarkers who might otherwise be tempted to set this to a large
1398  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1399  *	system.  And if you are -that- concerned about energy efficiency,
1400  *	just power the system down and be done with it!
1401  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1402  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1403  *	callbacks pending.  Setting this too high can OOM your system.
1404  *
1405  * The values below work well in practice.  If future workloads require
1406  * adjustment, they can be converted into kernel config parameters, though
1407  * making the state machine smarter might be a better option.
1408  */
1409 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1410 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1411 
1412 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1413 module_param(rcu_idle_gp_delay, int, 0644);
1414 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1415 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1416 
1417 /*
1418  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1419  * only if it has been awhile since the last time we did so.  Afterwards,
1420  * if there are any callbacks ready for immediate invocation, return true.
1421  */
1422 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1423 {
1424 	bool cbs_ready = false;
1425 	struct rcu_data *rdp;
1426 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1427 	struct rcu_node *rnp;
1428 	struct rcu_state *rsp;
1429 
1430 	/* Exit early if we advanced recently. */
1431 	if (jiffies == rdtp->last_advance_all)
1432 		return false;
1433 	rdtp->last_advance_all = jiffies;
1434 
1435 	for_each_rcu_flavor(rsp) {
1436 		rdp = this_cpu_ptr(rsp->rda);
1437 		rnp = rdp->mynode;
1438 
1439 		/*
1440 		 * Don't bother checking unless a grace period has
1441 		 * completed since we last checked and there are
1442 		 * callbacks not yet ready to invoke.
1443 		 */
1444 		if ((rdp->completed != rnp->completed ||
1445 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1446 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1447 			note_gp_changes(rsp, rdp);
1448 
1449 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1450 			cbs_ready = true;
1451 	}
1452 	return cbs_ready;
1453 }
1454 
1455 /*
1456  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1457  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1458  * caller to set the timeout based on whether or not there are non-lazy
1459  * callbacks.
1460  *
1461  * The caller must have disabled interrupts.
1462  */
1463 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1464 {
1465 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1466 	unsigned long dj;
1467 
1468 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1469 		*nextevt = KTIME_MAX;
1470 		return 0;
1471 	}
1472 
1473 	/* Snapshot to detect later posting of non-lazy callback. */
1474 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1475 
1476 	/* If no callbacks, RCU doesn't need the CPU. */
1477 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1478 		*nextevt = KTIME_MAX;
1479 		return 0;
1480 	}
1481 
1482 	/* Attempt to advance callbacks. */
1483 	if (rcu_try_advance_all_cbs()) {
1484 		/* Some ready to invoke, so initiate later invocation. */
1485 		invoke_rcu_core();
1486 		return 1;
1487 	}
1488 	rdtp->last_accelerate = jiffies;
1489 
1490 	/* Request timer delay depending on laziness, and round. */
1491 	if (!rdtp->all_lazy) {
1492 		dj = round_up(rcu_idle_gp_delay + jiffies,
1493 			       rcu_idle_gp_delay) - jiffies;
1494 	} else {
1495 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1496 	}
1497 	*nextevt = basemono + dj * TICK_NSEC;
1498 	return 0;
1499 }
1500 
1501 /*
1502  * Prepare a CPU for idle from an RCU perspective.  The first major task
1503  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1504  * The second major task is to check to see if a non-lazy callback has
1505  * arrived at a CPU that previously had only lazy callbacks.  The third
1506  * major task is to accelerate (that is, assign grace-period numbers to)
1507  * any recently arrived callbacks.
1508  *
1509  * The caller must have disabled interrupts.
1510  */
1511 static void rcu_prepare_for_idle(void)
1512 {
1513 	bool needwake;
1514 	struct rcu_data *rdp;
1515 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1516 	struct rcu_node *rnp;
1517 	struct rcu_state *rsp;
1518 	int tne;
1519 
1520 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1521 	    rcu_is_nocb_cpu(smp_processor_id()))
1522 		return;
1523 
1524 	/* Handle nohz enablement switches conservatively. */
1525 	tne = READ_ONCE(tick_nohz_active);
1526 	if (tne != rdtp->tick_nohz_enabled_snap) {
1527 		if (rcu_cpu_has_callbacks(NULL))
1528 			invoke_rcu_core(); /* force nohz to see update. */
1529 		rdtp->tick_nohz_enabled_snap = tne;
1530 		return;
1531 	}
1532 	if (!tne)
1533 		return;
1534 
1535 	/*
1536 	 * If a non-lazy callback arrived at a CPU having only lazy
1537 	 * callbacks, invoke RCU core for the side-effect of recalculating
1538 	 * idle duration on re-entry to idle.
1539 	 */
1540 	if (rdtp->all_lazy &&
1541 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1542 		rdtp->all_lazy = false;
1543 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1544 		invoke_rcu_core();
1545 		return;
1546 	}
1547 
1548 	/*
1549 	 * If we have not yet accelerated this jiffy, accelerate all
1550 	 * callbacks on this CPU.
1551 	 */
1552 	if (rdtp->last_accelerate == jiffies)
1553 		return;
1554 	rdtp->last_accelerate = jiffies;
1555 	for_each_rcu_flavor(rsp) {
1556 		rdp = this_cpu_ptr(rsp->rda);
1557 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1558 			continue;
1559 		rnp = rdp->mynode;
1560 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1561 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1562 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1563 		if (needwake)
1564 			rcu_gp_kthread_wake(rsp);
1565 	}
1566 }
1567 
1568 /*
1569  * Clean up for exit from idle.  Attempt to advance callbacks based on
1570  * any grace periods that elapsed while the CPU was idle, and if any
1571  * callbacks are now ready to invoke, initiate invocation.
1572  */
1573 static void rcu_cleanup_after_idle(void)
1574 {
1575 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1576 	    rcu_is_nocb_cpu(smp_processor_id()))
1577 		return;
1578 	if (rcu_try_advance_all_cbs())
1579 		invoke_rcu_core();
1580 }
1581 
1582 /*
1583  * Keep a running count of the number of non-lazy callbacks posted
1584  * on this CPU.  This running counter (which is never decremented) allows
1585  * rcu_prepare_for_idle() to detect when something out of the idle loop
1586  * posts a callback, even if an equal number of callbacks are invoked.
1587  * Of course, callbacks should only be posted from within a trace event
1588  * designed to be called from idle or from within RCU_NONIDLE().
1589  */
1590 static void rcu_idle_count_callbacks_posted(void)
1591 {
1592 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1593 }
1594 
1595 /*
1596  * Data for flushing lazy RCU callbacks at OOM time.
1597  */
1598 static atomic_t oom_callback_count;
1599 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1600 
1601 /*
1602  * RCU OOM callback -- decrement the outstanding count and deliver the
1603  * wake-up if we are the last one.
1604  */
1605 static void rcu_oom_callback(struct rcu_head *rhp)
1606 {
1607 	if (atomic_dec_and_test(&oom_callback_count))
1608 		wake_up(&oom_callback_wq);
1609 }
1610 
1611 /*
1612  * Post an rcu_oom_notify callback on the current CPU if it has at
1613  * least one lazy callback.  This will unnecessarily post callbacks
1614  * to CPUs that already have a non-lazy callback at the end of their
1615  * callback list, but this is an infrequent operation, so accept some
1616  * extra overhead to keep things simple.
1617  */
1618 static void rcu_oom_notify_cpu(void *unused)
1619 {
1620 	struct rcu_state *rsp;
1621 	struct rcu_data *rdp;
1622 
1623 	for_each_rcu_flavor(rsp) {
1624 		rdp = raw_cpu_ptr(rsp->rda);
1625 		if (rdp->qlen_lazy != 0) {
1626 			atomic_inc(&oom_callback_count);
1627 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1628 		}
1629 	}
1630 }
1631 
1632 /*
1633  * If low on memory, ensure that each CPU has a non-lazy callback.
1634  * This will wake up CPUs that have only lazy callbacks, in turn
1635  * ensuring that they free up the corresponding memory in a timely manner.
1636  * Because an uncertain amount of memory will be freed in some uncertain
1637  * timeframe, we do not claim to have freed anything.
1638  */
1639 static int rcu_oom_notify(struct notifier_block *self,
1640 			  unsigned long notused, void *nfreed)
1641 {
1642 	int cpu;
1643 
1644 	/* Wait for callbacks from earlier instance to complete. */
1645 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1646 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1647 
1648 	/*
1649 	 * Prevent premature wakeup: ensure that all increments happen
1650 	 * before there is a chance of the counter reaching zero.
1651 	 */
1652 	atomic_set(&oom_callback_count, 1);
1653 
1654 	for_each_online_cpu(cpu) {
1655 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1656 		cond_resched_rcu_qs();
1657 	}
1658 
1659 	/* Unconditionally decrement: no need to wake ourselves up. */
1660 	atomic_dec(&oom_callback_count);
1661 
1662 	return NOTIFY_OK;
1663 }
1664 
1665 static struct notifier_block rcu_oom_nb = {
1666 	.notifier_call = rcu_oom_notify
1667 };
1668 
1669 static int __init rcu_register_oom_notifier(void)
1670 {
1671 	register_oom_notifier(&rcu_oom_nb);
1672 	return 0;
1673 }
1674 early_initcall(rcu_register_oom_notifier);
1675 
1676 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1677 
1678 #ifdef CONFIG_RCU_FAST_NO_HZ
1679 
1680 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1681 {
1682 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1683 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1684 
1685 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1686 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1687 		ulong2long(nlpd),
1688 		rdtp->all_lazy ? 'L' : '.',
1689 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1690 }
1691 
1692 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1693 
1694 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1695 {
1696 	*cp = '\0';
1697 }
1698 
1699 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1700 
1701 /* Initiate the stall-info list. */
1702 static void print_cpu_stall_info_begin(void)
1703 {
1704 	pr_cont("\n");
1705 }
1706 
1707 /*
1708  * Print out diagnostic information for the specified stalled CPU.
1709  *
1710  * If the specified CPU is aware of the current RCU grace period
1711  * (flavor specified by rsp), then print the number of scheduling
1712  * clock interrupts the CPU has taken during the time that it has
1713  * been aware.  Otherwise, print the number of RCU grace periods
1714  * that this CPU is ignorant of, for example, "1" if the CPU was
1715  * aware of the previous grace period.
1716  *
1717  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1718  */
1719 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1720 {
1721 	char fast_no_hz[72];
1722 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1723 	struct rcu_dynticks *rdtp = rdp->dynticks;
1724 	char *ticks_title;
1725 	unsigned long ticks_value;
1726 
1727 	if (rsp->gpnum == rdp->gpnum) {
1728 		ticks_title = "ticks this GP";
1729 		ticks_value = rdp->ticks_this_gp;
1730 	} else {
1731 		ticks_title = "GPs behind";
1732 		ticks_value = rsp->gpnum - rdp->gpnum;
1733 	}
1734 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1735 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1736 	       cpu,
1737 	       "O."[!!cpu_online(cpu)],
1738 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1739 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1740 	       ticks_value, ticks_title,
1741 	       atomic_read(&rdtp->dynticks) & 0xfff,
1742 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1743 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1744 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1745 	       fast_no_hz);
1746 }
1747 
1748 /* Terminate the stall-info list. */
1749 static void print_cpu_stall_info_end(void)
1750 {
1751 	pr_err("\t");
1752 }
1753 
1754 /* Zero ->ticks_this_gp for all flavors of RCU. */
1755 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1756 {
1757 	rdp->ticks_this_gp = 0;
1758 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1759 }
1760 
1761 /* Increment ->ticks_this_gp for all flavors of RCU. */
1762 static void increment_cpu_stall_ticks(void)
1763 {
1764 	struct rcu_state *rsp;
1765 
1766 	for_each_rcu_flavor(rsp)
1767 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1768 }
1769 
1770 #ifdef CONFIG_RCU_NOCB_CPU
1771 
1772 /*
1773  * Offload callback processing from the boot-time-specified set of CPUs
1774  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1775  * kthread created that pulls the callbacks from the corresponding CPU,
1776  * waits for a grace period to elapse, and invokes the callbacks.
1777  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1778  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1779  * has been specified, in which case each kthread actively polls its
1780  * CPU.  (Which isn't so great for energy efficiency, but which does
1781  * reduce RCU's overhead on that CPU.)
1782  *
1783  * This is intended to be used in conjunction with Frederic Weisbecker's
1784  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1785  * running CPU-bound user-mode computations.
1786  *
1787  * Offloading of callback processing could also in theory be used as
1788  * an energy-efficiency measure because CPUs with no RCU callbacks
1789  * queued are more aggressive about entering dyntick-idle mode.
1790  */
1791 
1792 
1793 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1794 static int __init rcu_nocb_setup(char *str)
1795 {
1796 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1797 	have_rcu_nocb_mask = true;
1798 	cpulist_parse(str, rcu_nocb_mask);
1799 	return 1;
1800 }
1801 __setup("rcu_nocbs=", rcu_nocb_setup);
1802 
1803 static int __init parse_rcu_nocb_poll(char *arg)
1804 {
1805 	rcu_nocb_poll = 1;
1806 	return 0;
1807 }
1808 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1809 
1810 /*
1811  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1812  * grace period.
1813  */
1814 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1815 {
1816 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1817 }
1818 
1819 /*
1820  * Set the root rcu_node structure's ->need_future_gp field
1821  * based on the sum of those of all rcu_node structures.  This does
1822  * double-count the root rcu_node structure's requests, but this
1823  * is necessary to handle the possibility of a rcu_nocb_kthread()
1824  * having awakened during the time that the rcu_node structures
1825  * were being updated for the end of the previous grace period.
1826  */
1827 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1828 {
1829 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1830 }
1831 
1832 static void rcu_init_one_nocb(struct rcu_node *rnp)
1833 {
1834 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1835 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1836 }
1837 
1838 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1839 /* Is the specified CPU a no-CBs CPU? */
1840 bool rcu_is_nocb_cpu(int cpu)
1841 {
1842 	if (have_rcu_nocb_mask)
1843 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1844 	return false;
1845 }
1846 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1847 
1848 /*
1849  * Kick the leader kthread for this NOCB group.
1850  */
1851 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1852 {
1853 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1854 
1855 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1856 		return;
1857 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1858 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1859 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1860 		wake_up(&rdp_leader->nocb_wq);
1861 	}
1862 }
1863 
1864 /*
1865  * Does the specified CPU need an RCU callback for the specified flavor
1866  * of rcu_barrier()?
1867  */
1868 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1869 {
1870 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1871 	unsigned long ret;
1872 #ifdef CONFIG_PROVE_RCU
1873 	struct rcu_head *rhp;
1874 #endif /* #ifdef CONFIG_PROVE_RCU */
1875 
1876 	/*
1877 	 * Check count of all no-CBs callbacks awaiting invocation.
1878 	 * There needs to be a barrier before this function is called,
1879 	 * but associated with a prior determination that no more
1880 	 * callbacks would be posted.  In the worst case, the first
1881 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1882 	 * necessarily rely on this, not a substitute for the caller
1883 	 * getting the concurrency design right!).  There must also be
1884 	 * a barrier between the following load an posting of a callback
1885 	 * (if a callback is in fact needed).  This is associated with an
1886 	 * atomic_inc() in the caller.
1887 	 */
1888 	ret = atomic_long_read(&rdp->nocb_q_count);
1889 
1890 #ifdef CONFIG_PROVE_RCU
1891 	rhp = READ_ONCE(rdp->nocb_head);
1892 	if (!rhp)
1893 		rhp = READ_ONCE(rdp->nocb_gp_head);
1894 	if (!rhp)
1895 		rhp = READ_ONCE(rdp->nocb_follower_head);
1896 
1897 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1898 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1899 	    rcu_scheduler_fully_active) {
1900 		/* RCU callback enqueued before CPU first came online??? */
1901 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1902 		       cpu, rhp->func);
1903 		WARN_ON_ONCE(1);
1904 	}
1905 #endif /* #ifdef CONFIG_PROVE_RCU */
1906 
1907 	return !!ret;
1908 }
1909 
1910 /*
1911  * Enqueue the specified string of rcu_head structures onto the specified
1912  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1913  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1914  * counts are supplied by rhcount and rhcount_lazy.
1915  *
1916  * If warranted, also wake up the kthread servicing this CPUs queues.
1917  */
1918 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1919 				    struct rcu_head *rhp,
1920 				    struct rcu_head **rhtp,
1921 				    int rhcount, int rhcount_lazy,
1922 				    unsigned long flags)
1923 {
1924 	int len;
1925 	struct rcu_head **old_rhpp;
1926 	struct task_struct *t;
1927 
1928 	/* Enqueue the callback on the nocb list and update counts. */
1929 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1930 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1931 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1932 	WRITE_ONCE(*old_rhpp, rhp);
1933 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1934 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1935 
1936 	/* If we are not being polled and there is a kthread, awaken it ... */
1937 	t = READ_ONCE(rdp->nocb_kthread);
1938 	if (rcu_nocb_poll || !t) {
1939 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1940 				    TPS("WakeNotPoll"));
1941 		return;
1942 	}
1943 	len = atomic_long_read(&rdp->nocb_q_count);
1944 	if (old_rhpp == &rdp->nocb_head) {
1945 		if (!irqs_disabled_flags(flags)) {
1946 			/* ... if queue was empty ... */
1947 			wake_nocb_leader(rdp, false);
1948 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1949 					    TPS("WakeEmpty"));
1950 		} else {
1951 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1952 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1953 					    TPS("WakeEmptyIsDeferred"));
1954 		}
1955 		rdp->qlen_last_fqs_check = 0;
1956 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1957 		/* ... or if many callbacks queued. */
1958 		if (!irqs_disabled_flags(flags)) {
1959 			wake_nocb_leader(rdp, true);
1960 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1961 					    TPS("WakeOvf"));
1962 		} else {
1963 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1964 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1965 					    TPS("WakeOvfIsDeferred"));
1966 		}
1967 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1968 	} else {
1969 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1970 	}
1971 	return;
1972 }
1973 
1974 /*
1975  * This is a helper for __call_rcu(), which invokes this when the normal
1976  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1977  * function returns failure back to __call_rcu(), which can complain
1978  * appropriately.
1979  *
1980  * Otherwise, this function queues the callback where the corresponding
1981  * "rcuo" kthread can find it.
1982  */
1983 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1984 			    bool lazy, unsigned long flags)
1985 {
1986 
1987 	if (!rcu_is_nocb_cpu(rdp->cpu))
1988 		return false;
1989 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1990 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1991 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1992 					 (unsigned long)rhp->func,
1993 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1994 					 -atomic_long_read(&rdp->nocb_q_count));
1995 	else
1996 		trace_rcu_callback(rdp->rsp->name, rhp,
1997 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1998 				   -atomic_long_read(&rdp->nocb_q_count));
1999 
2000 	/*
2001 	 * If called from an extended quiescent state with interrupts
2002 	 * disabled, invoke the RCU core in order to allow the idle-entry
2003 	 * deferred-wakeup check to function.
2004 	 */
2005 	if (irqs_disabled_flags(flags) &&
2006 	    !rcu_is_watching() &&
2007 	    cpu_online(smp_processor_id()))
2008 		invoke_rcu_core();
2009 
2010 	return true;
2011 }
2012 
2013 /*
2014  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2015  * not a no-CBs CPU.
2016  */
2017 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2018 						     struct rcu_data *rdp,
2019 						     unsigned long flags)
2020 {
2021 	long ql = rsp->qlen;
2022 	long qll = rsp->qlen_lazy;
2023 
2024 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2025 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2026 		return false;
2027 	rsp->qlen = 0;
2028 	rsp->qlen_lazy = 0;
2029 
2030 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2031 	if (rsp->orphan_donelist != NULL) {
2032 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2033 					rsp->orphan_donetail, ql, qll, flags);
2034 		ql = qll = 0;
2035 		rsp->orphan_donelist = NULL;
2036 		rsp->orphan_donetail = &rsp->orphan_donelist;
2037 	}
2038 	if (rsp->orphan_nxtlist != NULL) {
2039 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2040 					rsp->orphan_nxttail, ql, qll, flags);
2041 		ql = qll = 0;
2042 		rsp->orphan_nxtlist = NULL;
2043 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2044 	}
2045 	return true;
2046 }
2047 
2048 /*
2049  * If necessary, kick off a new grace period, and either way wait
2050  * for a subsequent grace period to complete.
2051  */
2052 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2053 {
2054 	unsigned long c;
2055 	bool d;
2056 	unsigned long flags;
2057 	bool needwake;
2058 	struct rcu_node *rnp = rdp->mynode;
2059 
2060 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2061 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2062 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2063 	if (needwake)
2064 		rcu_gp_kthread_wake(rdp->rsp);
2065 
2066 	/*
2067 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2068 	 * up the load average.
2069 	 */
2070 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2071 	for (;;) {
2072 		wait_event_interruptible(
2073 			rnp->nocb_gp_wq[c & 0x1],
2074 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2075 		if (likely(d))
2076 			break;
2077 		WARN_ON(signal_pending(current));
2078 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2079 	}
2080 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2081 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2082 }
2083 
2084 /*
2085  * Leaders come here to wait for additional callbacks to show up.
2086  * This function does not return until callbacks appear.
2087  */
2088 static void nocb_leader_wait(struct rcu_data *my_rdp)
2089 {
2090 	bool firsttime = true;
2091 	bool gotcbs;
2092 	struct rcu_data *rdp;
2093 	struct rcu_head **tail;
2094 
2095 wait_again:
2096 
2097 	/* Wait for callbacks to appear. */
2098 	if (!rcu_nocb_poll) {
2099 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2100 		wait_event_interruptible(my_rdp->nocb_wq,
2101 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2102 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2103 	} else if (firsttime) {
2104 		firsttime = false; /* Don't drown trace log with "Poll"! */
2105 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2106 	}
2107 
2108 	/*
2109 	 * Each pass through the following loop checks a follower for CBs.
2110 	 * We are our own first follower.  Any CBs found are moved to
2111 	 * nocb_gp_head, where they await a grace period.
2112 	 */
2113 	gotcbs = false;
2114 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2115 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2116 		if (!rdp->nocb_gp_head)
2117 			continue;  /* No CBs here, try next follower. */
2118 
2119 		/* Move callbacks to wait-for-GP list, which is empty. */
2120 		WRITE_ONCE(rdp->nocb_head, NULL);
2121 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2122 		gotcbs = true;
2123 	}
2124 
2125 	/*
2126 	 * If there were no callbacks, sleep a bit, rescan after a
2127 	 * memory barrier, and go retry.
2128 	 */
2129 	if (unlikely(!gotcbs)) {
2130 		if (!rcu_nocb_poll)
2131 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2132 					    "WokeEmpty");
2133 		WARN_ON(signal_pending(current));
2134 		schedule_timeout_interruptible(1);
2135 
2136 		/* Rescan in case we were a victim of memory ordering. */
2137 		my_rdp->nocb_leader_sleep = true;
2138 		smp_mb();  /* Ensure _sleep true before scan. */
2139 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2140 			if (READ_ONCE(rdp->nocb_head)) {
2141 				/* Found CB, so short-circuit next wait. */
2142 				my_rdp->nocb_leader_sleep = false;
2143 				break;
2144 			}
2145 		goto wait_again;
2146 	}
2147 
2148 	/* Wait for one grace period. */
2149 	rcu_nocb_wait_gp(my_rdp);
2150 
2151 	/*
2152 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2153 	 * We set it now, but recheck for new callbacks while
2154 	 * traversing our follower list.
2155 	 */
2156 	my_rdp->nocb_leader_sleep = true;
2157 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2158 
2159 	/* Each pass through the following loop wakes a follower, if needed. */
2160 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2161 		if (READ_ONCE(rdp->nocb_head))
2162 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2163 		if (!rdp->nocb_gp_head)
2164 			continue; /* No CBs, so no need to wake follower. */
2165 
2166 		/* Append callbacks to follower's "done" list. */
2167 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2168 		*tail = rdp->nocb_gp_head;
2169 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2170 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2171 			/*
2172 			 * List was empty, wake up the follower.
2173 			 * Memory barriers supplied by atomic_long_add().
2174 			 */
2175 			wake_up(&rdp->nocb_wq);
2176 		}
2177 	}
2178 
2179 	/* If we (the leader) don't have CBs, go wait some more. */
2180 	if (!my_rdp->nocb_follower_head)
2181 		goto wait_again;
2182 }
2183 
2184 /*
2185  * Followers come here to wait for additional callbacks to show up.
2186  * This function does not return until callbacks appear.
2187  */
2188 static void nocb_follower_wait(struct rcu_data *rdp)
2189 {
2190 	bool firsttime = true;
2191 
2192 	for (;;) {
2193 		if (!rcu_nocb_poll) {
2194 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2195 					    "FollowerSleep");
2196 			wait_event_interruptible(rdp->nocb_wq,
2197 						 READ_ONCE(rdp->nocb_follower_head));
2198 		} else if (firsttime) {
2199 			/* Don't drown trace log with "Poll"! */
2200 			firsttime = false;
2201 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2202 		}
2203 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2204 			/* ^^^ Ensure CB invocation follows _head test. */
2205 			return;
2206 		}
2207 		if (!rcu_nocb_poll)
2208 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2209 					    "WokeEmpty");
2210 		WARN_ON(signal_pending(current));
2211 		schedule_timeout_interruptible(1);
2212 	}
2213 }
2214 
2215 /*
2216  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2217  * callbacks queued by the corresponding no-CBs CPU, however, there is
2218  * an optional leader-follower relationship so that the grace-period
2219  * kthreads don't have to do quite so many wakeups.
2220  */
2221 static int rcu_nocb_kthread(void *arg)
2222 {
2223 	int c, cl;
2224 	struct rcu_head *list;
2225 	struct rcu_head *next;
2226 	struct rcu_head **tail;
2227 	struct rcu_data *rdp = arg;
2228 
2229 	/* Each pass through this loop invokes one batch of callbacks */
2230 	for (;;) {
2231 		/* Wait for callbacks. */
2232 		if (rdp->nocb_leader == rdp)
2233 			nocb_leader_wait(rdp);
2234 		else
2235 			nocb_follower_wait(rdp);
2236 
2237 		/* Pull the ready-to-invoke callbacks onto local list. */
2238 		list = READ_ONCE(rdp->nocb_follower_head);
2239 		BUG_ON(!list);
2240 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2241 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2242 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2243 
2244 		/* Each pass through the following loop invokes a callback. */
2245 		trace_rcu_batch_start(rdp->rsp->name,
2246 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2247 				      atomic_long_read(&rdp->nocb_q_count), -1);
2248 		c = cl = 0;
2249 		while (list) {
2250 			next = list->next;
2251 			/* Wait for enqueuing to complete, if needed. */
2252 			while (next == NULL && &list->next != tail) {
2253 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2254 						    TPS("WaitQueue"));
2255 				schedule_timeout_interruptible(1);
2256 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2257 						    TPS("WokeQueue"));
2258 				next = list->next;
2259 			}
2260 			debug_rcu_head_unqueue(list);
2261 			local_bh_disable();
2262 			if (__rcu_reclaim(rdp->rsp->name, list))
2263 				cl++;
2264 			c++;
2265 			local_bh_enable();
2266 			list = next;
2267 		}
2268 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2269 		smp_mb__before_atomic();  /* _add after CB invocation. */
2270 		atomic_long_add(-c, &rdp->nocb_q_count);
2271 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2272 		rdp->n_nocbs_invoked += c;
2273 	}
2274 	return 0;
2275 }
2276 
2277 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2278 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2279 {
2280 	return READ_ONCE(rdp->nocb_defer_wakeup);
2281 }
2282 
2283 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2284 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2285 {
2286 	int ndw;
2287 
2288 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2289 		return;
2290 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2291 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2292 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2293 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2294 }
2295 
2296 void __init rcu_init_nohz(void)
2297 {
2298 	int cpu;
2299 	bool need_rcu_nocb_mask = true;
2300 	struct rcu_state *rsp;
2301 
2302 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2303 	need_rcu_nocb_mask = false;
2304 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2305 
2306 #if defined(CONFIG_NO_HZ_FULL)
2307 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2308 		need_rcu_nocb_mask = true;
2309 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2310 
2311 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2312 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2313 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2314 			return;
2315 		}
2316 		have_rcu_nocb_mask = true;
2317 	}
2318 	if (!have_rcu_nocb_mask)
2319 		return;
2320 
2321 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2322 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2323 	cpumask_set_cpu(0, rcu_nocb_mask);
2324 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2325 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2326 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2327 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2328 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2329 #if defined(CONFIG_NO_HZ_FULL)
2330 	if (tick_nohz_full_running)
2331 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2332 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2333 
2334 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2335 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2336 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2337 			    rcu_nocb_mask);
2338 	}
2339 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2340 		cpumask_pr_args(rcu_nocb_mask));
2341 	if (rcu_nocb_poll)
2342 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2343 
2344 	for_each_rcu_flavor(rsp) {
2345 		for_each_cpu(cpu, rcu_nocb_mask)
2346 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2347 		rcu_organize_nocb_kthreads(rsp);
2348 	}
2349 }
2350 
2351 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2352 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2353 {
2354 	rdp->nocb_tail = &rdp->nocb_head;
2355 	init_waitqueue_head(&rdp->nocb_wq);
2356 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2357 }
2358 
2359 /*
2360  * If the specified CPU is a no-CBs CPU that does not already have its
2361  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2362  * brought online out of order, this can require re-organizing the
2363  * leader-follower relationships.
2364  */
2365 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2366 {
2367 	struct rcu_data *rdp;
2368 	struct rcu_data *rdp_last;
2369 	struct rcu_data *rdp_old_leader;
2370 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2371 	struct task_struct *t;
2372 
2373 	/*
2374 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2375 	 * then nothing to do.
2376 	 */
2377 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2378 		return;
2379 
2380 	/* If we didn't spawn the leader first, reorganize! */
2381 	rdp_old_leader = rdp_spawn->nocb_leader;
2382 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2383 		rdp_last = NULL;
2384 		rdp = rdp_old_leader;
2385 		do {
2386 			rdp->nocb_leader = rdp_spawn;
2387 			if (rdp_last && rdp != rdp_spawn)
2388 				rdp_last->nocb_next_follower = rdp;
2389 			if (rdp == rdp_spawn) {
2390 				rdp = rdp->nocb_next_follower;
2391 			} else {
2392 				rdp_last = rdp;
2393 				rdp = rdp->nocb_next_follower;
2394 				rdp_last->nocb_next_follower = NULL;
2395 			}
2396 		} while (rdp);
2397 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2398 	}
2399 
2400 	/* Spawn the kthread for this CPU and RCU flavor. */
2401 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2402 			"rcuo%c/%d", rsp->abbr, cpu);
2403 	BUG_ON(IS_ERR(t));
2404 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2405 }
2406 
2407 /*
2408  * If the specified CPU is a no-CBs CPU that does not already have its
2409  * rcuo kthreads, spawn them.
2410  */
2411 static void rcu_spawn_all_nocb_kthreads(int cpu)
2412 {
2413 	struct rcu_state *rsp;
2414 
2415 	if (rcu_scheduler_fully_active)
2416 		for_each_rcu_flavor(rsp)
2417 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2418 }
2419 
2420 /*
2421  * Once the scheduler is running, spawn rcuo kthreads for all online
2422  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2423  * non-boot CPUs come online -- if this changes, we will need to add
2424  * some mutual exclusion.
2425  */
2426 static void __init rcu_spawn_nocb_kthreads(void)
2427 {
2428 	int cpu;
2429 
2430 	for_each_online_cpu(cpu)
2431 		rcu_spawn_all_nocb_kthreads(cpu);
2432 }
2433 
2434 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2435 static int rcu_nocb_leader_stride = -1;
2436 module_param(rcu_nocb_leader_stride, int, 0444);
2437 
2438 /*
2439  * Initialize leader-follower relationships for all no-CBs CPU.
2440  */
2441 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2442 {
2443 	int cpu;
2444 	int ls = rcu_nocb_leader_stride;
2445 	int nl = 0;  /* Next leader. */
2446 	struct rcu_data *rdp;
2447 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2448 	struct rcu_data *rdp_prev = NULL;
2449 
2450 	if (!have_rcu_nocb_mask)
2451 		return;
2452 	if (ls == -1) {
2453 		ls = int_sqrt(nr_cpu_ids);
2454 		rcu_nocb_leader_stride = ls;
2455 	}
2456 
2457 	/*
2458 	 * Each pass through this loop sets up one rcu_data structure and
2459 	 * spawns one rcu_nocb_kthread().
2460 	 */
2461 	for_each_cpu(cpu, rcu_nocb_mask) {
2462 		rdp = per_cpu_ptr(rsp->rda, cpu);
2463 		if (rdp->cpu >= nl) {
2464 			/* New leader, set up for followers & next leader. */
2465 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2466 			rdp->nocb_leader = rdp;
2467 			rdp_leader = rdp;
2468 		} else {
2469 			/* Another follower, link to previous leader. */
2470 			rdp->nocb_leader = rdp_leader;
2471 			rdp_prev->nocb_next_follower = rdp;
2472 		}
2473 		rdp_prev = rdp;
2474 	}
2475 }
2476 
2477 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2478 static bool init_nocb_callback_list(struct rcu_data *rdp)
2479 {
2480 	if (!rcu_is_nocb_cpu(rdp->cpu))
2481 		return false;
2482 
2483 	/* If there are early-boot callbacks, move them to nocb lists. */
2484 	if (rdp->nxtlist) {
2485 		rdp->nocb_head = rdp->nxtlist;
2486 		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2487 		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2488 		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2489 		rdp->nxtlist = NULL;
2490 		rdp->qlen = 0;
2491 		rdp->qlen_lazy = 0;
2492 	}
2493 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2494 	return true;
2495 }
2496 
2497 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2498 
2499 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2500 {
2501 	WARN_ON_ONCE(1); /* Should be dead code. */
2502 	return false;
2503 }
2504 
2505 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2506 {
2507 }
2508 
2509 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2510 {
2511 }
2512 
2513 static void rcu_init_one_nocb(struct rcu_node *rnp)
2514 {
2515 }
2516 
2517 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2518 			    bool lazy, unsigned long flags)
2519 {
2520 	return false;
2521 }
2522 
2523 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2524 						     struct rcu_data *rdp,
2525 						     unsigned long flags)
2526 {
2527 	return false;
2528 }
2529 
2530 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2531 {
2532 }
2533 
2534 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2535 {
2536 	return false;
2537 }
2538 
2539 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2540 {
2541 }
2542 
2543 static void rcu_spawn_all_nocb_kthreads(int cpu)
2544 {
2545 }
2546 
2547 static void __init rcu_spawn_nocb_kthreads(void)
2548 {
2549 }
2550 
2551 static bool init_nocb_callback_list(struct rcu_data *rdp)
2552 {
2553 	return false;
2554 }
2555 
2556 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2557 
2558 /*
2559  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2560  * arbitrarily long period of time with the scheduling-clock tick turned
2561  * off.  RCU will be paying attention to this CPU because it is in the
2562  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2563  * machine because the scheduling-clock tick has been disabled.  Therefore,
2564  * if an adaptive-ticks CPU is failing to respond to the current grace
2565  * period and has not be idle from an RCU perspective, kick it.
2566  */
2567 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2568 {
2569 #ifdef CONFIG_NO_HZ_FULL
2570 	if (tick_nohz_full_cpu(cpu))
2571 		smp_send_reschedule(cpu);
2572 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2573 }
2574 
2575 
2576 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2577 
2578 static int full_sysidle_state;		/* Current system-idle state. */
2579 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2580 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2581 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2582 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2583 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2584 
2585 /*
2586  * Invoked to note exit from irq or task transition to idle.  Note that
2587  * usermode execution does -not- count as idle here!  After all, we want
2588  * to detect full-system idle states, not RCU quiescent states and grace
2589  * periods.  The caller must have disabled interrupts.
2590  */
2591 static void rcu_sysidle_enter(int irq)
2592 {
2593 	unsigned long j;
2594 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2595 
2596 	/* If there are no nohz_full= CPUs, no need to track this. */
2597 	if (!tick_nohz_full_enabled())
2598 		return;
2599 
2600 	/* Adjust nesting, check for fully idle. */
2601 	if (irq) {
2602 		rdtp->dynticks_idle_nesting--;
2603 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2604 		if (rdtp->dynticks_idle_nesting != 0)
2605 			return;  /* Still not fully idle. */
2606 	} else {
2607 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2608 		    DYNTICK_TASK_NEST_VALUE) {
2609 			rdtp->dynticks_idle_nesting = 0;
2610 		} else {
2611 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2612 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2613 			return;  /* Still not fully idle. */
2614 		}
2615 	}
2616 
2617 	/* Record start of fully idle period. */
2618 	j = jiffies;
2619 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2620 	smp_mb__before_atomic();
2621 	atomic_inc(&rdtp->dynticks_idle);
2622 	smp_mb__after_atomic();
2623 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2624 }
2625 
2626 /*
2627  * Unconditionally force exit from full system-idle state.  This is
2628  * invoked when a normal CPU exits idle, but must be called separately
2629  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2630  * is that the timekeeping CPU is permitted to take scheduling-clock
2631  * interrupts while the system is in system-idle state, and of course
2632  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2633  * interrupt from any other type of interrupt.
2634  */
2635 void rcu_sysidle_force_exit(void)
2636 {
2637 	int oldstate = READ_ONCE(full_sysidle_state);
2638 	int newoldstate;
2639 
2640 	/*
2641 	 * Each pass through the following loop attempts to exit full
2642 	 * system-idle state.  If contention proves to be a problem,
2643 	 * a trylock-based contention tree could be used here.
2644 	 */
2645 	while (oldstate > RCU_SYSIDLE_SHORT) {
2646 		newoldstate = cmpxchg(&full_sysidle_state,
2647 				      oldstate, RCU_SYSIDLE_NOT);
2648 		if (oldstate == newoldstate &&
2649 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2650 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2651 			return; /* We cleared it, done! */
2652 		}
2653 		oldstate = newoldstate;
2654 	}
2655 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2656 }
2657 
2658 /*
2659  * Invoked to note entry to irq or task transition from idle.  Note that
2660  * usermode execution does -not- count as idle here!  The caller must
2661  * have disabled interrupts.
2662  */
2663 static void rcu_sysidle_exit(int irq)
2664 {
2665 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2666 
2667 	/* If there are no nohz_full= CPUs, no need to track this. */
2668 	if (!tick_nohz_full_enabled())
2669 		return;
2670 
2671 	/* Adjust nesting, check for already non-idle. */
2672 	if (irq) {
2673 		rdtp->dynticks_idle_nesting++;
2674 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2675 		if (rdtp->dynticks_idle_nesting != 1)
2676 			return; /* Already non-idle. */
2677 	} else {
2678 		/*
2679 		 * Allow for irq misnesting.  Yes, it really is possible
2680 		 * to enter an irq handler then never leave it, and maybe
2681 		 * also vice versa.  Handle both possibilities.
2682 		 */
2683 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2684 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2685 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2686 			return; /* Already non-idle. */
2687 		} else {
2688 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2689 		}
2690 	}
2691 
2692 	/* Record end of idle period. */
2693 	smp_mb__before_atomic();
2694 	atomic_inc(&rdtp->dynticks_idle);
2695 	smp_mb__after_atomic();
2696 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2697 
2698 	/*
2699 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2700 	 * during a system-idle state.  This must be the case, because
2701 	 * the timekeeping CPU has to take scheduling-clock interrupts
2702 	 * during the time that the system is transitioning to full
2703 	 * system-idle state.  This means that the timekeeping CPU must
2704 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2705 	 * more than take a scheduling-clock interrupt.
2706 	 */
2707 	if (smp_processor_id() == tick_do_timer_cpu)
2708 		return;
2709 
2710 	/* Update system-idle state: We are clearly no longer fully idle! */
2711 	rcu_sysidle_force_exit();
2712 }
2713 
2714 /*
2715  * Check to see if the current CPU is idle.  Note that usermode execution
2716  * does not count as idle.  The caller must have disabled interrupts,
2717  * and must be running on tick_do_timer_cpu.
2718  */
2719 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2720 				  unsigned long *maxj)
2721 {
2722 	int cur;
2723 	unsigned long j;
2724 	struct rcu_dynticks *rdtp = rdp->dynticks;
2725 
2726 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2727 	if (!tick_nohz_full_enabled())
2728 		return;
2729 
2730 	/*
2731 	 * If some other CPU has already reported non-idle, if this is
2732 	 * not the flavor of RCU that tracks sysidle state, or if this
2733 	 * is an offline or the timekeeping CPU, nothing to do.
2734 	 */
2735 	if (!*isidle || rdp->rsp != rcu_state_p ||
2736 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2737 		return;
2738 	/* Verify affinity of current kthread. */
2739 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2740 
2741 	/* Pick up current idle and NMI-nesting counter and check. */
2742 	cur = atomic_read(&rdtp->dynticks_idle);
2743 	if (cur & 0x1) {
2744 		*isidle = false; /* We are not idle! */
2745 		return;
2746 	}
2747 	smp_mb(); /* Read counters before timestamps. */
2748 
2749 	/* Pick up timestamps. */
2750 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2751 	/* If this CPU entered idle more recently, update maxj timestamp. */
2752 	if (ULONG_CMP_LT(*maxj, j))
2753 		*maxj = j;
2754 }
2755 
2756 /*
2757  * Is this the flavor of RCU that is handling full-system idle?
2758  */
2759 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2760 {
2761 	return rsp == rcu_state_p;
2762 }
2763 
2764 /*
2765  * Return a delay in jiffies based on the number of CPUs, rcu_node
2766  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2767  * systems more time to transition to full-idle state in order to
2768  * avoid the cache thrashing that otherwise occur on the state variable.
2769  * Really small systems (less than a couple of tens of CPUs) should
2770  * instead use a single global atomically incremented counter, and later
2771  * versions of this will automatically reconfigure themselves accordingly.
2772  */
2773 static unsigned long rcu_sysidle_delay(void)
2774 {
2775 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2776 		return 0;
2777 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2778 }
2779 
2780 /*
2781  * Advance the full-system-idle state.  This is invoked when all of
2782  * the non-timekeeping CPUs are idle.
2783  */
2784 static void rcu_sysidle(unsigned long j)
2785 {
2786 	/* Check the current state. */
2787 	switch (READ_ONCE(full_sysidle_state)) {
2788 	case RCU_SYSIDLE_NOT:
2789 
2790 		/* First time all are idle, so note a short idle period. */
2791 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2792 		break;
2793 
2794 	case RCU_SYSIDLE_SHORT:
2795 
2796 		/*
2797 		 * Idle for a bit, time to advance to next state?
2798 		 * cmpxchg failure means race with non-idle, let them win.
2799 		 */
2800 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2801 			(void)cmpxchg(&full_sysidle_state,
2802 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2803 		break;
2804 
2805 	case RCU_SYSIDLE_LONG:
2806 
2807 		/*
2808 		 * Do an additional check pass before advancing to full.
2809 		 * cmpxchg failure means race with non-idle, let them win.
2810 		 */
2811 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2812 			(void)cmpxchg(&full_sysidle_state,
2813 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2814 		break;
2815 
2816 	default:
2817 		break;
2818 	}
2819 }
2820 
2821 /*
2822  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2823  * back to the beginning.
2824  */
2825 static void rcu_sysidle_cancel(void)
2826 {
2827 	smp_mb();
2828 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2829 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2830 }
2831 
2832 /*
2833  * Update the sysidle state based on the results of a force-quiescent-state
2834  * scan of the CPUs' dyntick-idle state.
2835  */
2836 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2837 			       unsigned long maxj, bool gpkt)
2838 {
2839 	if (rsp != rcu_state_p)
2840 		return;  /* Wrong flavor, ignore. */
2841 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2842 		return;  /* Running state machine from timekeeping CPU. */
2843 	if (isidle)
2844 		rcu_sysidle(maxj);    /* More idle! */
2845 	else
2846 		rcu_sysidle_cancel(); /* Idle is over. */
2847 }
2848 
2849 /*
2850  * Wrapper for rcu_sysidle_report() when called from the grace-period
2851  * kthread's context.
2852  */
2853 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2854 				  unsigned long maxj)
2855 {
2856 	/* If there are no nohz_full= CPUs, no need to track this. */
2857 	if (!tick_nohz_full_enabled())
2858 		return;
2859 
2860 	rcu_sysidle_report(rsp, isidle, maxj, true);
2861 }
2862 
2863 /* Callback and function for forcing an RCU grace period. */
2864 struct rcu_sysidle_head {
2865 	struct rcu_head rh;
2866 	int inuse;
2867 };
2868 
2869 static void rcu_sysidle_cb(struct rcu_head *rhp)
2870 {
2871 	struct rcu_sysidle_head *rshp;
2872 
2873 	/*
2874 	 * The following memory barrier is needed to replace the
2875 	 * memory barriers that would normally be in the memory
2876 	 * allocator.
2877 	 */
2878 	smp_mb();  /* grace period precedes setting inuse. */
2879 
2880 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2881 	WRITE_ONCE(rshp->inuse, 0);
2882 }
2883 
2884 /*
2885  * Check to see if the system is fully idle, other than the timekeeping CPU.
2886  * The caller must have disabled interrupts.  This is not intended to be
2887  * called unless tick_nohz_full_enabled().
2888  */
2889 bool rcu_sys_is_idle(void)
2890 {
2891 	static struct rcu_sysidle_head rsh;
2892 	int rss = READ_ONCE(full_sysidle_state);
2893 
2894 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2895 		return false;
2896 
2897 	/* Handle small-system case by doing a full scan of CPUs. */
2898 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2899 		int oldrss = rss - 1;
2900 
2901 		/*
2902 		 * One pass to advance to each state up to _FULL.
2903 		 * Give up if any pass fails to advance the state.
2904 		 */
2905 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2906 			int cpu;
2907 			bool isidle = true;
2908 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2909 			struct rcu_data *rdp;
2910 
2911 			/* Scan all the CPUs looking for nonidle CPUs. */
2912 			for_each_possible_cpu(cpu) {
2913 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2914 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2915 				if (!isidle)
2916 					break;
2917 			}
2918 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2919 			oldrss = rss;
2920 			rss = READ_ONCE(full_sysidle_state);
2921 		}
2922 	}
2923 
2924 	/* If this is the first observation of an idle period, record it. */
2925 	if (rss == RCU_SYSIDLE_FULL) {
2926 		rss = cmpxchg(&full_sysidle_state,
2927 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2928 		return rss == RCU_SYSIDLE_FULL;
2929 	}
2930 
2931 	smp_mb(); /* ensure rss load happens before later caller actions. */
2932 
2933 	/* If already fully idle, tell the caller (in case of races). */
2934 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2935 		return true;
2936 
2937 	/*
2938 	 * If we aren't there yet, and a grace period is not in flight,
2939 	 * initiate a grace period.  Either way, tell the caller that
2940 	 * we are not there yet.  We use an xchg() rather than an assignment
2941 	 * to make up for the memory barriers that would otherwise be
2942 	 * provided by the memory allocator.
2943 	 */
2944 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2945 	    !rcu_gp_in_progress(rcu_state_p) &&
2946 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2947 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2948 	return false;
2949 }
2950 
2951 /*
2952  * Initialize dynticks sysidle state for CPUs coming online.
2953  */
2954 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2955 {
2956 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2957 }
2958 
2959 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2960 
2961 static void rcu_sysidle_enter(int irq)
2962 {
2963 }
2964 
2965 static void rcu_sysidle_exit(int irq)
2966 {
2967 }
2968 
2969 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2970 				  unsigned long *maxj)
2971 {
2972 }
2973 
2974 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2975 {
2976 	return false;
2977 }
2978 
2979 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2980 				  unsigned long maxj)
2981 {
2982 }
2983 
2984 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2985 {
2986 }
2987 
2988 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2989 
2990 /*
2991  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2992  * grace-period kthread will do force_quiescent_state() processing?
2993  * The idea is to avoid waking up RCU core processing on such a
2994  * CPU unless the grace period has extended for too long.
2995  *
2996  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2997  * CONFIG_RCU_NOCB_CPU CPUs.
2998  */
2999 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3000 {
3001 #ifdef CONFIG_NO_HZ_FULL
3002 	if (tick_nohz_full_cpu(smp_processor_id()) &&
3003 	    (!rcu_gp_in_progress(rsp) ||
3004 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3005 		return true;
3006 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3007 	return false;
3008 }
3009 
3010 /*
3011  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3012  * timekeeping CPU.
3013  */
3014 static void rcu_bind_gp_kthread(void)
3015 {
3016 	int __maybe_unused cpu;
3017 
3018 	if (!tick_nohz_full_enabled())
3019 		return;
3020 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3021 	cpu = tick_do_timer_cpu;
3022 	if (cpu >= 0 && cpu < nr_cpu_ids)
3023 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3024 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3025 	housekeeping_affine(current);
3026 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3027 }
3028 
3029 /* Record the current task on dyntick-idle entry. */
3030 static void rcu_dynticks_task_enter(void)
3031 {
3032 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3033 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3034 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3035 }
3036 
3037 /* Record no current task on dyntick-idle exit. */
3038 static void rcu_dynticks_task_exit(void)
3039 {
3040 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3041 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3042 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3043 }
3044