xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision a8da474e)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #ifdef CONFIG_RCU_BOOST
34 
35 #include "../locking/rtmutex_common.h"
36 
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45 
46 #else /* #ifdef CONFIG_RCU_BOOST */
47 
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55 
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57 
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63 
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.  If you like #ifdef, you
67  * will love this function.
68  */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71 	if (IS_ENABLED(CONFIG_RCU_TRACE))
72 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76 		       RCU_FANOUT);
77 	if (rcu_fanout_exact)
78 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 	if (IS_ENABLED(CONFIG_PROVE_RCU))
82 		pr_info("\tRCU lockdep checking is enabled.\n");
83 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 		pr_info("\tRCU torture testing starts during boot.\n");
85 	if (RCU_NUM_LVLS >= 4)
86 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 	if (RCU_FANOUT_LEAF != 16)
88 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 			RCU_FANOUT_LEAF);
90 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 	if (nr_cpu_ids != NR_CPUS)
93 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 	if (IS_ENABLED(CONFIG_RCU_BOOST))
95 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 }
97 
98 #ifdef CONFIG_PREEMPT_RCU
99 
100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103 
104 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
105 			       bool wake);
106 
107 /*
108  * Tell them what RCU they are running.
109  */
110 static void __init rcu_bootup_announce(void)
111 {
112 	pr_info("Preemptible hierarchical RCU implementation.\n");
113 	rcu_bootup_announce_oddness();
114 }
115 
116 /* Flags for rcu_preempt_ctxt_queue() decision table. */
117 #define RCU_GP_TASKS	0x8
118 #define RCU_EXP_TASKS	0x4
119 #define RCU_GP_BLKD	0x2
120 #define RCU_EXP_BLKD	0x1
121 
122 /*
123  * Queues a task preempted within an RCU-preempt read-side critical
124  * section into the appropriate location within the ->blkd_tasks list,
125  * depending on the states of any ongoing normal and expedited grace
126  * periods.  The ->gp_tasks pointer indicates which element the normal
127  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128  * indicates which element the expedited grace period is waiting on (again,
129  * NULL if none).  If a grace period is waiting on a given element in the
130  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
131  * adding a task to the tail of the list blocks any grace period that is
132  * already waiting on one of the elements.  In contrast, adding a task
133  * to the head of the list won't block any grace period that is already
134  * waiting on one of the elements.
135  *
136  * This queuing is imprecise, and can sometimes make an ongoing grace
137  * period wait for a task that is not strictly speaking blocking it.
138  * Given the choice, we needlessly block a normal grace period rather than
139  * blocking an expedited grace period.
140  *
141  * Note that an endless sequence of expedited grace periods still cannot
142  * indefinitely postpone a normal grace period.  Eventually, all of the
143  * fixed number of preempted tasks blocking the normal grace period that are
144  * not also blocking the expedited grace period will resume and complete
145  * their RCU read-side critical sections.  At that point, the ->gp_tasks
146  * pointer will equal the ->exp_tasks pointer, at which point the end of
147  * the corresponding expedited grace period will also be the end of the
148  * normal grace period.
149  */
150 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
151 				   unsigned long flags) __releases(rnp->lock)
152 {
153 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157 	struct task_struct *t = current;
158 
159 	/*
160 	 * Decide where to queue the newly blocked task.  In theory,
161 	 * this could be an if-statement.  In practice, when I tried
162 	 * that, it was quite messy.
163 	 */
164 	switch (blkd_state) {
165 	case 0:
166 	case                RCU_EXP_TASKS:
167 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
168 	case RCU_GP_TASKS:
169 	case RCU_GP_TASKS + RCU_EXP_TASKS:
170 
171 		/*
172 		 * Blocking neither GP, or first task blocking the normal
173 		 * GP but not blocking the already-waiting expedited GP.
174 		 * Queue at the head of the list to avoid unnecessarily
175 		 * blocking the already-waiting GPs.
176 		 */
177 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
178 		break;
179 
180 	case                                              RCU_EXP_BLKD:
181 	case                                RCU_GP_BLKD:
182 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
183 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
184 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
185 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
186 
187 		/*
188 		 * First task arriving that blocks either GP, or first task
189 		 * arriving that blocks the expedited GP (with the normal
190 		 * GP already waiting), or a task arriving that blocks
191 		 * both GPs with both GPs already waiting.  Queue at the
192 		 * tail of the list to avoid any GP waiting on any of the
193 		 * already queued tasks that are not blocking it.
194 		 */
195 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
196 		break;
197 
198 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
199 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
200 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
201 
202 		/*
203 		 * Second or subsequent task blocking the expedited GP.
204 		 * The task either does not block the normal GP, or is the
205 		 * first task blocking the normal GP.  Queue just after
206 		 * the first task blocking the expedited GP.
207 		 */
208 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
209 		break;
210 
211 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
212 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
213 
214 		/*
215 		 * Second or subsequent task blocking the normal GP.
216 		 * The task does not block the expedited GP. Queue just
217 		 * after the first task blocking the normal GP.
218 		 */
219 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
220 		break;
221 
222 	default:
223 
224 		/* Yet another exercise in excessive paranoia. */
225 		WARN_ON_ONCE(1);
226 		break;
227 	}
228 
229 	/*
230 	 * We have now queued the task.  If it was the first one to
231 	 * block either grace period, update the ->gp_tasks and/or
232 	 * ->exp_tasks pointers, respectively, to reference the newly
233 	 * blocked tasks.
234 	 */
235 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
236 		rnp->gp_tasks = &t->rcu_node_entry;
237 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
238 		rnp->exp_tasks = &t->rcu_node_entry;
239 	raw_spin_unlock(&rnp->lock);
240 
241 	/*
242 	 * Report the quiescent state for the expedited GP.  This expedited
243 	 * GP should not be able to end until we report, so there should be
244 	 * no need to check for a subsequent expedited GP.  (Though we are
245 	 * still in a quiescent state in any case.)
246 	 */
247 	if (blkd_state & RCU_EXP_BLKD &&
248 	    t->rcu_read_unlock_special.b.exp_need_qs) {
249 		t->rcu_read_unlock_special.b.exp_need_qs = false;
250 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
251 	} else {
252 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
253 	}
254 	local_irq_restore(flags);
255 }
256 
257 /*
258  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
259  * that this just means that the task currently running on the CPU is
260  * not in a quiescent state.  There might be any number of tasks blocked
261  * while in an RCU read-side critical section.
262  *
263  * As with the other rcu_*_qs() functions, callers to this function
264  * must disable preemption.
265  */
266 static void rcu_preempt_qs(void)
267 {
268 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
269 		trace_rcu_grace_period(TPS("rcu_preempt"),
270 				       __this_cpu_read(rcu_data_p->gpnum),
271 				       TPS("cpuqs"));
272 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
273 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
274 		current->rcu_read_unlock_special.b.need_qs = false;
275 	}
276 }
277 
278 /*
279  * We have entered the scheduler, and the current task might soon be
280  * context-switched away from.  If this task is in an RCU read-side
281  * critical section, we will no longer be able to rely on the CPU to
282  * record that fact, so we enqueue the task on the blkd_tasks list.
283  * The task will dequeue itself when it exits the outermost enclosing
284  * RCU read-side critical section.  Therefore, the current grace period
285  * cannot be permitted to complete until the blkd_tasks list entries
286  * predating the current grace period drain, in other words, until
287  * rnp->gp_tasks becomes NULL.
288  *
289  * Caller must disable preemption.
290  */
291 static void rcu_preempt_note_context_switch(void)
292 {
293 	struct task_struct *t = current;
294 	unsigned long flags;
295 	struct rcu_data *rdp;
296 	struct rcu_node *rnp;
297 
298 	if (t->rcu_read_lock_nesting > 0 &&
299 	    !t->rcu_read_unlock_special.b.blocked) {
300 
301 		/* Possibly blocking in an RCU read-side critical section. */
302 		rdp = this_cpu_ptr(rcu_state_p->rda);
303 		rnp = rdp->mynode;
304 		raw_spin_lock_irqsave(&rnp->lock, flags);
305 		smp_mb__after_unlock_lock();
306 		t->rcu_read_unlock_special.b.blocked = true;
307 		t->rcu_blocked_node = rnp;
308 
309 		/*
310 		 * Verify the CPU's sanity, trace the preemption, and
311 		 * then queue the task as required based on the states
312 		 * of any ongoing and expedited grace periods.
313 		 */
314 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
315 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
316 		trace_rcu_preempt_task(rdp->rsp->name,
317 				       t->pid,
318 				       (rnp->qsmask & rdp->grpmask)
319 				       ? rnp->gpnum
320 				       : rnp->gpnum + 1);
321 		rcu_preempt_ctxt_queue(rnp, rdp, flags);
322 	} else if (t->rcu_read_lock_nesting < 0 &&
323 		   t->rcu_read_unlock_special.s) {
324 
325 		/*
326 		 * Complete exit from RCU read-side critical section on
327 		 * behalf of preempted instance of __rcu_read_unlock().
328 		 */
329 		rcu_read_unlock_special(t);
330 	}
331 
332 	/*
333 	 * Either we were not in an RCU read-side critical section to
334 	 * begin with, or we have now recorded that critical section
335 	 * globally.  Either way, we can now note a quiescent state
336 	 * for this CPU.  Again, if we were in an RCU read-side critical
337 	 * section, and if that critical section was blocking the current
338 	 * grace period, then the fact that the task has been enqueued
339 	 * means that we continue to block the current grace period.
340 	 */
341 	rcu_preempt_qs();
342 }
343 
344 /*
345  * Check for preempted RCU readers blocking the current grace period
346  * for the specified rcu_node structure.  If the caller needs a reliable
347  * answer, it must hold the rcu_node's ->lock.
348  */
349 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
350 {
351 	return rnp->gp_tasks != NULL;
352 }
353 
354 /*
355  * Advance a ->blkd_tasks-list pointer to the next entry, instead
356  * returning NULL if at the end of the list.
357  */
358 static struct list_head *rcu_next_node_entry(struct task_struct *t,
359 					     struct rcu_node *rnp)
360 {
361 	struct list_head *np;
362 
363 	np = t->rcu_node_entry.next;
364 	if (np == &rnp->blkd_tasks)
365 		np = NULL;
366 	return np;
367 }
368 
369 /*
370  * Return true if the specified rcu_node structure has tasks that were
371  * preempted within an RCU read-side critical section.
372  */
373 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
374 {
375 	return !list_empty(&rnp->blkd_tasks);
376 }
377 
378 /*
379  * Handle special cases during rcu_read_unlock(), such as needing to
380  * notify RCU core processing or task having blocked during the RCU
381  * read-side critical section.
382  */
383 void rcu_read_unlock_special(struct task_struct *t)
384 {
385 	bool empty_exp;
386 	bool empty_norm;
387 	bool empty_exp_now;
388 	unsigned long flags;
389 	struct list_head *np;
390 	bool drop_boost_mutex = false;
391 	struct rcu_data *rdp;
392 	struct rcu_node *rnp;
393 	union rcu_special special;
394 
395 	/* NMI handlers cannot block and cannot safely manipulate state. */
396 	if (in_nmi())
397 		return;
398 
399 	local_irq_save(flags);
400 
401 	/*
402 	 * If RCU core is waiting for this CPU to exit its critical section,
403 	 * report the fact that it has exited.  Because irqs are disabled,
404 	 * t->rcu_read_unlock_special cannot change.
405 	 */
406 	special = t->rcu_read_unlock_special;
407 	if (special.b.need_qs) {
408 		rcu_preempt_qs();
409 		t->rcu_read_unlock_special.b.need_qs = false;
410 		if (!t->rcu_read_unlock_special.s) {
411 			local_irq_restore(flags);
412 			return;
413 		}
414 	}
415 
416 	/*
417 	 * Respond to a request for an expedited grace period, but only if
418 	 * we were not preempted, meaning that we were running on the same
419 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
420 	 * would have been cleared at the time of the first preemption,
421 	 * and the quiescent state would be reported when we were dequeued.
422 	 */
423 	if (special.b.exp_need_qs) {
424 		WARN_ON_ONCE(special.b.blocked);
425 		t->rcu_read_unlock_special.b.exp_need_qs = false;
426 		rdp = this_cpu_ptr(rcu_state_p->rda);
427 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
428 		if (!t->rcu_read_unlock_special.s) {
429 			local_irq_restore(flags);
430 			return;
431 		}
432 	}
433 
434 	/* Hardware IRQ handlers cannot block, complain if they get here. */
435 	if (in_irq() || in_serving_softirq()) {
436 		lockdep_rcu_suspicious(__FILE__, __LINE__,
437 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
438 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
439 			 t->rcu_read_unlock_special.s,
440 			 t->rcu_read_unlock_special.b.blocked,
441 			 t->rcu_read_unlock_special.b.exp_need_qs,
442 			 t->rcu_read_unlock_special.b.need_qs);
443 		local_irq_restore(flags);
444 		return;
445 	}
446 
447 	/* Clean up if blocked during RCU read-side critical section. */
448 	if (special.b.blocked) {
449 		t->rcu_read_unlock_special.b.blocked = false;
450 
451 		/*
452 		 * Remove this task from the list it blocked on.  The task
453 		 * now remains queued on the rcu_node corresponding to
454 		 * the CPU it first blocked on, so the first attempt to
455 		 * acquire the task's rcu_node's ->lock will succeed.
456 		 * Keep the loop and add a WARN_ON() out of sheer paranoia.
457 		 */
458 		for (;;) {
459 			rnp = t->rcu_blocked_node;
460 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
461 			smp_mb__after_unlock_lock();
462 			if (rnp == t->rcu_blocked_node)
463 				break;
464 			WARN_ON_ONCE(1);
465 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
466 		}
467 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
468 		empty_exp = sync_rcu_preempt_exp_done(rnp);
469 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
470 		np = rcu_next_node_entry(t, rnp);
471 		list_del_init(&t->rcu_node_entry);
472 		t->rcu_blocked_node = NULL;
473 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
474 						rnp->gpnum, t->pid);
475 		if (&t->rcu_node_entry == rnp->gp_tasks)
476 			rnp->gp_tasks = np;
477 		if (&t->rcu_node_entry == rnp->exp_tasks)
478 			rnp->exp_tasks = np;
479 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
480 			if (&t->rcu_node_entry == rnp->boost_tasks)
481 				rnp->boost_tasks = np;
482 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
483 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
484 		}
485 
486 		/*
487 		 * If this was the last task on the current list, and if
488 		 * we aren't waiting on any CPUs, report the quiescent state.
489 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
490 		 * so we must take a snapshot of the expedited state.
491 		 */
492 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
493 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
494 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
495 							 rnp->gpnum,
496 							 0, rnp->qsmask,
497 							 rnp->level,
498 							 rnp->grplo,
499 							 rnp->grphi,
500 							 !!rnp->gp_tasks);
501 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
502 		} else {
503 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
504 		}
505 
506 		/* Unboost if we were boosted. */
507 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
508 			rt_mutex_unlock(&rnp->boost_mtx);
509 
510 		/*
511 		 * If this was the last task on the expedited lists,
512 		 * then we need to report up the rcu_node hierarchy.
513 		 */
514 		if (!empty_exp && empty_exp_now)
515 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
516 	} else {
517 		local_irq_restore(flags);
518 	}
519 }
520 
521 /*
522  * Dump detailed information for all tasks blocking the current RCU
523  * grace period on the specified rcu_node structure.
524  */
525 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
526 {
527 	unsigned long flags;
528 	struct task_struct *t;
529 
530 	raw_spin_lock_irqsave(&rnp->lock, flags);
531 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
532 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
533 		return;
534 	}
535 	t = list_entry(rnp->gp_tasks->prev,
536 		       struct task_struct, rcu_node_entry);
537 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
538 		sched_show_task(t);
539 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
540 }
541 
542 /*
543  * Dump detailed information for all tasks blocking the current RCU
544  * grace period.
545  */
546 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
547 {
548 	struct rcu_node *rnp = rcu_get_root(rsp);
549 
550 	rcu_print_detail_task_stall_rnp(rnp);
551 	rcu_for_each_leaf_node(rsp, rnp)
552 		rcu_print_detail_task_stall_rnp(rnp);
553 }
554 
555 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
556 {
557 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
558 	       rnp->level, rnp->grplo, rnp->grphi);
559 }
560 
561 static void rcu_print_task_stall_end(void)
562 {
563 	pr_cont("\n");
564 }
565 
566 /*
567  * Scan the current list of tasks blocked within RCU read-side critical
568  * sections, printing out the tid of each.
569  */
570 static int rcu_print_task_stall(struct rcu_node *rnp)
571 {
572 	struct task_struct *t;
573 	int ndetected = 0;
574 
575 	if (!rcu_preempt_blocked_readers_cgp(rnp))
576 		return 0;
577 	rcu_print_task_stall_begin(rnp);
578 	t = list_entry(rnp->gp_tasks->prev,
579 		       struct task_struct, rcu_node_entry);
580 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
581 		pr_cont(" P%d", t->pid);
582 		ndetected++;
583 	}
584 	rcu_print_task_stall_end();
585 	return ndetected;
586 }
587 
588 /*
589  * Scan the current list of tasks blocked within RCU read-side critical
590  * sections, printing out the tid of each that is blocking the current
591  * expedited grace period.
592  */
593 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
594 {
595 	struct task_struct *t;
596 	int ndetected = 0;
597 
598 	if (!rnp->exp_tasks)
599 		return 0;
600 	t = list_entry(rnp->exp_tasks->prev,
601 		       struct task_struct, rcu_node_entry);
602 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
603 		pr_cont(" P%d", t->pid);
604 		ndetected++;
605 	}
606 	return ndetected;
607 }
608 
609 /*
610  * Check that the list of blocked tasks for the newly completed grace
611  * period is in fact empty.  It is a serious bug to complete a grace
612  * period that still has RCU readers blocked!  This function must be
613  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
614  * must be held by the caller.
615  *
616  * Also, if there are blocked tasks on the list, they automatically
617  * block the newly created grace period, so set up ->gp_tasks accordingly.
618  */
619 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
620 {
621 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
622 	if (rcu_preempt_has_tasks(rnp))
623 		rnp->gp_tasks = rnp->blkd_tasks.next;
624 	WARN_ON_ONCE(rnp->qsmask);
625 }
626 
627 /*
628  * Check for a quiescent state from the current CPU.  When a task blocks,
629  * the task is recorded in the corresponding CPU's rcu_node structure,
630  * which is checked elsewhere.
631  *
632  * Caller must disable hard irqs.
633  */
634 static void rcu_preempt_check_callbacks(void)
635 {
636 	struct task_struct *t = current;
637 
638 	if (t->rcu_read_lock_nesting == 0) {
639 		rcu_preempt_qs();
640 		return;
641 	}
642 	if (t->rcu_read_lock_nesting > 0 &&
643 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
644 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
645 		t->rcu_read_unlock_special.b.need_qs = true;
646 }
647 
648 #ifdef CONFIG_RCU_BOOST
649 
650 static void rcu_preempt_do_callbacks(void)
651 {
652 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
653 }
654 
655 #endif /* #ifdef CONFIG_RCU_BOOST */
656 
657 /*
658  * Queue a preemptible-RCU callback for invocation after a grace period.
659  */
660 void call_rcu(struct rcu_head *head, rcu_callback_t func)
661 {
662 	__call_rcu(head, func, rcu_state_p, -1, 0);
663 }
664 EXPORT_SYMBOL_GPL(call_rcu);
665 
666 /**
667  * synchronize_rcu - wait until a grace period has elapsed.
668  *
669  * Control will return to the caller some time after a full grace
670  * period has elapsed, in other words after all currently executing RCU
671  * read-side critical sections have completed.  Note, however, that
672  * upon return from synchronize_rcu(), the caller might well be executing
673  * concurrently with new RCU read-side critical sections that began while
674  * synchronize_rcu() was waiting.  RCU read-side critical sections are
675  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
676  *
677  * See the description of synchronize_sched() for more detailed information
678  * on memory ordering guarantees.
679  */
680 void synchronize_rcu(void)
681 {
682 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
683 			 lock_is_held(&rcu_lock_map) ||
684 			 lock_is_held(&rcu_sched_lock_map),
685 			 "Illegal synchronize_rcu() in RCU read-side critical section");
686 	if (!rcu_scheduler_active)
687 		return;
688 	if (rcu_gp_is_expedited())
689 		synchronize_rcu_expedited();
690 	else
691 		wait_rcu_gp(call_rcu);
692 }
693 EXPORT_SYMBOL_GPL(synchronize_rcu);
694 
695 /*
696  * Remote handler for smp_call_function_single().  If there is an
697  * RCU read-side critical section in effect, request that the
698  * next rcu_read_unlock() record the quiescent state up the
699  * ->expmask fields in the rcu_node tree.  Otherwise, immediately
700  * report the quiescent state.
701  */
702 static void sync_rcu_exp_handler(void *info)
703 {
704 	struct rcu_data *rdp;
705 	struct rcu_state *rsp = info;
706 	struct task_struct *t = current;
707 
708 	/*
709 	 * Within an RCU read-side critical section, request that the next
710 	 * rcu_read_unlock() report.  Unless this RCU read-side critical
711 	 * section has already blocked, in which case it is already set
712 	 * up for the expedited grace period to wait on it.
713 	 */
714 	if (t->rcu_read_lock_nesting > 0 &&
715 	    !t->rcu_read_unlock_special.b.blocked) {
716 		t->rcu_read_unlock_special.b.exp_need_qs = true;
717 		return;
718 	}
719 
720 	/*
721 	 * We are either exiting an RCU read-side critical section (negative
722 	 * values of t->rcu_read_lock_nesting) or are not in one at all
723 	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
724 	 * read-side critical section that blocked before this expedited
725 	 * grace period started.  Either way, we can immediately report
726 	 * the quiescent state.
727 	 */
728 	rdp = this_cpu_ptr(rsp->rda);
729 	rcu_report_exp_rdp(rsp, rdp, true);
730 }
731 
732 /**
733  * synchronize_rcu_expedited - Brute-force RCU grace period
734  *
735  * Wait for an RCU-preempt grace period, but expedite it.  The basic
736  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
737  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
738  * significant time on all CPUs and is unfriendly to real-time workloads,
739  * so is thus not recommended for any sort of common-case code.
740  * In fact, if you are using synchronize_rcu_expedited() in a loop,
741  * please restructure your code to batch your updates, and then Use a
742  * single synchronize_rcu() instead.
743  */
744 void synchronize_rcu_expedited(void)
745 {
746 	struct rcu_node *rnp;
747 	struct rcu_node *rnp_unlock;
748 	struct rcu_state *rsp = rcu_state_p;
749 	unsigned long s;
750 
751 	s = rcu_exp_gp_seq_snap(rsp);
752 
753 	rnp_unlock = exp_funnel_lock(rsp, s);
754 	if (rnp_unlock == NULL)
755 		return;  /* Someone else did our work for us. */
756 
757 	rcu_exp_gp_seq_start(rsp);
758 
759 	/* Initialize the rcu_node tree in preparation for the wait. */
760 	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
761 
762 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
763 	rnp = rcu_get_root(rsp);
764 	synchronize_sched_expedited_wait(rsp);
765 
766 	/* Clean up and exit. */
767 	rcu_exp_gp_seq_end(rsp);
768 	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
769 }
770 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
771 
772 /**
773  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
774  *
775  * Note that this primitive does not necessarily wait for an RCU grace period
776  * to complete.  For example, if there are no RCU callbacks queued anywhere
777  * in the system, then rcu_barrier() is within its rights to return
778  * immediately, without waiting for anything, much less an RCU grace period.
779  */
780 void rcu_barrier(void)
781 {
782 	_rcu_barrier(rcu_state_p);
783 }
784 EXPORT_SYMBOL_GPL(rcu_barrier);
785 
786 /*
787  * Initialize preemptible RCU's state structures.
788  */
789 static void __init __rcu_init_preempt(void)
790 {
791 	rcu_init_one(rcu_state_p, rcu_data_p);
792 }
793 
794 /*
795  * Check for a task exiting while in a preemptible-RCU read-side
796  * critical section, clean up if so.  No need to issue warnings,
797  * as debug_check_no_locks_held() already does this if lockdep
798  * is enabled.
799  */
800 void exit_rcu(void)
801 {
802 	struct task_struct *t = current;
803 
804 	if (likely(list_empty(&current->rcu_node_entry)))
805 		return;
806 	t->rcu_read_lock_nesting = 1;
807 	barrier();
808 	t->rcu_read_unlock_special.b.blocked = true;
809 	__rcu_read_unlock();
810 }
811 
812 #else /* #ifdef CONFIG_PREEMPT_RCU */
813 
814 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
815 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
816 
817 /*
818  * Tell them what RCU they are running.
819  */
820 static void __init rcu_bootup_announce(void)
821 {
822 	pr_info("Hierarchical RCU implementation.\n");
823 	rcu_bootup_announce_oddness();
824 }
825 
826 /*
827  * Because preemptible RCU does not exist, we never have to check for
828  * CPUs being in quiescent states.
829  */
830 static void rcu_preempt_note_context_switch(void)
831 {
832 }
833 
834 /*
835  * Because preemptible RCU does not exist, there are never any preempted
836  * RCU readers.
837  */
838 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
839 {
840 	return 0;
841 }
842 
843 /*
844  * Because there is no preemptible RCU, there can be no readers blocked.
845  */
846 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
847 {
848 	return false;
849 }
850 
851 /*
852  * Because preemptible RCU does not exist, we never have to check for
853  * tasks blocked within RCU read-side critical sections.
854  */
855 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
856 {
857 }
858 
859 /*
860  * Because preemptible RCU does not exist, we never have to check for
861  * tasks blocked within RCU read-side critical sections.
862  */
863 static int rcu_print_task_stall(struct rcu_node *rnp)
864 {
865 	return 0;
866 }
867 
868 /*
869  * Because preemptible RCU does not exist, we never have to check for
870  * tasks blocked within RCU read-side critical sections that are
871  * blocking the current expedited grace period.
872  */
873 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
874 {
875 	return 0;
876 }
877 
878 /*
879  * Because there is no preemptible RCU, there can be no readers blocked,
880  * so there is no need to check for blocked tasks.  So check only for
881  * bogus qsmask values.
882  */
883 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
884 {
885 	WARN_ON_ONCE(rnp->qsmask);
886 }
887 
888 /*
889  * Because preemptible RCU does not exist, it never has any callbacks
890  * to check.
891  */
892 static void rcu_preempt_check_callbacks(void)
893 {
894 }
895 
896 /*
897  * Wait for an rcu-preempt grace period, but make it happen quickly.
898  * But because preemptible RCU does not exist, map to rcu-sched.
899  */
900 void synchronize_rcu_expedited(void)
901 {
902 	synchronize_sched_expedited();
903 }
904 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
905 
906 /*
907  * Because preemptible RCU does not exist, rcu_barrier() is just
908  * another name for rcu_barrier_sched().
909  */
910 void rcu_barrier(void)
911 {
912 	rcu_barrier_sched();
913 }
914 EXPORT_SYMBOL_GPL(rcu_barrier);
915 
916 /*
917  * Because preemptible RCU does not exist, it need not be initialized.
918  */
919 static void __init __rcu_init_preempt(void)
920 {
921 }
922 
923 /*
924  * Because preemptible RCU does not exist, tasks cannot possibly exit
925  * while in preemptible RCU read-side critical sections.
926  */
927 void exit_rcu(void)
928 {
929 }
930 
931 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
932 
933 #ifdef CONFIG_RCU_BOOST
934 
935 #include "../locking/rtmutex_common.h"
936 
937 #ifdef CONFIG_RCU_TRACE
938 
939 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
940 {
941 	if (!rcu_preempt_has_tasks(rnp))
942 		rnp->n_balk_blkd_tasks++;
943 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
944 		rnp->n_balk_exp_gp_tasks++;
945 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
946 		rnp->n_balk_boost_tasks++;
947 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
948 		rnp->n_balk_notblocked++;
949 	else if (rnp->gp_tasks != NULL &&
950 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
951 		rnp->n_balk_notyet++;
952 	else
953 		rnp->n_balk_nos++;
954 }
955 
956 #else /* #ifdef CONFIG_RCU_TRACE */
957 
958 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
959 {
960 }
961 
962 #endif /* #else #ifdef CONFIG_RCU_TRACE */
963 
964 static void rcu_wake_cond(struct task_struct *t, int status)
965 {
966 	/*
967 	 * If the thread is yielding, only wake it when this
968 	 * is invoked from idle
969 	 */
970 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
971 		wake_up_process(t);
972 }
973 
974 /*
975  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
976  * or ->boost_tasks, advancing the pointer to the next task in the
977  * ->blkd_tasks list.
978  *
979  * Note that irqs must be enabled: boosting the task can block.
980  * Returns 1 if there are more tasks needing to be boosted.
981  */
982 static int rcu_boost(struct rcu_node *rnp)
983 {
984 	unsigned long flags;
985 	struct task_struct *t;
986 	struct list_head *tb;
987 
988 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
989 	    READ_ONCE(rnp->boost_tasks) == NULL)
990 		return 0;  /* Nothing left to boost. */
991 
992 	raw_spin_lock_irqsave(&rnp->lock, flags);
993 	smp_mb__after_unlock_lock();
994 
995 	/*
996 	 * Recheck under the lock: all tasks in need of boosting
997 	 * might exit their RCU read-side critical sections on their own.
998 	 */
999 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1000 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 		return 0;
1002 	}
1003 
1004 	/*
1005 	 * Preferentially boost tasks blocking expedited grace periods.
1006 	 * This cannot starve the normal grace periods because a second
1007 	 * expedited grace period must boost all blocked tasks, including
1008 	 * those blocking the pre-existing normal grace period.
1009 	 */
1010 	if (rnp->exp_tasks != NULL) {
1011 		tb = rnp->exp_tasks;
1012 		rnp->n_exp_boosts++;
1013 	} else {
1014 		tb = rnp->boost_tasks;
1015 		rnp->n_normal_boosts++;
1016 	}
1017 	rnp->n_tasks_boosted++;
1018 
1019 	/*
1020 	 * We boost task t by manufacturing an rt_mutex that appears to
1021 	 * be held by task t.  We leave a pointer to that rt_mutex where
1022 	 * task t can find it, and task t will release the mutex when it
1023 	 * exits its outermost RCU read-side critical section.  Then
1024 	 * simply acquiring this artificial rt_mutex will boost task
1025 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1026 	 *
1027 	 * Note that task t must acquire rnp->lock to remove itself from
1028 	 * the ->blkd_tasks list, which it will do from exit() if from
1029 	 * nowhere else.  We therefore are guaranteed that task t will
1030 	 * stay around at least until we drop rnp->lock.  Note that
1031 	 * rnp->lock also resolves races between our priority boosting
1032 	 * and task t's exiting its outermost RCU read-side critical
1033 	 * section.
1034 	 */
1035 	t = container_of(tb, struct task_struct, rcu_node_entry);
1036 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1037 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1038 	/* Lock only for side effect: boosts task t's priority. */
1039 	rt_mutex_lock(&rnp->boost_mtx);
1040 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1041 
1042 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1043 	       READ_ONCE(rnp->boost_tasks) != NULL;
1044 }
1045 
1046 /*
1047  * Priority-boosting kthread, one per leaf rcu_node.
1048  */
1049 static int rcu_boost_kthread(void *arg)
1050 {
1051 	struct rcu_node *rnp = (struct rcu_node *)arg;
1052 	int spincnt = 0;
1053 	int more2boost;
1054 
1055 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1056 	for (;;) {
1057 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1058 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1059 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1060 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1061 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1062 		more2boost = rcu_boost(rnp);
1063 		if (more2boost)
1064 			spincnt++;
1065 		else
1066 			spincnt = 0;
1067 		if (spincnt > 10) {
1068 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1069 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1070 			schedule_timeout_interruptible(2);
1071 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1072 			spincnt = 0;
1073 		}
1074 	}
1075 	/* NOTREACHED */
1076 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Check to see if it is time to start boosting RCU readers that are
1082  * blocking the current grace period, and, if so, tell the per-rcu_node
1083  * kthread to start boosting them.  If there is an expedited grace
1084  * period in progress, it is always time to boost.
1085  *
1086  * The caller must hold rnp->lock, which this function releases.
1087  * The ->boost_kthread_task is immortal, so we don't need to worry
1088  * about it going away.
1089  */
1090 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1091 	__releases(rnp->lock)
1092 {
1093 	struct task_struct *t;
1094 
1095 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1096 		rnp->n_balk_exp_gp_tasks++;
1097 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098 		return;
1099 	}
1100 	if (rnp->exp_tasks != NULL ||
1101 	    (rnp->gp_tasks != NULL &&
1102 	     rnp->boost_tasks == NULL &&
1103 	     rnp->qsmask == 0 &&
1104 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1105 		if (rnp->exp_tasks == NULL)
1106 			rnp->boost_tasks = rnp->gp_tasks;
1107 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108 		t = rnp->boost_kthread_task;
1109 		if (t)
1110 			rcu_wake_cond(t, rnp->boost_kthread_status);
1111 	} else {
1112 		rcu_initiate_boost_trace(rnp);
1113 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1114 	}
1115 }
1116 
1117 /*
1118  * Wake up the per-CPU kthread to invoke RCU callbacks.
1119  */
1120 static void invoke_rcu_callbacks_kthread(void)
1121 {
1122 	unsigned long flags;
1123 
1124 	local_irq_save(flags);
1125 	__this_cpu_write(rcu_cpu_has_work, 1);
1126 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1127 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1128 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1129 			      __this_cpu_read(rcu_cpu_kthread_status));
1130 	}
1131 	local_irq_restore(flags);
1132 }
1133 
1134 /*
1135  * Is the current CPU running the RCU-callbacks kthread?
1136  * Caller must have preemption disabled.
1137  */
1138 static bool rcu_is_callbacks_kthread(void)
1139 {
1140 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1141 }
1142 
1143 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1144 
1145 /*
1146  * Do priority-boost accounting for the start of a new grace period.
1147  */
1148 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1149 {
1150 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1151 }
1152 
1153 /*
1154  * Create an RCU-boost kthread for the specified node if one does not
1155  * already exist.  We only create this kthread for preemptible RCU.
1156  * Returns zero if all is well, a negated errno otherwise.
1157  */
1158 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1159 				       struct rcu_node *rnp)
1160 {
1161 	int rnp_index = rnp - &rsp->node[0];
1162 	unsigned long flags;
1163 	struct sched_param sp;
1164 	struct task_struct *t;
1165 
1166 	if (rcu_state_p != rsp)
1167 		return 0;
1168 
1169 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1170 		return 0;
1171 
1172 	rsp->boost = 1;
1173 	if (rnp->boost_kthread_task != NULL)
1174 		return 0;
1175 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1176 			   "rcub/%d", rnp_index);
1177 	if (IS_ERR(t))
1178 		return PTR_ERR(t);
1179 	raw_spin_lock_irqsave(&rnp->lock, flags);
1180 	smp_mb__after_unlock_lock();
1181 	rnp->boost_kthread_task = t;
1182 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183 	sp.sched_priority = kthread_prio;
1184 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1185 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1186 	return 0;
1187 }
1188 
1189 static void rcu_kthread_do_work(void)
1190 {
1191 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1192 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1193 	rcu_preempt_do_callbacks();
1194 }
1195 
1196 static void rcu_cpu_kthread_setup(unsigned int cpu)
1197 {
1198 	struct sched_param sp;
1199 
1200 	sp.sched_priority = kthread_prio;
1201 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1202 }
1203 
1204 static void rcu_cpu_kthread_park(unsigned int cpu)
1205 {
1206 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1207 }
1208 
1209 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1210 {
1211 	return __this_cpu_read(rcu_cpu_has_work);
1212 }
1213 
1214 /*
1215  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1216  * RCU softirq used in flavors and configurations of RCU that do not
1217  * support RCU priority boosting.
1218  */
1219 static void rcu_cpu_kthread(unsigned int cpu)
1220 {
1221 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1222 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1223 	int spincnt;
1224 
1225 	for (spincnt = 0; spincnt < 10; spincnt++) {
1226 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1227 		local_bh_disable();
1228 		*statusp = RCU_KTHREAD_RUNNING;
1229 		this_cpu_inc(rcu_cpu_kthread_loops);
1230 		local_irq_disable();
1231 		work = *workp;
1232 		*workp = 0;
1233 		local_irq_enable();
1234 		if (work)
1235 			rcu_kthread_do_work();
1236 		local_bh_enable();
1237 		if (*workp == 0) {
1238 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1239 			*statusp = RCU_KTHREAD_WAITING;
1240 			return;
1241 		}
1242 	}
1243 	*statusp = RCU_KTHREAD_YIELDING;
1244 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1245 	schedule_timeout_interruptible(2);
1246 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1247 	*statusp = RCU_KTHREAD_WAITING;
1248 }
1249 
1250 /*
1251  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1252  * served by the rcu_node in question.  The CPU hotplug lock is still
1253  * held, so the value of rnp->qsmaskinit will be stable.
1254  *
1255  * We don't include outgoingcpu in the affinity set, use -1 if there is
1256  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1257  * this function allows the kthread to execute on any CPU.
1258  */
1259 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1260 {
1261 	struct task_struct *t = rnp->boost_kthread_task;
1262 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1263 	cpumask_var_t cm;
1264 	int cpu;
1265 
1266 	if (!t)
1267 		return;
1268 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1269 		return;
1270 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1271 		if ((mask & 0x1) && cpu != outgoingcpu)
1272 			cpumask_set_cpu(cpu, cm);
1273 	if (cpumask_weight(cm) == 0)
1274 		cpumask_setall(cm);
1275 	set_cpus_allowed_ptr(t, cm);
1276 	free_cpumask_var(cm);
1277 }
1278 
1279 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1280 	.store			= &rcu_cpu_kthread_task,
1281 	.thread_should_run	= rcu_cpu_kthread_should_run,
1282 	.thread_fn		= rcu_cpu_kthread,
1283 	.thread_comm		= "rcuc/%u",
1284 	.setup			= rcu_cpu_kthread_setup,
1285 	.park			= rcu_cpu_kthread_park,
1286 };
1287 
1288 /*
1289  * Spawn boost kthreads -- called as soon as the scheduler is running.
1290  */
1291 static void __init rcu_spawn_boost_kthreads(void)
1292 {
1293 	struct rcu_node *rnp;
1294 	int cpu;
1295 
1296 	for_each_possible_cpu(cpu)
1297 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1298 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1299 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1300 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1301 }
1302 
1303 static void rcu_prepare_kthreads(int cpu)
1304 {
1305 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1306 	struct rcu_node *rnp = rdp->mynode;
1307 
1308 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1309 	if (rcu_scheduler_fully_active)
1310 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1311 }
1312 
1313 #else /* #ifdef CONFIG_RCU_BOOST */
1314 
1315 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1316 	__releases(rnp->lock)
1317 {
1318 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1319 }
1320 
1321 static void invoke_rcu_callbacks_kthread(void)
1322 {
1323 	WARN_ON_ONCE(1);
1324 }
1325 
1326 static bool rcu_is_callbacks_kthread(void)
1327 {
1328 	return false;
1329 }
1330 
1331 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1332 {
1333 }
1334 
1335 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1336 {
1337 }
1338 
1339 static void __init rcu_spawn_boost_kthreads(void)
1340 {
1341 }
1342 
1343 static void rcu_prepare_kthreads(int cpu)
1344 {
1345 }
1346 
1347 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1348 
1349 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1350 
1351 /*
1352  * Check to see if any future RCU-related work will need to be done
1353  * by the current CPU, even if none need be done immediately, returning
1354  * 1 if so.  This function is part of the RCU implementation; it is -not-
1355  * an exported member of the RCU API.
1356  *
1357  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1358  * any flavor of RCU.
1359  */
1360 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1361 {
1362 	*nextevt = KTIME_MAX;
1363 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1364 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1365 }
1366 
1367 /*
1368  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1369  * after it.
1370  */
1371 static void rcu_cleanup_after_idle(void)
1372 {
1373 }
1374 
1375 /*
1376  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1377  * is nothing.
1378  */
1379 static void rcu_prepare_for_idle(void)
1380 {
1381 }
1382 
1383 /*
1384  * Don't bother keeping a running count of the number of RCU callbacks
1385  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1386  */
1387 static void rcu_idle_count_callbacks_posted(void)
1388 {
1389 }
1390 
1391 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1392 
1393 /*
1394  * This code is invoked when a CPU goes idle, at which point we want
1395  * to have the CPU do everything required for RCU so that it can enter
1396  * the energy-efficient dyntick-idle mode.  This is handled by a
1397  * state machine implemented by rcu_prepare_for_idle() below.
1398  *
1399  * The following three proprocessor symbols control this state machine:
1400  *
1401  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1402  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1403  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1404  *	benchmarkers who might otherwise be tempted to set this to a large
1405  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1406  *	system.  And if you are -that- concerned about energy efficiency,
1407  *	just power the system down and be done with it!
1408  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1409  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1410  *	callbacks pending.  Setting this too high can OOM your system.
1411  *
1412  * The values below work well in practice.  If future workloads require
1413  * adjustment, they can be converted into kernel config parameters, though
1414  * making the state machine smarter might be a better option.
1415  */
1416 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1417 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1418 
1419 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1420 module_param(rcu_idle_gp_delay, int, 0644);
1421 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1422 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1423 
1424 /*
1425  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1426  * only if it has been awhile since the last time we did so.  Afterwards,
1427  * if there are any callbacks ready for immediate invocation, return true.
1428  */
1429 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1430 {
1431 	bool cbs_ready = false;
1432 	struct rcu_data *rdp;
1433 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1434 	struct rcu_node *rnp;
1435 	struct rcu_state *rsp;
1436 
1437 	/* Exit early if we advanced recently. */
1438 	if (jiffies == rdtp->last_advance_all)
1439 		return false;
1440 	rdtp->last_advance_all = jiffies;
1441 
1442 	for_each_rcu_flavor(rsp) {
1443 		rdp = this_cpu_ptr(rsp->rda);
1444 		rnp = rdp->mynode;
1445 
1446 		/*
1447 		 * Don't bother checking unless a grace period has
1448 		 * completed since we last checked and there are
1449 		 * callbacks not yet ready to invoke.
1450 		 */
1451 		if ((rdp->completed != rnp->completed ||
1452 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1453 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1454 			note_gp_changes(rsp, rdp);
1455 
1456 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1457 			cbs_ready = true;
1458 	}
1459 	return cbs_ready;
1460 }
1461 
1462 /*
1463  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1464  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1465  * caller to set the timeout based on whether or not there are non-lazy
1466  * callbacks.
1467  *
1468  * The caller must have disabled interrupts.
1469  */
1470 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1471 {
1472 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1473 	unsigned long dj;
1474 
1475 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1476 		*nextevt = KTIME_MAX;
1477 		return 0;
1478 	}
1479 
1480 	/* Snapshot to detect later posting of non-lazy callback. */
1481 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1482 
1483 	/* If no callbacks, RCU doesn't need the CPU. */
1484 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1485 		*nextevt = KTIME_MAX;
1486 		return 0;
1487 	}
1488 
1489 	/* Attempt to advance callbacks. */
1490 	if (rcu_try_advance_all_cbs()) {
1491 		/* Some ready to invoke, so initiate later invocation. */
1492 		invoke_rcu_core();
1493 		return 1;
1494 	}
1495 	rdtp->last_accelerate = jiffies;
1496 
1497 	/* Request timer delay depending on laziness, and round. */
1498 	if (!rdtp->all_lazy) {
1499 		dj = round_up(rcu_idle_gp_delay + jiffies,
1500 			       rcu_idle_gp_delay) - jiffies;
1501 	} else {
1502 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1503 	}
1504 	*nextevt = basemono + dj * TICK_NSEC;
1505 	return 0;
1506 }
1507 
1508 /*
1509  * Prepare a CPU for idle from an RCU perspective.  The first major task
1510  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1511  * The second major task is to check to see if a non-lazy callback has
1512  * arrived at a CPU that previously had only lazy callbacks.  The third
1513  * major task is to accelerate (that is, assign grace-period numbers to)
1514  * any recently arrived callbacks.
1515  *
1516  * The caller must have disabled interrupts.
1517  */
1518 static void rcu_prepare_for_idle(void)
1519 {
1520 	bool needwake;
1521 	struct rcu_data *rdp;
1522 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1523 	struct rcu_node *rnp;
1524 	struct rcu_state *rsp;
1525 	int tne;
1526 
1527 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1528 		return;
1529 
1530 	/* Handle nohz enablement switches conservatively. */
1531 	tne = READ_ONCE(tick_nohz_active);
1532 	if (tne != rdtp->tick_nohz_enabled_snap) {
1533 		if (rcu_cpu_has_callbacks(NULL))
1534 			invoke_rcu_core(); /* force nohz to see update. */
1535 		rdtp->tick_nohz_enabled_snap = tne;
1536 		return;
1537 	}
1538 	if (!tne)
1539 		return;
1540 
1541 	/* If this is a no-CBs CPU, no callbacks, just return. */
1542 	if (rcu_is_nocb_cpu(smp_processor_id()))
1543 		return;
1544 
1545 	/*
1546 	 * If a non-lazy callback arrived at a CPU having only lazy
1547 	 * callbacks, invoke RCU core for the side-effect of recalculating
1548 	 * idle duration on re-entry to idle.
1549 	 */
1550 	if (rdtp->all_lazy &&
1551 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1552 		rdtp->all_lazy = false;
1553 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1554 		invoke_rcu_core();
1555 		return;
1556 	}
1557 
1558 	/*
1559 	 * If we have not yet accelerated this jiffy, accelerate all
1560 	 * callbacks on this CPU.
1561 	 */
1562 	if (rdtp->last_accelerate == jiffies)
1563 		return;
1564 	rdtp->last_accelerate = jiffies;
1565 	for_each_rcu_flavor(rsp) {
1566 		rdp = this_cpu_ptr(rsp->rda);
1567 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1568 			continue;
1569 		rnp = rdp->mynode;
1570 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1571 		smp_mb__after_unlock_lock();
1572 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1573 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1574 		if (needwake)
1575 			rcu_gp_kthread_wake(rsp);
1576 	}
1577 }
1578 
1579 /*
1580  * Clean up for exit from idle.  Attempt to advance callbacks based on
1581  * any grace periods that elapsed while the CPU was idle, and if any
1582  * callbacks are now ready to invoke, initiate invocation.
1583  */
1584 static void rcu_cleanup_after_idle(void)
1585 {
1586 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1587 	    rcu_is_nocb_cpu(smp_processor_id()))
1588 		return;
1589 	if (rcu_try_advance_all_cbs())
1590 		invoke_rcu_core();
1591 }
1592 
1593 /*
1594  * Keep a running count of the number of non-lazy callbacks posted
1595  * on this CPU.  This running counter (which is never decremented) allows
1596  * rcu_prepare_for_idle() to detect when something out of the idle loop
1597  * posts a callback, even if an equal number of callbacks are invoked.
1598  * Of course, callbacks should only be posted from within a trace event
1599  * designed to be called from idle or from within RCU_NONIDLE().
1600  */
1601 static void rcu_idle_count_callbacks_posted(void)
1602 {
1603 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1604 }
1605 
1606 /*
1607  * Data for flushing lazy RCU callbacks at OOM time.
1608  */
1609 static atomic_t oom_callback_count;
1610 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1611 
1612 /*
1613  * RCU OOM callback -- decrement the outstanding count and deliver the
1614  * wake-up if we are the last one.
1615  */
1616 static void rcu_oom_callback(struct rcu_head *rhp)
1617 {
1618 	if (atomic_dec_and_test(&oom_callback_count))
1619 		wake_up(&oom_callback_wq);
1620 }
1621 
1622 /*
1623  * Post an rcu_oom_notify callback on the current CPU if it has at
1624  * least one lazy callback.  This will unnecessarily post callbacks
1625  * to CPUs that already have a non-lazy callback at the end of their
1626  * callback list, but this is an infrequent operation, so accept some
1627  * extra overhead to keep things simple.
1628  */
1629 static void rcu_oom_notify_cpu(void *unused)
1630 {
1631 	struct rcu_state *rsp;
1632 	struct rcu_data *rdp;
1633 
1634 	for_each_rcu_flavor(rsp) {
1635 		rdp = raw_cpu_ptr(rsp->rda);
1636 		if (rdp->qlen_lazy != 0) {
1637 			atomic_inc(&oom_callback_count);
1638 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1639 		}
1640 	}
1641 }
1642 
1643 /*
1644  * If low on memory, ensure that each CPU has a non-lazy callback.
1645  * This will wake up CPUs that have only lazy callbacks, in turn
1646  * ensuring that they free up the corresponding memory in a timely manner.
1647  * Because an uncertain amount of memory will be freed in some uncertain
1648  * timeframe, we do not claim to have freed anything.
1649  */
1650 static int rcu_oom_notify(struct notifier_block *self,
1651 			  unsigned long notused, void *nfreed)
1652 {
1653 	int cpu;
1654 
1655 	/* Wait for callbacks from earlier instance to complete. */
1656 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1657 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1658 
1659 	/*
1660 	 * Prevent premature wakeup: ensure that all increments happen
1661 	 * before there is a chance of the counter reaching zero.
1662 	 */
1663 	atomic_set(&oom_callback_count, 1);
1664 
1665 	for_each_online_cpu(cpu) {
1666 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1667 		cond_resched_rcu_qs();
1668 	}
1669 
1670 	/* Unconditionally decrement: no need to wake ourselves up. */
1671 	atomic_dec(&oom_callback_count);
1672 
1673 	return NOTIFY_OK;
1674 }
1675 
1676 static struct notifier_block rcu_oom_nb = {
1677 	.notifier_call = rcu_oom_notify
1678 };
1679 
1680 static int __init rcu_register_oom_notifier(void)
1681 {
1682 	register_oom_notifier(&rcu_oom_nb);
1683 	return 0;
1684 }
1685 early_initcall(rcu_register_oom_notifier);
1686 
1687 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1688 
1689 #ifdef CONFIG_RCU_FAST_NO_HZ
1690 
1691 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1692 {
1693 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1694 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1695 
1696 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1697 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1698 		ulong2long(nlpd),
1699 		rdtp->all_lazy ? 'L' : '.',
1700 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1701 }
1702 
1703 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1704 
1705 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1706 {
1707 	*cp = '\0';
1708 }
1709 
1710 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1711 
1712 /* Initiate the stall-info list. */
1713 static void print_cpu_stall_info_begin(void)
1714 {
1715 	pr_cont("\n");
1716 }
1717 
1718 /*
1719  * Print out diagnostic information for the specified stalled CPU.
1720  *
1721  * If the specified CPU is aware of the current RCU grace period
1722  * (flavor specified by rsp), then print the number of scheduling
1723  * clock interrupts the CPU has taken during the time that it has
1724  * been aware.  Otherwise, print the number of RCU grace periods
1725  * that this CPU is ignorant of, for example, "1" if the CPU was
1726  * aware of the previous grace period.
1727  *
1728  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1729  */
1730 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1731 {
1732 	char fast_no_hz[72];
1733 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1734 	struct rcu_dynticks *rdtp = rdp->dynticks;
1735 	char *ticks_title;
1736 	unsigned long ticks_value;
1737 
1738 	if (rsp->gpnum == rdp->gpnum) {
1739 		ticks_title = "ticks this GP";
1740 		ticks_value = rdp->ticks_this_gp;
1741 	} else {
1742 		ticks_title = "GPs behind";
1743 		ticks_value = rsp->gpnum - rdp->gpnum;
1744 	}
1745 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1746 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1747 	       cpu,
1748 	       "O."[!!cpu_online(cpu)],
1749 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1750 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1751 	       ticks_value, ticks_title,
1752 	       atomic_read(&rdtp->dynticks) & 0xfff,
1753 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1754 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1755 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1756 	       fast_no_hz);
1757 }
1758 
1759 /* Terminate the stall-info list. */
1760 static void print_cpu_stall_info_end(void)
1761 {
1762 	pr_err("\t");
1763 }
1764 
1765 /* Zero ->ticks_this_gp for all flavors of RCU. */
1766 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1767 {
1768 	rdp->ticks_this_gp = 0;
1769 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1770 }
1771 
1772 /* Increment ->ticks_this_gp for all flavors of RCU. */
1773 static void increment_cpu_stall_ticks(void)
1774 {
1775 	struct rcu_state *rsp;
1776 
1777 	for_each_rcu_flavor(rsp)
1778 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1779 }
1780 
1781 #ifdef CONFIG_RCU_NOCB_CPU
1782 
1783 /*
1784  * Offload callback processing from the boot-time-specified set of CPUs
1785  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1786  * kthread created that pulls the callbacks from the corresponding CPU,
1787  * waits for a grace period to elapse, and invokes the callbacks.
1788  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1789  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1790  * has been specified, in which case each kthread actively polls its
1791  * CPU.  (Which isn't so great for energy efficiency, but which does
1792  * reduce RCU's overhead on that CPU.)
1793  *
1794  * This is intended to be used in conjunction with Frederic Weisbecker's
1795  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1796  * running CPU-bound user-mode computations.
1797  *
1798  * Offloading of callback processing could also in theory be used as
1799  * an energy-efficiency measure because CPUs with no RCU callbacks
1800  * queued are more aggressive about entering dyntick-idle mode.
1801  */
1802 
1803 
1804 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1805 static int __init rcu_nocb_setup(char *str)
1806 {
1807 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1808 	have_rcu_nocb_mask = true;
1809 	cpulist_parse(str, rcu_nocb_mask);
1810 	return 1;
1811 }
1812 __setup("rcu_nocbs=", rcu_nocb_setup);
1813 
1814 static int __init parse_rcu_nocb_poll(char *arg)
1815 {
1816 	rcu_nocb_poll = 1;
1817 	return 0;
1818 }
1819 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1820 
1821 /*
1822  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1823  * grace period.
1824  */
1825 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1826 {
1827 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1828 }
1829 
1830 /*
1831  * Set the root rcu_node structure's ->need_future_gp field
1832  * based on the sum of those of all rcu_node structures.  This does
1833  * double-count the root rcu_node structure's requests, but this
1834  * is necessary to handle the possibility of a rcu_nocb_kthread()
1835  * having awakened during the time that the rcu_node structures
1836  * were being updated for the end of the previous grace period.
1837  */
1838 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1839 {
1840 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1841 }
1842 
1843 static void rcu_init_one_nocb(struct rcu_node *rnp)
1844 {
1845 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1846 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1847 }
1848 
1849 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1850 /* Is the specified CPU a no-CBs CPU? */
1851 bool rcu_is_nocb_cpu(int cpu)
1852 {
1853 	if (have_rcu_nocb_mask)
1854 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1855 	return false;
1856 }
1857 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1858 
1859 /*
1860  * Kick the leader kthread for this NOCB group.
1861  */
1862 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1863 {
1864 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1865 
1866 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1867 		return;
1868 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1869 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1870 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1871 		wake_up(&rdp_leader->nocb_wq);
1872 	}
1873 }
1874 
1875 /*
1876  * Does the specified CPU need an RCU callback for the specified flavor
1877  * of rcu_barrier()?
1878  */
1879 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1880 {
1881 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1882 	unsigned long ret;
1883 #ifdef CONFIG_PROVE_RCU
1884 	struct rcu_head *rhp;
1885 #endif /* #ifdef CONFIG_PROVE_RCU */
1886 
1887 	/*
1888 	 * Check count of all no-CBs callbacks awaiting invocation.
1889 	 * There needs to be a barrier before this function is called,
1890 	 * but associated with a prior determination that no more
1891 	 * callbacks would be posted.  In the worst case, the first
1892 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1893 	 * necessarily rely on this, not a substitute for the caller
1894 	 * getting the concurrency design right!).  There must also be
1895 	 * a barrier between the following load an posting of a callback
1896 	 * (if a callback is in fact needed).  This is associated with an
1897 	 * atomic_inc() in the caller.
1898 	 */
1899 	ret = atomic_long_read(&rdp->nocb_q_count);
1900 
1901 #ifdef CONFIG_PROVE_RCU
1902 	rhp = READ_ONCE(rdp->nocb_head);
1903 	if (!rhp)
1904 		rhp = READ_ONCE(rdp->nocb_gp_head);
1905 	if (!rhp)
1906 		rhp = READ_ONCE(rdp->nocb_follower_head);
1907 
1908 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1909 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1910 	    rcu_scheduler_fully_active) {
1911 		/* RCU callback enqueued before CPU first came online??? */
1912 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1913 		       cpu, rhp->func);
1914 		WARN_ON_ONCE(1);
1915 	}
1916 #endif /* #ifdef CONFIG_PROVE_RCU */
1917 
1918 	return !!ret;
1919 }
1920 
1921 /*
1922  * Enqueue the specified string of rcu_head structures onto the specified
1923  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1924  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1925  * counts are supplied by rhcount and rhcount_lazy.
1926  *
1927  * If warranted, also wake up the kthread servicing this CPUs queues.
1928  */
1929 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1930 				    struct rcu_head *rhp,
1931 				    struct rcu_head **rhtp,
1932 				    int rhcount, int rhcount_lazy,
1933 				    unsigned long flags)
1934 {
1935 	int len;
1936 	struct rcu_head **old_rhpp;
1937 	struct task_struct *t;
1938 
1939 	/* Enqueue the callback on the nocb list and update counts. */
1940 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1941 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1942 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1943 	WRITE_ONCE(*old_rhpp, rhp);
1944 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1945 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1946 
1947 	/* If we are not being polled and there is a kthread, awaken it ... */
1948 	t = READ_ONCE(rdp->nocb_kthread);
1949 	if (rcu_nocb_poll || !t) {
1950 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1951 				    TPS("WakeNotPoll"));
1952 		return;
1953 	}
1954 	len = atomic_long_read(&rdp->nocb_q_count);
1955 	if (old_rhpp == &rdp->nocb_head) {
1956 		if (!irqs_disabled_flags(flags)) {
1957 			/* ... if queue was empty ... */
1958 			wake_nocb_leader(rdp, false);
1959 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1960 					    TPS("WakeEmpty"));
1961 		} else {
1962 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1963 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1964 					    TPS("WakeEmptyIsDeferred"));
1965 		}
1966 		rdp->qlen_last_fqs_check = 0;
1967 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1968 		/* ... or if many callbacks queued. */
1969 		if (!irqs_disabled_flags(flags)) {
1970 			wake_nocb_leader(rdp, true);
1971 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1972 					    TPS("WakeOvf"));
1973 		} else {
1974 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1975 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1976 					    TPS("WakeOvfIsDeferred"));
1977 		}
1978 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1979 	} else {
1980 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1981 	}
1982 	return;
1983 }
1984 
1985 /*
1986  * This is a helper for __call_rcu(), which invokes this when the normal
1987  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1988  * function returns failure back to __call_rcu(), which can complain
1989  * appropriately.
1990  *
1991  * Otherwise, this function queues the callback where the corresponding
1992  * "rcuo" kthread can find it.
1993  */
1994 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1995 			    bool lazy, unsigned long flags)
1996 {
1997 
1998 	if (!rcu_is_nocb_cpu(rdp->cpu))
1999 		return false;
2000 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2001 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2002 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2003 					 (unsigned long)rhp->func,
2004 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2005 					 -atomic_long_read(&rdp->nocb_q_count));
2006 	else
2007 		trace_rcu_callback(rdp->rsp->name, rhp,
2008 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2009 				   -atomic_long_read(&rdp->nocb_q_count));
2010 
2011 	/*
2012 	 * If called from an extended quiescent state with interrupts
2013 	 * disabled, invoke the RCU core in order to allow the idle-entry
2014 	 * deferred-wakeup check to function.
2015 	 */
2016 	if (irqs_disabled_flags(flags) &&
2017 	    !rcu_is_watching() &&
2018 	    cpu_online(smp_processor_id()))
2019 		invoke_rcu_core();
2020 
2021 	return true;
2022 }
2023 
2024 /*
2025  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2026  * not a no-CBs CPU.
2027  */
2028 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2029 						     struct rcu_data *rdp,
2030 						     unsigned long flags)
2031 {
2032 	long ql = rsp->qlen;
2033 	long qll = rsp->qlen_lazy;
2034 
2035 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2036 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2037 		return false;
2038 	rsp->qlen = 0;
2039 	rsp->qlen_lazy = 0;
2040 
2041 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2042 	if (rsp->orphan_donelist != NULL) {
2043 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2044 					rsp->orphan_donetail, ql, qll, flags);
2045 		ql = qll = 0;
2046 		rsp->orphan_donelist = NULL;
2047 		rsp->orphan_donetail = &rsp->orphan_donelist;
2048 	}
2049 	if (rsp->orphan_nxtlist != NULL) {
2050 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2051 					rsp->orphan_nxttail, ql, qll, flags);
2052 		ql = qll = 0;
2053 		rsp->orphan_nxtlist = NULL;
2054 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2055 	}
2056 	return true;
2057 }
2058 
2059 /*
2060  * If necessary, kick off a new grace period, and either way wait
2061  * for a subsequent grace period to complete.
2062  */
2063 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2064 {
2065 	unsigned long c;
2066 	bool d;
2067 	unsigned long flags;
2068 	bool needwake;
2069 	struct rcu_node *rnp = rdp->mynode;
2070 
2071 	raw_spin_lock_irqsave(&rnp->lock, flags);
2072 	smp_mb__after_unlock_lock();
2073 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2074 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2075 	if (needwake)
2076 		rcu_gp_kthread_wake(rdp->rsp);
2077 
2078 	/*
2079 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2080 	 * up the load average.
2081 	 */
2082 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2083 	for (;;) {
2084 		wait_event_interruptible(
2085 			rnp->nocb_gp_wq[c & 0x1],
2086 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2087 		if (likely(d))
2088 			break;
2089 		WARN_ON(signal_pending(current));
2090 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2091 	}
2092 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2093 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2094 }
2095 
2096 /*
2097  * Leaders come here to wait for additional callbacks to show up.
2098  * This function does not return until callbacks appear.
2099  */
2100 static void nocb_leader_wait(struct rcu_data *my_rdp)
2101 {
2102 	bool firsttime = true;
2103 	bool gotcbs;
2104 	struct rcu_data *rdp;
2105 	struct rcu_head **tail;
2106 
2107 wait_again:
2108 
2109 	/* Wait for callbacks to appear. */
2110 	if (!rcu_nocb_poll) {
2111 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2112 		wait_event_interruptible(my_rdp->nocb_wq,
2113 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2114 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2115 	} else if (firsttime) {
2116 		firsttime = false; /* Don't drown trace log with "Poll"! */
2117 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2118 	}
2119 
2120 	/*
2121 	 * Each pass through the following loop checks a follower for CBs.
2122 	 * We are our own first follower.  Any CBs found are moved to
2123 	 * nocb_gp_head, where they await a grace period.
2124 	 */
2125 	gotcbs = false;
2126 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2127 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2128 		if (!rdp->nocb_gp_head)
2129 			continue;  /* No CBs here, try next follower. */
2130 
2131 		/* Move callbacks to wait-for-GP list, which is empty. */
2132 		WRITE_ONCE(rdp->nocb_head, NULL);
2133 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2134 		gotcbs = true;
2135 	}
2136 
2137 	/*
2138 	 * If there were no callbacks, sleep a bit, rescan after a
2139 	 * memory barrier, and go retry.
2140 	 */
2141 	if (unlikely(!gotcbs)) {
2142 		if (!rcu_nocb_poll)
2143 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2144 					    "WokeEmpty");
2145 		WARN_ON(signal_pending(current));
2146 		schedule_timeout_interruptible(1);
2147 
2148 		/* Rescan in case we were a victim of memory ordering. */
2149 		my_rdp->nocb_leader_sleep = true;
2150 		smp_mb();  /* Ensure _sleep true before scan. */
2151 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2152 			if (READ_ONCE(rdp->nocb_head)) {
2153 				/* Found CB, so short-circuit next wait. */
2154 				my_rdp->nocb_leader_sleep = false;
2155 				break;
2156 			}
2157 		goto wait_again;
2158 	}
2159 
2160 	/* Wait for one grace period. */
2161 	rcu_nocb_wait_gp(my_rdp);
2162 
2163 	/*
2164 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2165 	 * We set it now, but recheck for new callbacks while
2166 	 * traversing our follower list.
2167 	 */
2168 	my_rdp->nocb_leader_sleep = true;
2169 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2170 
2171 	/* Each pass through the following loop wakes a follower, if needed. */
2172 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2173 		if (READ_ONCE(rdp->nocb_head))
2174 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2175 		if (!rdp->nocb_gp_head)
2176 			continue; /* No CBs, so no need to wake follower. */
2177 
2178 		/* Append callbacks to follower's "done" list. */
2179 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2180 		*tail = rdp->nocb_gp_head;
2181 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2182 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2183 			/*
2184 			 * List was empty, wake up the follower.
2185 			 * Memory barriers supplied by atomic_long_add().
2186 			 */
2187 			wake_up(&rdp->nocb_wq);
2188 		}
2189 	}
2190 
2191 	/* If we (the leader) don't have CBs, go wait some more. */
2192 	if (!my_rdp->nocb_follower_head)
2193 		goto wait_again;
2194 }
2195 
2196 /*
2197  * Followers come here to wait for additional callbacks to show up.
2198  * This function does not return until callbacks appear.
2199  */
2200 static void nocb_follower_wait(struct rcu_data *rdp)
2201 {
2202 	bool firsttime = true;
2203 
2204 	for (;;) {
2205 		if (!rcu_nocb_poll) {
2206 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2207 					    "FollowerSleep");
2208 			wait_event_interruptible(rdp->nocb_wq,
2209 						 READ_ONCE(rdp->nocb_follower_head));
2210 		} else if (firsttime) {
2211 			/* Don't drown trace log with "Poll"! */
2212 			firsttime = false;
2213 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2214 		}
2215 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2216 			/* ^^^ Ensure CB invocation follows _head test. */
2217 			return;
2218 		}
2219 		if (!rcu_nocb_poll)
2220 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221 					    "WokeEmpty");
2222 		WARN_ON(signal_pending(current));
2223 		schedule_timeout_interruptible(1);
2224 	}
2225 }
2226 
2227 /*
2228  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2229  * callbacks queued by the corresponding no-CBs CPU, however, there is
2230  * an optional leader-follower relationship so that the grace-period
2231  * kthreads don't have to do quite so many wakeups.
2232  */
2233 static int rcu_nocb_kthread(void *arg)
2234 {
2235 	int c, cl;
2236 	struct rcu_head *list;
2237 	struct rcu_head *next;
2238 	struct rcu_head **tail;
2239 	struct rcu_data *rdp = arg;
2240 
2241 	/* Each pass through this loop invokes one batch of callbacks */
2242 	for (;;) {
2243 		/* Wait for callbacks. */
2244 		if (rdp->nocb_leader == rdp)
2245 			nocb_leader_wait(rdp);
2246 		else
2247 			nocb_follower_wait(rdp);
2248 
2249 		/* Pull the ready-to-invoke callbacks onto local list. */
2250 		list = READ_ONCE(rdp->nocb_follower_head);
2251 		BUG_ON(!list);
2252 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2253 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2254 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2255 
2256 		/* Each pass through the following loop invokes a callback. */
2257 		trace_rcu_batch_start(rdp->rsp->name,
2258 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2259 				      atomic_long_read(&rdp->nocb_q_count), -1);
2260 		c = cl = 0;
2261 		while (list) {
2262 			next = list->next;
2263 			/* Wait for enqueuing to complete, if needed. */
2264 			while (next == NULL && &list->next != tail) {
2265 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2266 						    TPS("WaitQueue"));
2267 				schedule_timeout_interruptible(1);
2268 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2269 						    TPS("WokeQueue"));
2270 				next = list->next;
2271 			}
2272 			debug_rcu_head_unqueue(list);
2273 			local_bh_disable();
2274 			if (__rcu_reclaim(rdp->rsp->name, list))
2275 				cl++;
2276 			c++;
2277 			local_bh_enable();
2278 			list = next;
2279 		}
2280 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2281 		smp_mb__before_atomic();  /* _add after CB invocation. */
2282 		atomic_long_add(-c, &rdp->nocb_q_count);
2283 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2284 		rdp->n_nocbs_invoked += c;
2285 	}
2286 	return 0;
2287 }
2288 
2289 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2290 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2291 {
2292 	return READ_ONCE(rdp->nocb_defer_wakeup);
2293 }
2294 
2295 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2296 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2297 {
2298 	int ndw;
2299 
2300 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2301 		return;
2302 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2303 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2304 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2305 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2306 }
2307 
2308 void __init rcu_init_nohz(void)
2309 {
2310 	int cpu;
2311 	bool need_rcu_nocb_mask = true;
2312 	struct rcu_state *rsp;
2313 
2314 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2315 	need_rcu_nocb_mask = false;
2316 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2317 
2318 #if defined(CONFIG_NO_HZ_FULL)
2319 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2320 		need_rcu_nocb_mask = true;
2321 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2322 
2323 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2324 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2325 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2326 			return;
2327 		}
2328 		have_rcu_nocb_mask = true;
2329 	}
2330 	if (!have_rcu_nocb_mask)
2331 		return;
2332 
2333 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2334 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2335 	cpumask_set_cpu(0, rcu_nocb_mask);
2336 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2337 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2338 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2339 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2340 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2341 #if defined(CONFIG_NO_HZ_FULL)
2342 	if (tick_nohz_full_running)
2343 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2344 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2345 
2346 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2347 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2348 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2349 			    rcu_nocb_mask);
2350 	}
2351 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2352 		cpumask_pr_args(rcu_nocb_mask));
2353 	if (rcu_nocb_poll)
2354 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2355 
2356 	for_each_rcu_flavor(rsp) {
2357 		for_each_cpu(cpu, rcu_nocb_mask)
2358 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2359 		rcu_organize_nocb_kthreads(rsp);
2360 	}
2361 }
2362 
2363 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2364 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2365 {
2366 	rdp->nocb_tail = &rdp->nocb_head;
2367 	init_waitqueue_head(&rdp->nocb_wq);
2368 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2369 }
2370 
2371 /*
2372  * If the specified CPU is a no-CBs CPU that does not already have its
2373  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2374  * brought online out of order, this can require re-organizing the
2375  * leader-follower relationships.
2376  */
2377 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2378 {
2379 	struct rcu_data *rdp;
2380 	struct rcu_data *rdp_last;
2381 	struct rcu_data *rdp_old_leader;
2382 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2383 	struct task_struct *t;
2384 
2385 	/*
2386 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2387 	 * then nothing to do.
2388 	 */
2389 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2390 		return;
2391 
2392 	/* If we didn't spawn the leader first, reorganize! */
2393 	rdp_old_leader = rdp_spawn->nocb_leader;
2394 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2395 		rdp_last = NULL;
2396 		rdp = rdp_old_leader;
2397 		do {
2398 			rdp->nocb_leader = rdp_spawn;
2399 			if (rdp_last && rdp != rdp_spawn)
2400 				rdp_last->nocb_next_follower = rdp;
2401 			if (rdp == rdp_spawn) {
2402 				rdp = rdp->nocb_next_follower;
2403 			} else {
2404 				rdp_last = rdp;
2405 				rdp = rdp->nocb_next_follower;
2406 				rdp_last->nocb_next_follower = NULL;
2407 			}
2408 		} while (rdp);
2409 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2410 	}
2411 
2412 	/* Spawn the kthread for this CPU and RCU flavor. */
2413 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2414 			"rcuo%c/%d", rsp->abbr, cpu);
2415 	BUG_ON(IS_ERR(t));
2416 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2417 }
2418 
2419 /*
2420  * If the specified CPU is a no-CBs CPU that does not already have its
2421  * rcuo kthreads, spawn them.
2422  */
2423 static void rcu_spawn_all_nocb_kthreads(int cpu)
2424 {
2425 	struct rcu_state *rsp;
2426 
2427 	if (rcu_scheduler_fully_active)
2428 		for_each_rcu_flavor(rsp)
2429 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2430 }
2431 
2432 /*
2433  * Once the scheduler is running, spawn rcuo kthreads for all online
2434  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2435  * non-boot CPUs come online -- if this changes, we will need to add
2436  * some mutual exclusion.
2437  */
2438 static void __init rcu_spawn_nocb_kthreads(void)
2439 {
2440 	int cpu;
2441 
2442 	for_each_online_cpu(cpu)
2443 		rcu_spawn_all_nocb_kthreads(cpu);
2444 }
2445 
2446 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2447 static int rcu_nocb_leader_stride = -1;
2448 module_param(rcu_nocb_leader_stride, int, 0444);
2449 
2450 /*
2451  * Initialize leader-follower relationships for all no-CBs CPU.
2452  */
2453 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2454 {
2455 	int cpu;
2456 	int ls = rcu_nocb_leader_stride;
2457 	int nl = 0;  /* Next leader. */
2458 	struct rcu_data *rdp;
2459 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2460 	struct rcu_data *rdp_prev = NULL;
2461 
2462 	if (!have_rcu_nocb_mask)
2463 		return;
2464 	if (ls == -1) {
2465 		ls = int_sqrt(nr_cpu_ids);
2466 		rcu_nocb_leader_stride = ls;
2467 	}
2468 
2469 	/*
2470 	 * Each pass through this loop sets up one rcu_data structure and
2471 	 * spawns one rcu_nocb_kthread().
2472 	 */
2473 	for_each_cpu(cpu, rcu_nocb_mask) {
2474 		rdp = per_cpu_ptr(rsp->rda, cpu);
2475 		if (rdp->cpu >= nl) {
2476 			/* New leader, set up for followers & next leader. */
2477 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2478 			rdp->nocb_leader = rdp;
2479 			rdp_leader = rdp;
2480 		} else {
2481 			/* Another follower, link to previous leader. */
2482 			rdp->nocb_leader = rdp_leader;
2483 			rdp_prev->nocb_next_follower = rdp;
2484 		}
2485 		rdp_prev = rdp;
2486 	}
2487 }
2488 
2489 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2490 static bool init_nocb_callback_list(struct rcu_data *rdp)
2491 {
2492 	if (!rcu_is_nocb_cpu(rdp->cpu))
2493 		return false;
2494 
2495 	/* If there are early-boot callbacks, move them to nocb lists. */
2496 	if (rdp->nxtlist) {
2497 		rdp->nocb_head = rdp->nxtlist;
2498 		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2499 		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2500 		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2501 		rdp->nxtlist = NULL;
2502 		rdp->qlen = 0;
2503 		rdp->qlen_lazy = 0;
2504 	}
2505 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2506 	return true;
2507 }
2508 
2509 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2510 
2511 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2512 {
2513 	WARN_ON_ONCE(1); /* Should be dead code. */
2514 	return false;
2515 }
2516 
2517 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2518 {
2519 }
2520 
2521 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2522 {
2523 }
2524 
2525 static void rcu_init_one_nocb(struct rcu_node *rnp)
2526 {
2527 }
2528 
2529 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2530 			    bool lazy, unsigned long flags)
2531 {
2532 	return false;
2533 }
2534 
2535 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2536 						     struct rcu_data *rdp,
2537 						     unsigned long flags)
2538 {
2539 	return false;
2540 }
2541 
2542 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2543 {
2544 }
2545 
2546 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2547 {
2548 	return false;
2549 }
2550 
2551 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2552 {
2553 }
2554 
2555 static void rcu_spawn_all_nocb_kthreads(int cpu)
2556 {
2557 }
2558 
2559 static void __init rcu_spawn_nocb_kthreads(void)
2560 {
2561 }
2562 
2563 static bool init_nocb_callback_list(struct rcu_data *rdp)
2564 {
2565 	return false;
2566 }
2567 
2568 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2569 
2570 /*
2571  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2572  * arbitrarily long period of time with the scheduling-clock tick turned
2573  * off.  RCU will be paying attention to this CPU because it is in the
2574  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2575  * machine because the scheduling-clock tick has been disabled.  Therefore,
2576  * if an adaptive-ticks CPU is failing to respond to the current grace
2577  * period and has not be idle from an RCU perspective, kick it.
2578  */
2579 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2580 {
2581 #ifdef CONFIG_NO_HZ_FULL
2582 	if (tick_nohz_full_cpu(cpu))
2583 		smp_send_reschedule(cpu);
2584 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2585 }
2586 
2587 
2588 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2589 
2590 static int full_sysidle_state;		/* Current system-idle state. */
2591 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2592 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2593 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2594 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2595 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2596 
2597 /*
2598  * Invoked to note exit from irq or task transition to idle.  Note that
2599  * usermode execution does -not- count as idle here!  After all, we want
2600  * to detect full-system idle states, not RCU quiescent states and grace
2601  * periods.  The caller must have disabled interrupts.
2602  */
2603 static void rcu_sysidle_enter(int irq)
2604 {
2605 	unsigned long j;
2606 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2607 
2608 	/* If there are no nohz_full= CPUs, no need to track this. */
2609 	if (!tick_nohz_full_enabled())
2610 		return;
2611 
2612 	/* Adjust nesting, check for fully idle. */
2613 	if (irq) {
2614 		rdtp->dynticks_idle_nesting--;
2615 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2616 		if (rdtp->dynticks_idle_nesting != 0)
2617 			return;  /* Still not fully idle. */
2618 	} else {
2619 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2620 		    DYNTICK_TASK_NEST_VALUE) {
2621 			rdtp->dynticks_idle_nesting = 0;
2622 		} else {
2623 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2624 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2625 			return;  /* Still not fully idle. */
2626 		}
2627 	}
2628 
2629 	/* Record start of fully idle period. */
2630 	j = jiffies;
2631 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2632 	smp_mb__before_atomic();
2633 	atomic_inc(&rdtp->dynticks_idle);
2634 	smp_mb__after_atomic();
2635 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2636 }
2637 
2638 /*
2639  * Unconditionally force exit from full system-idle state.  This is
2640  * invoked when a normal CPU exits idle, but must be called separately
2641  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2642  * is that the timekeeping CPU is permitted to take scheduling-clock
2643  * interrupts while the system is in system-idle state, and of course
2644  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2645  * interrupt from any other type of interrupt.
2646  */
2647 void rcu_sysidle_force_exit(void)
2648 {
2649 	int oldstate = READ_ONCE(full_sysidle_state);
2650 	int newoldstate;
2651 
2652 	/*
2653 	 * Each pass through the following loop attempts to exit full
2654 	 * system-idle state.  If contention proves to be a problem,
2655 	 * a trylock-based contention tree could be used here.
2656 	 */
2657 	while (oldstate > RCU_SYSIDLE_SHORT) {
2658 		newoldstate = cmpxchg(&full_sysidle_state,
2659 				      oldstate, RCU_SYSIDLE_NOT);
2660 		if (oldstate == newoldstate &&
2661 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2662 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2663 			return; /* We cleared it, done! */
2664 		}
2665 		oldstate = newoldstate;
2666 	}
2667 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2668 }
2669 
2670 /*
2671  * Invoked to note entry to irq or task transition from idle.  Note that
2672  * usermode execution does -not- count as idle here!  The caller must
2673  * have disabled interrupts.
2674  */
2675 static void rcu_sysidle_exit(int irq)
2676 {
2677 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2678 
2679 	/* If there are no nohz_full= CPUs, no need to track this. */
2680 	if (!tick_nohz_full_enabled())
2681 		return;
2682 
2683 	/* Adjust nesting, check for already non-idle. */
2684 	if (irq) {
2685 		rdtp->dynticks_idle_nesting++;
2686 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2687 		if (rdtp->dynticks_idle_nesting != 1)
2688 			return; /* Already non-idle. */
2689 	} else {
2690 		/*
2691 		 * Allow for irq misnesting.  Yes, it really is possible
2692 		 * to enter an irq handler then never leave it, and maybe
2693 		 * also vice versa.  Handle both possibilities.
2694 		 */
2695 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2696 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2697 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2698 			return; /* Already non-idle. */
2699 		} else {
2700 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2701 		}
2702 	}
2703 
2704 	/* Record end of idle period. */
2705 	smp_mb__before_atomic();
2706 	atomic_inc(&rdtp->dynticks_idle);
2707 	smp_mb__after_atomic();
2708 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2709 
2710 	/*
2711 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2712 	 * during a system-idle state.  This must be the case, because
2713 	 * the timekeeping CPU has to take scheduling-clock interrupts
2714 	 * during the time that the system is transitioning to full
2715 	 * system-idle state.  This means that the timekeeping CPU must
2716 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2717 	 * more than take a scheduling-clock interrupt.
2718 	 */
2719 	if (smp_processor_id() == tick_do_timer_cpu)
2720 		return;
2721 
2722 	/* Update system-idle state: We are clearly no longer fully idle! */
2723 	rcu_sysidle_force_exit();
2724 }
2725 
2726 /*
2727  * Check to see if the current CPU is idle.  Note that usermode execution
2728  * does not count as idle.  The caller must have disabled interrupts,
2729  * and must be running on tick_do_timer_cpu.
2730  */
2731 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2732 				  unsigned long *maxj)
2733 {
2734 	int cur;
2735 	unsigned long j;
2736 	struct rcu_dynticks *rdtp = rdp->dynticks;
2737 
2738 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2739 	if (!tick_nohz_full_enabled())
2740 		return;
2741 
2742 	/*
2743 	 * If some other CPU has already reported non-idle, if this is
2744 	 * not the flavor of RCU that tracks sysidle state, or if this
2745 	 * is an offline or the timekeeping CPU, nothing to do.
2746 	 */
2747 	if (!*isidle || rdp->rsp != rcu_state_p ||
2748 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2749 		return;
2750 	/* Verify affinity of current kthread. */
2751 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2752 
2753 	/* Pick up current idle and NMI-nesting counter and check. */
2754 	cur = atomic_read(&rdtp->dynticks_idle);
2755 	if (cur & 0x1) {
2756 		*isidle = false; /* We are not idle! */
2757 		return;
2758 	}
2759 	smp_mb(); /* Read counters before timestamps. */
2760 
2761 	/* Pick up timestamps. */
2762 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2763 	/* If this CPU entered idle more recently, update maxj timestamp. */
2764 	if (ULONG_CMP_LT(*maxj, j))
2765 		*maxj = j;
2766 }
2767 
2768 /*
2769  * Is this the flavor of RCU that is handling full-system idle?
2770  */
2771 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2772 {
2773 	return rsp == rcu_state_p;
2774 }
2775 
2776 /*
2777  * Return a delay in jiffies based on the number of CPUs, rcu_node
2778  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2779  * systems more time to transition to full-idle state in order to
2780  * avoid the cache thrashing that otherwise occur on the state variable.
2781  * Really small systems (less than a couple of tens of CPUs) should
2782  * instead use a single global atomically incremented counter, and later
2783  * versions of this will automatically reconfigure themselves accordingly.
2784  */
2785 static unsigned long rcu_sysidle_delay(void)
2786 {
2787 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2788 		return 0;
2789 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2790 }
2791 
2792 /*
2793  * Advance the full-system-idle state.  This is invoked when all of
2794  * the non-timekeeping CPUs are idle.
2795  */
2796 static void rcu_sysidle(unsigned long j)
2797 {
2798 	/* Check the current state. */
2799 	switch (READ_ONCE(full_sysidle_state)) {
2800 	case RCU_SYSIDLE_NOT:
2801 
2802 		/* First time all are idle, so note a short idle period. */
2803 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2804 		break;
2805 
2806 	case RCU_SYSIDLE_SHORT:
2807 
2808 		/*
2809 		 * Idle for a bit, time to advance to next state?
2810 		 * cmpxchg failure means race with non-idle, let them win.
2811 		 */
2812 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2813 			(void)cmpxchg(&full_sysidle_state,
2814 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2815 		break;
2816 
2817 	case RCU_SYSIDLE_LONG:
2818 
2819 		/*
2820 		 * Do an additional check pass before advancing to full.
2821 		 * cmpxchg failure means race with non-idle, let them win.
2822 		 */
2823 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2824 			(void)cmpxchg(&full_sysidle_state,
2825 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2826 		break;
2827 
2828 	default:
2829 		break;
2830 	}
2831 }
2832 
2833 /*
2834  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2835  * back to the beginning.
2836  */
2837 static void rcu_sysidle_cancel(void)
2838 {
2839 	smp_mb();
2840 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2841 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2842 }
2843 
2844 /*
2845  * Update the sysidle state based on the results of a force-quiescent-state
2846  * scan of the CPUs' dyntick-idle state.
2847  */
2848 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2849 			       unsigned long maxj, bool gpkt)
2850 {
2851 	if (rsp != rcu_state_p)
2852 		return;  /* Wrong flavor, ignore. */
2853 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2854 		return;  /* Running state machine from timekeeping CPU. */
2855 	if (isidle)
2856 		rcu_sysidle(maxj);    /* More idle! */
2857 	else
2858 		rcu_sysidle_cancel(); /* Idle is over. */
2859 }
2860 
2861 /*
2862  * Wrapper for rcu_sysidle_report() when called from the grace-period
2863  * kthread's context.
2864  */
2865 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2866 				  unsigned long maxj)
2867 {
2868 	/* If there are no nohz_full= CPUs, no need to track this. */
2869 	if (!tick_nohz_full_enabled())
2870 		return;
2871 
2872 	rcu_sysidle_report(rsp, isidle, maxj, true);
2873 }
2874 
2875 /* Callback and function for forcing an RCU grace period. */
2876 struct rcu_sysidle_head {
2877 	struct rcu_head rh;
2878 	int inuse;
2879 };
2880 
2881 static void rcu_sysidle_cb(struct rcu_head *rhp)
2882 {
2883 	struct rcu_sysidle_head *rshp;
2884 
2885 	/*
2886 	 * The following memory barrier is needed to replace the
2887 	 * memory barriers that would normally be in the memory
2888 	 * allocator.
2889 	 */
2890 	smp_mb();  /* grace period precedes setting inuse. */
2891 
2892 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2893 	WRITE_ONCE(rshp->inuse, 0);
2894 }
2895 
2896 /*
2897  * Check to see if the system is fully idle, other than the timekeeping CPU.
2898  * The caller must have disabled interrupts.  This is not intended to be
2899  * called unless tick_nohz_full_enabled().
2900  */
2901 bool rcu_sys_is_idle(void)
2902 {
2903 	static struct rcu_sysidle_head rsh;
2904 	int rss = READ_ONCE(full_sysidle_state);
2905 
2906 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2907 		return false;
2908 
2909 	/* Handle small-system case by doing a full scan of CPUs. */
2910 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2911 		int oldrss = rss - 1;
2912 
2913 		/*
2914 		 * One pass to advance to each state up to _FULL.
2915 		 * Give up if any pass fails to advance the state.
2916 		 */
2917 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2918 			int cpu;
2919 			bool isidle = true;
2920 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2921 			struct rcu_data *rdp;
2922 
2923 			/* Scan all the CPUs looking for nonidle CPUs. */
2924 			for_each_possible_cpu(cpu) {
2925 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2926 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2927 				if (!isidle)
2928 					break;
2929 			}
2930 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2931 			oldrss = rss;
2932 			rss = READ_ONCE(full_sysidle_state);
2933 		}
2934 	}
2935 
2936 	/* If this is the first observation of an idle period, record it. */
2937 	if (rss == RCU_SYSIDLE_FULL) {
2938 		rss = cmpxchg(&full_sysidle_state,
2939 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2940 		return rss == RCU_SYSIDLE_FULL;
2941 	}
2942 
2943 	smp_mb(); /* ensure rss load happens before later caller actions. */
2944 
2945 	/* If already fully idle, tell the caller (in case of races). */
2946 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2947 		return true;
2948 
2949 	/*
2950 	 * If we aren't there yet, and a grace period is not in flight,
2951 	 * initiate a grace period.  Either way, tell the caller that
2952 	 * we are not there yet.  We use an xchg() rather than an assignment
2953 	 * to make up for the memory barriers that would otherwise be
2954 	 * provided by the memory allocator.
2955 	 */
2956 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2957 	    !rcu_gp_in_progress(rcu_state_p) &&
2958 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2959 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2960 	return false;
2961 }
2962 
2963 /*
2964  * Initialize dynticks sysidle state for CPUs coming online.
2965  */
2966 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2967 {
2968 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2969 }
2970 
2971 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2972 
2973 static void rcu_sysidle_enter(int irq)
2974 {
2975 }
2976 
2977 static void rcu_sysidle_exit(int irq)
2978 {
2979 }
2980 
2981 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2982 				  unsigned long *maxj)
2983 {
2984 }
2985 
2986 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2987 {
2988 	return false;
2989 }
2990 
2991 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2992 				  unsigned long maxj)
2993 {
2994 }
2995 
2996 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2997 {
2998 }
2999 
3000 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3001 
3002 /*
3003  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3004  * grace-period kthread will do force_quiescent_state() processing?
3005  * The idea is to avoid waking up RCU core processing on such a
3006  * CPU unless the grace period has extended for too long.
3007  *
3008  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3009  * CONFIG_RCU_NOCB_CPU CPUs.
3010  */
3011 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3012 {
3013 #ifdef CONFIG_NO_HZ_FULL
3014 	if (tick_nohz_full_cpu(smp_processor_id()) &&
3015 	    (!rcu_gp_in_progress(rsp) ||
3016 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3017 		return true;
3018 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3019 	return false;
3020 }
3021 
3022 /*
3023  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3024  * timekeeping CPU.
3025  */
3026 static void rcu_bind_gp_kthread(void)
3027 {
3028 	int __maybe_unused cpu;
3029 
3030 	if (!tick_nohz_full_enabled())
3031 		return;
3032 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3033 	cpu = tick_do_timer_cpu;
3034 	if (cpu >= 0 && cpu < nr_cpu_ids)
3035 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3036 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3037 	housekeeping_affine(current);
3038 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3039 }
3040 
3041 /* Record the current task on dyntick-idle entry. */
3042 static void rcu_dynticks_task_enter(void)
3043 {
3044 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3045 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3046 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3047 }
3048 
3049 /* Record no current task on dyntick-idle exit. */
3050 static void rcu_dynticks_task_exit(void)
3051 {
3052 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3053 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3054 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3055 }
3056