xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20 
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 	if (IS_ENABLED(CONFIG_RCU_TRACE))
28 		pr_info("\tRCU event tracing is enabled.\n");
29 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 			RCU_FANOUT);
33 	if (rcu_fanout_exact)
34 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 	if (IS_ENABLED(CONFIG_PROVE_RCU))
38 		pr_info("\tRCU lockdep checking is enabled.\n");
39 	if (RCU_NUM_LVLS >= 4)
40 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 	if (RCU_FANOUT_LEAF != 16)
42 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 			RCU_FANOUT_LEAF);
44 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 			rcu_fanout_leaf);
47 	if (nr_cpu_ids != NR_CPUS)
48 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 	if (blimit != DEFAULT_RCU_BLIMIT)
54 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 	if (qhimark != DEFAULT_RCU_QHIMARK)
56 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 	if (qlowmark != DEFAULT_RCU_QLOMARK)
58 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 	if (jiffies_till_first_fqs != ULONG_MAX)
60 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 	if (jiffies_till_next_fqs != ULONG_MAX)
62 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63 	if (jiffies_till_sched_qs != ULONG_MAX)
64 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65 	if (rcu_kick_kthreads)
66 		pr_info("\tKick kthreads if too-long grace period.\n");
67 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69 	if (gp_preinit_delay)
70 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71 	if (gp_init_delay)
72 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73 	if (gp_cleanup_delay)
74 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75 	if (!use_softirq)
76 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 		pr_info("\tRCU debug extended QS entry/exit.\n");
79 	rcupdate_announce_bootup_oddness();
80 }
81 
82 #ifdef CONFIG_PREEMPT_RCU
83 
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86 
87 /*
88  * Tell them what RCU they are running.
89  */
90 static void __init rcu_bootup_announce(void)
91 {
92 	pr_info("Preemptible hierarchical RCU implementation.\n");
93 	rcu_bootup_announce_oddness();
94 }
95 
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS	0x8
98 #define RCU_EXP_TASKS	0x4
99 #define RCU_GP_BLKD	0x2
100 #define RCU_EXP_BLKD	0x1
101 
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 	__releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 	struct task_struct *t = current;
138 
139 	raw_lockdep_assert_held_rcu_node(rnp);
140 	WARN_ON_ONCE(rdp->mynode != rnp);
141 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142 	/* RCU better not be waiting on newly onlined CPUs! */
143 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 		     rdp->grpmask);
145 
146 	/*
147 	 * Decide where to queue the newly blocked task.  In theory,
148 	 * this could be an if-statement.  In practice, when I tried
149 	 * that, it was quite messy.
150 	 */
151 	switch (blkd_state) {
152 	case 0:
153 	case                RCU_EXP_TASKS:
154 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
155 	case RCU_GP_TASKS:
156 	case RCU_GP_TASKS + RCU_EXP_TASKS:
157 
158 		/*
159 		 * Blocking neither GP, or first task blocking the normal
160 		 * GP but not blocking the already-waiting expedited GP.
161 		 * Queue at the head of the list to avoid unnecessarily
162 		 * blocking the already-waiting GPs.
163 		 */
164 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 		break;
166 
167 	case                                              RCU_EXP_BLKD:
168 	case                                RCU_GP_BLKD:
169 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173 
174 		/*
175 		 * First task arriving that blocks either GP, or first task
176 		 * arriving that blocks the expedited GP (with the normal
177 		 * GP already waiting), or a task arriving that blocks
178 		 * both GPs with both GPs already waiting.  Queue at the
179 		 * tail of the list to avoid any GP waiting on any of the
180 		 * already queued tasks that are not blocking it.
181 		 */
182 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 		break;
184 
185 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188 
189 		/*
190 		 * Second or subsequent task blocking the expedited GP.
191 		 * The task either does not block the normal GP, or is the
192 		 * first task blocking the normal GP.  Queue just after
193 		 * the first task blocking the expedited GP.
194 		 */
195 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 		break;
197 
198 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the normal GP.
203 		 * The task does not block the expedited GP. Queue just
204 		 * after the first task blocking the normal GP.
205 		 */
206 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 		break;
208 
209 	default:
210 
211 		/* Yet another exercise in excessive paranoia. */
212 		WARN_ON_ONCE(1);
213 		break;
214 	}
215 
216 	/*
217 	 * We have now queued the task.  If it was the first one to
218 	 * block either grace period, update the ->gp_tasks and/or
219 	 * ->exp_tasks pointers, respectively, to reference the newly
220 	 * blocked tasks.
221 	 */
222 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
224 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225 	}
226 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 		rnp->exp_tasks = &t->rcu_node_entry;
228 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 		     !(rnp->qsmask & rdp->grpmask));
230 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 		     !(rnp->expmask & rdp->grpmask));
232 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233 
234 	/*
235 	 * Report the quiescent state for the expedited GP.  This expedited
236 	 * GP should not be able to end until we report, so there should be
237 	 * no need to check for a subsequent expedited GP.  (Though we are
238 	 * still in a quiescent state in any case.)
239 	 */
240 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241 		rcu_report_exp_rdp(rdp);
242 	else
243 		WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245 
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
259 static void rcu_qs(void)
260 {
261 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263 		trace_rcu_grace_period(TPS("rcu_preempt"),
264 				       __this_cpu_read(rcu_data.gp_seq),
265 				       TPS("cpuqs"));
266 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269 	}
270 }
271 
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
285 void rcu_note_context_switch(bool preempt)
286 {
287 	struct task_struct *t = current;
288 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289 	struct rcu_node *rnp;
290 
291 	trace_rcu_utilization(TPS("Start context switch"));
292 	lockdep_assert_irqs_disabled();
293 	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
294 	if (rcu_preempt_depth() > 0 &&
295 	    !t->rcu_read_unlock_special.b.blocked) {
296 
297 		/* Possibly blocking in an RCU read-side critical section. */
298 		rnp = rdp->mynode;
299 		raw_spin_lock_rcu_node(rnp);
300 		t->rcu_read_unlock_special.b.blocked = true;
301 		t->rcu_blocked_node = rnp;
302 
303 		/*
304 		 * Verify the CPU's sanity, trace the preemption, and
305 		 * then queue the task as required based on the states
306 		 * of any ongoing and expedited grace periods.
307 		 */
308 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310 		trace_rcu_preempt_task(rcu_state.name,
311 				       t->pid,
312 				       (rnp->qsmask & rdp->grpmask)
313 				       ? rnp->gp_seq
314 				       : rcu_seq_snap(&rnp->gp_seq));
315 		rcu_preempt_ctxt_queue(rnp, rdp);
316 	} else {
317 		rcu_preempt_deferred_qs(t);
318 	}
319 
320 	/*
321 	 * Either we were not in an RCU read-side critical section to
322 	 * begin with, or we have now recorded that critical section
323 	 * globally.  Either way, we can now note a quiescent state
324 	 * for this CPU.  Again, if we were in an RCU read-side critical
325 	 * section, and if that critical section was blocking the current
326 	 * grace period, then the fact that the task has been enqueued
327 	 * means that we continue to block the current grace period.
328 	 */
329 	rcu_qs();
330 	if (rdp->exp_deferred_qs)
331 		rcu_report_exp_rdp(rdp);
332 	trace_rcu_utilization(TPS("End context switch"));
333 }
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
335 
336 /*
337  * Check for preempted RCU readers blocking the current grace period
338  * for the specified rcu_node structure.  If the caller needs a reliable
339  * answer, it must hold the rcu_node's ->lock.
340  */
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
342 {
343 	return READ_ONCE(rnp->gp_tasks) != NULL;
344 }
345 
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
350 
351 static void rcu_preempt_read_enter(void)
352 {
353 	current->rcu_read_lock_nesting++;
354 }
355 
356 static void rcu_preempt_read_exit(void)
357 {
358 	current->rcu_read_lock_nesting--;
359 }
360 
361 static void rcu_preempt_depth_set(int val)
362 {
363 	current->rcu_read_lock_nesting = val;
364 }
365 
366 /*
367  * Preemptible RCU implementation for rcu_read_lock().
368  * Just increment ->rcu_read_lock_nesting, shared state will be updated
369  * if we block.
370  */
371 void __rcu_read_lock(void)
372 {
373 	rcu_preempt_read_enter();
374 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
375 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
376 	barrier();  /* critical section after entry code. */
377 }
378 EXPORT_SYMBOL_GPL(__rcu_read_lock);
379 
380 /*
381  * Preemptible RCU implementation for rcu_read_unlock().
382  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
383  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
384  * invoke rcu_read_unlock_special() to clean up after a context switch
385  * in an RCU read-side critical section and other special cases.
386  */
387 void __rcu_read_unlock(void)
388 {
389 	struct task_struct *t = current;
390 
391 	if (rcu_preempt_depth() != 1) {
392 		rcu_preempt_read_exit();
393 	} else {
394 		barrier();  /* critical section before exit code. */
395 		rcu_preempt_depth_set(-RCU_NEST_BIAS);
396 		barrier();  /* assign before ->rcu_read_unlock_special load */
397 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
398 			rcu_read_unlock_special(t);
399 		barrier();  /* ->rcu_read_unlock_special load before assign */
400 		rcu_preempt_depth_set(0);
401 	}
402 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
403 		int rrln = rcu_preempt_depth();
404 
405 		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
406 	}
407 }
408 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
409 
410 /*
411  * Advance a ->blkd_tasks-list pointer to the next entry, instead
412  * returning NULL if at the end of the list.
413  */
414 static struct list_head *rcu_next_node_entry(struct task_struct *t,
415 					     struct rcu_node *rnp)
416 {
417 	struct list_head *np;
418 
419 	np = t->rcu_node_entry.next;
420 	if (np == &rnp->blkd_tasks)
421 		np = NULL;
422 	return np;
423 }
424 
425 /*
426  * Return true if the specified rcu_node structure has tasks that were
427  * preempted within an RCU read-side critical section.
428  */
429 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
430 {
431 	return !list_empty(&rnp->blkd_tasks);
432 }
433 
434 /*
435  * Report deferred quiescent states.  The deferral time can
436  * be quite short, for example, in the case of the call from
437  * rcu_read_unlock_special().
438  */
439 static void
440 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
441 {
442 	bool empty_exp;
443 	bool empty_norm;
444 	bool empty_exp_now;
445 	struct list_head *np;
446 	bool drop_boost_mutex = false;
447 	struct rcu_data *rdp;
448 	struct rcu_node *rnp;
449 	union rcu_special special;
450 
451 	/*
452 	 * If RCU core is waiting for this CPU to exit its critical section,
453 	 * report the fact that it has exited.  Because irqs are disabled,
454 	 * t->rcu_read_unlock_special cannot change.
455 	 */
456 	special = t->rcu_read_unlock_special;
457 	rdp = this_cpu_ptr(&rcu_data);
458 	if (!special.s && !rdp->exp_deferred_qs) {
459 		local_irq_restore(flags);
460 		return;
461 	}
462 	t->rcu_read_unlock_special.s = 0;
463 	if (special.b.need_qs)
464 		rcu_qs();
465 
466 	/*
467 	 * Respond to a request by an expedited grace period for a
468 	 * quiescent state from this CPU.  Note that requests from
469 	 * tasks are handled when removing the task from the
470 	 * blocked-tasks list below.
471 	 */
472 	if (rdp->exp_deferred_qs)
473 		rcu_report_exp_rdp(rdp);
474 
475 	/* Clean up if blocked during RCU read-side critical section. */
476 	if (special.b.blocked) {
477 
478 		/*
479 		 * Remove this task from the list it blocked on.  The task
480 		 * now remains queued on the rcu_node corresponding to the
481 		 * CPU it first blocked on, so there is no longer any need
482 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
483 		 */
484 		rnp = t->rcu_blocked_node;
485 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
486 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
487 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
488 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
489 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
490 			     (!empty_norm || rnp->qsmask));
491 		empty_exp = sync_rcu_exp_done(rnp);
492 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
493 		np = rcu_next_node_entry(t, rnp);
494 		list_del_init(&t->rcu_node_entry);
495 		t->rcu_blocked_node = NULL;
496 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
497 						rnp->gp_seq, t->pid);
498 		if (&t->rcu_node_entry == rnp->gp_tasks)
499 			WRITE_ONCE(rnp->gp_tasks, np);
500 		if (&t->rcu_node_entry == rnp->exp_tasks)
501 			rnp->exp_tasks = np;
502 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
503 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
504 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
505 			if (&t->rcu_node_entry == rnp->boost_tasks)
506 				rnp->boost_tasks = np;
507 		}
508 
509 		/*
510 		 * If this was the last task on the current list, and if
511 		 * we aren't waiting on any CPUs, report the quiescent state.
512 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
513 		 * so we must take a snapshot of the expedited state.
514 		 */
515 		empty_exp_now = sync_rcu_exp_done(rnp);
516 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
517 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
518 							 rnp->gp_seq,
519 							 0, rnp->qsmask,
520 							 rnp->level,
521 							 rnp->grplo,
522 							 rnp->grphi,
523 							 !!rnp->gp_tasks);
524 			rcu_report_unblock_qs_rnp(rnp, flags);
525 		} else {
526 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
527 		}
528 
529 		/* Unboost if we were boosted. */
530 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
531 			rt_mutex_futex_unlock(&rnp->boost_mtx);
532 
533 		/*
534 		 * If this was the last task on the expedited lists,
535 		 * then we need to report up the rcu_node hierarchy.
536 		 */
537 		if (!empty_exp && empty_exp_now)
538 			rcu_report_exp_rnp(rnp, true);
539 	} else {
540 		local_irq_restore(flags);
541 	}
542 }
543 
544 /*
545  * Is a deferred quiescent-state pending, and are we also not in
546  * an RCU read-side critical section?  It is the caller's responsibility
547  * to ensure it is otherwise safe to report any deferred quiescent
548  * states.  The reason for this is that it is safe to report a
549  * quiescent state during context switch even though preemption
550  * is disabled.  This function cannot be expected to understand these
551  * nuances, so the caller must handle them.
552  */
553 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
554 {
555 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
556 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
557 	       rcu_preempt_depth() <= 0;
558 }
559 
560 /*
561  * Report a deferred quiescent state if needed and safe to do so.
562  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
563  * not being in an RCU read-side critical section.  The caller must
564  * evaluate safety in terms of interrupt, softirq, and preemption
565  * disabling.
566  */
567 static void rcu_preempt_deferred_qs(struct task_struct *t)
568 {
569 	unsigned long flags;
570 	bool couldrecurse = rcu_preempt_depth() >= 0;
571 
572 	if (!rcu_preempt_need_deferred_qs(t))
573 		return;
574 	if (couldrecurse)
575 		rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
576 	local_irq_save(flags);
577 	rcu_preempt_deferred_qs_irqrestore(t, flags);
578 	if (couldrecurse)
579 		rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
580 }
581 
582 /*
583  * Minimal handler to give the scheduler a chance to re-evaluate.
584  */
585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
586 {
587 	struct rcu_data *rdp;
588 
589 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590 	rdp->defer_qs_iw_pending = false;
591 }
592 
593 /*
594  * Handle special cases during rcu_read_unlock(), such as needing to
595  * notify RCU core processing or task having blocked during the RCU
596  * read-side critical section.
597  */
598 static void rcu_read_unlock_special(struct task_struct *t)
599 {
600 	unsigned long flags;
601 	bool preempt_bh_were_disabled =
602 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603 	bool irqs_were_disabled;
604 
605 	/* NMI handlers cannot block and cannot safely manipulate state. */
606 	if (in_nmi())
607 		return;
608 
609 	local_irq_save(flags);
610 	irqs_were_disabled = irqs_disabled_flags(flags);
611 	if (preempt_bh_were_disabled || irqs_were_disabled) {
612 		bool exp;
613 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614 		struct rcu_node *rnp = rdp->mynode;
615 
616 		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
617 		      (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
618 		      tick_nohz_full_cpu(rdp->cpu);
619 		// Need to defer quiescent state until everything is enabled.
620 		if (irqs_were_disabled && use_softirq &&
621 		    (in_interrupt() ||
622 		     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
623 			// Using softirq, safe to awaken, and we get
624 			// no help from enabling irqs, unlike bh/preempt.
625 			raise_softirq_irqoff(RCU_SOFTIRQ);
626 		} else {
627 			// Enabling BH or preempt does reschedule, so...
628 			// Also if no expediting or NO_HZ_FULL, slow is OK.
629 			set_tsk_need_resched(current);
630 			set_preempt_need_resched();
631 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
632 			    !rdp->defer_qs_iw_pending && exp) {
633 				// Get scheduler to re-evaluate and call hooks.
634 				// If !IRQ_WORK, FQS scan will eventually IPI.
635 				init_irq_work(&rdp->defer_qs_iw,
636 					      rcu_preempt_deferred_qs_handler);
637 				rdp->defer_qs_iw_pending = true;
638 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
639 			}
640 		}
641 		t->rcu_read_unlock_special.b.deferred_qs = true;
642 		local_irq_restore(flags);
643 		return;
644 	}
645 	rcu_preempt_deferred_qs_irqrestore(t, flags);
646 }
647 
648 /*
649  * Check that the list of blocked tasks for the newly completed grace
650  * period is in fact empty.  It is a serious bug to complete a grace
651  * period that still has RCU readers blocked!  This function must be
652  * invoked -before- updating this rnp's ->gp_seq.
653  *
654  * Also, if there are blocked tasks on the list, they automatically
655  * block the newly created grace period, so set up ->gp_tasks accordingly.
656  */
657 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
658 {
659 	struct task_struct *t;
660 
661 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
662 	raw_lockdep_assert_held_rcu_node(rnp);
663 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
664 		dump_blkd_tasks(rnp, 10);
665 	if (rcu_preempt_has_tasks(rnp) &&
666 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
667 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
668 		t = container_of(rnp->gp_tasks, struct task_struct,
669 				 rcu_node_entry);
670 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
671 						rnp->gp_seq, t->pid);
672 	}
673 	WARN_ON_ONCE(rnp->qsmask);
674 }
675 
676 /*
677  * Check for a quiescent state from the current CPU, including voluntary
678  * context switches for Tasks RCU.  When a task blocks, the task is
679  * recorded in the corresponding CPU's rcu_node structure, which is checked
680  * elsewhere, hence this function need only check for quiescent states
681  * related to the current CPU, not to those related to tasks.
682  */
683 static void rcu_flavor_sched_clock_irq(int user)
684 {
685 	struct task_struct *t = current;
686 
687 	if (user || rcu_is_cpu_rrupt_from_idle()) {
688 		rcu_note_voluntary_context_switch(current);
689 	}
690 	if (rcu_preempt_depth() > 0 ||
691 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692 		/* No QS, force context switch if deferred. */
693 		if (rcu_preempt_need_deferred_qs(t)) {
694 			set_tsk_need_resched(t);
695 			set_preempt_need_resched();
696 		}
697 	} else if (rcu_preempt_need_deferred_qs(t)) {
698 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699 		return;
700 	} else if (!rcu_preempt_depth()) {
701 		rcu_qs(); /* Report immediate QS. */
702 		return;
703 	}
704 
705 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706 	if (rcu_preempt_depth() > 0 &&
707 	    __this_cpu_read(rcu_data.core_needs_qs) &&
708 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
709 	    !t->rcu_read_unlock_special.b.need_qs &&
710 	    time_after(jiffies, rcu_state.gp_start + HZ))
711 		t->rcu_read_unlock_special.b.need_qs = true;
712 }
713 
714 /*
715  * Check for a task exiting while in a preemptible-RCU read-side
716  * critical section, clean up if so.  No need to issue warnings, as
717  * debug_check_no_locks_held() already does this if lockdep is enabled.
718  * Besides, if this function does anything other than just immediately
719  * return, there was a bug of some sort.  Spewing warnings from this
720  * function is like as not to simply obscure important prior warnings.
721  */
722 void exit_rcu(void)
723 {
724 	struct task_struct *t = current;
725 
726 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
727 		rcu_preempt_depth_set(1);
728 		barrier();
729 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
730 	} else if (unlikely(rcu_preempt_depth())) {
731 		rcu_preempt_depth_set(1);
732 	} else {
733 		return;
734 	}
735 	__rcu_read_unlock();
736 	rcu_preempt_deferred_qs(current);
737 }
738 
739 /*
740  * Dump the blocked-tasks state, but limit the list dump to the
741  * specified number of elements.
742  */
743 static void
744 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
745 {
746 	int cpu;
747 	int i;
748 	struct list_head *lhp;
749 	bool onl;
750 	struct rcu_data *rdp;
751 	struct rcu_node *rnp1;
752 
753 	raw_lockdep_assert_held_rcu_node(rnp);
754 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
755 		__func__, rnp->grplo, rnp->grphi, rnp->level,
756 		(long)rnp->gp_seq, (long)rnp->completedqs);
757 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
758 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
760 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
761 		__func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
762 		rnp->exp_tasks);
763 	pr_info("%s: ->blkd_tasks", __func__);
764 	i = 0;
765 	list_for_each(lhp, &rnp->blkd_tasks) {
766 		pr_cont(" %p", lhp);
767 		if (++i >= ncheck)
768 			break;
769 	}
770 	pr_cont("\n");
771 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
772 		rdp = per_cpu_ptr(&rcu_data, cpu);
773 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
774 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
775 			cpu, ".o"[onl],
776 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
777 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
778 	}
779 }
780 
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
782 
783 /*
784  * Tell them what RCU they are running.
785  */
786 static void __init rcu_bootup_announce(void)
787 {
788 	pr_info("Hierarchical RCU implementation.\n");
789 	rcu_bootup_announce_oddness();
790 }
791 
792 /*
793  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
794  * how many quiescent states passed, just if there was at least one since
795  * the start of the grace period, this just sets a flag.  The caller must
796  * have disabled preemption.
797  */
798 static void rcu_qs(void)
799 {
800 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
801 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
802 		return;
803 	trace_rcu_grace_period(TPS("rcu_sched"),
804 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
805 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
806 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
807 		return;
808 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
809 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
810 }
811 
812 /*
813  * Register an urgently needed quiescent state.  If there is an
814  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
815  * dyntick-idle quiescent state visible to other CPUs, which will in
816  * some cases serve for expedited as well as normal grace periods.
817  * Either way, register a lightweight quiescent state.
818  */
819 void rcu_all_qs(void)
820 {
821 	unsigned long flags;
822 
823 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
824 		return;
825 	preempt_disable();
826 	/* Load rcu_urgent_qs before other flags. */
827 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
828 		preempt_enable();
829 		return;
830 	}
831 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
832 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
833 		local_irq_save(flags);
834 		rcu_momentary_dyntick_idle();
835 		local_irq_restore(flags);
836 	}
837 	rcu_qs();
838 	preempt_enable();
839 }
840 EXPORT_SYMBOL_GPL(rcu_all_qs);
841 
842 /*
843  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
844  */
845 void rcu_note_context_switch(bool preempt)
846 {
847 	trace_rcu_utilization(TPS("Start context switch"));
848 	rcu_qs();
849 	/* Load rcu_urgent_qs before other flags. */
850 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
851 		goto out;
852 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
853 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
854 		rcu_momentary_dyntick_idle();
855 	if (!preempt)
856 		rcu_tasks_qs(current);
857 out:
858 	trace_rcu_utilization(TPS("End context switch"));
859 }
860 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
861 
862 /*
863  * Because preemptible RCU does not exist, there are never any preempted
864  * RCU readers.
865  */
866 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
867 {
868 	return 0;
869 }
870 
871 /*
872  * Because there is no preemptible RCU, there can be no readers blocked.
873  */
874 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
875 {
876 	return false;
877 }
878 
879 /*
880  * Because there is no preemptible RCU, there can be no deferred quiescent
881  * states.
882  */
883 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
884 {
885 	return false;
886 }
887 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
888 
889 /*
890  * Because there is no preemptible RCU, there can be no readers blocked,
891  * so there is no need to check for blocked tasks.  So check only for
892  * bogus qsmask values.
893  */
894 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
895 {
896 	WARN_ON_ONCE(rnp->qsmask);
897 }
898 
899 /*
900  * Check to see if this CPU is in a non-context-switch quiescent state,
901  * namely user mode and idle loop.
902  */
903 static void rcu_flavor_sched_clock_irq(int user)
904 {
905 	if (user || rcu_is_cpu_rrupt_from_idle()) {
906 
907 		/*
908 		 * Get here if this CPU took its interrupt from user
909 		 * mode or from the idle loop, and if this is not a
910 		 * nested interrupt.  In this case, the CPU is in
911 		 * a quiescent state, so note it.
912 		 *
913 		 * No memory barrier is required here because rcu_qs()
914 		 * references only CPU-local variables that other CPUs
915 		 * neither access nor modify, at least not while the
916 		 * corresponding CPU is online.
917 		 */
918 
919 		rcu_qs();
920 	}
921 }
922 
923 /*
924  * Because preemptible RCU does not exist, tasks cannot possibly exit
925  * while in preemptible RCU read-side critical sections.
926  */
927 void exit_rcu(void)
928 {
929 }
930 
931 /*
932  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
933  */
934 static void
935 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
936 {
937 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
938 }
939 
940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
941 
942 /*
943  * If boosting, set rcuc kthreads to realtime priority.
944  */
945 static void rcu_cpu_kthread_setup(unsigned int cpu)
946 {
947 #ifdef CONFIG_RCU_BOOST
948 	struct sched_param sp;
949 
950 	sp.sched_priority = kthread_prio;
951 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
952 #endif /* #ifdef CONFIG_RCU_BOOST */
953 }
954 
955 #ifdef CONFIG_RCU_BOOST
956 
957 /*
958  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
959  * or ->boost_tasks, advancing the pointer to the next task in the
960  * ->blkd_tasks list.
961  *
962  * Note that irqs must be enabled: boosting the task can block.
963  * Returns 1 if there are more tasks needing to be boosted.
964  */
965 static int rcu_boost(struct rcu_node *rnp)
966 {
967 	unsigned long flags;
968 	struct task_struct *t;
969 	struct list_head *tb;
970 
971 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
972 	    READ_ONCE(rnp->boost_tasks) == NULL)
973 		return 0;  /* Nothing left to boost. */
974 
975 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
976 
977 	/*
978 	 * Recheck under the lock: all tasks in need of boosting
979 	 * might exit their RCU read-side critical sections on their own.
980 	 */
981 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
982 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
983 		return 0;
984 	}
985 
986 	/*
987 	 * Preferentially boost tasks blocking expedited grace periods.
988 	 * This cannot starve the normal grace periods because a second
989 	 * expedited grace period must boost all blocked tasks, including
990 	 * those blocking the pre-existing normal grace period.
991 	 */
992 	if (rnp->exp_tasks != NULL)
993 		tb = rnp->exp_tasks;
994 	else
995 		tb = rnp->boost_tasks;
996 
997 	/*
998 	 * We boost task t by manufacturing an rt_mutex that appears to
999 	 * be held by task t.  We leave a pointer to that rt_mutex where
1000 	 * task t can find it, and task t will release the mutex when it
1001 	 * exits its outermost RCU read-side critical section.  Then
1002 	 * simply acquiring this artificial rt_mutex will boost task
1003 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1004 	 *
1005 	 * Note that task t must acquire rnp->lock to remove itself from
1006 	 * the ->blkd_tasks list, which it will do from exit() if from
1007 	 * nowhere else.  We therefore are guaranteed that task t will
1008 	 * stay around at least until we drop rnp->lock.  Note that
1009 	 * rnp->lock also resolves races between our priority boosting
1010 	 * and task t's exiting its outermost RCU read-side critical
1011 	 * section.
1012 	 */
1013 	t = container_of(tb, struct task_struct, rcu_node_entry);
1014 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1015 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1016 	/* Lock only for side effect: boosts task t's priority. */
1017 	rt_mutex_lock(&rnp->boost_mtx);
1018 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1019 
1020 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1021 	       READ_ONCE(rnp->boost_tasks) != NULL;
1022 }
1023 
1024 /*
1025  * Priority-boosting kthread, one per leaf rcu_node.
1026  */
1027 static int rcu_boost_kthread(void *arg)
1028 {
1029 	struct rcu_node *rnp = (struct rcu_node *)arg;
1030 	int spincnt = 0;
1031 	int more2boost;
1032 
1033 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1034 	for (;;) {
1035 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1036 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1037 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1038 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1039 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1040 		more2boost = rcu_boost(rnp);
1041 		if (more2boost)
1042 			spincnt++;
1043 		else
1044 			spincnt = 0;
1045 		if (spincnt > 10) {
1046 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1047 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1048 			schedule_timeout_interruptible(2);
1049 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1050 			spincnt = 0;
1051 		}
1052 	}
1053 	/* NOTREACHED */
1054 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Check to see if it is time to start boosting RCU readers that are
1060  * blocking the current grace period, and, if so, tell the per-rcu_node
1061  * kthread to start boosting them.  If there is an expedited grace
1062  * period in progress, it is always time to boost.
1063  *
1064  * The caller must hold rnp->lock, which this function releases.
1065  * The ->boost_kthread_task is immortal, so we don't need to worry
1066  * about it going away.
1067  */
1068 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1069 	__releases(rnp->lock)
1070 {
1071 	raw_lockdep_assert_held_rcu_node(rnp);
1072 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1073 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1074 		return;
1075 	}
1076 	if (rnp->exp_tasks != NULL ||
1077 	    (rnp->gp_tasks != NULL &&
1078 	     rnp->boost_tasks == NULL &&
1079 	     rnp->qsmask == 0 &&
1080 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1081 		if (rnp->exp_tasks == NULL)
1082 			rnp->boost_tasks = rnp->gp_tasks;
1083 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1084 		rcu_wake_cond(rnp->boost_kthread_task,
1085 			      rnp->boost_kthread_status);
1086 	} else {
1087 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1088 	}
1089 }
1090 
1091 /*
1092  * Is the current CPU running the RCU-callbacks kthread?
1093  * Caller must have preemption disabled.
1094  */
1095 static bool rcu_is_callbacks_kthread(void)
1096 {
1097 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1098 }
1099 
1100 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1101 
1102 /*
1103  * Do priority-boost accounting for the start of a new grace period.
1104  */
1105 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1106 {
1107 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1108 }
1109 
1110 /*
1111  * Create an RCU-boost kthread for the specified node if one does not
1112  * already exist.  We only create this kthread for preemptible RCU.
1113  * Returns zero if all is well, a negated errno otherwise.
1114  */
1115 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1116 {
1117 	int rnp_index = rnp - rcu_get_root();
1118 	unsigned long flags;
1119 	struct sched_param sp;
1120 	struct task_struct *t;
1121 
1122 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1123 		return;
1124 
1125 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1126 		return;
1127 
1128 	rcu_state.boost = 1;
1129 
1130 	if (rnp->boost_kthread_task != NULL)
1131 		return;
1132 
1133 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1134 			   "rcub/%d", rnp_index);
1135 	if (WARN_ON_ONCE(IS_ERR(t)))
1136 		return;
1137 
1138 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1139 	rnp->boost_kthread_task = t;
1140 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1141 	sp.sched_priority = kthread_prio;
1142 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1143 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1144 }
1145 
1146 /*
1147  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1148  * served by the rcu_node in question.  The CPU hotplug lock is still
1149  * held, so the value of rnp->qsmaskinit will be stable.
1150  *
1151  * We don't include outgoingcpu in the affinity set, use -1 if there is
1152  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1153  * this function allows the kthread to execute on any CPU.
1154  */
1155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1156 {
1157 	struct task_struct *t = rnp->boost_kthread_task;
1158 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1159 	cpumask_var_t cm;
1160 	int cpu;
1161 
1162 	if (!t)
1163 		return;
1164 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1165 		return;
1166 	for_each_leaf_node_possible_cpu(rnp, cpu)
1167 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1168 		    cpu != outgoingcpu)
1169 			cpumask_set_cpu(cpu, cm);
1170 	if (cpumask_weight(cm) == 0)
1171 		cpumask_setall(cm);
1172 	set_cpus_allowed_ptr(t, cm);
1173 	free_cpumask_var(cm);
1174 }
1175 
1176 /*
1177  * Spawn boost kthreads -- called as soon as the scheduler is running.
1178  */
1179 static void __init rcu_spawn_boost_kthreads(void)
1180 {
1181 	struct rcu_node *rnp;
1182 
1183 	rcu_for_each_leaf_node(rnp)
1184 		rcu_spawn_one_boost_kthread(rnp);
1185 }
1186 
1187 static void rcu_prepare_kthreads(int cpu)
1188 {
1189 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1190 	struct rcu_node *rnp = rdp->mynode;
1191 
1192 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1193 	if (rcu_scheduler_fully_active)
1194 		rcu_spawn_one_boost_kthread(rnp);
1195 }
1196 
1197 #else /* #ifdef CONFIG_RCU_BOOST */
1198 
1199 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1200 	__releases(rnp->lock)
1201 {
1202 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1203 }
1204 
1205 static bool rcu_is_callbacks_kthread(void)
1206 {
1207 	return false;
1208 }
1209 
1210 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1211 {
1212 }
1213 
1214 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1215 {
1216 }
1217 
1218 static void __init rcu_spawn_boost_kthreads(void)
1219 {
1220 }
1221 
1222 static void rcu_prepare_kthreads(int cpu)
1223 {
1224 }
1225 
1226 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1227 
1228 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1229 
1230 /*
1231  * Check to see if any future non-offloaded RCU-related work will need
1232  * to be done by the current CPU, even if none need be done immediately,
1233  * returning 1 if so.  This function is part of the RCU implementation;
1234  * it is -not- an exported member of the RCU API.
1235  *
1236  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1237  * CPU has RCU callbacks queued.
1238  */
1239 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1240 {
1241 	*nextevt = KTIME_MAX;
1242 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1243 	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1244 }
1245 
1246 /*
1247  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1248  * after it.
1249  */
1250 static void rcu_cleanup_after_idle(void)
1251 {
1252 }
1253 
1254 /*
1255  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1256  * is nothing.
1257  */
1258 static void rcu_prepare_for_idle(void)
1259 {
1260 }
1261 
1262 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1263 
1264 /*
1265  * This code is invoked when a CPU goes idle, at which point we want
1266  * to have the CPU do everything required for RCU so that it can enter
1267  * the energy-efficient dyntick-idle mode.
1268  *
1269  * The following preprocessor symbol controls this:
1270  *
1271  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1272  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1273  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1274  *	benchmarkers who might otherwise be tempted to set this to a large
1275  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1276  *	system.  And if you are -that- concerned about energy efficiency,
1277  *	just power the system down and be done with it!
1278  *
1279  * The value below works well in practice.  If future workloads require
1280  * adjustment, they can be converted into kernel config parameters, though
1281  * making the state machine smarter might be a better option.
1282  */
1283 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1284 
1285 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1286 module_param(rcu_idle_gp_delay, int, 0644);
1287 
1288 /*
1289  * Try to advance callbacks on the current CPU, but only if it has been
1290  * awhile since the last time we did so.  Afterwards, if there are any
1291  * callbacks ready for immediate invocation, return true.
1292  */
1293 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1294 {
1295 	bool cbs_ready = false;
1296 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1297 	struct rcu_node *rnp;
1298 
1299 	/* Exit early if we advanced recently. */
1300 	if (jiffies == rdp->last_advance_all)
1301 		return false;
1302 	rdp->last_advance_all = jiffies;
1303 
1304 	rnp = rdp->mynode;
1305 
1306 	/*
1307 	 * Don't bother checking unless a grace period has
1308 	 * completed since we last checked and there are
1309 	 * callbacks not yet ready to invoke.
1310 	 */
1311 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1312 				  rcu_seq_current(&rnp->gp_seq)) ||
1313 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1314 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1315 		note_gp_changes(rdp);
1316 
1317 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1318 		cbs_ready = true;
1319 	return cbs_ready;
1320 }
1321 
1322 /*
1323  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1324  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1325  * caller about what to set the timeout.
1326  *
1327  * The caller must have disabled interrupts.
1328  */
1329 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1330 {
1331 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1332 	unsigned long dj;
1333 
1334 	lockdep_assert_irqs_disabled();
1335 
1336 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1337 	if (rcu_segcblist_empty(&rdp->cblist) ||
1338 	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1339 		*nextevt = KTIME_MAX;
1340 		return 0;
1341 	}
1342 
1343 	/* Attempt to advance callbacks. */
1344 	if (rcu_try_advance_all_cbs()) {
1345 		/* Some ready to invoke, so initiate later invocation. */
1346 		invoke_rcu_core();
1347 		return 1;
1348 	}
1349 	rdp->last_accelerate = jiffies;
1350 
1351 	/* Request timer and round. */
1352 	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1353 
1354 	*nextevt = basemono + dj * TICK_NSEC;
1355 	return 0;
1356 }
1357 
1358 /*
1359  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1360  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1361  * major task is to accelerate (that is, assign grace-period numbers to) any
1362  * recently arrived callbacks.
1363  *
1364  * The caller must have disabled interrupts.
1365  */
1366 static void rcu_prepare_for_idle(void)
1367 {
1368 	bool needwake;
1369 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1370 	struct rcu_node *rnp;
1371 	int tne;
1372 
1373 	lockdep_assert_irqs_disabled();
1374 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1375 		return;
1376 
1377 	/* Handle nohz enablement switches conservatively. */
1378 	tne = READ_ONCE(tick_nohz_active);
1379 	if (tne != rdp->tick_nohz_enabled_snap) {
1380 		if (!rcu_segcblist_empty(&rdp->cblist))
1381 			invoke_rcu_core(); /* force nohz to see update. */
1382 		rdp->tick_nohz_enabled_snap = tne;
1383 		return;
1384 	}
1385 	if (!tne)
1386 		return;
1387 
1388 	/*
1389 	 * If we have not yet accelerated this jiffy, accelerate all
1390 	 * callbacks on this CPU.
1391 	 */
1392 	if (rdp->last_accelerate == jiffies)
1393 		return;
1394 	rdp->last_accelerate = jiffies;
1395 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1396 		rnp = rdp->mynode;
1397 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1398 		needwake = rcu_accelerate_cbs(rnp, rdp);
1399 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1400 		if (needwake)
1401 			rcu_gp_kthread_wake();
1402 	}
1403 }
1404 
1405 /*
1406  * Clean up for exit from idle.  Attempt to advance callbacks based on
1407  * any grace periods that elapsed while the CPU was idle, and if any
1408  * callbacks are now ready to invoke, initiate invocation.
1409  */
1410 static void rcu_cleanup_after_idle(void)
1411 {
1412 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1413 
1414 	lockdep_assert_irqs_disabled();
1415 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1416 		return;
1417 	if (rcu_try_advance_all_cbs())
1418 		invoke_rcu_core();
1419 }
1420 
1421 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1422 
1423 #ifdef CONFIG_RCU_NOCB_CPU
1424 
1425 /*
1426  * Offload callback processing from the boot-time-specified set of CPUs
1427  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1428  * created that pull the callbacks from the corresponding CPU, wait for
1429  * a grace period to elapse, and invoke the callbacks.  These kthreads
1430  * are organized into GP kthreads, which manage incoming callbacks, wait for
1431  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1432  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1433  * do a wake_up() on their GP kthread when they insert a callback into any
1434  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1435  * in which case each kthread actively polls its CPU.  (Which isn't so great
1436  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1437  *
1438  * This is intended to be used in conjunction with Frederic Weisbecker's
1439  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1440  * running CPU-bound user-mode computations.
1441  *
1442  * Offloading of callbacks can also be used as an energy-efficiency
1443  * measure because CPUs with no RCU callbacks queued are more aggressive
1444  * about entering dyntick-idle mode.
1445  */
1446 
1447 
1448 /*
1449  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1450  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1451  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1452  * given, a warning is emitted and all CPUs are offloaded.
1453  */
1454 static int __init rcu_nocb_setup(char *str)
1455 {
1456 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1457 	if (!strcasecmp(str, "all"))
1458 		cpumask_setall(rcu_nocb_mask);
1459 	else
1460 		if (cpulist_parse(str, rcu_nocb_mask)) {
1461 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1462 			cpumask_setall(rcu_nocb_mask);
1463 		}
1464 	return 1;
1465 }
1466 __setup("rcu_nocbs=", rcu_nocb_setup);
1467 
1468 static int __init parse_rcu_nocb_poll(char *arg)
1469 {
1470 	rcu_nocb_poll = true;
1471 	return 0;
1472 }
1473 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1474 
1475 /*
1476  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1477  * After all, the main point of bypassing is to avoid lock contention
1478  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1479  */
1480 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1481 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1482 
1483 /*
1484  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1485  * lock isn't immediately available, increment ->nocb_lock_contended to
1486  * flag the contention.
1487  */
1488 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1489 {
1490 	lockdep_assert_irqs_disabled();
1491 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1492 		return;
1493 	atomic_inc(&rdp->nocb_lock_contended);
1494 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1495 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1496 	raw_spin_lock(&rdp->nocb_bypass_lock);
1497 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1498 	atomic_dec(&rdp->nocb_lock_contended);
1499 }
1500 
1501 /*
1502  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1503  * not contended.  Please note that this is extremely special-purpose,
1504  * relying on the fact that at most two kthreads and one CPU contend for
1505  * this lock, and also that the two kthreads are guaranteed to have frequent
1506  * grace-period-duration time intervals between successive acquisitions
1507  * of the lock.  This allows us to use an extremely simple throttling
1508  * mechanism, and further to apply it only to the CPU doing floods of
1509  * call_rcu() invocations.  Don't try this at home!
1510  */
1511 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1512 {
1513 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1514 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1515 		cpu_relax();
1516 }
1517 
1518 /*
1519  * Conditionally acquire the specified rcu_data structure's
1520  * ->nocb_bypass_lock.
1521  */
1522 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1523 {
1524 	lockdep_assert_irqs_disabled();
1525 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1526 }
1527 
1528 /*
1529  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1530  */
1531 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1532 {
1533 	lockdep_assert_irqs_disabled();
1534 	raw_spin_unlock(&rdp->nocb_bypass_lock);
1535 }
1536 
1537 /*
1538  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1539  * if it corresponds to a no-CBs CPU.
1540  */
1541 static void rcu_nocb_lock(struct rcu_data *rdp)
1542 {
1543 	lockdep_assert_irqs_disabled();
1544 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1545 		return;
1546 	raw_spin_lock(&rdp->nocb_lock);
1547 }
1548 
1549 /*
1550  * Release the specified rcu_data structure's ->nocb_lock, but only
1551  * if it corresponds to a no-CBs CPU.
1552  */
1553 static void rcu_nocb_unlock(struct rcu_data *rdp)
1554 {
1555 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1556 		lockdep_assert_irqs_disabled();
1557 		raw_spin_unlock(&rdp->nocb_lock);
1558 	}
1559 }
1560 
1561 /*
1562  * Release the specified rcu_data structure's ->nocb_lock and restore
1563  * interrupts, but only if it corresponds to a no-CBs CPU.
1564  */
1565 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1566 				       unsigned long flags)
1567 {
1568 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1569 		lockdep_assert_irqs_disabled();
1570 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1571 	} else {
1572 		local_irq_restore(flags);
1573 	}
1574 }
1575 
1576 /* Lockdep check that ->cblist may be safely accessed. */
1577 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1578 {
1579 	lockdep_assert_irqs_disabled();
1580 	if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1581 	    cpu_online(rdp->cpu))
1582 		lockdep_assert_held(&rdp->nocb_lock);
1583 }
1584 
1585 /*
1586  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1587  * grace period.
1588  */
1589 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1590 {
1591 	swake_up_all(sq);
1592 }
1593 
1594 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1595 {
1596 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1597 }
1598 
1599 static void rcu_init_one_nocb(struct rcu_node *rnp)
1600 {
1601 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1602 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1603 }
1604 
1605 /* Is the specified CPU a no-CBs CPU? */
1606 bool rcu_is_nocb_cpu(int cpu)
1607 {
1608 	if (cpumask_available(rcu_nocb_mask))
1609 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1610 	return false;
1611 }
1612 
1613 /*
1614  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1615  * and this function releases it.
1616  */
1617 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1618 			   unsigned long flags)
1619 	__releases(rdp->nocb_lock)
1620 {
1621 	bool needwake = false;
1622 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1623 
1624 	lockdep_assert_held(&rdp->nocb_lock);
1625 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1626 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1627 				    TPS("AlreadyAwake"));
1628 		rcu_nocb_unlock_irqrestore(rdp, flags);
1629 		return;
1630 	}
1631 	del_timer(&rdp->nocb_timer);
1632 	rcu_nocb_unlock_irqrestore(rdp, flags);
1633 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1634 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1635 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1636 		needwake = true;
1637 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1638 	}
1639 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1640 	if (needwake)
1641 		wake_up_process(rdp_gp->nocb_gp_kthread);
1642 }
1643 
1644 /*
1645  * Arrange to wake the GP kthread for this NOCB group at some future
1646  * time when it is safe to do so.
1647  */
1648 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1649 			       const char *reason)
1650 {
1651 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1652 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1653 	if (rdp->nocb_defer_wakeup < waketype)
1654 		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1655 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1656 }
1657 
1658 /*
1659  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1660  * However, if there is a callback to be enqueued and if ->nocb_bypass
1661  * proves to be initially empty, just return false because the no-CB GP
1662  * kthread may need to be awakened in this case.
1663  *
1664  * Note that this function always returns true if rhp is NULL.
1665  */
1666 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1667 				     unsigned long j)
1668 {
1669 	struct rcu_cblist rcl;
1670 
1671 	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1672 	rcu_lockdep_assert_cblist_protected(rdp);
1673 	lockdep_assert_held(&rdp->nocb_bypass_lock);
1674 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1675 		raw_spin_unlock(&rdp->nocb_bypass_lock);
1676 		return false;
1677 	}
1678 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1679 	if (rhp)
1680 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1681 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1682 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1683 	WRITE_ONCE(rdp->nocb_bypass_first, j);
1684 	rcu_nocb_bypass_unlock(rdp);
1685 	return true;
1686 }
1687 
1688 /*
1689  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1690  * However, if there is a callback to be enqueued and if ->nocb_bypass
1691  * proves to be initially empty, just return false because the no-CB GP
1692  * kthread may need to be awakened in this case.
1693  *
1694  * Note that this function always returns true if rhp is NULL.
1695  */
1696 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1697 				  unsigned long j)
1698 {
1699 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1700 		return true;
1701 	rcu_lockdep_assert_cblist_protected(rdp);
1702 	rcu_nocb_bypass_lock(rdp);
1703 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1704 }
1705 
1706 /*
1707  * If the ->nocb_bypass_lock is immediately available, flush the
1708  * ->nocb_bypass queue into ->cblist.
1709  */
1710 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1711 {
1712 	rcu_lockdep_assert_cblist_protected(rdp);
1713 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1714 	    !rcu_nocb_bypass_trylock(rdp))
1715 		return;
1716 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1717 }
1718 
1719 /*
1720  * See whether it is appropriate to use the ->nocb_bypass list in order
1721  * to control contention on ->nocb_lock.  A limited number of direct
1722  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1723  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1724  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1725  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1726  * used if ->cblist is empty, because otherwise callbacks can be stranded
1727  * on ->nocb_bypass because we cannot count on the current CPU ever again
1728  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1729  * non-empty, the corresponding no-CBs grace-period kthread must not be
1730  * in an indefinite sleep state.
1731  *
1732  * Finally, it is not permitted to use the bypass during early boot,
1733  * as doing so would confuse the auto-initialization code.  Besides
1734  * which, there is no point in worrying about lock contention while
1735  * there is only one CPU in operation.
1736  */
1737 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1738 				bool *was_alldone, unsigned long flags)
1739 {
1740 	unsigned long c;
1741 	unsigned long cur_gp_seq;
1742 	unsigned long j = jiffies;
1743 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1744 
1745 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1746 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1747 		return false; /* Not offloaded, no bypassing. */
1748 	}
1749 	lockdep_assert_irqs_disabled();
1750 
1751 	// Don't use ->nocb_bypass during early boot.
1752 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1753 		rcu_nocb_lock(rdp);
1754 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1755 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1756 		return false;
1757 	}
1758 
1759 	// If we have advanced to a new jiffy, reset counts to allow
1760 	// moving back from ->nocb_bypass to ->cblist.
1761 	if (j == rdp->nocb_nobypass_last) {
1762 		c = rdp->nocb_nobypass_count + 1;
1763 	} else {
1764 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1765 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1766 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1767 				 nocb_nobypass_lim_per_jiffy))
1768 			c = 0;
1769 		else if (c > nocb_nobypass_lim_per_jiffy)
1770 			c = nocb_nobypass_lim_per_jiffy;
1771 	}
1772 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1773 
1774 	// If there hasn't yet been all that many ->cblist enqueues
1775 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1776 	// ->nocb_bypass first.
1777 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1778 		rcu_nocb_lock(rdp);
1779 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780 		if (*was_alldone)
1781 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1782 					    TPS("FirstQ"));
1783 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1784 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1785 		return false; // Caller must enqueue the callback.
1786 	}
1787 
1788 	// If ->nocb_bypass has been used too long or is too full,
1789 	// flush ->nocb_bypass to ->cblist.
1790 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1791 	    ncbs >= qhimark) {
1792 		rcu_nocb_lock(rdp);
1793 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1794 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1795 			if (*was_alldone)
1796 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1797 						    TPS("FirstQ"));
1798 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1799 			return false; // Caller must enqueue the callback.
1800 		}
1801 		if (j != rdp->nocb_gp_adv_time &&
1802 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1803 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1804 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1805 			rdp->nocb_gp_adv_time = j;
1806 		}
1807 		rcu_nocb_unlock_irqrestore(rdp, flags);
1808 		return true; // Callback already enqueued.
1809 	}
1810 
1811 	// We need to use the bypass.
1812 	rcu_nocb_wait_contended(rdp);
1813 	rcu_nocb_bypass_lock(rdp);
1814 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1815 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1816 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1817 	if (!ncbs) {
1818 		WRITE_ONCE(rdp->nocb_bypass_first, j);
1819 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1820 	}
1821 	rcu_nocb_bypass_unlock(rdp);
1822 	smp_mb(); /* Order enqueue before wake. */
1823 	if (ncbs) {
1824 		local_irq_restore(flags);
1825 	} else {
1826 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1827 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1828 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1829 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1830 					    TPS("FirstBQwake"));
1831 			__call_rcu_nocb_wake(rdp, true, flags);
1832 		} else {
1833 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1834 					    TPS("FirstBQnoWake"));
1835 			rcu_nocb_unlock_irqrestore(rdp, flags);
1836 		}
1837 	}
1838 	return true; // Callback already enqueued.
1839 }
1840 
1841 /*
1842  * Awaken the no-CBs grace-period kthead if needed, either due to it
1843  * legitimately being asleep or due to overload conditions.
1844  *
1845  * If warranted, also wake up the kthread servicing this CPUs queues.
1846  */
1847 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1848 				 unsigned long flags)
1849 				 __releases(rdp->nocb_lock)
1850 {
1851 	unsigned long cur_gp_seq;
1852 	unsigned long j;
1853 	long len;
1854 	struct task_struct *t;
1855 
1856 	// If we are being polled or there is no kthread, just leave.
1857 	t = READ_ONCE(rdp->nocb_gp_kthread);
1858 	if (rcu_nocb_poll || !t) {
1859 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1860 				    TPS("WakeNotPoll"));
1861 		rcu_nocb_unlock_irqrestore(rdp, flags);
1862 		return;
1863 	}
1864 	// Need to actually to a wakeup.
1865 	len = rcu_segcblist_n_cbs(&rdp->cblist);
1866 	if (was_alldone) {
1867 		rdp->qlen_last_fqs_check = len;
1868 		if (!irqs_disabled_flags(flags)) {
1869 			/* ... if queue was empty ... */
1870 			wake_nocb_gp(rdp, false, flags);
1871 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1872 					    TPS("WakeEmpty"));
1873 		} else {
1874 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1875 					   TPS("WakeEmptyIsDeferred"));
1876 			rcu_nocb_unlock_irqrestore(rdp, flags);
1877 		}
1878 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1879 		/* ... or if many callbacks queued. */
1880 		rdp->qlen_last_fqs_check = len;
1881 		j = jiffies;
1882 		if (j != rdp->nocb_gp_adv_time &&
1883 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1884 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1885 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1886 			rdp->nocb_gp_adv_time = j;
1887 		}
1888 		smp_mb(); /* Enqueue before timer_pending(). */
1889 		if ((rdp->nocb_cb_sleep ||
1890 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1891 		    !timer_pending(&rdp->nocb_bypass_timer))
1892 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1893 					   TPS("WakeOvfIsDeferred"));
1894 		rcu_nocb_unlock_irqrestore(rdp, flags);
1895 	} else {
1896 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1897 		rcu_nocb_unlock_irqrestore(rdp, flags);
1898 	}
1899 	return;
1900 }
1901 
1902 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1903 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1904 {
1905 	unsigned long flags;
1906 	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1907 
1908 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1909 	rcu_nocb_lock_irqsave(rdp, flags);
1910 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1911 	__call_rcu_nocb_wake(rdp, true, flags);
1912 }
1913 
1914 /*
1915  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1916  * or for grace periods to end.
1917  */
1918 static void nocb_gp_wait(struct rcu_data *my_rdp)
1919 {
1920 	bool bypass = false;
1921 	long bypass_ncbs;
1922 	int __maybe_unused cpu = my_rdp->cpu;
1923 	unsigned long cur_gp_seq;
1924 	unsigned long flags;
1925 	bool gotcbs = false;
1926 	unsigned long j = jiffies;
1927 	bool needwait_gp = false; // This prevents actual uninitialized use.
1928 	bool needwake;
1929 	bool needwake_gp;
1930 	struct rcu_data *rdp;
1931 	struct rcu_node *rnp;
1932 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1933 
1934 	/*
1935 	 * Each pass through the following loop checks for CBs and for the
1936 	 * nearest grace period (if any) to wait for next.  The CB kthreads
1937 	 * and the global grace-period kthread are awakened if needed.
1938 	 */
1939 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1940 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1941 		rcu_nocb_lock_irqsave(rdp, flags);
1942 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1943 		if (bypass_ncbs &&
1944 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1945 		     bypass_ncbs > 2 * qhimark)) {
1946 			// Bypass full or old, so flush it.
1947 			(void)rcu_nocb_try_flush_bypass(rdp, j);
1948 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1949 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1950 			rcu_nocb_unlock_irqrestore(rdp, flags);
1951 			continue; /* No callbacks here, try next. */
1952 		}
1953 		if (bypass_ncbs) {
1954 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1955 					    TPS("Bypass"));
1956 			bypass = true;
1957 		}
1958 		rnp = rdp->mynode;
1959 		if (bypass) {  // Avoid race with first bypass CB.
1960 			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1961 				   RCU_NOCB_WAKE_NOT);
1962 			del_timer(&my_rdp->nocb_timer);
1963 		}
1964 		// Advance callbacks if helpful and low contention.
1965 		needwake_gp = false;
1966 		if (!rcu_segcblist_restempty(&rdp->cblist,
1967 					     RCU_NEXT_READY_TAIL) ||
1968 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1969 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1970 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1971 			needwake_gp = rcu_advance_cbs(rnp, rdp);
1972 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1973 		}
1974 		// Need to wait on some grace period?
1975 		WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
1976 						      RCU_NEXT_READY_TAIL));
1977 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1978 			if (!needwait_gp ||
1979 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1980 				wait_gp_seq = cur_gp_seq;
1981 			needwait_gp = true;
1982 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1983 					    TPS("NeedWaitGP"));
1984 		}
1985 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1986 			needwake = rdp->nocb_cb_sleep;
1987 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
1988 			smp_mb(); /* CB invocation -after- GP end. */
1989 		} else {
1990 			needwake = false;
1991 		}
1992 		rcu_nocb_unlock_irqrestore(rdp, flags);
1993 		if (needwake) {
1994 			swake_up_one(&rdp->nocb_cb_wq);
1995 			gotcbs = true;
1996 		}
1997 		if (needwake_gp)
1998 			rcu_gp_kthread_wake();
1999 	}
2000 
2001 	my_rdp->nocb_gp_bypass = bypass;
2002 	my_rdp->nocb_gp_gp = needwait_gp;
2003 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2004 	if (bypass && !rcu_nocb_poll) {
2005 		// At least one child with non-empty ->nocb_bypass, so set
2006 		// timer in order to avoid stranding its callbacks.
2007 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2008 		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2009 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2010 	}
2011 	if (rcu_nocb_poll) {
2012 		/* Polling, so trace if first poll in the series. */
2013 		if (gotcbs)
2014 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2015 		schedule_timeout_interruptible(1);
2016 	} else if (!needwait_gp) {
2017 		/* Wait for callbacks to appear. */
2018 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2019 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2020 				!READ_ONCE(my_rdp->nocb_gp_sleep));
2021 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2022 	} else {
2023 		rnp = my_rdp->mynode;
2024 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2025 		swait_event_interruptible_exclusive(
2026 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2027 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2028 			!READ_ONCE(my_rdp->nocb_gp_sleep));
2029 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2030 	}
2031 	if (!rcu_nocb_poll) {
2032 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2033 		if (bypass)
2034 			del_timer(&my_rdp->nocb_bypass_timer);
2035 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2036 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2037 	}
2038 	my_rdp->nocb_gp_seq = -1;
2039 	WARN_ON(signal_pending(current));
2040 }
2041 
2042 /*
2043  * No-CBs grace-period-wait kthread.  There is one of these per group
2044  * of CPUs, but only once at least one CPU in that group has come online
2045  * at least once since boot.  This kthread checks for newly posted
2046  * callbacks from any of the CPUs it is responsible for, waits for a
2047  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2048  * that then have callback-invocation work to do.
2049  */
2050 static int rcu_nocb_gp_kthread(void *arg)
2051 {
2052 	struct rcu_data *rdp = arg;
2053 
2054 	for (;;) {
2055 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2056 		nocb_gp_wait(rdp);
2057 		cond_resched_tasks_rcu_qs();
2058 	}
2059 	return 0;
2060 }
2061 
2062 /*
2063  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2064  * then, if there are no more, wait for more to appear.
2065  */
2066 static void nocb_cb_wait(struct rcu_data *rdp)
2067 {
2068 	unsigned long cur_gp_seq;
2069 	unsigned long flags;
2070 	bool needwake_gp = false;
2071 	struct rcu_node *rnp = rdp->mynode;
2072 
2073 	local_irq_save(flags);
2074 	rcu_momentary_dyntick_idle();
2075 	local_irq_restore(flags);
2076 	local_bh_disable();
2077 	rcu_do_batch(rdp);
2078 	local_bh_enable();
2079 	lockdep_assert_irqs_enabled();
2080 	rcu_nocb_lock_irqsave(rdp, flags);
2081 	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2082 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2083 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2084 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2085 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2086 	}
2087 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2088 		rcu_nocb_unlock_irqrestore(rdp, flags);
2089 		if (needwake_gp)
2090 			rcu_gp_kthread_wake();
2091 		return;
2092 	}
2093 
2094 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2095 	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2096 	rcu_nocb_unlock_irqrestore(rdp, flags);
2097 	if (needwake_gp)
2098 		rcu_gp_kthread_wake();
2099 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2100 				 !READ_ONCE(rdp->nocb_cb_sleep));
2101 	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2102 		/* ^^^ Ensure CB invocation follows _sleep test. */
2103 		return;
2104 	}
2105 	WARN_ON(signal_pending(current));
2106 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2107 }
2108 
2109 /*
2110  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2111  * nocb_cb_wait() to do the dirty work.
2112  */
2113 static int rcu_nocb_cb_kthread(void *arg)
2114 {
2115 	struct rcu_data *rdp = arg;
2116 
2117 	// Each pass through this loop does one callback batch, and,
2118 	// if there are no more ready callbacks, waits for them.
2119 	for (;;) {
2120 		nocb_cb_wait(rdp);
2121 		cond_resched_tasks_rcu_qs();
2122 	}
2123 	return 0;
2124 }
2125 
2126 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2127 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2128 {
2129 	return READ_ONCE(rdp->nocb_defer_wakeup);
2130 }
2131 
2132 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2133 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2134 {
2135 	unsigned long flags;
2136 	int ndw;
2137 
2138 	rcu_nocb_lock_irqsave(rdp, flags);
2139 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2140 		rcu_nocb_unlock_irqrestore(rdp, flags);
2141 		return;
2142 	}
2143 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2144 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2145 	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2146 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2147 }
2148 
2149 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2150 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2151 {
2152 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2153 
2154 	do_nocb_deferred_wakeup_common(rdp);
2155 }
2156 
2157 /*
2158  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2159  * This means we do an inexact common-case check.  Note that if
2160  * we miss, ->nocb_timer will eventually clean things up.
2161  */
2162 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2163 {
2164 	if (rcu_nocb_need_deferred_wakeup(rdp))
2165 		do_nocb_deferred_wakeup_common(rdp);
2166 }
2167 
2168 void __init rcu_init_nohz(void)
2169 {
2170 	int cpu;
2171 	bool need_rcu_nocb_mask = false;
2172 	struct rcu_data *rdp;
2173 
2174 #if defined(CONFIG_NO_HZ_FULL)
2175 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2176 		need_rcu_nocb_mask = true;
2177 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2178 
2179 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2180 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2181 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2182 			return;
2183 		}
2184 	}
2185 	if (!cpumask_available(rcu_nocb_mask))
2186 		return;
2187 
2188 #if defined(CONFIG_NO_HZ_FULL)
2189 	if (tick_nohz_full_running)
2190 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2191 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2192 
2193 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2194 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2195 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2196 			    rcu_nocb_mask);
2197 	}
2198 	if (cpumask_empty(rcu_nocb_mask))
2199 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2200 	else
2201 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2202 			cpumask_pr_args(rcu_nocb_mask));
2203 	if (rcu_nocb_poll)
2204 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2205 
2206 	for_each_cpu(cpu, rcu_nocb_mask) {
2207 		rdp = per_cpu_ptr(&rcu_data, cpu);
2208 		if (rcu_segcblist_empty(&rdp->cblist))
2209 			rcu_segcblist_init(&rdp->cblist);
2210 		rcu_segcblist_offload(&rdp->cblist);
2211 	}
2212 	rcu_organize_nocb_kthreads();
2213 }
2214 
2215 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2216 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2217 {
2218 	init_swait_queue_head(&rdp->nocb_cb_wq);
2219 	init_swait_queue_head(&rdp->nocb_gp_wq);
2220 	raw_spin_lock_init(&rdp->nocb_lock);
2221 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2222 	raw_spin_lock_init(&rdp->nocb_gp_lock);
2223 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2224 	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2225 	rcu_cblist_init(&rdp->nocb_bypass);
2226 }
2227 
2228 /*
2229  * If the specified CPU is a no-CBs CPU that does not already have its
2230  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2231  * for this CPU's group has not yet been created, spawn it as well.
2232  */
2233 static void rcu_spawn_one_nocb_kthread(int cpu)
2234 {
2235 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2236 	struct rcu_data *rdp_gp;
2237 	struct task_struct *t;
2238 
2239 	/*
2240 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2241 	 * then nothing to do.
2242 	 */
2243 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2244 		return;
2245 
2246 	/* If we didn't spawn the GP kthread first, reorganize! */
2247 	rdp_gp = rdp->nocb_gp_rdp;
2248 	if (!rdp_gp->nocb_gp_kthread) {
2249 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2250 				"rcuog/%d", rdp_gp->cpu);
2251 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2252 			return;
2253 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2254 	}
2255 
2256 	/* Spawn the kthread for this CPU. */
2257 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2258 			"rcuo%c/%d", rcu_state.abbr, cpu);
2259 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2260 		return;
2261 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2262 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2263 }
2264 
2265 /*
2266  * If the specified CPU is a no-CBs CPU that does not already have its
2267  * rcuo kthread, spawn it.
2268  */
2269 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2270 {
2271 	if (rcu_scheduler_fully_active)
2272 		rcu_spawn_one_nocb_kthread(cpu);
2273 }
2274 
2275 /*
2276  * Once the scheduler is running, spawn rcuo kthreads for all online
2277  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2278  * non-boot CPUs come online -- if this changes, we will need to add
2279  * some mutual exclusion.
2280  */
2281 static void __init rcu_spawn_nocb_kthreads(void)
2282 {
2283 	int cpu;
2284 
2285 	for_each_online_cpu(cpu)
2286 		rcu_spawn_cpu_nocb_kthread(cpu);
2287 }
2288 
2289 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2290 static int rcu_nocb_gp_stride = -1;
2291 module_param(rcu_nocb_gp_stride, int, 0444);
2292 
2293 /*
2294  * Initialize GP-CB relationships for all no-CBs CPU.
2295  */
2296 static void __init rcu_organize_nocb_kthreads(void)
2297 {
2298 	int cpu;
2299 	bool firsttime = true;
2300 	bool gotnocbs = false;
2301 	bool gotnocbscbs = true;
2302 	int ls = rcu_nocb_gp_stride;
2303 	int nl = 0;  /* Next GP kthread. */
2304 	struct rcu_data *rdp;
2305 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2306 	struct rcu_data *rdp_prev = NULL;
2307 
2308 	if (!cpumask_available(rcu_nocb_mask))
2309 		return;
2310 	if (ls == -1) {
2311 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2312 		rcu_nocb_gp_stride = ls;
2313 	}
2314 
2315 	/*
2316 	 * Each pass through this loop sets up one rcu_data structure.
2317 	 * Should the corresponding CPU come online in the future, then
2318 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2319 	 */
2320 	for_each_cpu(cpu, rcu_nocb_mask) {
2321 		rdp = per_cpu_ptr(&rcu_data, cpu);
2322 		if (rdp->cpu >= nl) {
2323 			/* New GP kthread, set up for CBs & next GP. */
2324 			gotnocbs = true;
2325 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2326 			rdp->nocb_gp_rdp = rdp;
2327 			rdp_gp = rdp;
2328 			if (dump_tree) {
2329 				if (!firsttime)
2330 					pr_cont("%s\n", gotnocbscbs
2331 							? "" : " (self only)");
2332 				gotnocbscbs = false;
2333 				firsttime = false;
2334 				pr_alert("%s: No-CB GP kthread CPU %d:",
2335 					 __func__, cpu);
2336 			}
2337 		} else {
2338 			/* Another CB kthread, link to previous GP kthread. */
2339 			gotnocbscbs = true;
2340 			rdp->nocb_gp_rdp = rdp_gp;
2341 			rdp_prev->nocb_next_cb_rdp = rdp;
2342 			if (dump_tree)
2343 				pr_cont(" %d", cpu);
2344 		}
2345 		rdp_prev = rdp;
2346 	}
2347 	if (gotnocbs && dump_tree)
2348 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2349 }
2350 
2351 /*
2352  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2353  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2354  */
2355 void rcu_bind_current_to_nocb(void)
2356 {
2357 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2358 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2359 }
2360 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2361 
2362 /*
2363  * Dump out nocb grace-period kthread state for the specified rcu_data
2364  * structure.
2365  */
2366 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2367 {
2368 	struct rcu_node *rnp = rdp->mynode;
2369 
2370 	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2371 		rdp->cpu,
2372 		"kK"[!!rdp->nocb_gp_kthread],
2373 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2374 		"dD"[!!rdp->nocb_defer_wakeup],
2375 		"tT"[timer_pending(&rdp->nocb_timer)],
2376 		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2377 		"sS"[!!rdp->nocb_gp_sleep],
2378 		".W"[swait_active(&rdp->nocb_gp_wq)],
2379 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2380 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2381 		".B"[!!rdp->nocb_gp_bypass],
2382 		".G"[!!rdp->nocb_gp_gp],
2383 		(long)rdp->nocb_gp_seq,
2384 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2385 }
2386 
2387 /* Dump out nocb kthread state for the specified rcu_data structure. */
2388 static void show_rcu_nocb_state(struct rcu_data *rdp)
2389 {
2390 	struct rcu_segcblist *rsclp = &rdp->cblist;
2391 	bool waslocked;
2392 	bool wastimer;
2393 	bool wassleep;
2394 
2395 	if (rdp->nocb_gp_rdp == rdp)
2396 		show_rcu_nocb_gp_state(rdp);
2397 
2398 	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2399 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2400 		"kK"[!!rdp->nocb_cb_kthread],
2401 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2402 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2403 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2404 		"sS"[!!rdp->nocb_cb_sleep],
2405 		".W"[swait_active(&rdp->nocb_cb_wq)],
2406 		jiffies - rdp->nocb_bypass_first,
2407 		jiffies - rdp->nocb_nobypass_last,
2408 		rdp->nocb_nobypass_count,
2409 		".D"[rcu_segcblist_ready_cbs(rsclp)],
2410 		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2411 		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2412 		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2413 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2414 		rcu_segcblist_n_cbs(&rdp->cblist));
2415 
2416 	/* It is OK for GP kthreads to have GP state. */
2417 	if (rdp->nocb_gp_rdp == rdp)
2418 		return;
2419 
2420 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2421 	wastimer = timer_pending(&rdp->nocb_timer);
2422 	wassleep = swait_active(&rdp->nocb_gp_wq);
2423 	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2424 	    !waslocked && !wastimer && !wassleep)
2425 		return;  /* Nothing untowards. */
2426 
2427 	pr_info("   !!! %c%c%c%c %c\n",
2428 		"lL"[waslocked],
2429 		"dD"[!!rdp->nocb_defer_wakeup],
2430 		"tT"[wastimer],
2431 		"sS"[!!rdp->nocb_gp_sleep],
2432 		".W"[wassleep]);
2433 }
2434 
2435 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2436 
2437 /* No ->nocb_lock to acquire.  */
2438 static void rcu_nocb_lock(struct rcu_data *rdp)
2439 {
2440 }
2441 
2442 /* No ->nocb_lock to release.  */
2443 static void rcu_nocb_unlock(struct rcu_data *rdp)
2444 {
2445 }
2446 
2447 /* No ->nocb_lock to release.  */
2448 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2449 				       unsigned long flags)
2450 {
2451 	local_irq_restore(flags);
2452 }
2453 
2454 /* Lockdep check that ->cblist may be safely accessed. */
2455 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2456 {
2457 	lockdep_assert_irqs_disabled();
2458 }
2459 
2460 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2461 {
2462 }
2463 
2464 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2465 {
2466 	return NULL;
2467 }
2468 
2469 static void rcu_init_one_nocb(struct rcu_node *rnp)
2470 {
2471 }
2472 
2473 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2474 				  unsigned long j)
2475 {
2476 	return true;
2477 }
2478 
2479 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2480 				bool *was_alldone, unsigned long flags)
2481 {
2482 	return false;
2483 }
2484 
2485 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2486 				 unsigned long flags)
2487 {
2488 	WARN_ON_ONCE(1);  /* Should be dead code! */
2489 }
2490 
2491 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2492 {
2493 }
2494 
2495 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2496 {
2497 	return false;
2498 }
2499 
2500 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2501 {
2502 }
2503 
2504 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2505 {
2506 }
2507 
2508 static void __init rcu_spawn_nocb_kthreads(void)
2509 {
2510 }
2511 
2512 static void show_rcu_nocb_state(struct rcu_data *rdp)
2513 {
2514 }
2515 
2516 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2517 
2518 /*
2519  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2520  * grace-period kthread will do force_quiescent_state() processing?
2521  * The idea is to avoid waking up RCU core processing on such a
2522  * CPU unless the grace period has extended for too long.
2523  *
2524  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2525  * CONFIG_RCU_NOCB_CPU CPUs.
2526  */
2527 static bool rcu_nohz_full_cpu(void)
2528 {
2529 #ifdef CONFIG_NO_HZ_FULL
2530 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2531 	    (!rcu_gp_in_progress() ||
2532 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2533 		return true;
2534 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2535 	return false;
2536 }
2537 
2538 /*
2539  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2540  */
2541 static void rcu_bind_gp_kthread(void)
2542 {
2543 	if (!tick_nohz_full_enabled())
2544 		return;
2545 	housekeeping_affine(current, HK_FLAG_RCU);
2546 }
2547 
2548 /* Record the current task on dyntick-idle entry. */
2549 static void rcu_dynticks_task_enter(void)
2550 {
2551 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2552 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2553 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2554 }
2555 
2556 /* Record no current task on dyntick-idle exit. */
2557 static void rcu_dynticks_task_exit(void)
2558 {
2559 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2560 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2561 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2562 }
2563