1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <linux/sched/isolation.h> 33 #include <uapi/linux/sched/types.h> 34 #include "../time/tick-internal.h" 35 36 #ifdef CONFIG_RCU_BOOST 37 38 #include "../locking/rtmutex_common.h" 39 40 /* 41 * Control variables for per-CPU and per-rcu_node kthreads. 42 */ 43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 46 DEFINE_PER_CPU(char, rcu_cpu_has_work); 47 48 #else /* #ifdef CONFIG_RCU_BOOST */ 49 50 /* 51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 52 * all uses are in dead code. Provide a definition to keep the compiler 53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 54 * This probably needs to be excluded from -rt builds. 55 */ 56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 57 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1) 58 59 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 60 61 #ifdef CONFIG_RCU_NOCB_CPU 62 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 63 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 65 66 /* 67 * Check the RCU kernel configuration parameters and print informative 68 * messages about anything out of the ordinary. 69 */ 70 static void __init rcu_bootup_announce_oddness(void) 71 { 72 if (IS_ENABLED(CONFIG_RCU_TRACE)) 73 pr_info("\tRCU event tracing is enabled.\n"); 74 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 75 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 77 RCU_FANOUT); 78 if (rcu_fanout_exact) 79 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 82 if (IS_ENABLED(CONFIG_PROVE_RCU)) 83 pr_info("\tRCU lockdep checking is enabled.\n"); 84 if (RCU_NUM_LVLS >= 4) 85 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 86 if (RCU_FANOUT_LEAF != 16) 87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 88 RCU_FANOUT_LEAF); 89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 91 rcu_fanout_leaf); 92 if (nr_cpu_ids != NR_CPUS) 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 94 #ifdef CONFIG_RCU_BOOST 95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 96 kthread_prio, CONFIG_RCU_BOOST_DELAY); 97 #endif 98 if (blimit != DEFAULT_RCU_BLIMIT) 99 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 100 if (qhimark != DEFAULT_RCU_QHIMARK) 101 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 102 if (qlowmark != DEFAULT_RCU_QLOMARK) 103 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 104 if (jiffies_till_first_fqs != ULONG_MAX) 105 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 106 if (jiffies_till_next_fqs != ULONG_MAX) 107 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 108 if (jiffies_till_sched_qs != ULONG_MAX) 109 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 110 if (rcu_kick_kthreads) 111 pr_info("\tKick kthreads if too-long grace period.\n"); 112 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 113 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 114 if (gp_preinit_delay) 115 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 116 if (gp_init_delay) 117 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 118 if (gp_cleanup_delay) 119 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 120 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 121 pr_info("\tRCU debug extended QS entry/exit.\n"); 122 rcupdate_announce_bootup_oddness(); 123 } 124 125 #ifdef CONFIG_PREEMPT_RCU 126 127 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 128 static void rcu_read_unlock_special(struct task_struct *t); 129 130 /* 131 * Tell them what RCU they are running. 132 */ 133 static void __init rcu_bootup_announce(void) 134 { 135 pr_info("Preemptible hierarchical RCU implementation.\n"); 136 rcu_bootup_announce_oddness(); 137 } 138 139 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 140 #define RCU_GP_TASKS 0x8 141 #define RCU_EXP_TASKS 0x4 142 #define RCU_GP_BLKD 0x2 143 #define RCU_EXP_BLKD 0x1 144 145 /* 146 * Queues a task preempted within an RCU-preempt read-side critical 147 * section into the appropriate location within the ->blkd_tasks list, 148 * depending on the states of any ongoing normal and expedited grace 149 * periods. The ->gp_tasks pointer indicates which element the normal 150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 151 * indicates which element the expedited grace period is waiting on (again, 152 * NULL if none). If a grace period is waiting on a given element in the 153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 154 * adding a task to the tail of the list blocks any grace period that is 155 * already waiting on one of the elements. In contrast, adding a task 156 * to the head of the list won't block any grace period that is already 157 * waiting on one of the elements. 158 * 159 * This queuing is imprecise, and can sometimes make an ongoing grace 160 * period wait for a task that is not strictly speaking blocking it. 161 * Given the choice, we needlessly block a normal grace period rather than 162 * blocking an expedited grace period. 163 * 164 * Note that an endless sequence of expedited grace periods still cannot 165 * indefinitely postpone a normal grace period. Eventually, all of the 166 * fixed number of preempted tasks blocking the normal grace period that are 167 * not also blocking the expedited grace period will resume and complete 168 * their RCU read-side critical sections. At that point, the ->gp_tasks 169 * pointer will equal the ->exp_tasks pointer, at which point the end of 170 * the corresponding expedited grace period will also be the end of the 171 * normal grace period. 172 */ 173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 174 __releases(rnp->lock) /* But leaves rrupts disabled. */ 175 { 176 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 177 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 178 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 179 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 180 struct task_struct *t = current; 181 182 raw_lockdep_assert_held_rcu_node(rnp); 183 WARN_ON_ONCE(rdp->mynode != rnp); 184 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 185 /* RCU better not be waiting on newly onlined CPUs! */ 186 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 187 rdp->grpmask); 188 189 /* 190 * Decide where to queue the newly blocked task. In theory, 191 * this could be an if-statement. In practice, when I tried 192 * that, it was quite messy. 193 */ 194 switch (blkd_state) { 195 case 0: 196 case RCU_EXP_TASKS: 197 case RCU_EXP_TASKS + RCU_GP_BLKD: 198 case RCU_GP_TASKS: 199 case RCU_GP_TASKS + RCU_EXP_TASKS: 200 201 /* 202 * Blocking neither GP, or first task blocking the normal 203 * GP but not blocking the already-waiting expedited GP. 204 * Queue at the head of the list to avoid unnecessarily 205 * blocking the already-waiting GPs. 206 */ 207 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 208 break; 209 210 case RCU_EXP_BLKD: 211 case RCU_GP_BLKD: 212 case RCU_GP_BLKD + RCU_EXP_BLKD: 213 case RCU_GP_TASKS + RCU_EXP_BLKD: 214 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 215 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 216 217 /* 218 * First task arriving that blocks either GP, or first task 219 * arriving that blocks the expedited GP (with the normal 220 * GP already waiting), or a task arriving that blocks 221 * both GPs with both GPs already waiting. Queue at the 222 * tail of the list to avoid any GP waiting on any of the 223 * already queued tasks that are not blocking it. 224 */ 225 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 226 break; 227 228 case RCU_EXP_TASKS + RCU_EXP_BLKD: 229 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 230 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 231 232 /* 233 * Second or subsequent task blocking the expedited GP. 234 * The task either does not block the normal GP, or is the 235 * first task blocking the normal GP. Queue just after 236 * the first task blocking the expedited GP. 237 */ 238 list_add(&t->rcu_node_entry, rnp->exp_tasks); 239 break; 240 241 case RCU_GP_TASKS + RCU_GP_BLKD: 242 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 243 244 /* 245 * Second or subsequent task blocking the normal GP. 246 * The task does not block the expedited GP. Queue just 247 * after the first task blocking the normal GP. 248 */ 249 list_add(&t->rcu_node_entry, rnp->gp_tasks); 250 break; 251 252 default: 253 254 /* Yet another exercise in excessive paranoia. */ 255 WARN_ON_ONCE(1); 256 break; 257 } 258 259 /* 260 * We have now queued the task. If it was the first one to 261 * block either grace period, update the ->gp_tasks and/or 262 * ->exp_tasks pointers, respectively, to reference the newly 263 * blocked tasks. 264 */ 265 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 266 rnp->gp_tasks = &t->rcu_node_entry; 267 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 268 } 269 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 270 rnp->exp_tasks = &t->rcu_node_entry; 271 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 272 !(rnp->qsmask & rdp->grpmask)); 273 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 274 !(rnp->expmask & rdp->grpmask)); 275 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 276 277 /* 278 * Report the quiescent state for the expedited GP. This expedited 279 * GP should not be able to end until we report, so there should be 280 * no need to check for a subsequent expedited GP. (Though we are 281 * still in a quiescent state in any case.) 282 */ 283 if (blkd_state & RCU_EXP_BLKD && rdp->deferred_qs) 284 rcu_report_exp_rdp(rdp); 285 else 286 WARN_ON_ONCE(rdp->deferred_qs); 287 } 288 289 /* 290 * Record a preemptible-RCU quiescent state for the specified CPU. 291 * Note that this does not necessarily mean that the task currently running 292 * on the CPU is in a quiescent state: Instead, it means that the current 293 * grace period need not wait on any RCU read-side critical section that 294 * starts later on this CPU. It also means that if the current task is 295 * in an RCU read-side critical section, it has already added itself to 296 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 297 * current task, there might be any number of other tasks blocked while 298 * in an RCU read-side critical section. 299 * 300 * Callers to this function must disable preemption. 301 */ 302 static void rcu_qs(void) 303 { 304 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 305 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 306 trace_rcu_grace_period(TPS("rcu_preempt"), 307 __this_cpu_read(rcu_data.gp_seq), 308 TPS("cpuqs")); 309 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 310 barrier(); /* Coordinate with rcu_flavor_check_callbacks(). */ 311 current->rcu_read_unlock_special.b.need_qs = false; 312 } 313 } 314 315 /* 316 * We have entered the scheduler, and the current task might soon be 317 * context-switched away from. If this task is in an RCU read-side 318 * critical section, we will no longer be able to rely on the CPU to 319 * record that fact, so we enqueue the task on the blkd_tasks list. 320 * The task will dequeue itself when it exits the outermost enclosing 321 * RCU read-side critical section. Therefore, the current grace period 322 * cannot be permitted to complete until the blkd_tasks list entries 323 * predating the current grace period drain, in other words, until 324 * rnp->gp_tasks becomes NULL. 325 * 326 * Caller must disable interrupts. 327 */ 328 void rcu_note_context_switch(bool preempt) 329 { 330 struct task_struct *t = current; 331 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 332 struct rcu_node *rnp; 333 334 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 335 trace_rcu_utilization(TPS("Start context switch")); 336 lockdep_assert_irqs_disabled(); 337 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); 338 if (t->rcu_read_lock_nesting > 0 && 339 !t->rcu_read_unlock_special.b.blocked) { 340 341 /* Possibly blocking in an RCU read-side critical section. */ 342 rnp = rdp->mynode; 343 raw_spin_lock_rcu_node(rnp); 344 t->rcu_read_unlock_special.b.blocked = true; 345 t->rcu_blocked_node = rnp; 346 347 /* 348 * Verify the CPU's sanity, trace the preemption, and 349 * then queue the task as required based on the states 350 * of any ongoing and expedited grace periods. 351 */ 352 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 353 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 354 trace_rcu_preempt_task(rcu_state.name, 355 t->pid, 356 (rnp->qsmask & rdp->grpmask) 357 ? rnp->gp_seq 358 : rcu_seq_snap(&rnp->gp_seq)); 359 rcu_preempt_ctxt_queue(rnp, rdp); 360 } else if (t->rcu_read_lock_nesting < 0 && 361 t->rcu_read_unlock_special.s) { 362 363 /* 364 * Complete exit from RCU read-side critical section on 365 * behalf of preempted instance of __rcu_read_unlock(). 366 */ 367 rcu_read_unlock_special(t); 368 rcu_preempt_deferred_qs(t); 369 } else { 370 rcu_preempt_deferred_qs(t); 371 } 372 373 /* 374 * Either we were not in an RCU read-side critical section to 375 * begin with, or we have now recorded that critical section 376 * globally. Either way, we can now note a quiescent state 377 * for this CPU. Again, if we were in an RCU read-side critical 378 * section, and if that critical section was blocking the current 379 * grace period, then the fact that the task has been enqueued 380 * means that we continue to block the current grace period. 381 */ 382 rcu_qs(); 383 if (rdp->deferred_qs) 384 rcu_report_exp_rdp(rdp); 385 trace_rcu_utilization(TPS("End context switch")); 386 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 387 } 388 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 389 390 /* 391 * Check for preempted RCU readers blocking the current grace period 392 * for the specified rcu_node structure. If the caller needs a reliable 393 * answer, it must hold the rcu_node's ->lock. 394 */ 395 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 396 { 397 return rnp->gp_tasks != NULL; 398 } 399 400 /* Bias and limit values for ->rcu_read_lock_nesting. */ 401 #define RCU_NEST_BIAS INT_MAX 402 #define RCU_NEST_NMAX (-INT_MAX / 2) 403 #define RCU_NEST_PMAX (INT_MAX / 2) 404 405 /* 406 * Preemptible RCU implementation for rcu_read_lock(). 407 * Just increment ->rcu_read_lock_nesting, shared state will be updated 408 * if we block. 409 */ 410 void __rcu_read_lock(void) 411 { 412 current->rcu_read_lock_nesting++; 413 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 414 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX); 415 barrier(); /* critical section after entry code. */ 416 } 417 EXPORT_SYMBOL_GPL(__rcu_read_lock); 418 419 /* 420 * Preemptible RCU implementation for rcu_read_unlock(). 421 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 422 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 423 * invoke rcu_read_unlock_special() to clean up after a context switch 424 * in an RCU read-side critical section and other special cases. 425 */ 426 void __rcu_read_unlock(void) 427 { 428 struct task_struct *t = current; 429 430 if (t->rcu_read_lock_nesting != 1) { 431 --t->rcu_read_lock_nesting; 432 } else { 433 barrier(); /* critical section before exit code. */ 434 t->rcu_read_lock_nesting = -RCU_NEST_BIAS; 435 barrier(); /* assign before ->rcu_read_unlock_special load */ 436 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 437 rcu_read_unlock_special(t); 438 barrier(); /* ->rcu_read_unlock_special load before assign */ 439 t->rcu_read_lock_nesting = 0; 440 } 441 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 442 int rrln = t->rcu_read_lock_nesting; 443 444 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX); 445 } 446 } 447 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 448 449 /* 450 * Advance a ->blkd_tasks-list pointer to the next entry, instead 451 * returning NULL if at the end of the list. 452 */ 453 static struct list_head *rcu_next_node_entry(struct task_struct *t, 454 struct rcu_node *rnp) 455 { 456 struct list_head *np; 457 458 np = t->rcu_node_entry.next; 459 if (np == &rnp->blkd_tasks) 460 np = NULL; 461 return np; 462 } 463 464 /* 465 * Return true if the specified rcu_node structure has tasks that were 466 * preempted within an RCU read-side critical section. 467 */ 468 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 469 { 470 return !list_empty(&rnp->blkd_tasks); 471 } 472 473 /* 474 * Report deferred quiescent states. The deferral time can 475 * be quite short, for example, in the case of the call from 476 * rcu_read_unlock_special(). 477 */ 478 static void 479 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 480 { 481 bool empty_exp; 482 bool empty_norm; 483 bool empty_exp_now; 484 struct list_head *np; 485 bool drop_boost_mutex = false; 486 struct rcu_data *rdp; 487 struct rcu_node *rnp; 488 union rcu_special special; 489 490 /* 491 * If RCU core is waiting for this CPU to exit its critical section, 492 * report the fact that it has exited. Because irqs are disabled, 493 * t->rcu_read_unlock_special cannot change. 494 */ 495 special = t->rcu_read_unlock_special; 496 rdp = this_cpu_ptr(&rcu_data); 497 if (!special.s && !rdp->deferred_qs) { 498 local_irq_restore(flags); 499 return; 500 } 501 if (special.b.need_qs) { 502 rcu_qs(); 503 t->rcu_read_unlock_special.b.need_qs = false; 504 if (!t->rcu_read_unlock_special.s && !rdp->deferred_qs) { 505 local_irq_restore(flags); 506 return; 507 } 508 } 509 510 /* 511 * Respond to a request by an expedited grace period for a 512 * quiescent state from this CPU. Note that requests from 513 * tasks are handled when removing the task from the 514 * blocked-tasks list below. 515 */ 516 if (rdp->deferred_qs) { 517 rcu_report_exp_rdp(rdp); 518 if (!t->rcu_read_unlock_special.s) { 519 local_irq_restore(flags); 520 return; 521 } 522 } 523 524 /* Clean up if blocked during RCU read-side critical section. */ 525 if (special.b.blocked) { 526 t->rcu_read_unlock_special.b.blocked = false; 527 528 /* 529 * Remove this task from the list it blocked on. The task 530 * now remains queued on the rcu_node corresponding to the 531 * CPU it first blocked on, so there is no longer any need 532 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 533 */ 534 rnp = t->rcu_blocked_node; 535 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 536 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 537 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 538 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 539 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 540 (!empty_norm || rnp->qsmask)); 541 empty_exp = sync_rcu_preempt_exp_done(rnp); 542 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 543 np = rcu_next_node_entry(t, rnp); 544 list_del_init(&t->rcu_node_entry); 545 t->rcu_blocked_node = NULL; 546 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 547 rnp->gp_seq, t->pid); 548 if (&t->rcu_node_entry == rnp->gp_tasks) 549 rnp->gp_tasks = np; 550 if (&t->rcu_node_entry == rnp->exp_tasks) 551 rnp->exp_tasks = np; 552 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 553 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 554 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 555 if (&t->rcu_node_entry == rnp->boost_tasks) 556 rnp->boost_tasks = np; 557 } 558 559 /* 560 * If this was the last task on the current list, and if 561 * we aren't waiting on any CPUs, report the quiescent state. 562 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 563 * so we must take a snapshot of the expedited state. 564 */ 565 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 566 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 567 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 568 rnp->gp_seq, 569 0, rnp->qsmask, 570 rnp->level, 571 rnp->grplo, 572 rnp->grphi, 573 !!rnp->gp_tasks); 574 rcu_report_unblock_qs_rnp(rnp, flags); 575 } else { 576 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 577 } 578 579 /* Unboost if we were boosted. */ 580 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 581 rt_mutex_futex_unlock(&rnp->boost_mtx); 582 583 /* 584 * If this was the last task on the expedited lists, 585 * then we need to report up the rcu_node hierarchy. 586 */ 587 if (!empty_exp && empty_exp_now) 588 rcu_report_exp_rnp(rnp, true); 589 } else { 590 local_irq_restore(flags); 591 } 592 } 593 594 /* 595 * Is a deferred quiescent-state pending, and are we also not in 596 * an RCU read-side critical section? It is the caller's responsibility 597 * to ensure it is otherwise safe to report any deferred quiescent 598 * states. The reason for this is that it is safe to report a 599 * quiescent state during context switch even though preemption 600 * is disabled. This function cannot be expected to understand these 601 * nuances, so the caller must handle them. 602 */ 603 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 604 { 605 return (__this_cpu_read(rcu_data.deferred_qs) || 606 READ_ONCE(t->rcu_read_unlock_special.s)) && 607 t->rcu_read_lock_nesting <= 0; 608 } 609 610 /* 611 * Report a deferred quiescent state if needed and safe to do so. 612 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 613 * not being in an RCU read-side critical section. The caller must 614 * evaluate safety in terms of interrupt, softirq, and preemption 615 * disabling. 616 */ 617 static void rcu_preempt_deferred_qs(struct task_struct *t) 618 { 619 unsigned long flags; 620 bool couldrecurse = t->rcu_read_lock_nesting >= 0; 621 622 if (!rcu_preempt_need_deferred_qs(t)) 623 return; 624 if (couldrecurse) 625 t->rcu_read_lock_nesting -= RCU_NEST_BIAS; 626 local_irq_save(flags); 627 rcu_preempt_deferred_qs_irqrestore(t, flags); 628 if (couldrecurse) 629 t->rcu_read_lock_nesting += RCU_NEST_BIAS; 630 } 631 632 /* 633 * Handle special cases during rcu_read_unlock(), such as needing to 634 * notify RCU core processing or task having blocked during the RCU 635 * read-side critical section. 636 */ 637 static void rcu_read_unlock_special(struct task_struct *t) 638 { 639 unsigned long flags; 640 bool preempt_bh_were_disabled = 641 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 642 bool irqs_were_disabled; 643 644 /* NMI handlers cannot block and cannot safely manipulate state. */ 645 if (in_nmi()) 646 return; 647 648 local_irq_save(flags); 649 irqs_were_disabled = irqs_disabled_flags(flags); 650 if (preempt_bh_were_disabled || irqs_were_disabled) { 651 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false); 652 /* Need to defer quiescent state until everything is enabled. */ 653 if (irqs_were_disabled) { 654 /* Enabling irqs does not reschedule, so... */ 655 raise_softirq_irqoff(RCU_SOFTIRQ); 656 } else { 657 /* Enabling BH or preempt does reschedule, so... */ 658 set_tsk_need_resched(current); 659 set_preempt_need_resched(); 660 } 661 local_irq_restore(flags); 662 return; 663 } 664 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false); 665 rcu_preempt_deferred_qs_irqrestore(t, flags); 666 } 667 668 /* 669 * Dump detailed information for all tasks blocking the current RCU 670 * grace period on the specified rcu_node structure. 671 */ 672 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 673 { 674 unsigned long flags; 675 struct task_struct *t; 676 677 raw_spin_lock_irqsave_rcu_node(rnp, flags); 678 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 679 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 680 return; 681 } 682 t = list_entry(rnp->gp_tasks->prev, 683 struct task_struct, rcu_node_entry); 684 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 685 /* 686 * We could be printing a lot while holding a spinlock. 687 * Avoid triggering hard lockup. 688 */ 689 touch_nmi_watchdog(); 690 sched_show_task(t); 691 } 692 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 693 } 694 695 /* 696 * Dump detailed information for all tasks blocking the current RCU 697 * grace period. 698 */ 699 static void rcu_print_detail_task_stall(void) 700 { 701 struct rcu_node *rnp = rcu_get_root(); 702 703 rcu_print_detail_task_stall_rnp(rnp); 704 rcu_for_each_leaf_node(rnp) 705 rcu_print_detail_task_stall_rnp(rnp); 706 } 707 708 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 709 { 710 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 711 rnp->level, rnp->grplo, rnp->grphi); 712 } 713 714 static void rcu_print_task_stall_end(void) 715 { 716 pr_cont("\n"); 717 } 718 719 /* 720 * Scan the current list of tasks blocked within RCU read-side critical 721 * sections, printing out the tid of each. 722 */ 723 static int rcu_print_task_stall(struct rcu_node *rnp) 724 { 725 struct task_struct *t; 726 int ndetected = 0; 727 728 if (!rcu_preempt_blocked_readers_cgp(rnp)) 729 return 0; 730 rcu_print_task_stall_begin(rnp); 731 t = list_entry(rnp->gp_tasks->prev, 732 struct task_struct, rcu_node_entry); 733 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 734 pr_cont(" P%d", t->pid); 735 ndetected++; 736 } 737 rcu_print_task_stall_end(); 738 return ndetected; 739 } 740 741 /* 742 * Scan the current list of tasks blocked within RCU read-side critical 743 * sections, printing out the tid of each that is blocking the current 744 * expedited grace period. 745 */ 746 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 747 { 748 struct task_struct *t; 749 int ndetected = 0; 750 751 if (!rnp->exp_tasks) 752 return 0; 753 t = list_entry(rnp->exp_tasks->prev, 754 struct task_struct, rcu_node_entry); 755 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 756 pr_cont(" P%d", t->pid); 757 ndetected++; 758 } 759 return ndetected; 760 } 761 762 /* 763 * Check that the list of blocked tasks for the newly completed grace 764 * period is in fact empty. It is a serious bug to complete a grace 765 * period that still has RCU readers blocked! This function must be 766 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock 767 * must be held by the caller. 768 * 769 * Also, if there are blocked tasks on the list, they automatically 770 * block the newly created grace period, so set up ->gp_tasks accordingly. 771 */ 772 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 773 { 774 struct task_struct *t; 775 776 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 777 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 778 dump_blkd_tasks(rnp, 10); 779 if (rcu_preempt_has_tasks(rnp) && 780 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 781 rnp->gp_tasks = rnp->blkd_tasks.next; 782 t = container_of(rnp->gp_tasks, struct task_struct, 783 rcu_node_entry); 784 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 785 rnp->gp_seq, t->pid); 786 } 787 WARN_ON_ONCE(rnp->qsmask); 788 } 789 790 /* 791 * Check for a quiescent state from the current CPU. When a task blocks, 792 * the task is recorded in the corresponding CPU's rcu_node structure, 793 * which is checked elsewhere. 794 * 795 * Caller must disable hard irqs. 796 */ 797 static void rcu_flavor_check_callbacks(int user) 798 { 799 struct task_struct *t = current; 800 801 if (user || rcu_is_cpu_rrupt_from_idle()) { 802 rcu_note_voluntary_context_switch(current); 803 } 804 if (t->rcu_read_lock_nesting > 0 || 805 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 806 /* No QS, force context switch if deferred. */ 807 if (rcu_preempt_need_deferred_qs(t)) { 808 set_tsk_need_resched(t); 809 set_preempt_need_resched(); 810 } 811 } else if (rcu_preempt_need_deferred_qs(t)) { 812 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 813 return; 814 } else if (!t->rcu_read_lock_nesting) { 815 rcu_qs(); /* Report immediate QS. */ 816 return; 817 } 818 819 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 820 if (t->rcu_read_lock_nesting > 0 && 821 __this_cpu_read(rcu_data.core_needs_qs) && 822 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 823 !t->rcu_read_unlock_special.b.need_qs && 824 time_after(jiffies, rcu_state.gp_start + HZ)) 825 t->rcu_read_unlock_special.b.need_qs = true; 826 } 827 828 /** 829 * synchronize_rcu - wait until a grace period has elapsed. 830 * 831 * Control will return to the caller some time after a full grace 832 * period has elapsed, in other words after all currently executing RCU 833 * read-side critical sections have completed. Note, however, that 834 * upon return from synchronize_rcu(), the caller might well be executing 835 * concurrently with new RCU read-side critical sections that began while 836 * synchronize_rcu() was waiting. RCU read-side critical sections are 837 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 838 * In addition, regions of code across which interrupts, preemption, or 839 * softirqs have been disabled also serve as RCU read-side critical 840 * sections. This includes hardware interrupt handlers, softirq handlers, 841 * and NMI handlers. 842 * 843 * Note that this guarantee implies further memory-ordering guarantees. 844 * On systems with more than one CPU, when synchronize_rcu() returns, 845 * each CPU is guaranteed to have executed a full memory barrier since 846 * the end of its last RCU read-side critical section whose beginning 847 * preceded the call to synchronize_rcu(). In addition, each CPU having 848 * an RCU read-side critical section that extends beyond the return from 849 * synchronize_rcu() is guaranteed to have executed a full memory barrier 850 * after the beginning of synchronize_rcu() and before the beginning of 851 * that RCU read-side critical section. Note that these guarantees include 852 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 853 * that are executing in the kernel. 854 * 855 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 856 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 857 * to have executed a full memory barrier during the execution of 858 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 859 * again only if the system has more than one CPU). 860 */ 861 void synchronize_rcu(void) 862 { 863 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 864 lock_is_held(&rcu_lock_map) || 865 lock_is_held(&rcu_sched_lock_map), 866 "Illegal synchronize_rcu() in RCU read-side critical section"); 867 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 868 return; 869 if (rcu_gp_is_expedited()) 870 synchronize_rcu_expedited(); 871 else 872 wait_rcu_gp(call_rcu); 873 } 874 EXPORT_SYMBOL_GPL(synchronize_rcu); 875 876 /* 877 * Check for a task exiting while in a preemptible-RCU read-side 878 * critical section, clean up if so. No need to issue warnings, 879 * as debug_check_no_locks_held() already does this if lockdep 880 * is enabled. 881 */ 882 void exit_rcu(void) 883 { 884 struct task_struct *t = current; 885 886 if (likely(list_empty(¤t->rcu_node_entry))) 887 return; 888 t->rcu_read_lock_nesting = 1; 889 barrier(); 890 t->rcu_read_unlock_special.b.blocked = true; 891 __rcu_read_unlock(); 892 rcu_preempt_deferred_qs(current); 893 } 894 895 /* 896 * Dump the blocked-tasks state, but limit the list dump to the 897 * specified number of elements. 898 */ 899 static void 900 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 901 { 902 int cpu; 903 int i; 904 struct list_head *lhp; 905 bool onl; 906 struct rcu_data *rdp; 907 struct rcu_node *rnp1; 908 909 raw_lockdep_assert_held_rcu_node(rnp); 910 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 911 __func__, rnp->grplo, rnp->grphi, rnp->level, 912 (long)rnp->gp_seq, (long)rnp->completedqs); 913 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 914 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 915 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 916 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 917 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks); 918 pr_info("%s: ->blkd_tasks", __func__); 919 i = 0; 920 list_for_each(lhp, &rnp->blkd_tasks) { 921 pr_cont(" %p", lhp); 922 if (++i >= 10) 923 break; 924 } 925 pr_cont("\n"); 926 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 927 rdp = per_cpu_ptr(&rcu_data, cpu); 928 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 929 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 930 cpu, ".o"[onl], 931 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 932 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 933 } 934 } 935 936 #else /* #ifdef CONFIG_PREEMPT_RCU */ 937 938 /* 939 * Tell them what RCU they are running. 940 */ 941 static void __init rcu_bootup_announce(void) 942 { 943 pr_info("Hierarchical RCU implementation.\n"); 944 rcu_bootup_announce_oddness(); 945 } 946 947 /* 948 * Note a quiescent state for PREEMPT=n. Because we do not need to know 949 * how many quiescent states passed, just if there was at least one since 950 * the start of the grace period, this just sets a flag. The caller must 951 * have disabled preemption. 952 */ 953 static void rcu_qs(void) 954 { 955 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 956 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 957 return; 958 trace_rcu_grace_period(TPS("rcu_sched"), 959 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 960 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 961 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 962 return; 963 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 964 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 965 } 966 967 /* 968 * Register an urgently needed quiescent state. If there is an 969 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 970 * dyntick-idle quiescent state visible to other CPUs, which will in 971 * some cases serve for expedited as well as normal grace periods. 972 * Either way, register a lightweight quiescent state. 973 * 974 * The barrier() calls are redundant in the common case when this is 975 * called externally, but just in case this is called from within this 976 * file. 977 * 978 */ 979 void rcu_all_qs(void) 980 { 981 unsigned long flags; 982 983 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 984 return; 985 preempt_disable(); 986 /* Load rcu_urgent_qs before other flags. */ 987 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 988 preempt_enable(); 989 return; 990 } 991 this_cpu_write(rcu_data.rcu_urgent_qs, false); 992 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 993 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 994 local_irq_save(flags); 995 rcu_momentary_dyntick_idle(); 996 local_irq_restore(flags); 997 } 998 rcu_qs(); 999 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 1000 preempt_enable(); 1001 } 1002 EXPORT_SYMBOL_GPL(rcu_all_qs); 1003 1004 /* 1005 * Note a PREEMPT=n context switch. The caller must have disabled interrupts. 1006 */ 1007 void rcu_note_context_switch(bool preempt) 1008 { 1009 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 1010 trace_rcu_utilization(TPS("Start context switch")); 1011 rcu_qs(); 1012 /* Load rcu_urgent_qs before other flags. */ 1013 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 1014 goto out; 1015 this_cpu_write(rcu_data.rcu_urgent_qs, false); 1016 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 1017 rcu_momentary_dyntick_idle(); 1018 if (!preempt) 1019 rcu_tasks_qs(current); 1020 out: 1021 trace_rcu_utilization(TPS("End context switch")); 1022 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 1023 } 1024 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 1025 1026 /* 1027 * Because preemptible RCU does not exist, there are never any preempted 1028 * RCU readers. 1029 */ 1030 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 1031 { 1032 return 0; 1033 } 1034 1035 /* 1036 * Because there is no preemptible RCU, there can be no readers blocked. 1037 */ 1038 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 1039 { 1040 return false; 1041 } 1042 1043 /* 1044 * Because there is no preemptible RCU, there can be no deferred quiescent 1045 * states. 1046 */ 1047 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 1048 { 1049 return false; 1050 } 1051 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 1052 1053 /* 1054 * Because preemptible RCU does not exist, we never have to check for 1055 * tasks blocked within RCU read-side critical sections. 1056 */ 1057 static void rcu_print_detail_task_stall(void) 1058 { 1059 } 1060 1061 /* 1062 * Because preemptible RCU does not exist, we never have to check for 1063 * tasks blocked within RCU read-side critical sections. 1064 */ 1065 static int rcu_print_task_stall(struct rcu_node *rnp) 1066 { 1067 return 0; 1068 } 1069 1070 /* 1071 * Because preemptible RCU does not exist, we never have to check for 1072 * tasks blocked within RCU read-side critical sections that are 1073 * blocking the current expedited grace period. 1074 */ 1075 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 1076 { 1077 return 0; 1078 } 1079 1080 /* 1081 * Because there is no preemptible RCU, there can be no readers blocked, 1082 * so there is no need to check for blocked tasks. So check only for 1083 * bogus qsmask values. 1084 */ 1085 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 1086 { 1087 WARN_ON_ONCE(rnp->qsmask); 1088 } 1089 1090 /* 1091 * Check to see if this CPU is in a non-context-switch quiescent state 1092 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 1093 * Also schedule RCU core processing. 1094 * 1095 * This function must be called from hardirq context. It is normally 1096 * invoked from the scheduling-clock interrupt. 1097 */ 1098 static void rcu_flavor_check_callbacks(int user) 1099 { 1100 if (user || rcu_is_cpu_rrupt_from_idle()) { 1101 1102 /* 1103 * Get here if this CPU took its interrupt from user 1104 * mode or from the idle loop, and if this is not a 1105 * nested interrupt. In this case, the CPU is in 1106 * a quiescent state, so note it. 1107 * 1108 * No memory barrier is required here because rcu_qs() 1109 * references only CPU-local variables that other CPUs 1110 * neither access nor modify, at least not while the 1111 * corresponding CPU is online. 1112 */ 1113 1114 rcu_qs(); 1115 } 1116 } 1117 1118 /* PREEMPT=n implementation of synchronize_rcu(). */ 1119 void synchronize_rcu(void) 1120 { 1121 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 1122 lock_is_held(&rcu_lock_map) || 1123 lock_is_held(&rcu_sched_lock_map), 1124 "Illegal synchronize_rcu() in RCU read-side critical section"); 1125 if (rcu_blocking_is_gp()) 1126 return; 1127 if (rcu_gp_is_expedited()) 1128 synchronize_rcu_expedited(); 1129 else 1130 wait_rcu_gp(call_rcu); 1131 } 1132 EXPORT_SYMBOL_GPL(synchronize_rcu); 1133 1134 /* 1135 * Because preemptible RCU does not exist, tasks cannot possibly exit 1136 * while in preemptible RCU read-side critical sections. 1137 */ 1138 void exit_rcu(void) 1139 { 1140 } 1141 1142 /* 1143 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 1144 */ 1145 static void 1146 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 1147 { 1148 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 1149 } 1150 1151 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 1152 1153 #ifdef CONFIG_RCU_BOOST 1154 1155 static void rcu_wake_cond(struct task_struct *t, int status) 1156 { 1157 /* 1158 * If the thread is yielding, only wake it when this 1159 * is invoked from idle 1160 */ 1161 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 1162 wake_up_process(t); 1163 } 1164 1165 /* 1166 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1167 * or ->boost_tasks, advancing the pointer to the next task in the 1168 * ->blkd_tasks list. 1169 * 1170 * Note that irqs must be enabled: boosting the task can block. 1171 * Returns 1 if there are more tasks needing to be boosted. 1172 */ 1173 static int rcu_boost(struct rcu_node *rnp) 1174 { 1175 unsigned long flags; 1176 struct task_struct *t; 1177 struct list_head *tb; 1178 1179 if (READ_ONCE(rnp->exp_tasks) == NULL && 1180 READ_ONCE(rnp->boost_tasks) == NULL) 1181 return 0; /* Nothing left to boost. */ 1182 1183 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1184 1185 /* 1186 * Recheck under the lock: all tasks in need of boosting 1187 * might exit their RCU read-side critical sections on their own. 1188 */ 1189 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1191 return 0; 1192 } 1193 1194 /* 1195 * Preferentially boost tasks blocking expedited grace periods. 1196 * This cannot starve the normal grace periods because a second 1197 * expedited grace period must boost all blocked tasks, including 1198 * those blocking the pre-existing normal grace period. 1199 */ 1200 if (rnp->exp_tasks != NULL) 1201 tb = rnp->exp_tasks; 1202 else 1203 tb = rnp->boost_tasks; 1204 1205 /* 1206 * We boost task t by manufacturing an rt_mutex that appears to 1207 * be held by task t. We leave a pointer to that rt_mutex where 1208 * task t can find it, and task t will release the mutex when it 1209 * exits its outermost RCU read-side critical section. Then 1210 * simply acquiring this artificial rt_mutex will boost task 1211 * t's priority. (Thanks to tglx for suggesting this approach!) 1212 * 1213 * Note that task t must acquire rnp->lock to remove itself from 1214 * the ->blkd_tasks list, which it will do from exit() if from 1215 * nowhere else. We therefore are guaranteed that task t will 1216 * stay around at least until we drop rnp->lock. Note that 1217 * rnp->lock also resolves races between our priority boosting 1218 * and task t's exiting its outermost RCU read-side critical 1219 * section. 1220 */ 1221 t = container_of(tb, struct task_struct, rcu_node_entry); 1222 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1223 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1224 /* Lock only for side effect: boosts task t's priority. */ 1225 rt_mutex_lock(&rnp->boost_mtx); 1226 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1227 1228 return READ_ONCE(rnp->exp_tasks) != NULL || 1229 READ_ONCE(rnp->boost_tasks) != NULL; 1230 } 1231 1232 /* 1233 * Priority-boosting kthread, one per leaf rcu_node. 1234 */ 1235 static int rcu_boost_kthread(void *arg) 1236 { 1237 struct rcu_node *rnp = (struct rcu_node *)arg; 1238 int spincnt = 0; 1239 int more2boost; 1240 1241 trace_rcu_utilization(TPS("Start boost kthread@init")); 1242 for (;;) { 1243 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1244 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1245 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1246 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1247 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1248 more2boost = rcu_boost(rnp); 1249 if (more2boost) 1250 spincnt++; 1251 else 1252 spincnt = 0; 1253 if (spincnt > 10) { 1254 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1255 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1256 schedule_timeout_interruptible(2); 1257 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1258 spincnt = 0; 1259 } 1260 } 1261 /* NOTREACHED */ 1262 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1263 return 0; 1264 } 1265 1266 /* 1267 * Check to see if it is time to start boosting RCU readers that are 1268 * blocking the current grace period, and, if so, tell the per-rcu_node 1269 * kthread to start boosting them. If there is an expedited grace 1270 * period in progress, it is always time to boost. 1271 * 1272 * The caller must hold rnp->lock, which this function releases. 1273 * The ->boost_kthread_task is immortal, so we don't need to worry 1274 * about it going away. 1275 */ 1276 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1277 __releases(rnp->lock) 1278 { 1279 struct task_struct *t; 1280 1281 raw_lockdep_assert_held_rcu_node(rnp); 1282 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1283 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1284 return; 1285 } 1286 if (rnp->exp_tasks != NULL || 1287 (rnp->gp_tasks != NULL && 1288 rnp->boost_tasks == NULL && 1289 rnp->qsmask == 0 && 1290 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1291 if (rnp->exp_tasks == NULL) 1292 rnp->boost_tasks = rnp->gp_tasks; 1293 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1294 t = rnp->boost_kthread_task; 1295 if (t) 1296 rcu_wake_cond(t, rnp->boost_kthread_status); 1297 } else { 1298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1299 } 1300 } 1301 1302 /* 1303 * Wake up the per-CPU kthread to invoke RCU callbacks. 1304 */ 1305 static void invoke_rcu_callbacks_kthread(void) 1306 { 1307 unsigned long flags; 1308 1309 local_irq_save(flags); 1310 __this_cpu_write(rcu_cpu_has_work, 1); 1311 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1312 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1313 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1314 __this_cpu_read(rcu_cpu_kthread_status)); 1315 } 1316 local_irq_restore(flags); 1317 } 1318 1319 /* 1320 * Is the current CPU running the RCU-callbacks kthread? 1321 * Caller must have preemption disabled. 1322 */ 1323 static bool rcu_is_callbacks_kthread(void) 1324 { 1325 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1326 } 1327 1328 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1329 1330 /* 1331 * Do priority-boost accounting for the start of a new grace period. 1332 */ 1333 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1334 { 1335 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1336 } 1337 1338 /* 1339 * Create an RCU-boost kthread for the specified node if one does not 1340 * already exist. We only create this kthread for preemptible RCU. 1341 * Returns zero if all is well, a negated errno otherwise. 1342 */ 1343 static int rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1344 { 1345 int rnp_index = rnp - rcu_get_root(); 1346 unsigned long flags; 1347 struct sched_param sp; 1348 struct task_struct *t; 1349 1350 if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) 1351 return 0; 1352 1353 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1354 return 0; 1355 1356 rcu_state.boost = 1; 1357 if (rnp->boost_kthread_task != NULL) 1358 return 0; 1359 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1360 "rcub/%d", rnp_index); 1361 if (IS_ERR(t)) 1362 return PTR_ERR(t); 1363 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1364 rnp->boost_kthread_task = t; 1365 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1366 sp.sched_priority = kthread_prio; 1367 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1368 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1369 return 0; 1370 } 1371 1372 static void rcu_kthread_do_work(void) 1373 { 1374 rcu_do_batch(this_cpu_ptr(&rcu_data)); 1375 } 1376 1377 static void rcu_cpu_kthread_setup(unsigned int cpu) 1378 { 1379 struct sched_param sp; 1380 1381 sp.sched_priority = kthread_prio; 1382 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1383 } 1384 1385 static void rcu_cpu_kthread_park(unsigned int cpu) 1386 { 1387 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1388 } 1389 1390 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1391 { 1392 return __this_cpu_read(rcu_cpu_has_work); 1393 } 1394 1395 /* 1396 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 1397 * the RCU softirq used in configurations of RCU that do not support RCU 1398 * priority boosting. 1399 */ 1400 static void rcu_cpu_kthread(unsigned int cpu) 1401 { 1402 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1403 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1404 int spincnt; 1405 1406 for (spincnt = 0; spincnt < 10; spincnt++) { 1407 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1408 local_bh_disable(); 1409 *statusp = RCU_KTHREAD_RUNNING; 1410 this_cpu_inc(rcu_cpu_kthread_loops); 1411 local_irq_disable(); 1412 work = *workp; 1413 *workp = 0; 1414 local_irq_enable(); 1415 if (work) 1416 rcu_kthread_do_work(); 1417 local_bh_enable(); 1418 if (*workp == 0) { 1419 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1420 *statusp = RCU_KTHREAD_WAITING; 1421 return; 1422 } 1423 } 1424 *statusp = RCU_KTHREAD_YIELDING; 1425 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1426 schedule_timeout_interruptible(2); 1427 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1428 *statusp = RCU_KTHREAD_WAITING; 1429 } 1430 1431 /* 1432 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1433 * served by the rcu_node in question. The CPU hotplug lock is still 1434 * held, so the value of rnp->qsmaskinit will be stable. 1435 * 1436 * We don't include outgoingcpu in the affinity set, use -1 if there is 1437 * no outgoing CPU. If there are no CPUs left in the affinity set, 1438 * this function allows the kthread to execute on any CPU. 1439 */ 1440 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1441 { 1442 struct task_struct *t = rnp->boost_kthread_task; 1443 unsigned long mask = rcu_rnp_online_cpus(rnp); 1444 cpumask_var_t cm; 1445 int cpu; 1446 1447 if (!t) 1448 return; 1449 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1450 return; 1451 for_each_leaf_node_possible_cpu(rnp, cpu) 1452 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1453 cpu != outgoingcpu) 1454 cpumask_set_cpu(cpu, cm); 1455 if (cpumask_weight(cm) == 0) 1456 cpumask_setall(cm); 1457 set_cpus_allowed_ptr(t, cm); 1458 free_cpumask_var(cm); 1459 } 1460 1461 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1462 .store = &rcu_cpu_kthread_task, 1463 .thread_should_run = rcu_cpu_kthread_should_run, 1464 .thread_fn = rcu_cpu_kthread, 1465 .thread_comm = "rcuc/%u", 1466 .setup = rcu_cpu_kthread_setup, 1467 .park = rcu_cpu_kthread_park, 1468 }; 1469 1470 /* 1471 * Spawn boost kthreads -- called as soon as the scheduler is running. 1472 */ 1473 static void __init rcu_spawn_boost_kthreads(void) 1474 { 1475 struct rcu_node *rnp; 1476 int cpu; 1477 1478 for_each_possible_cpu(cpu) 1479 per_cpu(rcu_cpu_has_work, cpu) = 0; 1480 if (WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), "%s: Could not start rcub kthread, OOM is now expected behavior\n", __func__)) 1481 return; 1482 rcu_for_each_leaf_node(rnp) 1483 (void)rcu_spawn_one_boost_kthread(rnp); 1484 } 1485 1486 static void rcu_prepare_kthreads(int cpu) 1487 { 1488 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1489 struct rcu_node *rnp = rdp->mynode; 1490 1491 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1492 if (rcu_scheduler_fully_active) 1493 (void)rcu_spawn_one_boost_kthread(rnp); 1494 } 1495 1496 #else /* #ifdef CONFIG_RCU_BOOST */ 1497 1498 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1499 __releases(rnp->lock) 1500 { 1501 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1502 } 1503 1504 static void invoke_rcu_callbacks_kthread(void) 1505 { 1506 WARN_ON_ONCE(1); 1507 } 1508 1509 static bool rcu_is_callbacks_kthread(void) 1510 { 1511 return false; 1512 } 1513 1514 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1515 { 1516 } 1517 1518 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1519 { 1520 } 1521 1522 static void __init rcu_spawn_boost_kthreads(void) 1523 { 1524 } 1525 1526 static void rcu_prepare_kthreads(int cpu) 1527 { 1528 } 1529 1530 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1531 1532 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1533 1534 /* 1535 * Check to see if any future RCU-related work will need to be done 1536 * by the current CPU, even if none need be done immediately, returning 1537 * 1 if so. This function is part of the RCU implementation; it is -not- 1538 * an exported member of the RCU API. 1539 * 1540 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1541 * CPU has RCU callbacks queued. 1542 */ 1543 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1544 { 1545 *nextevt = KTIME_MAX; 1546 return rcu_cpu_has_callbacks(NULL); 1547 } 1548 1549 /* 1550 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1551 * after it. 1552 */ 1553 static void rcu_cleanup_after_idle(void) 1554 { 1555 } 1556 1557 /* 1558 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1559 * is nothing. 1560 */ 1561 static void rcu_prepare_for_idle(void) 1562 { 1563 } 1564 1565 /* 1566 * Don't bother keeping a running count of the number of RCU callbacks 1567 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1568 */ 1569 static void rcu_idle_count_callbacks_posted(void) 1570 { 1571 } 1572 1573 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1574 1575 /* 1576 * This code is invoked when a CPU goes idle, at which point we want 1577 * to have the CPU do everything required for RCU so that it can enter 1578 * the energy-efficient dyntick-idle mode. This is handled by a 1579 * state machine implemented by rcu_prepare_for_idle() below. 1580 * 1581 * The following three proprocessor symbols control this state machine: 1582 * 1583 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1584 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1585 * is sized to be roughly one RCU grace period. Those energy-efficiency 1586 * benchmarkers who might otherwise be tempted to set this to a large 1587 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1588 * system. And if you are -that- concerned about energy efficiency, 1589 * just power the system down and be done with it! 1590 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1591 * permitted to sleep in dyntick-idle mode with only lazy RCU 1592 * callbacks pending. Setting this too high can OOM your system. 1593 * 1594 * The values below work well in practice. If future workloads require 1595 * adjustment, they can be converted into kernel config parameters, though 1596 * making the state machine smarter might be a better option. 1597 */ 1598 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1599 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1600 1601 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1602 module_param(rcu_idle_gp_delay, int, 0644); 1603 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1604 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1605 1606 /* 1607 * Try to advance callbacks on the current CPU, but only if it has been 1608 * awhile since the last time we did so. Afterwards, if there are any 1609 * callbacks ready for immediate invocation, return true. 1610 */ 1611 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1612 { 1613 bool cbs_ready = false; 1614 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1615 struct rcu_node *rnp; 1616 1617 /* Exit early if we advanced recently. */ 1618 if (jiffies == rdp->last_advance_all) 1619 return false; 1620 rdp->last_advance_all = jiffies; 1621 1622 rnp = rdp->mynode; 1623 1624 /* 1625 * Don't bother checking unless a grace period has 1626 * completed since we last checked and there are 1627 * callbacks not yet ready to invoke. 1628 */ 1629 if ((rcu_seq_completed_gp(rdp->gp_seq, 1630 rcu_seq_current(&rnp->gp_seq)) || 1631 unlikely(READ_ONCE(rdp->gpwrap))) && 1632 rcu_segcblist_pend_cbs(&rdp->cblist)) 1633 note_gp_changes(rdp); 1634 1635 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1636 cbs_ready = true; 1637 return cbs_ready; 1638 } 1639 1640 /* 1641 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1642 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1643 * caller to set the timeout based on whether or not there are non-lazy 1644 * callbacks. 1645 * 1646 * The caller must have disabled interrupts. 1647 */ 1648 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1649 { 1650 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1651 unsigned long dj; 1652 1653 lockdep_assert_irqs_disabled(); 1654 1655 /* Snapshot to detect later posting of non-lazy callback. */ 1656 rdp->nonlazy_posted_snap = rdp->nonlazy_posted; 1657 1658 /* If no callbacks, RCU doesn't need the CPU. */ 1659 if (!rcu_cpu_has_callbacks(&rdp->all_lazy)) { 1660 *nextevt = KTIME_MAX; 1661 return 0; 1662 } 1663 1664 /* Attempt to advance callbacks. */ 1665 if (rcu_try_advance_all_cbs()) { 1666 /* Some ready to invoke, so initiate later invocation. */ 1667 invoke_rcu_core(); 1668 return 1; 1669 } 1670 rdp->last_accelerate = jiffies; 1671 1672 /* Request timer delay depending on laziness, and round. */ 1673 if (!rdp->all_lazy) { 1674 dj = round_up(rcu_idle_gp_delay + jiffies, 1675 rcu_idle_gp_delay) - jiffies; 1676 } else { 1677 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1678 } 1679 *nextevt = basemono + dj * TICK_NSEC; 1680 return 0; 1681 } 1682 1683 /* 1684 * Prepare a CPU for idle from an RCU perspective. The first major task 1685 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1686 * The second major task is to check to see if a non-lazy callback has 1687 * arrived at a CPU that previously had only lazy callbacks. The third 1688 * major task is to accelerate (that is, assign grace-period numbers to) 1689 * any recently arrived callbacks. 1690 * 1691 * The caller must have disabled interrupts. 1692 */ 1693 static void rcu_prepare_for_idle(void) 1694 { 1695 bool needwake; 1696 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1697 struct rcu_node *rnp; 1698 int tne; 1699 1700 lockdep_assert_irqs_disabled(); 1701 if (rcu_is_nocb_cpu(smp_processor_id())) 1702 return; 1703 1704 /* Handle nohz enablement switches conservatively. */ 1705 tne = READ_ONCE(tick_nohz_active); 1706 if (tne != rdp->tick_nohz_enabled_snap) { 1707 if (rcu_cpu_has_callbacks(NULL)) 1708 invoke_rcu_core(); /* force nohz to see update. */ 1709 rdp->tick_nohz_enabled_snap = tne; 1710 return; 1711 } 1712 if (!tne) 1713 return; 1714 1715 /* 1716 * If a non-lazy callback arrived at a CPU having only lazy 1717 * callbacks, invoke RCU core for the side-effect of recalculating 1718 * idle duration on re-entry to idle. 1719 */ 1720 if (rdp->all_lazy && 1721 rdp->nonlazy_posted != rdp->nonlazy_posted_snap) { 1722 rdp->all_lazy = false; 1723 rdp->nonlazy_posted_snap = rdp->nonlazy_posted; 1724 invoke_rcu_core(); 1725 return; 1726 } 1727 1728 /* 1729 * If we have not yet accelerated this jiffy, accelerate all 1730 * callbacks on this CPU. 1731 */ 1732 if (rdp->last_accelerate == jiffies) 1733 return; 1734 rdp->last_accelerate = jiffies; 1735 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1736 rnp = rdp->mynode; 1737 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1738 needwake = rcu_accelerate_cbs(rnp, rdp); 1739 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1740 if (needwake) 1741 rcu_gp_kthread_wake(); 1742 } 1743 } 1744 1745 /* 1746 * Clean up for exit from idle. Attempt to advance callbacks based on 1747 * any grace periods that elapsed while the CPU was idle, and if any 1748 * callbacks are now ready to invoke, initiate invocation. 1749 */ 1750 static void rcu_cleanup_after_idle(void) 1751 { 1752 lockdep_assert_irqs_disabled(); 1753 if (rcu_is_nocb_cpu(smp_processor_id())) 1754 return; 1755 if (rcu_try_advance_all_cbs()) 1756 invoke_rcu_core(); 1757 } 1758 1759 /* 1760 * Keep a running count of the number of non-lazy callbacks posted 1761 * on this CPU. This running counter (which is never decremented) allows 1762 * rcu_prepare_for_idle() to detect when something out of the idle loop 1763 * posts a callback, even if an equal number of callbacks are invoked. 1764 * Of course, callbacks should only be posted from within a trace event 1765 * designed to be called from idle or from within RCU_NONIDLE(). 1766 */ 1767 static void rcu_idle_count_callbacks_posted(void) 1768 { 1769 __this_cpu_add(rcu_data.nonlazy_posted, 1); 1770 } 1771 1772 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1773 1774 #ifdef CONFIG_RCU_FAST_NO_HZ 1775 1776 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1777 { 1778 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 1779 unsigned long nlpd = rdp->nonlazy_posted - rdp->nonlazy_posted_snap; 1780 1781 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1782 rdp->last_accelerate & 0xffff, jiffies & 0xffff, 1783 ulong2long(nlpd), 1784 rdp->all_lazy ? 'L' : '.', 1785 rdp->tick_nohz_enabled_snap ? '.' : 'D'); 1786 } 1787 1788 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1789 1790 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1791 { 1792 *cp = '\0'; 1793 } 1794 1795 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1796 1797 /* Initiate the stall-info list. */ 1798 static void print_cpu_stall_info_begin(void) 1799 { 1800 pr_cont("\n"); 1801 } 1802 1803 /* 1804 * Print out diagnostic information for the specified stalled CPU. 1805 * 1806 * If the specified CPU is aware of the current RCU grace period, then 1807 * print the number of scheduling clock interrupts the CPU has taken 1808 * during the time that it has been aware. Otherwise, print the number 1809 * of RCU grace periods that this CPU is ignorant of, for example, "1" 1810 * if the CPU was aware of the previous grace period. 1811 * 1812 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1813 */ 1814 static void print_cpu_stall_info(int cpu) 1815 { 1816 unsigned long delta; 1817 char fast_no_hz[72]; 1818 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1819 char *ticks_title; 1820 unsigned long ticks_value; 1821 1822 /* 1823 * We could be printing a lot while holding a spinlock. Avoid 1824 * triggering hard lockup. 1825 */ 1826 touch_nmi_watchdog(); 1827 1828 ticks_value = rcu_seq_ctr(rcu_state.gp_seq - rdp->gp_seq); 1829 if (ticks_value) { 1830 ticks_title = "GPs behind"; 1831 } else { 1832 ticks_title = "ticks this GP"; 1833 ticks_value = rdp->ticks_this_gp; 1834 } 1835 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1836 delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq); 1837 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n", 1838 cpu, 1839 "O."[!!cpu_online(cpu)], 1840 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1841 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1842 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' : 1843 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' : 1844 "!."[!delta], 1845 ticks_value, ticks_title, 1846 rcu_dynticks_snap(rdp) & 0xfff, 1847 rdp->dynticks_nesting, rdp->dynticks_nmi_nesting, 1848 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1849 READ_ONCE(rcu_state.n_force_qs) - rcu_state.n_force_qs_gpstart, 1850 fast_no_hz); 1851 } 1852 1853 /* Terminate the stall-info list. */ 1854 static void print_cpu_stall_info_end(void) 1855 { 1856 pr_err("\t"); 1857 } 1858 1859 /* Zero ->ticks_this_gp and snapshot the number of RCU softirq handlers. */ 1860 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1861 { 1862 rdp->ticks_this_gp = 0; 1863 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1864 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1865 } 1866 1867 #ifdef CONFIG_RCU_NOCB_CPU 1868 1869 /* 1870 * Offload callback processing from the boot-time-specified set of CPUs 1871 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1872 * kthread created that pulls the callbacks from the corresponding CPU, 1873 * waits for a grace period to elapse, and invokes the callbacks. 1874 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1875 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1876 * has been specified, in which case each kthread actively polls its 1877 * CPU. (Which isn't so great for energy efficiency, but which does 1878 * reduce RCU's overhead on that CPU.) 1879 * 1880 * This is intended to be used in conjunction with Frederic Weisbecker's 1881 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1882 * running CPU-bound user-mode computations. 1883 * 1884 * Offloading of callback processing could also in theory be used as 1885 * an energy-efficiency measure because CPUs with no RCU callbacks 1886 * queued are more aggressive about entering dyntick-idle mode. 1887 */ 1888 1889 1890 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1891 static int __init rcu_nocb_setup(char *str) 1892 { 1893 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1894 cpulist_parse(str, rcu_nocb_mask); 1895 return 1; 1896 } 1897 __setup("rcu_nocbs=", rcu_nocb_setup); 1898 1899 static int __init parse_rcu_nocb_poll(char *arg) 1900 { 1901 rcu_nocb_poll = true; 1902 return 0; 1903 } 1904 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1905 1906 /* 1907 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1908 * grace period. 1909 */ 1910 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1911 { 1912 swake_up_all(sq); 1913 } 1914 1915 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1916 { 1917 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 1918 } 1919 1920 static void rcu_init_one_nocb(struct rcu_node *rnp) 1921 { 1922 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1923 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1924 } 1925 1926 /* Is the specified CPU a no-CBs CPU? */ 1927 bool rcu_is_nocb_cpu(int cpu) 1928 { 1929 if (cpumask_available(rcu_nocb_mask)) 1930 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1931 return false; 1932 } 1933 1934 /* 1935 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock 1936 * and this function releases it. 1937 */ 1938 static void __wake_nocb_leader(struct rcu_data *rdp, bool force, 1939 unsigned long flags) 1940 __releases(rdp->nocb_lock) 1941 { 1942 struct rcu_data *rdp_leader = rdp->nocb_leader; 1943 1944 lockdep_assert_held(&rdp->nocb_lock); 1945 if (!READ_ONCE(rdp_leader->nocb_kthread)) { 1946 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1947 return; 1948 } 1949 if (rdp_leader->nocb_leader_sleep || force) { 1950 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1951 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1952 del_timer(&rdp->nocb_timer); 1953 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1954 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */ 1955 swake_up_one(&rdp_leader->nocb_wq); 1956 } else { 1957 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1958 } 1959 } 1960 1961 /* 1962 * Kick the leader kthread for this NOCB group, but caller has not 1963 * acquired locks. 1964 */ 1965 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1966 { 1967 unsigned long flags; 1968 1969 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1970 __wake_nocb_leader(rdp, force, flags); 1971 } 1972 1973 /* 1974 * Arrange to wake the leader kthread for this NOCB group at some 1975 * future time when it is safe to do so. 1976 */ 1977 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, 1978 const char *reason) 1979 { 1980 unsigned long flags; 1981 1982 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1983 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1984 mod_timer(&rdp->nocb_timer, jiffies + 1); 1985 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1986 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 1987 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1988 } 1989 1990 /* 1991 * Does the specified CPU need an RCU callback for this invocation 1992 * of rcu_barrier()? 1993 */ 1994 static bool rcu_nocb_cpu_needs_barrier(int cpu) 1995 { 1996 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1997 unsigned long ret; 1998 #ifdef CONFIG_PROVE_RCU 1999 struct rcu_head *rhp; 2000 #endif /* #ifdef CONFIG_PROVE_RCU */ 2001 2002 /* 2003 * Check count of all no-CBs callbacks awaiting invocation. 2004 * There needs to be a barrier before this function is called, 2005 * but associated with a prior determination that no more 2006 * callbacks would be posted. In the worst case, the first 2007 * barrier in rcu_barrier() suffices (but the caller cannot 2008 * necessarily rely on this, not a substitute for the caller 2009 * getting the concurrency design right!). There must also be 2010 * a barrier between the following load an posting of a callback 2011 * (if a callback is in fact needed). This is associated with an 2012 * atomic_inc() in the caller. 2013 */ 2014 ret = rcu_get_n_cbs_nocb_cpu(rdp); 2015 2016 #ifdef CONFIG_PROVE_RCU 2017 rhp = READ_ONCE(rdp->nocb_head); 2018 if (!rhp) 2019 rhp = READ_ONCE(rdp->nocb_gp_head); 2020 if (!rhp) 2021 rhp = READ_ONCE(rdp->nocb_follower_head); 2022 2023 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 2024 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 2025 rcu_scheduler_fully_active) { 2026 /* RCU callback enqueued before CPU first came online??? */ 2027 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 2028 cpu, rhp->func); 2029 WARN_ON_ONCE(1); 2030 } 2031 #endif /* #ifdef CONFIG_PROVE_RCU */ 2032 2033 return !!ret; 2034 } 2035 2036 /* 2037 * Enqueue the specified string of rcu_head structures onto the specified 2038 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 2039 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 2040 * counts are supplied by rhcount and rhcount_lazy. 2041 * 2042 * If warranted, also wake up the kthread servicing this CPUs queues. 2043 */ 2044 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 2045 struct rcu_head *rhp, 2046 struct rcu_head **rhtp, 2047 int rhcount, int rhcount_lazy, 2048 unsigned long flags) 2049 { 2050 int len; 2051 struct rcu_head **old_rhpp; 2052 struct task_struct *t; 2053 2054 /* Enqueue the callback on the nocb list and update counts. */ 2055 atomic_long_add(rhcount, &rdp->nocb_q_count); 2056 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 2057 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 2058 WRITE_ONCE(*old_rhpp, rhp); 2059 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 2060 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 2061 2062 /* If we are not being polled and there is a kthread, awaken it ... */ 2063 t = READ_ONCE(rdp->nocb_kthread); 2064 if (rcu_nocb_poll || !t) { 2065 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2066 TPS("WakeNotPoll")); 2067 return; 2068 } 2069 len = rcu_get_n_cbs_nocb_cpu(rdp); 2070 if (old_rhpp == &rdp->nocb_head) { 2071 if (!irqs_disabled_flags(flags)) { 2072 /* ... if queue was empty ... */ 2073 wake_nocb_leader(rdp, false); 2074 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2075 TPS("WakeEmpty")); 2076 } else { 2077 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 2078 TPS("WakeEmptyIsDeferred")); 2079 } 2080 rdp->qlen_last_fqs_check = 0; 2081 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 2082 /* ... or if many callbacks queued. */ 2083 if (!irqs_disabled_flags(flags)) { 2084 wake_nocb_leader(rdp, true); 2085 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2086 TPS("WakeOvf")); 2087 } else { 2088 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE, 2089 TPS("WakeOvfIsDeferred")); 2090 } 2091 rdp->qlen_last_fqs_check = LONG_MAX / 2; 2092 } else { 2093 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 2094 } 2095 return; 2096 } 2097 2098 /* 2099 * This is a helper for __call_rcu(), which invokes this when the normal 2100 * callback queue is inoperable. If this is not a no-CBs CPU, this 2101 * function returns failure back to __call_rcu(), which can complain 2102 * appropriately. 2103 * 2104 * Otherwise, this function queues the callback where the corresponding 2105 * "rcuo" kthread can find it. 2106 */ 2107 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2108 bool lazy, unsigned long flags) 2109 { 2110 2111 if (!rcu_is_nocb_cpu(rdp->cpu)) 2112 return false; 2113 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2114 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2115 trace_rcu_kfree_callback(rcu_state.name, rhp, 2116 (unsigned long)rhp->func, 2117 -atomic_long_read(&rdp->nocb_q_count_lazy), 2118 -rcu_get_n_cbs_nocb_cpu(rdp)); 2119 else 2120 trace_rcu_callback(rcu_state.name, rhp, 2121 -atomic_long_read(&rdp->nocb_q_count_lazy), 2122 -rcu_get_n_cbs_nocb_cpu(rdp)); 2123 2124 /* 2125 * If called from an extended quiescent state with interrupts 2126 * disabled, invoke the RCU core in order to allow the idle-entry 2127 * deferred-wakeup check to function. 2128 */ 2129 if (irqs_disabled_flags(flags) && 2130 !rcu_is_watching() && 2131 cpu_online(smp_processor_id())) 2132 invoke_rcu_core(); 2133 2134 return true; 2135 } 2136 2137 /* 2138 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2139 * not a no-CBs CPU. 2140 */ 2141 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2142 struct rcu_data *rdp, 2143 unsigned long flags) 2144 { 2145 lockdep_assert_irqs_disabled(); 2146 if (!rcu_is_nocb_cpu(smp_processor_id())) 2147 return false; /* Not NOCBs CPU, caller must migrate CBs. */ 2148 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist), 2149 rcu_segcblist_tail(&rdp->cblist), 2150 rcu_segcblist_n_cbs(&rdp->cblist), 2151 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags); 2152 rcu_segcblist_init(&rdp->cblist); 2153 rcu_segcblist_disable(&rdp->cblist); 2154 return true; 2155 } 2156 2157 /* 2158 * If necessary, kick off a new grace period, and either way wait 2159 * for a subsequent grace period to complete. 2160 */ 2161 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2162 { 2163 unsigned long c; 2164 bool d; 2165 unsigned long flags; 2166 bool needwake; 2167 struct rcu_node *rnp = rdp->mynode; 2168 2169 local_irq_save(flags); 2170 c = rcu_seq_snap(&rcu_state.gp_seq); 2171 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 2172 local_irq_restore(flags); 2173 } else { 2174 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2175 needwake = rcu_start_this_gp(rnp, rdp, c); 2176 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2177 if (needwake) 2178 rcu_gp_kthread_wake(); 2179 } 2180 2181 /* 2182 * Wait for the grace period. Do so interruptibly to avoid messing 2183 * up the load average. 2184 */ 2185 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait")); 2186 for (;;) { 2187 swait_event_interruptible_exclusive( 2188 rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1], 2189 (d = rcu_seq_done(&rnp->gp_seq, c))); 2190 if (likely(d)) 2191 break; 2192 WARN_ON(signal_pending(current)); 2193 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait")); 2194 } 2195 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait")); 2196 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2197 } 2198 2199 /* 2200 * Leaders come here to wait for additional callbacks to show up. 2201 * This function does not return until callbacks appear. 2202 */ 2203 static void nocb_leader_wait(struct rcu_data *my_rdp) 2204 { 2205 bool firsttime = true; 2206 unsigned long flags; 2207 bool gotcbs; 2208 struct rcu_data *rdp; 2209 struct rcu_head **tail; 2210 2211 wait_again: 2212 2213 /* Wait for callbacks to appear. */ 2214 if (!rcu_nocb_poll) { 2215 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Sleep")); 2216 swait_event_interruptible_exclusive(my_rdp->nocb_wq, 2217 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2218 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2219 my_rdp->nocb_leader_sleep = true; 2220 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2221 del_timer(&my_rdp->nocb_timer); 2222 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2223 } else if (firsttime) { 2224 firsttime = false; /* Don't drown trace log with "Poll"! */ 2225 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Poll")); 2226 } 2227 2228 /* 2229 * Each pass through the following loop checks a follower for CBs. 2230 * We are our own first follower. Any CBs found are moved to 2231 * nocb_gp_head, where they await a grace period. 2232 */ 2233 gotcbs = false; 2234 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */ 2235 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2236 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2237 if (!rdp->nocb_gp_head) 2238 continue; /* No CBs here, try next follower. */ 2239 2240 /* Move callbacks to wait-for-GP list, which is empty. */ 2241 WRITE_ONCE(rdp->nocb_head, NULL); 2242 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2243 gotcbs = true; 2244 } 2245 2246 /* No callbacks? Sleep a bit if polling, and go retry. */ 2247 if (unlikely(!gotcbs)) { 2248 WARN_ON(signal_pending(current)); 2249 if (rcu_nocb_poll) { 2250 schedule_timeout_interruptible(1); 2251 } else { 2252 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, 2253 TPS("WokeEmpty")); 2254 } 2255 goto wait_again; 2256 } 2257 2258 /* Wait for one grace period. */ 2259 rcu_nocb_wait_gp(my_rdp); 2260 2261 /* Each pass through the following loop wakes a follower, if needed. */ 2262 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2263 if (!rcu_nocb_poll && 2264 READ_ONCE(rdp->nocb_head) && 2265 READ_ONCE(my_rdp->nocb_leader_sleep)) { 2266 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2267 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2268 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2269 } 2270 if (!rdp->nocb_gp_head) 2271 continue; /* No CBs, so no need to wake follower. */ 2272 2273 /* Append callbacks to follower's "done" list. */ 2274 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2275 tail = rdp->nocb_follower_tail; 2276 rdp->nocb_follower_tail = rdp->nocb_gp_tail; 2277 *tail = rdp->nocb_gp_head; 2278 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2279 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2280 /* List was empty, so wake up the follower. */ 2281 swake_up_one(&rdp->nocb_wq); 2282 } 2283 } 2284 2285 /* If we (the leader) don't have CBs, go wait some more. */ 2286 if (!my_rdp->nocb_follower_head) 2287 goto wait_again; 2288 } 2289 2290 /* 2291 * Followers come here to wait for additional callbacks to show up. 2292 * This function does not return until callbacks appear. 2293 */ 2294 static void nocb_follower_wait(struct rcu_data *rdp) 2295 { 2296 for (;;) { 2297 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FollowerSleep")); 2298 swait_event_interruptible_exclusive(rdp->nocb_wq, 2299 READ_ONCE(rdp->nocb_follower_head)); 2300 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2301 /* ^^^ Ensure CB invocation follows _head test. */ 2302 return; 2303 } 2304 WARN_ON(signal_pending(current)); 2305 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 2306 } 2307 } 2308 2309 /* 2310 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2311 * callbacks queued by the corresponding no-CBs CPU, however, there is 2312 * an optional leader-follower relationship so that the grace-period 2313 * kthreads don't have to do quite so many wakeups. 2314 */ 2315 static int rcu_nocb_kthread(void *arg) 2316 { 2317 int c, cl; 2318 unsigned long flags; 2319 struct rcu_head *list; 2320 struct rcu_head *next; 2321 struct rcu_head **tail; 2322 struct rcu_data *rdp = arg; 2323 2324 /* Each pass through this loop invokes one batch of callbacks */ 2325 for (;;) { 2326 /* Wait for callbacks. */ 2327 if (rdp->nocb_leader == rdp) 2328 nocb_leader_wait(rdp); 2329 else 2330 nocb_follower_wait(rdp); 2331 2332 /* Pull the ready-to-invoke callbacks onto local list. */ 2333 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2334 list = rdp->nocb_follower_head; 2335 rdp->nocb_follower_head = NULL; 2336 tail = rdp->nocb_follower_tail; 2337 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2338 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2339 if (WARN_ON_ONCE(!list)) 2340 continue; 2341 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeNonEmpty")); 2342 2343 /* Each pass through the following loop invokes a callback. */ 2344 trace_rcu_batch_start(rcu_state.name, 2345 atomic_long_read(&rdp->nocb_q_count_lazy), 2346 rcu_get_n_cbs_nocb_cpu(rdp), -1); 2347 c = cl = 0; 2348 while (list) { 2349 next = list->next; 2350 /* Wait for enqueuing to complete, if needed. */ 2351 while (next == NULL && &list->next != tail) { 2352 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2353 TPS("WaitQueue")); 2354 schedule_timeout_interruptible(1); 2355 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2356 TPS("WokeQueue")); 2357 next = list->next; 2358 } 2359 debug_rcu_head_unqueue(list); 2360 local_bh_disable(); 2361 if (__rcu_reclaim(rcu_state.name, list)) 2362 cl++; 2363 c++; 2364 local_bh_enable(); 2365 cond_resched_tasks_rcu_qs(); 2366 list = next; 2367 } 2368 trace_rcu_batch_end(rcu_state.name, c, !!list, 0, 0, 1); 2369 smp_mb__before_atomic(); /* _add after CB invocation. */ 2370 atomic_long_add(-c, &rdp->nocb_q_count); 2371 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2372 } 2373 return 0; 2374 } 2375 2376 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2377 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2378 { 2379 return READ_ONCE(rdp->nocb_defer_wakeup); 2380 } 2381 2382 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2383 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2384 { 2385 unsigned long flags; 2386 int ndw; 2387 2388 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2389 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2390 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2391 return; 2392 } 2393 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2394 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2395 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2396 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 2397 } 2398 2399 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2400 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2401 { 2402 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2403 2404 do_nocb_deferred_wakeup_common(rdp); 2405 } 2406 2407 /* 2408 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2409 * This means we do an inexact common-case check. Note that if 2410 * we miss, ->nocb_timer will eventually clean things up. 2411 */ 2412 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2413 { 2414 if (rcu_nocb_need_deferred_wakeup(rdp)) 2415 do_nocb_deferred_wakeup_common(rdp); 2416 } 2417 2418 void __init rcu_init_nohz(void) 2419 { 2420 int cpu; 2421 bool need_rcu_nocb_mask = false; 2422 2423 #if defined(CONFIG_NO_HZ_FULL) 2424 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2425 need_rcu_nocb_mask = true; 2426 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2427 2428 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2429 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2430 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2431 return; 2432 } 2433 } 2434 if (!cpumask_available(rcu_nocb_mask)) 2435 return; 2436 2437 #if defined(CONFIG_NO_HZ_FULL) 2438 if (tick_nohz_full_running) 2439 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2440 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2441 2442 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2443 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2444 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2445 rcu_nocb_mask); 2446 } 2447 if (cpumask_empty(rcu_nocb_mask)) 2448 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2449 else 2450 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2451 cpumask_pr_args(rcu_nocb_mask)); 2452 if (rcu_nocb_poll) 2453 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2454 2455 for_each_cpu(cpu, rcu_nocb_mask) 2456 init_nocb_callback_list(per_cpu_ptr(&rcu_data, cpu)); 2457 rcu_organize_nocb_kthreads(); 2458 } 2459 2460 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2461 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2462 { 2463 rdp->nocb_tail = &rdp->nocb_head; 2464 init_swait_queue_head(&rdp->nocb_wq); 2465 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2466 raw_spin_lock_init(&rdp->nocb_lock); 2467 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2468 } 2469 2470 /* 2471 * If the specified CPU is a no-CBs CPU that does not already have its 2472 * rcuo kthread, spawn it. If the CPUs are brought online out of order, 2473 * this can require re-organizing the leader-follower relationships. 2474 */ 2475 static void rcu_spawn_one_nocb_kthread(int cpu) 2476 { 2477 struct rcu_data *rdp; 2478 struct rcu_data *rdp_last; 2479 struct rcu_data *rdp_old_leader; 2480 struct rcu_data *rdp_spawn = per_cpu_ptr(&rcu_data, cpu); 2481 struct task_struct *t; 2482 2483 /* 2484 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2485 * then nothing to do. 2486 */ 2487 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2488 return; 2489 2490 /* If we didn't spawn the leader first, reorganize! */ 2491 rdp_old_leader = rdp_spawn->nocb_leader; 2492 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2493 rdp_last = NULL; 2494 rdp = rdp_old_leader; 2495 do { 2496 rdp->nocb_leader = rdp_spawn; 2497 if (rdp_last && rdp != rdp_spawn) 2498 rdp_last->nocb_next_follower = rdp; 2499 if (rdp == rdp_spawn) { 2500 rdp = rdp->nocb_next_follower; 2501 } else { 2502 rdp_last = rdp; 2503 rdp = rdp->nocb_next_follower; 2504 rdp_last->nocb_next_follower = NULL; 2505 } 2506 } while (rdp); 2507 rdp_spawn->nocb_next_follower = rdp_old_leader; 2508 } 2509 2510 /* Spawn the kthread for this CPU. */ 2511 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2512 "rcuo%c/%d", rcu_state.abbr, cpu); 2513 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo kthread, OOM is now expected behavior\n", __func__)) 2514 return; 2515 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2516 } 2517 2518 /* 2519 * If the specified CPU is a no-CBs CPU that does not already have its 2520 * rcuo kthreads, spawn them. 2521 */ 2522 static void rcu_spawn_all_nocb_kthreads(int cpu) 2523 { 2524 if (rcu_scheduler_fully_active) 2525 rcu_spawn_one_nocb_kthread(cpu); 2526 } 2527 2528 /* 2529 * Once the scheduler is running, spawn rcuo kthreads for all online 2530 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2531 * non-boot CPUs come online -- if this changes, we will need to add 2532 * some mutual exclusion. 2533 */ 2534 static void __init rcu_spawn_nocb_kthreads(void) 2535 { 2536 int cpu; 2537 2538 for_each_online_cpu(cpu) 2539 rcu_spawn_all_nocb_kthreads(cpu); 2540 } 2541 2542 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2543 static int rcu_nocb_leader_stride = -1; 2544 module_param(rcu_nocb_leader_stride, int, 0444); 2545 2546 /* 2547 * Initialize leader-follower relationships for all no-CBs CPU. 2548 */ 2549 static void __init rcu_organize_nocb_kthreads(void) 2550 { 2551 int cpu; 2552 int ls = rcu_nocb_leader_stride; 2553 int nl = 0; /* Next leader. */ 2554 struct rcu_data *rdp; 2555 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2556 struct rcu_data *rdp_prev = NULL; 2557 2558 if (!cpumask_available(rcu_nocb_mask)) 2559 return; 2560 if (ls == -1) { 2561 ls = int_sqrt(nr_cpu_ids); 2562 rcu_nocb_leader_stride = ls; 2563 } 2564 2565 /* 2566 * Each pass through this loop sets up one rcu_data structure. 2567 * Should the corresponding CPU come online in the future, then 2568 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2569 */ 2570 for_each_cpu(cpu, rcu_nocb_mask) { 2571 rdp = per_cpu_ptr(&rcu_data, cpu); 2572 if (rdp->cpu >= nl) { 2573 /* New leader, set up for followers & next leader. */ 2574 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2575 rdp->nocb_leader = rdp; 2576 rdp_leader = rdp; 2577 } else { 2578 /* Another follower, link to previous leader. */ 2579 rdp->nocb_leader = rdp_leader; 2580 rdp_prev->nocb_next_follower = rdp; 2581 } 2582 rdp_prev = rdp; 2583 } 2584 } 2585 2586 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2587 static bool init_nocb_callback_list(struct rcu_data *rdp) 2588 { 2589 if (!rcu_is_nocb_cpu(rdp->cpu)) 2590 return false; 2591 2592 /* If there are early-boot callbacks, move them to nocb lists. */ 2593 if (!rcu_segcblist_empty(&rdp->cblist)) { 2594 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2595 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2596 atomic_long_set(&rdp->nocb_q_count, 2597 rcu_segcblist_n_cbs(&rdp->cblist)); 2598 atomic_long_set(&rdp->nocb_q_count_lazy, 2599 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2600 rcu_segcblist_init(&rdp->cblist); 2601 } 2602 rcu_segcblist_disable(&rdp->cblist); 2603 return true; 2604 } 2605 2606 /* 2607 * Bind the current task to the offloaded CPUs. If there are no offloaded 2608 * CPUs, leave the task unbound. Splat if the bind attempt fails. 2609 */ 2610 void rcu_bind_current_to_nocb(void) 2611 { 2612 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) 2613 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 2614 } 2615 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 2616 2617 /* 2618 * Return the number of RCU callbacks still queued from the specified 2619 * CPU, which must be a nocbs CPU. 2620 */ 2621 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp) 2622 { 2623 return atomic_long_read(&rdp->nocb_q_count); 2624 } 2625 2626 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2627 2628 static bool rcu_nocb_cpu_needs_barrier(int cpu) 2629 { 2630 WARN_ON_ONCE(1); /* Should be dead code. */ 2631 return false; 2632 } 2633 2634 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2635 { 2636 } 2637 2638 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2639 { 2640 return NULL; 2641 } 2642 2643 static void rcu_init_one_nocb(struct rcu_node *rnp) 2644 { 2645 } 2646 2647 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2648 bool lazy, unsigned long flags) 2649 { 2650 return false; 2651 } 2652 2653 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2654 struct rcu_data *rdp, 2655 unsigned long flags) 2656 { 2657 return false; 2658 } 2659 2660 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2661 { 2662 } 2663 2664 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2665 { 2666 return false; 2667 } 2668 2669 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2670 { 2671 } 2672 2673 static void rcu_spawn_all_nocb_kthreads(int cpu) 2674 { 2675 } 2676 2677 static void __init rcu_spawn_nocb_kthreads(void) 2678 { 2679 } 2680 2681 static bool init_nocb_callback_list(struct rcu_data *rdp) 2682 { 2683 return false; 2684 } 2685 2686 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp) 2687 { 2688 return 0; 2689 } 2690 2691 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2692 2693 /* 2694 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2695 * grace-period kthread will do force_quiescent_state() processing? 2696 * The idea is to avoid waking up RCU core processing on such a 2697 * CPU unless the grace period has extended for too long. 2698 * 2699 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2700 * CONFIG_RCU_NOCB_CPU CPUs. 2701 */ 2702 static bool rcu_nohz_full_cpu(void) 2703 { 2704 #ifdef CONFIG_NO_HZ_FULL 2705 if (tick_nohz_full_cpu(smp_processor_id()) && 2706 (!rcu_gp_in_progress() || 2707 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 2708 return true; 2709 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2710 return false; 2711 } 2712 2713 /* 2714 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2715 */ 2716 static void rcu_bind_gp_kthread(void) 2717 { 2718 if (!tick_nohz_full_enabled()) 2719 return; 2720 housekeeping_affine(current, HK_FLAG_RCU); 2721 } 2722 2723 /* Record the current task on dyntick-idle entry. */ 2724 static void rcu_dynticks_task_enter(void) 2725 { 2726 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2727 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2728 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2729 } 2730 2731 /* Record no current task on dyntick-idle exit. */ 2732 static void rcu_dynticks_task_exit(void) 2733 { 2734 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2735 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2736 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2737 } 2738