1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #ifdef CONFIG_RCU_BOOST 34 35 #include "../locking/rtmutex_common.h" 36 37 /* 38 * Control variables for per-CPU and per-rcu_node kthreads. These 39 * handle all flavors of RCU. 40 */ 41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 44 DEFINE_PER_CPU(char, rcu_cpu_has_work); 45 46 #else /* #ifdef CONFIG_RCU_BOOST */ 47 48 /* 49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 50 * all uses are in dead code. Provide a definition to keep the compiler 51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 52 * This probably needs to be excluded from -rt builds. 53 */ 54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 55 56 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 57 58 #ifdef CONFIG_RCU_NOCB_CPU 59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 63 64 /* 65 * Check the RCU kernel configuration parameters and print informative 66 * messages about anything out of the ordinary. If you like #ifdef, you 67 * will love this function. 68 */ 69 static void __init rcu_bootup_announce_oddness(void) 70 { 71 if (IS_ENABLED(CONFIG_RCU_TRACE)) 72 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 76 RCU_FANOUT); 77 if (rcu_fanout_exact) 78 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 81 if (IS_ENABLED(CONFIG_PROVE_RCU)) 82 pr_info("\tRCU lockdep checking is enabled.\n"); 83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE)) 84 pr_info("\tRCU torture testing starts during boot.\n"); 85 if (RCU_NUM_LVLS >= 4) 86 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 87 if (RCU_FANOUT_LEAF != 16) 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 89 RCU_FANOUT_LEAF); 90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 92 if (nr_cpu_ids != NR_CPUS) 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 94 if (IS_ENABLED(CONFIG_RCU_BOOST)) 95 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 96 } 97 98 #ifdef CONFIG_PREEMPT_RCU 99 100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 103 104 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 105 bool wake); 106 107 /* 108 * Tell them what RCU they are running. 109 */ 110 static void __init rcu_bootup_announce(void) 111 { 112 pr_info("Preemptible hierarchical RCU implementation.\n"); 113 rcu_bootup_announce_oddness(); 114 } 115 116 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 117 #define RCU_GP_TASKS 0x8 118 #define RCU_EXP_TASKS 0x4 119 #define RCU_GP_BLKD 0x2 120 #define RCU_EXP_BLKD 0x1 121 122 /* 123 * Queues a task preempted within an RCU-preempt read-side critical 124 * section into the appropriate location within the ->blkd_tasks list, 125 * depending on the states of any ongoing normal and expedited grace 126 * periods. The ->gp_tasks pointer indicates which element the normal 127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 128 * indicates which element the expedited grace period is waiting on (again, 129 * NULL if none). If a grace period is waiting on a given element in the 130 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 131 * adding a task to the tail of the list blocks any grace period that is 132 * already waiting on one of the elements. In contrast, adding a task 133 * to the head of the list won't block any grace period that is already 134 * waiting on one of the elements. 135 * 136 * This queuing is imprecise, and can sometimes make an ongoing grace 137 * period wait for a task that is not strictly speaking blocking it. 138 * Given the choice, we needlessly block a normal grace period rather than 139 * blocking an expedited grace period. 140 * 141 * Note that an endless sequence of expedited grace periods still cannot 142 * indefinitely postpone a normal grace period. Eventually, all of the 143 * fixed number of preempted tasks blocking the normal grace period that are 144 * not also blocking the expedited grace period will resume and complete 145 * their RCU read-side critical sections. At that point, the ->gp_tasks 146 * pointer will equal the ->exp_tasks pointer, at which point the end of 147 * the corresponding expedited grace period will also be the end of the 148 * normal grace period. 149 */ 150 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp, 151 unsigned long flags) __releases(rnp->lock) 152 { 153 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 154 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 155 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 156 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 157 struct task_struct *t = current; 158 159 /* 160 * Decide where to queue the newly blocked task. In theory, 161 * this could be an if-statement. In practice, when I tried 162 * that, it was quite messy. 163 */ 164 switch (blkd_state) { 165 case 0: 166 case RCU_EXP_TASKS: 167 case RCU_EXP_TASKS + RCU_GP_BLKD: 168 case RCU_GP_TASKS: 169 case RCU_GP_TASKS + RCU_EXP_TASKS: 170 171 /* 172 * Blocking neither GP, or first task blocking the normal 173 * GP but not blocking the already-waiting expedited GP. 174 * Queue at the head of the list to avoid unnecessarily 175 * blocking the already-waiting GPs. 176 */ 177 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 178 break; 179 180 case RCU_EXP_BLKD: 181 case RCU_GP_BLKD: 182 case RCU_GP_BLKD + RCU_EXP_BLKD: 183 case RCU_GP_TASKS + RCU_EXP_BLKD: 184 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 185 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 186 187 /* 188 * First task arriving that blocks either GP, or first task 189 * arriving that blocks the expedited GP (with the normal 190 * GP already waiting), or a task arriving that blocks 191 * both GPs with both GPs already waiting. Queue at the 192 * tail of the list to avoid any GP waiting on any of the 193 * already queued tasks that are not blocking it. 194 */ 195 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 196 break; 197 198 case RCU_EXP_TASKS + RCU_EXP_BLKD: 199 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 200 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 201 202 /* 203 * Second or subsequent task blocking the expedited GP. 204 * The task either does not block the normal GP, or is the 205 * first task blocking the normal GP. Queue just after 206 * the first task blocking the expedited GP. 207 */ 208 list_add(&t->rcu_node_entry, rnp->exp_tasks); 209 break; 210 211 case RCU_GP_TASKS + RCU_GP_BLKD: 212 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 213 214 /* 215 * Second or subsequent task blocking the normal GP. 216 * The task does not block the expedited GP. Queue just 217 * after the first task blocking the normal GP. 218 */ 219 list_add(&t->rcu_node_entry, rnp->gp_tasks); 220 break; 221 222 default: 223 224 /* Yet another exercise in excessive paranoia. */ 225 WARN_ON_ONCE(1); 226 break; 227 } 228 229 /* 230 * We have now queued the task. If it was the first one to 231 * block either grace period, update the ->gp_tasks and/or 232 * ->exp_tasks pointers, respectively, to reference the newly 233 * blocked tasks. 234 */ 235 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 236 rnp->gp_tasks = &t->rcu_node_entry; 237 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 238 rnp->exp_tasks = &t->rcu_node_entry; 239 raw_spin_unlock(&rnp->lock); 240 241 /* 242 * Report the quiescent state for the expedited GP. This expedited 243 * GP should not be able to end until we report, so there should be 244 * no need to check for a subsequent expedited GP. (Though we are 245 * still in a quiescent state in any case.) 246 */ 247 if (blkd_state & RCU_EXP_BLKD && 248 t->rcu_read_unlock_special.b.exp_need_qs) { 249 t->rcu_read_unlock_special.b.exp_need_qs = false; 250 rcu_report_exp_rdp(rdp->rsp, rdp, true); 251 } else { 252 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 253 } 254 local_irq_restore(flags); 255 } 256 257 /* 258 * Record a preemptible-RCU quiescent state for the specified CPU. Note 259 * that this just means that the task currently running on the CPU is 260 * not in a quiescent state. There might be any number of tasks blocked 261 * while in an RCU read-side critical section. 262 * 263 * As with the other rcu_*_qs() functions, callers to this function 264 * must disable preemption. 265 */ 266 static void rcu_preempt_qs(void) 267 { 268 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 269 trace_rcu_grace_period(TPS("rcu_preempt"), 270 __this_cpu_read(rcu_data_p->gpnum), 271 TPS("cpuqs")); 272 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 273 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 274 current->rcu_read_unlock_special.b.need_qs = false; 275 } 276 } 277 278 /* 279 * We have entered the scheduler, and the current task might soon be 280 * context-switched away from. If this task is in an RCU read-side 281 * critical section, we will no longer be able to rely on the CPU to 282 * record that fact, so we enqueue the task on the blkd_tasks list. 283 * The task will dequeue itself when it exits the outermost enclosing 284 * RCU read-side critical section. Therefore, the current grace period 285 * cannot be permitted to complete until the blkd_tasks list entries 286 * predating the current grace period drain, in other words, until 287 * rnp->gp_tasks becomes NULL. 288 * 289 * Caller must disable preemption. 290 */ 291 static void rcu_preempt_note_context_switch(void) 292 { 293 struct task_struct *t = current; 294 unsigned long flags; 295 struct rcu_data *rdp; 296 struct rcu_node *rnp; 297 298 if (t->rcu_read_lock_nesting > 0 && 299 !t->rcu_read_unlock_special.b.blocked) { 300 301 /* Possibly blocking in an RCU read-side critical section. */ 302 rdp = this_cpu_ptr(rcu_state_p->rda); 303 rnp = rdp->mynode; 304 raw_spin_lock_irqsave(&rnp->lock, flags); 305 smp_mb__after_unlock_lock(); 306 t->rcu_read_unlock_special.b.blocked = true; 307 t->rcu_blocked_node = rnp; 308 309 /* 310 * Verify the CPU's sanity, trace the preemption, and 311 * then queue the task as required based on the states 312 * of any ongoing and expedited grace periods. 313 */ 314 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 315 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 316 trace_rcu_preempt_task(rdp->rsp->name, 317 t->pid, 318 (rnp->qsmask & rdp->grpmask) 319 ? rnp->gpnum 320 : rnp->gpnum + 1); 321 rcu_preempt_ctxt_queue(rnp, rdp, flags); 322 } else if (t->rcu_read_lock_nesting < 0 && 323 t->rcu_read_unlock_special.s) { 324 325 /* 326 * Complete exit from RCU read-side critical section on 327 * behalf of preempted instance of __rcu_read_unlock(). 328 */ 329 rcu_read_unlock_special(t); 330 } 331 332 /* 333 * Either we were not in an RCU read-side critical section to 334 * begin with, or we have now recorded that critical section 335 * globally. Either way, we can now note a quiescent state 336 * for this CPU. Again, if we were in an RCU read-side critical 337 * section, and if that critical section was blocking the current 338 * grace period, then the fact that the task has been enqueued 339 * means that we continue to block the current grace period. 340 */ 341 rcu_preempt_qs(); 342 } 343 344 /* 345 * Check for preempted RCU readers blocking the current grace period 346 * for the specified rcu_node structure. If the caller needs a reliable 347 * answer, it must hold the rcu_node's ->lock. 348 */ 349 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 350 { 351 return rnp->gp_tasks != NULL; 352 } 353 354 /* 355 * Advance a ->blkd_tasks-list pointer to the next entry, instead 356 * returning NULL if at the end of the list. 357 */ 358 static struct list_head *rcu_next_node_entry(struct task_struct *t, 359 struct rcu_node *rnp) 360 { 361 struct list_head *np; 362 363 np = t->rcu_node_entry.next; 364 if (np == &rnp->blkd_tasks) 365 np = NULL; 366 return np; 367 } 368 369 /* 370 * Return true if the specified rcu_node structure has tasks that were 371 * preempted within an RCU read-side critical section. 372 */ 373 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 374 { 375 return !list_empty(&rnp->blkd_tasks); 376 } 377 378 /* 379 * Handle special cases during rcu_read_unlock(), such as needing to 380 * notify RCU core processing or task having blocked during the RCU 381 * read-side critical section. 382 */ 383 void rcu_read_unlock_special(struct task_struct *t) 384 { 385 bool empty_exp; 386 bool empty_norm; 387 bool empty_exp_now; 388 unsigned long flags; 389 struct list_head *np; 390 bool drop_boost_mutex = false; 391 struct rcu_data *rdp; 392 struct rcu_node *rnp; 393 union rcu_special special; 394 395 /* NMI handlers cannot block and cannot safely manipulate state. */ 396 if (in_nmi()) 397 return; 398 399 local_irq_save(flags); 400 401 /* 402 * If RCU core is waiting for this CPU to exit its critical section, 403 * report the fact that it has exited. Because irqs are disabled, 404 * t->rcu_read_unlock_special cannot change. 405 */ 406 special = t->rcu_read_unlock_special; 407 if (special.b.need_qs) { 408 rcu_preempt_qs(); 409 t->rcu_read_unlock_special.b.need_qs = false; 410 if (!t->rcu_read_unlock_special.s) { 411 local_irq_restore(flags); 412 return; 413 } 414 } 415 416 /* 417 * Respond to a request for an expedited grace period, but only if 418 * we were not preempted, meaning that we were running on the same 419 * CPU throughout. If we were preempted, the exp_need_qs flag 420 * would have been cleared at the time of the first preemption, 421 * and the quiescent state would be reported when we were dequeued. 422 */ 423 if (special.b.exp_need_qs) { 424 WARN_ON_ONCE(special.b.blocked); 425 t->rcu_read_unlock_special.b.exp_need_qs = false; 426 rdp = this_cpu_ptr(rcu_state_p->rda); 427 rcu_report_exp_rdp(rcu_state_p, rdp, true); 428 if (!t->rcu_read_unlock_special.s) { 429 local_irq_restore(flags); 430 return; 431 } 432 } 433 434 /* Hardware IRQ handlers cannot block, complain if they get here. */ 435 if (in_irq() || in_serving_softirq()) { 436 lockdep_rcu_suspicious(__FILE__, __LINE__, 437 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 438 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 439 t->rcu_read_unlock_special.s, 440 t->rcu_read_unlock_special.b.blocked, 441 t->rcu_read_unlock_special.b.exp_need_qs, 442 t->rcu_read_unlock_special.b.need_qs); 443 local_irq_restore(flags); 444 return; 445 } 446 447 /* Clean up if blocked during RCU read-side critical section. */ 448 if (special.b.blocked) { 449 t->rcu_read_unlock_special.b.blocked = false; 450 451 /* 452 * Remove this task from the list it blocked on. The task 453 * now remains queued on the rcu_node corresponding to 454 * the CPU it first blocked on, so the first attempt to 455 * acquire the task's rcu_node's ->lock will succeed. 456 * Keep the loop and add a WARN_ON() out of sheer paranoia. 457 */ 458 for (;;) { 459 rnp = t->rcu_blocked_node; 460 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 461 smp_mb__after_unlock_lock(); 462 if (rnp == t->rcu_blocked_node) 463 break; 464 WARN_ON_ONCE(1); 465 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 466 } 467 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 468 empty_exp = sync_rcu_preempt_exp_done(rnp); 469 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 470 np = rcu_next_node_entry(t, rnp); 471 list_del_init(&t->rcu_node_entry); 472 t->rcu_blocked_node = NULL; 473 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 474 rnp->gpnum, t->pid); 475 if (&t->rcu_node_entry == rnp->gp_tasks) 476 rnp->gp_tasks = np; 477 if (&t->rcu_node_entry == rnp->exp_tasks) 478 rnp->exp_tasks = np; 479 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 480 if (&t->rcu_node_entry == rnp->boost_tasks) 481 rnp->boost_tasks = np; 482 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 483 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 484 } 485 486 /* 487 * If this was the last task on the current list, and if 488 * we aren't waiting on any CPUs, report the quiescent state. 489 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 490 * so we must take a snapshot of the expedited state. 491 */ 492 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 493 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 494 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 495 rnp->gpnum, 496 0, rnp->qsmask, 497 rnp->level, 498 rnp->grplo, 499 rnp->grphi, 500 !!rnp->gp_tasks); 501 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 502 } else { 503 raw_spin_unlock_irqrestore(&rnp->lock, flags); 504 } 505 506 /* Unboost if we were boosted. */ 507 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 508 rt_mutex_unlock(&rnp->boost_mtx); 509 510 /* 511 * If this was the last task on the expedited lists, 512 * then we need to report up the rcu_node hierarchy. 513 */ 514 if (!empty_exp && empty_exp_now) 515 rcu_report_exp_rnp(rcu_state_p, rnp, true); 516 } else { 517 local_irq_restore(flags); 518 } 519 } 520 521 /* 522 * Dump detailed information for all tasks blocking the current RCU 523 * grace period on the specified rcu_node structure. 524 */ 525 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 526 { 527 unsigned long flags; 528 struct task_struct *t; 529 530 raw_spin_lock_irqsave(&rnp->lock, flags); 531 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 532 raw_spin_unlock_irqrestore(&rnp->lock, flags); 533 return; 534 } 535 t = list_entry(rnp->gp_tasks->prev, 536 struct task_struct, rcu_node_entry); 537 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 538 sched_show_task(t); 539 raw_spin_unlock_irqrestore(&rnp->lock, flags); 540 } 541 542 /* 543 * Dump detailed information for all tasks blocking the current RCU 544 * grace period. 545 */ 546 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 547 { 548 struct rcu_node *rnp = rcu_get_root(rsp); 549 550 rcu_print_detail_task_stall_rnp(rnp); 551 rcu_for_each_leaf_node(rsp, rnp) 552 rcu_print_detail_task_stall_rnp(rnp); 553 } 554 555 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 556 { 557 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 558 rnp->level, rnp->grplo, rnp->grphi); 559 } 560 561 static void rcu_print_task_stall_end(void) 562 { 563 pr_cont("\n"); 564 } 565 566 /* 567 * Scan the current list of tasks blocked within RCU read-side critical 568 * sections, printing out the tid of each. 569 */ 570 static int rcu_print_task_stall(struct rcu_node *rnp) 571 { 572 struct task_struct *t; 573 int ndetected = 0; 574 575 if (!rcu_preempt_blocked_readers_cgp(rnp)) 576 return 0; 577 rcu_print_task_stall_begin(rnp); 578 t = list_entry(rnp->gp_tasks->prev, 579 struct task_struct, rcu_node_entry); 580 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 581 pr_cont(" P%d", t->pid); 582 ndetected++; 583 } 584 rcu_print_task_stall_end(); 585 return ndetected; 586 } 587 588 /* 589 * Scan the current list of tasks blocked within RCU read-side critical 590 * sections, printing out the tid of each that is blocking the current 591 * expedited grace period. 592 */ 593 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 594 { 595 struct task_struct *t; 596 int ndetected = 0; 597 598 if (!rnp->exp_tasks) 599 return 0; 600 t = list_entry(rnp->exp_tasks->prev, 601 struct task_struct, rcu_node_entry); 602 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 603 pr_cont(" P%d", t->pid); 604 ndetected++; 605 } 606 return ndetected; 607 } 608 609 /* 610 * Check that the list of blocked tasks for the newly completed grace 611 * period is in fact empty. It is a serious bug to complete a grace 612 * period that still has RCU readers blocked! This function must be 613 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 614 * must be held by the caller. 615 * 616 * Also, if there are blocked tasks on the list, they automatically 617 * block the newly created grace period, so set up ->gp_tasks accordingly. 618 */ 619 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 620 { 621 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 622 if (rcu_preempt_has_tasks(rnp)) 623 rnp->gp_tasks = rnp->blkd_tasks.next; 624 WARN_ON_ONCE(rnp->qsmask); 625 } 626 627 /* 628 * Check for a quiescent state from the current CPU. When a task blocks, 629 * the task is recorded in the corresponding CPU's rcu_node structure, 630 * which is checked elsewhere. 631 * 632 * Caller must disable hard irqs. 633 */ 634 static void rcu_preempt_check_callbacks(void) 635 { 636 struct task_struct *t = current; 637 638 if (t->rcu_read_lock_nesting == 0) { 639 rcu_preempt_qs(); 640 return; 641 } 642 if (t->rcu_read_lock_nesting > 0 && 643 __this_cpu_read(rcu_data_p->core_needs_qs) && 644 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 645 t->rcu_read_unlock_special.b.need_qs = true; 646 } 647 648 #ifdef CONFIG_RCU_BOOST 649 650 static void rcu_preempt_do_callbacks(void) 651 { 652 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 653 } 654 655 #endif /* #ifdef CONFIG_RCU_BOOST */ 656 657 /* 658 * Queue a preemptible-RCU callback for invocation after a grace period. 659 */ 660 void call_rcu(struct rcu_head *head, rcu_callback_t func) 661 { 662 __call_rcu(head, func, rcu_state_p, -1, 0); 663 } 664 EXPORT_SYMBOL_GPL(call_rcu); 665 666 /** 667 * synchronize_rcu - wait until a grace period has elapsed. 668 * 669 * Control will return to the caller some time after a full grace 670 * period has elapsed, in other words after all currently executing RCU 671 * read-side critical sections have completed. Note, however, that 672 * upon return from synchronize_rcu(), the caller might well be executing 673 * concurrently with new RCU read-side critical sections that began while 674 * synchronize_rcu() was waiting. RCU read-side critical sections are 675 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 676 * 677 * See the description of synchronize_sched() for more detailed information 678 * on memory ordering guarantees. 679 */ 680 void synchronize_rcu(void) 681 { 682 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 683 lock_is_held(&rcu_lock_map) || 684 lock_is_held(&rcu_sched_lock_map), 685 "Illegal synchronize_rcu() in RCU read-side critical section"); 686 if (!rcu_scheduler_active) 687 return; 688 if (rcu_gp_is_expedited()) 689 synchronize_rcu_expedited(); 690 else 691 wait_rcu_gp(call_rcu); 692 } 693 EXPORT_SYMBOL_GPL(synchronize_rcu); 694 695 /* 696 * Remote handler for smp_call_function_single(). If there is an 697 * RCU read-side critical section in effect, request that the 698 * next rcu_read_unlock() record the quiescent state up the 699 * ->expmask fields in the rcu_node tree. Otherwise, immediately 700 * report the quiescent state. 701 */ 702 static void sync_rcu_exp_handler(void *info) 703 { 704 struct rcu_data *rdp; 705 struct rcu_state *rsp = info; 706 struct task_struct *t = current; 707 708 /* 709 * Within an RCU read-side critical section, request that the next 710 * rcu_read_unlock() report. Unless this RCU read-side critical 711 * section has already blocked, in which case it is already set 712 * up for the expedited grace period to wait on it. 713 */ 714 if (t->rcu_read_lock_nesting > 0 && 715 !t->rcu_read_unlock_special.b.blocked) { 716 t->rcu_read_unlock_special.b.exp_need_qs = true; 717 return; 718 } 719 720 /* 721 * We are either exiting an RCU read-side critical section (negative 722 * values of t->rcu_read_lock_nesting) or are not in one at all 723 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU 724 * read-side critical section that blocked before this expedited 725 * grace period started. Either way, we can immediately report 726 * the quiescent state. 727 */ 728 rdp = this_cpu_ptr(rsp->rda); 729 rcu_report_exp_rdp(rsp, rdp, true); 730 } 731 732 /** 733 * synchronize_rcu_expedited - Brute-force RCU grace period 734 * 735 * Wait for an RCU-preempt grace period, but expedite it. The basic 736 * idea is to invoke synchronize_sched_expedited() to push all the tasks to 737 * the ->blkd_tasks lists and wait for this list to drain. This consumes 738 * significant time on all CPUs and is unfriendly to real-time workloads, 739 * so is thus not recommended for any sort of common-case code. 740 * In fact, if you are using synchronize_rcu_expedited() in a loop, 741 * please restructure your code to batch your updates, and then Use a 742 * single synchronize_rcu() instead. 743 */ 744 void synchronize_rcu_expedited(void) 745 { 746 struct rcu_node *rnp; 747 struct rcu_node *rnp_unlock; 748 struct rcu_state *rsp = rcu_state_p; 749 unsigned long s; 750 751 s = rcu_exp_gp_seq_snap(rsp); 752 753 rnp_unlock = exp_funnel_lock(rsp, s); 754 if (rnp_unlock == NULL) 755 return; /* Someone else did our work for us. */ 756 757 rcu_exp_gp_seq_start(rsp); 758 759 /* Initialize the rcu_node tree in preparation for the wait. */ 760 sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler); 761 762 /* Wait for snapshotted ->blkd_tasks lists to drain. */ 763 rnp = rcu_get_root(rsp); 764 synchronize_sched_expedited_wait(rsp); 765 766 /* Clean up and exit. */ 767 rcu_exp_gp_seq_end(rsp); 768 mutex_unlock(&rnp_unlock->exp_funnel_mutex); 769 } 770 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 771 772 /** 773 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 774 * 775 * Note that this primitive does not necessarily wait for an RCU grace period 776 * to complete. For example, if there are no RCU callbacks queued anywhere 777 * in the system, then rcu_barrier() is within its rights to return 778 * immediately, without waiting for anything, much less an RCU grace period. 779 */ 780 void rcu_barrier(void) 781 { 782 _rcu_barrier(rcu_state_p); 783 } 784 EXPORT_SYMBOL_GPL(rcu_barrier); 785 786 /* 787 * Initialize preemptible RCU's state structures. 788 */ 789 static void __init __rcu_init_preempt(void) 790 { 791 rcu_init_one(rcu_state_p, rcu_data_p); 792 } 793 794 /* 795 * Check for a task exiting while in a preemptible-RCU read-side 796 * critical section, clean up if so. No need to issue warnings, 797 * as debug_check_no_locks_held() already does this if lockdep 798 * is enabled. 799 */ 800 void exit_rcu(void) 801 { 802 struct task_struct *t = current; 803 804 if (likely(list_empty(¤t->rcu_node_entry))) 805 return; 806 t->rcu_read_lock_nesting = 1; 807 barrier(); 808 t->rcu_read_unlock_special.b.blocked = true; 809 __rcu_read_unlock(); 810 } 811 812 #else /* #ifdef CONFIG_PREEMPT_RCU */ 813 814 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 815 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data; 816 817 /* 818 * Tell them what RCU they are running. 819 */ 820 static void __init rcu_bootup_announce(void) 821 { 822 pr_info("Hierarchical RCU implementation.\n"); 823 rcu_bootup_announce_oddness(); 824 } 825 826 /* 827 * Because preemptible RCU does not exist, we never have to check for 828 * CPUs being in quiescent states. 829 */ 830 static void rcu_preempt_note_context_switch(void) 831 { 832 } 833 834 /* 835 * Because preemptible RCU does not exist, there are never any preempted 836 * RCU readers. 837 */ 838 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 839 { 840 return 0; 841 } 842 843 /* 844 * Because there is no preemptible RCU, there can be no readers blocked. 845 */ 846 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 847 { 848 return false; 849 } 850 851 /* 852 * Because preemptible RCU does not exist, we never have to check for 853 * tasks blocked within RCU read-side critical sections. 854 */ 855 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 856 { 857 } 858 859 /* 860 * Because preemptible RCU does not exist, we never have to check for 861 * tasks blocked within RCU read-side critical sections. 862 */ 863 static int rcu_print_task_stall(struct rcu_node *rnp) 864 { 865 return 0; 866 } 867 868 /* 869 * Because preemptible RCU does not exist, we never have to check for 870 * tasks blocked within RCU read-side critical sections that are 871 * blocking the current expedited grace period. 872 */ 873 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 874 { 875 return 0; 876 } 877 878 /* 879 * Because there is no preemptible RCU, there can be no readers blocked, 880 * so there is no need to check for blocked tasks. So check only for 881 * bogus qsmask values. 882 */ 883 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 884 { 885 WARN_ON_ONCE(rnp->qsmask); 886 } 887 888 /* 889 * Because preemptible RCU does not exist, it never has any callbacks 890 * to check. 891 */ 892 static void rcu_preempt_check_callbacks(void) 893 { 894 } 895 896 /* 897 * Wait for an rcu-preempt grace period, but make it happen quickly. 898 * But because preemptible RCU does not exist, map to rcu-sched. 899 */ 900 void synchronize_rcu_expedited(void) 901 { 902 synchronize_sched_expedited(); 903 } 904 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 905 906 /* 907 * Because preemptible RCU does not exist, rcu_barrier() is just 908 * another name for rcu_barrier_sched(). 909 */ 910 void rcu_barrier(void) 911 { 912 rcu_barrier_sched(); 913 } 914 EXPORT_SYMBOL_GPL(rcu_barrier); 915 916 /* 917 * Because preemptible RCU does not exist, it need not be initialized. 918 */ 919 static void __init __rcu_init_preempt(void) 920 { 921 } 922 923 /* 924 * Because preemptible RCU does not exist, tasks cannot possibly exit 925 * while in preemptible RCU read-side critical sections. 926 */ 927 void exit_rcu(void) 928 { 929 } 930 931 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 932 933 #ifdef CONFIG_RCU_BOOST 934 935 #include "../locking/rtmutex_common.h" 936 937 #ifdef CONFIG_RCU_TRACE 938 939 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 940 { 941 if (!rcu_preempt_has_tasks(rnp)) 942 rnp->n_balk_blkd_tasks++; 943 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 944 rnp->n_balk_exp_gp_tasks++; 945 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 946 rnp->n_balk_boost_tasks++; 947 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 948 rnp->n_balk_notblocked++; 949 else if (rnp->gp_tasks != NULL && 950 ULONG_CMP_LT(jiffies, rnp->boost_time)) 951 rnp->n_balk_notyet++; 952 else 953 rnp->n_balk_nos++; 954 } 955 956 #else /* #ifdef CONFIG_RCU_TRACE */ 957 958 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 959 { 960 } 961 962 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 963 964 static void rcu_wake_cond(struct task_struct *t, int status) 965 { 966 /* 967 * If the thread is yielding, only wake it when this 968 * is invoked from idle 969 */ 970 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 971 wake_up_process(t); 972 } 973 974 /* 975 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 976 * or ->boost_tasks, advancing the pointer to the next task in the 977 * ->blkd_tasks list. 978 * 979 * Note that irqs must be enabled: boosting the task can block. 980 * Returns 1 if there are more tasks needing to be boosted. 981 */ 982 static int rcu_boost(struct rcu_node *rnp) 983 { 984 unsigned long flags; 985 struct task_struct *t; 986 struct list_head *tb; 987 988 if (READ_ONCE(rnp->exp_tasks) == NULL && 989 READ_ONCE(rnp->boost_tasks) == NULL) 990 return 0; /* Nothing left to boost. */ 991 992 raw_spin_lock_irqsave(&rnp->lock, flags); 993 smp_mb__after_unlock_lock(); 994 995 /* 996 * Recheck under the lock: all tasks in need of boosting 997 * might exit their RCU read-side critical sections on their own. 998 */ 999 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1000 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1001 return 0; 1002 } 1003 1004 /* 1005 * Preferentially boost tasks blocking expedited grace periods. 1006 * This cannot starve the normal grace periods because a second 1007 * expedited grace period must boost all blocked tasks, including 1008 * those blocking the pre-existing normal grace period. 1009 */ 1010 if (rnp->exp_tasks != NULL) { 1011 tb = rnp->exp_tasks; 1012 rnp->n_exp_boosts++; 1013 } else { 1014 tb = rnp->boost_tasks; 1015 rnp->n_normal_boosts++; 1016 } 1017 rnp->n_tasks_boosted++; 1018 1019 /* 1020 * We boost task t by manufacturing an rt_mutex that appears to 1021 * be held by task t. We leave a pointer to that rt_mutex where 1022 * task t can find it, and task t will release the mutex when it 1023 * exits its outermost RCU read-side critical section. Then 1024 * simply acquiring this artificial rt_mutex will boost task 1025 * t's priority. (Thanks to tglx for suggesting this approach!) 1026 * 1027 * Note that task t must acquire rnp->lock to remove itself from 1028 * the ->blkd_tasks list, which it will do from exit() if from 1029 * nowhere else. We therefore are guaranteed that task t will 1030 * stay around at least until we drop rnp->lock. Note that 1031 * rnp->lock also resolves races between our priority boosting 1032 * and task t's exiting its outermost RCU read-side critical 1033 * section. 1034 */ 1035 t = container_of(tb, struct task_struct, rcu_node_entry); 1036 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1037 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1038 /* Lock only for side effect: boosts task t's priority. */ 1039 rt_mutex_lock(&rnp->boost_mtx); 1040 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1041 1042 return READ_ONCE(rnp->exp_tasks) != NULL || 1043 READ_ONCE(rnp->boost_tasks) != NULL; 1044 } 1045 1046 /* 1047 * Priority-boosting kthread, one per leaf rcu_node. 1048 */ 1049 static int rcu_boost_kthread(void *arg) 1050 { 1051 struct rcu_node *rnp = (struct rcu_node *)arg; 1052 int spincnt = 0; 1053 int more2boost; 1054 1055 trace_rcu_utilization(TPS("Start boost kthread@init")); 1056 for (;;) { 1057 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1058 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1059 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1060 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1061 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1062 more2boost = rcu_boost(rnp); 1063 if (more2boost) 1064 spincnt++; 1065 else 1066 spincnt = 0; 1067 if (spincnt > 10) { 1068 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1069 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1070 schedule_timeout_interruptible(2); 1071 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1072 spincnt = 0; 1073 } 1074 } 1075 /* NOTREACHED */ 1076 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1077 return 0; 1078 } 1079 1080 /* 1081 * Check to see if it is time to start boosting RCU readers that are 1082 * blocking the current grace period, and, if so, tell the per-rcu_node 1083 * kthread to start boosting them. If there is an expedited grace 1084 * period in progress, it is always time to boost. 1085 * 1086 * The caller must hold rnp->lock, which this function releases. 1087 * The ->boost_kthread_task is immortal, so we don't need to worry 1088 * about it going away. 1089 */ 1090 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1091 __releases(rnp->lock) 1092 { 1093 struct task_struct *t; 1094 1095 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1096 rnp->n_balk_exp_gp_tasks++; 1097 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1098 return; 1099 } 1100 if (rnp->exp_tasks != NULL || 1101 (rnp->gp_tasks != NULL && 1102 rnp->boost_tasks == NULL && 1103 rnp->qsmask == 0 && 1104 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1105 if (rnp->exp_tasks == NULL) 1106 rnp->boost_tasks = rnp->gp_tasks; 1107 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1108 t = rnp->boost_kthread_task; 1109 if (t) 1110 rcu_wake_cond(t, rnp->boost_kthread_status); 1111 } else { 1112 rcu_initiate_boost_trace(rnp); 1113 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1114 } 1115 } 1116 1117 /* 1118 * Wake up the per-CPU kthread to invoke RCU callbacks. 1119 */ 1120 static void invoke_rcu_callbacks_kthread(void) 1121 { 1122 unsigned long flags; 1123 1124 local_irq_save(flags); 1125 __this_cpu_write(rcu_cpu_has_work, 1); 1126 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1127 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1128 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1129 __this_cpu_read(rcu_cpu_kthread_status)); 1130 } 1131 local_irq_restore(flags); 1132 } 1133 1134 /* 1135 * Is the current CPU running the RCU-callbacks kthread? 1136 * Caller must have preemption disabled. 1137 */ 1138 static bool rcu_is_callbacks_kthread(void) 1139 { 1140 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1141 } 1142 1143 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1144 1145 /* 1146 * Do priority-boost accounting for the start of a new grace period. 1147 */ 1148 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1149 { 1150 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1151 } 1152 1153 /* 1154 * Create an RCU-boost kthread for the specified node if one does not 1155 * already exist. We only create this kthread for preemptible RCU. 1156 * Returns zero if all is well, a negated errno otherwise. 1157 */ 1158 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1159 struct rcu_node *rnp) 1160 { 1161 int rnp_index = rnp - &rsp->node[0]; 1162 unsigned long flags; 1163 struct sched_param sp; 1164 struct task_struct *t; 1165 1166 if (rcu_state_p != rsp) 1167 return 0; 1168 1169 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1170 return 0; 1171 1172 rsp->boost = 1; 1173 if (rnp->boost_kthread_task != NULL) 1174 return 0; 1175 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1176 "rcub/%d", rnp_index); 1177 if (IS_ERR(t)) 1178 return PTR_ERR(t); 1179 raw_spin_lock_irqsave(&rnp->lock, flags); 1180 smp_mb__after_unlock_lock(); 1181 rnp->boost_kthread_task = t; 1182 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1183 sp.sched_priority = kthread_prio; 1184 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1185 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1186 return 0; 1187 } 1188 1189 static void rcu_kthread_do_work(void) 1190 { 1191 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1192 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1193 rcu_preempt_do_callbacks(); 1194 } 1195 1196 static void rcu_cpu_kthread_setup(unsigned int cpu) 1197 { 1198 struct sched_param sp; 1199 1200 sp.sched_priority = kthread_prio; 1201 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1202 } 1203 1204 static void rcu_cpu_kthread_park(unsigned int cpu) 1205 { 1206 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1207 } 1208 1209 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1210 { 1211 return __this_cpu_read(rcu_cpu_has_work); 1212 } 1213 1214 /* 1215 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1216 * RCU softirq used in flavors and configurations of RCU that do not 1217 * support RCU priority boosting. 1218 */ 1219 static void rcu_cpu_kthread(unsigned int cpu) 1220 { 1221 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1222 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1223 int spincnt; 1224 1225 for (spincnt = 0; spincnt < 10; spincnt++) { 1226 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1227 local_bh_disable(); 1228 *statusp = RCU_KTHREAD_RUNNING; 1229 this_cpu_inc(rcu_cpu_kthread_loops); 1230 local_irq_disable(); 1231 work = *workp; 1232 *workp = 0; 1233 local_irq_enable(); 1234 if (work) 1235 rcu_kthread_do_work(); 1236 local_bh_enable(); 1237 if (*workp == 0) { 1238 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1239 *statusp = RCU_KTHREAD_WAITING; 1240 return; 1241 } 1242 } 1243 *statusp = RCU_KTHREAD_YIELDING; 1244 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1245 schedule_timeout_interruptible(2); 1246 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1247 *statusp = RCU_KTHREAD_WAITING; 1248 } 1249 1250 /* 1251 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1252 * served by the rcu_node in question. The CPU hotplug lock is still 1253 * held, so the value of rnp->qsmaskinit will be stable. 1254 * 1255 * We don't include outgoingcpu in the affinity set, use -1 if there is 1256 * no outgoing CPU. If there are no CPUs left in the affinity set, 1257 * this function allows the kthread to execute on any CPU. 1258 */ 1259 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1260 { 1261 struct task_struct *t = rnp->boost_kthread_task; 1262 unsigned long mask = rcu_rnp_online_cpus(rnp); 1263 cpumask_var_t cm; 1264 int cpu; 1265 1266 if (!t) 1267 return; 1268 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1269 return; 1270 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1271 if ((mask & 0x1) && cpu != outgoingcpu) 1272 cpumask_set_cpu(cpu, cm); 1273 if (cpumask_weight(cm) == 0) 1274 cpumask_setall(cm); 1275 set_cpus_allowed_ptr(t, cm); 1276 free_cpumask_var(cm); 1277 } 1278 1279 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1280 .store = &rcu_cpu_kthread_task, 1281 .thread_should_run = rcu_cpu_kthread_should_run, 1282 .thread_fn = rcu_cpu_kthread, 1283 .thread_comm = "rcuc/%u", 1284 .setup = rcu_cpu_kthread_setup, 1285 .park = rcu_cpu_kthread_park, 1286 }; 1287 1288 /* 1289 * Spawn boost kthreads -- called as soon as the scheduler is running. 1290 */ 1291 static void __init rcu_spawn_boost_kthreads(void) 1292 { 1293 struct rcu_node *rnp; 1294 int cpu; 1295 1296 for_each_possible_cpu(cpu) 1297 per_cpu(rcu_cpu_has_work, cpu) = 0; 1298 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1299 rcu_for_each_leaf_node(rcu_state_p, rnp) 1300 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1301 } 1302 1303 static void rcu_prepare_kthreads(int cpu) 1304 { 1305 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1306 struct rcu_node *rnp = rdp->mynode; 1307 1308 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1309 if (rcu_scheduler_fully_active) 1310 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1311 } 1312 1313 #else /* #ifdef CONFIG_RCU_BOOST */ 1314 1315 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1316 __releases(rnp->lock) 1317 { 1318 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1319 } 1320 1321 static void invoke_rcu_callbacks_kthread(void) 1322 { 1323 WARN_ON_ONCE(1); 1324 } 1325 1326 static bool rcu_is_callbacks_kthread(void) 1327 { 1328 return false; 1329 } 1330 1331 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1332 { 1333 } 1334 1335 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1336 { 1337 } 1338 1339 static void __init rcu_spawn_boost_kthreads(void) 1340 { 1341 } 1342 1343 static void rcu_prepare_kthreads(int cpu) 1344 { 1345 } 1346 1347 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1348 1349 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1350 1351 /* 1352 * Check to see if any future RCU-related work will need to be done 1353 * by the current CPU, even if none need be done immediately, returning 1354 * 1 if so. This function is part of the RCU implementation; it is -not- 1355 * an exported member of the RCU API. 1356 * 1357 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1358 * any flavor of RCU. 1359 */ 1360 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1361 { 1362 *nextevt = KTIME_MAX; 1363 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) 1364 ? 0 : rcu_cpu_has_callbacks(NULL); 1365 } 1366 1367 /* 1368 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1369 * after it. 1370 */ 1371 static void rcu_cleanup_after_idle(void) 1372 { 1373 } 1374 1375 /* 1376 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1377 * is nothing. 1378 */ 1379 static void rcu_prepare_for_idle(void) 1380 { 1381 } 1382 1383 /* 1384 * Don't bother keeping a running count of the number of RCU callbacks 1385 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1386 */ 1387 static void rcu_idle_count_callbacks_posted(void) 1388 { 1389 } 1390 1391 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1392 1393 /* 1394 * This code is invoked when a CPU goes idle, at which point we want 1395 * to have the CPU do everything required for RCU so that it can enter 1396 * the energy-efficient dyntick-idle mode. This is handled by a 1397 * state machine implemented by rcu_prepare_for_idle() below. 1398 * 1399 * The following three proprocessor symbols control this state machine: 1400 * 1401 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1402 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1403 * is sized to be roughly one RCU grace period. Those energy-efficiency 1404 * benchmarkers who might otherwise be tempted to set this to a large 1405 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1406 * system. And if you are -that- concerned about energy efficiency, 1407 * just power the system down and be done with it! 1408 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1409 * permitted to sleep in dyntick-idle mode with only lazy RCU 1410 * callbacks pending. Setting this too high can OOM your system. 1411 * 1412 * The values below work well in practice. If future workloads require 1413 * adjustment, they can be converted into kernel config parameters, though 1414 * making the state machine smarter might be a better option. 1415 */ 1416 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1417 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1418 1419 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1420 module_param(rcu_idle_gp_delay, int, 0644); 1421 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1422 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1423 1424 /* 1425 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1426 * only if it has been awhile since the last time we did so. Afterwards, 1427 * if there are any callbacks ready for immediate invocation, return true. 1428 */ 1429 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1430 { 1431 bool cbs_ready = false; 1432 struct rcu_data *rdp; 1433 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1434 struct rcu_node *rnp; 1435 struct rcu_state *rsp; 1436 1437 /* Exit early if we advanced recently. */ 1438 if (jiffies == rdtp->last_advance_all) 1439 return false; 1440 rdtp->last_advance_all = jiffies; 1441 1442 for_each_rcu_flavor(rsp) { 1443 rdp = this_cpu_ptr(rsp->rda); 1444 rnp = rdp->mynode; 1445 1446 /* 1447 * Don't bother checking unless a grace period has 1448 * completed since we last checked and there are 1449 * callbacks not yet ready to invoke. 1450 */ 1451 if ((rdp->completed != rnp->completed || 1452 unlikely(READ_ONCE(rdp->gpwrap))) && 1453 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1454 note_gp_changes(rsp, rdp); 1455 1456 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1457 cbs_ready = true; 1458 } 1459 return cbs_ready; 1460 } 1461 1462 /* 1463 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1464 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1465 * caller to set the timeout based on whether or not there are non-lazy 1466 * callbacks. 1467 * 1468 * The caller must have disabled interrupts. 1469 */ 1470 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1471 { 1472 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1473 unsigned long dj; 1474 1475 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { 1476 *nextevt = KTIME_MAX; 1477 return 0; 1478 } 1479 1480 /* Snapshot to detect later posting of non-lazy callback. */ 1481 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1482 1483 /* If no callbacks, RCU doesn't need the CPU. */ 1484 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1485 *nextevt = KTIME_MAX; 1486 return 0; 1487 } 1488 1489 /* Attempt to advance callbacks. */ 1490 if (rcu_try_advance_all_cbs()) { 1491 /* Some ready to invoke, so initiate later invocation. */ 1492 invoke_rcu_core(); 1493 return 1; 1494 } 1495 rdtp->last_accelerate = jiffies; 1496 1497 /* Request timer delay depending on laziness, and round. */ 1498 if (!rdtp->all_lazy) { 1499 dj = round_up(rcu_idle_gp_delay + jiffies, 1500 rcu_idle_gp_delay) - jiffies; 1501 } else { 1502 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1503 } 1504 *nextevt = basemono + dj * TICK_NSEC; 1505 return 0; 1506 } 1507 1508 /* 1509 * Prepare a CPU for idle from an RCU perspective. The first major task 1510 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1511 * The second major task is to check to see if a non-lazy callback has 1512 * arrived at a CPU that previously had only lazy callbacks. The third 1513 * major task is to accelerate (that is, assign grace-period numbers to) 1514 * any recently arrived callbacks. 1515 * 1516 * The caller must have disabled interrupts. 1517 */ 1518 static void rcu_prepare_for_idle(void) 1519 { 1520 bool needwake; 1521 struct rcu_data *rdp; 1522 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1523 struct rcu_node *rnp; 1524 struct rcu_state *rsp; 1525 int tne; 1526 1527 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) 1528 return; 1529 1530 /* Handle nohz enablement switches conservatively. */ 1531 tne = READ_ONCE(tick_nohz_active); 1532 if (tne != rdtp->tick_nohz_enabled_snap) { 1533 if (rcu_cpu_has_callbacks(NULL)) 1534 invoke_rcu_core(); /* force nohz to see update. */ 1535 rdtp->tick_nohz_enabled_snap = tne; 1536 return; 1537 } 1538 if (!tne) 1539 return; 1540 1541 /* If this is a no-CBs CPU, no callbacks, just return. */ 1542 if (rcu_is_nocb_cpu(smp_processor_id())) 1543 return; 1544 1545 /* 1546 * If a non-lazy callback arrived at a CPU having only lazy 1547 * callbacks, invoke RCU core for the side-effect of recalculating 1548 * idle duration on re-entry to idle. 1549 */ 1550 if (rdtp->all_lazy && 1551 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1552 rdtp->all_lazy = false; 1553 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1554 invoke_rcu_core(); 1555 return; 1556 } 1557 1558 /* 1559 * If we have not yet accelerated this jiffy, accelerate all 1560 * callbacks on this CPU. 1561 */ 1562 if (rdtp->last_accelerate == jiffies) 1563 return; 1564 rdtp->last_accelerate = jiffies; 1565 for_each_rcu_flavor(rsp) { 1566 rdp = this_cpu_ptr(rsp->rda); 1567 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1568 continue; 1569 rnp = rdp->mynode; 1570 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1571 smp_mb__after_unlock_lock(); 1572 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1573 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1574 if (needwake) 1575 rcu_gp_kthread_wake(rsp); 1576 } 1577 } 1578 1579 /* 1580 * Clean up for exit from idle. Attempt to advance callbacks based on 1581 * any grace periods that elapsed while the CPU was idle, and if any 1582 * callbacks are now ready to invoke, initiate invocation. 1583 */ 1584 static void rcu_cleanup_after_idle(void) 1585 { 1586 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1587 rcu_is_nocb_cpu(smp_processor_id())) 1588 return; 1589 if (rcu_try_advance_all_cbs()) 1590 invoke_rcu_core(); 1591 } 1592 1593 /* 1594 * Keep a running count of the number of non-lazy callbacks posted 1595 * on this CPU. This running counter (which is never decremented) allows 1596 * rcu_prepare_for_idle() to detect when something out of the idle loop 1597 * posts a callback, even if an equal number of callbacks are invoked. 1598 * Of course, callbacks should only be posted from within a trace event 1599 * designed to be called from idle or from within RCU_NONIDLE(). 1600 */ 1601 static void rcu_idle_count_callbacks_posted(void) 1602 { 1603 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1604 } 1605 1606 /* 1607 * Data for flushing lazy RCU callbacks at OOM time. 1608 */ 1609 static atomic_t oom_callback_count; 1610 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1611 1612 /* 1613 * RCU OOM callback -- decrement the outstanding count and deliver the 1614 * wake-up if we are the last one. 1615 */ 1616 static void rcu_oom_callback(struct rcu_head *rhp) 1617 { 1618 if (atomic_dec_and_test(&oom_callback_count)) 1619 wake_up(&oom_callback_wq); 1620 } 1621 1622 /* 1623 * Post an rcu_oom_notify callback on the current CPU if it has at 1624 * least one lazy callback. This will unnecessarily post callbacks 1625 * to CPUs that already have a non-lazy callback at the end of their 1626 * callback list, but this is an infrequent operation, so accept some 1627 * extra overhead to keep things simple. 1628 */ 1629 static void rcu_oom_notify_cpu(void *unused) 1630 { 1631 struct rcu_state *rsp; 1632 struct rcu_data *rdp; 1633 1634 for_each_rcu_flavor(rsp) { 1635 rdp = raw_cpu_ptr(rsp->rda); 1636 if (rdp->qlen_lazy != 0) { 1637 atomic_inc(&oom_callback_count); 1638 rsp->call(&rdp->oom_head, rcu_oom_callback); 1639 } 1640 } 1641 } 1642 1643 /* 1644 * If low on memory, ensure that each CPU has a non-lazy callback. 1645 * This will wake up CPUs that have only lazy callbacks, in turn 1646 * ensuring that they free up the corresponding memory in a timely manner. 1647 * Because an uncertain amount of memory will be freed in some uncertain 1648 * timeframe, we do not claim to have freed anything. 1649 */ 1650 static int rcu_oom_notify(struct notifier_block *self, 1651 unsigned long notused, void *nfreed) 1652 { 1653 int cpu; 1654 1655 /* Wait for callbacks from earlier instance to complete. */ 1656 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1657 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1658 1659 /* 1660 * Prevent premature wakeup: ensure that all increments happen 1661 * before there is a chance of the counter reaching zero. 1662 */ 1663 atomic_set(&oom_callback_count, 1); 1664 1665 for_each_online_cpu(cpu) { 1666 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1667 cond_resched_rcu_qs(); 1668 } 1669 1670 /* Unconditionally decrement: no need to wake ourselves up. */ 1671 atomic_dec(&oom_callback_count); 1672 1673 return NOTIFY_OK; 1674 } 1675 1676 static struct notifier_block rcu_oom_nb = { 1677 .notifier_call = rcu_oom_notify 1678 }; 1679 1680 static int __init rcu_register_oom_notifier(void) 1681 { 1682 register_oom_notifier(&rcu_oom_nb); 1683 return 0; 1684 } 1685 early_initcall(rcu_register_oom_notifier); 1686 1687 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1688 1689 #ifdef CONFIG_RCU_FAST_NO_HZ 1690 1691 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1692 { 1693 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1694 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1695 1696 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1697 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1698 ulong2long(nlpd), 1699 rdtp->all_lazy ? 'L' : '.', 1700 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1701 } 1702 1703 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1704 1705 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1706 { 1707 *cp = '\0'; 1708 } 1709 1710 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1711 1712 /* Initiate the stall-info list. */ 1713 static void print_cpu_stall_info_begin(void) 1714 { 1715 pr_cont("\n"); 1716 } 1717 1718 /* 1719 * Print out diagnostic information for the specified stalled CPU. 1720 * 1721 * If the specified CPU is aware of the current RCU grace period 1722 * (flavor specified by rsp), then print the number of scheduling 1723 * clock interrupts the CPU has taken during the time that it has 1724 * been aware. Otherwise, print the number of RCU grace periods 1725 * that this CPU is ignorant of, for example, "1" if the CPU was 1726 * aware of the previous grace period. 1727 * 1728 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1729 */ 1730 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1731 { 1732 char fast_no_hz[72]; 1733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1734 struct rcu_dynticks *rdtp = rdp->dynticks; 1735 char *ticks_title; 1736 unsigned long ticks_value; 1737 1738 if (rsp->gpnum == rdp->gpnum) { 1739 ticks_title = "ticks this GP"; 1740 ticks_value = rdp->ticks_this_gp; 1741 } else { 1742 ticks_title = "GPs behind"; 1743 ticks_value = rsp->gpnum - rdp->gpnum; 1744 } 1745 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1746 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1747 cpu, 1748 "O."[!!cpu_online(cpu)], 1749 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1750 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1751 ticks_value, ticks_title, 1752 atomic_read(&rdtp->dynticks) & 0xfff, 1753 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1754 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1755 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1756 fast_no_hz); 1757 } 1758 1759 /* Terminate the stall-info list. */ 1760 static void print_cpu_stall_info_end(void) 1761 { 1762 pr_err("\t"); 1763 } 1764 1765 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1766 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1767 { 1768 rdp->ticks_this_gp = 0; 1769 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1770 } 1771 1772 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1773 static void increment_cpu_stall_ticks(void) 1774 { 1775 struct rcu_state *rsp; 1776 1777 for_each_rcu_flavor(rsp) 1778 raw_cpu_inc(rsp->rda->ticks_this_gp); 1779 } 1780 1781 #ifdef CONFIG_RCU_NOCB_CPU 1782 1783 /* 1784 * Offload callback processing from the boot-time-specified set of CPUs 1785 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1786 * kthread created that pulls the callbacks from the corresponding CPU, 1787 * waits for a grace period to elapse, and invokes the callbacks. 1788 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1789 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1790 * has been specified, in which case each kthread actively polls its 1791 * CPU. (Which isn't so great for energy efficiency, but which does 1792 * reduce RCU's overhead on that CPU.) 1793 * 1794 * This is intended to be used in conjunction with Frederic Weisbecker's 1795 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1796 * running CPU-bound user-mode computations. 1797 * 1798 * Offloading of callback processing could also in theory be used as 1799 * an energy-efficiency measure because CPUs with no RCU callbacks 1800 * queued are more aggressive about entering dyntick-idle mode. 1801 */ 1802 1803 1804 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1805 static int __init rcu_nocb_setup(char *str) 1806 { 1807 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1808 have_rcu_nocb_mask = true; 1809 cpulist_parse(str, rcu_nocb_mask); 1810 return 1; 1811 } 1812 __setup("rcu_nocbs=", rcu_nocb_setup); 1813 1814 static int __init parse_rcu_nocb_poll(char *arg) 1815 { 1816 rcu_nocb_poll = 1; 1817 return 0; 1818 } 1819 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1820 1821 /* 1822 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1823 * grace period. 1824 */ 1825 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1826 { 1827 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); 1828 } 1829 1830 /* 1831 * Set the root rcu_node structure's ->need_future_gp field 1832 * based on the sum of those of all rcu_node structures. This does 1833 * double-count the root rcu_node structure's requests, but this 1834 * is necessary to handle the possibility of a rcu_nocb_kthread() 1835 * having awakened during the time that the rcu_node structures 1836 * were being updated for the end of the previous grace period. 1837 */ 1838 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1839 { 1840 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1841 } 1842 1843 static void rcu_init_one_nocb(struct rcu_node *rnp) 1844 { 1845 init_waitqueue_head(&rnp->nocb_gp_wq[0]); 1846 init_waitqueue_head(&rnp->nocb_gp_wq[1]); 1847 } 1848 1849 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1850 /* Is the specified CPU a no-CBs CPU? */ 1851 bool rcu_is_nocb_cpu(int cpu) 1852 { 1853 if (have_rcu_nocb_mask) 1854 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1855 return false; 1856 } 1857 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1858 1859 /* 1860 * Kick the leader kthread for this NOCB group. 1861 */ 1862 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1863 { 1864 struct rcu_data *rdp_leader = rdp->nocb_leader; 1865 1866 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1867 return; 1868 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1869 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1870 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1871 wake_up(&rdp_leader->nocb_wq); 1872 } 1873 } 1874 1875 /* 1876 * Does the specified CPU need an RCU callback for the specified flavor 1877 * of rcu_barrier()? 1878 */ 1879 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1880 { 1881 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1882 unsigned long ret; 1883 #ifdef CONFIG_PROVE_RCU 1884 struct rcu_head *rhp; 1885 #endif /* #ifdef CONFIG_PROVE_RCU */ 1886 1887 /* 1888 * Check count of all no-CBs callbacks awaiting invocation. 1889 * There needs to be a barrier before this function is called, 1890 * but associated with a prior determination that no more 1891 * callbacks would be posted. In the worst case, the first 1892 * barrier in _rcu_barrier() suffices (but the caller cannot 1893 * necessarily rely on this, not a substitute for the caller 1894 * getting the concurrency design right!). There must also be 1895 * a barrier between the following load an posting of a callback 1896 * (if a callback is in fact needed). This is associated with an 1897 * atomic_inc() in the caller. 1898 */ 1899 ret = atomic_long_read(&rdp->nocb_q_count); 1900 1901 #ifdef CONFIG_PROVE_RCU 1902 rhp = READ_ONCE(rdp->nocb_head); 1903 if (!rhp) 1904 rhp = READ_ONCE(rdp->nocb_gp_head); 1905 if (!rhp) 1906 rhp = READ_ONCE(rdp->nocb_follower_head); 1907 1908 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1909 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1910 rcu_scheduler_fully_active) { 1911 /* RCU callback enqueued before CPU first came online??? */ 1912 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1913 cpu, rhp->func); 1914 WARN_ON_ONCE(1); 1915 } 1916 #endif /* #ifdef CONFIG_PROVE_RCU */ 1917 1918 return !!ret; 1919 } 1920 1921 /* 1922 * Enqueue the specified string of rcu_head structures onto the specified 1923 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1924 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1925 * counts are supplied by rhcount and rhcount_lazy. 1926 * 1927 * If warranted, also wake up the kthread servicing this CPUs queues. 1928 */ 1929 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1930 struct rcu_head *rhp, 1931 struct rcu_head **rhtp, 1932 int rhcount, int rhcount_lazy, 1933 unsigned long flags) 1934 { 1935 int len; 1936 struct rcu_head **old_rhpp; 1937 struct task_struct *t; 1938 1939 /* Enqueue the callback on the nocb list and update counts. */ 1940 atomic_long_add(rhcount, &rdp->nocb_q_count); 1941 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1942 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1943 WRITE_ONCE(*old_rhpp, rhp); 1944 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1945 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1946 1947 /* If we are not being polled and there is a kthread, awaken it ... */ 1948 t = READ_ONCE(rdp->nocb_kthread); 1949 if (rcu_nocb_poll || !t) { 1950 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1951 TPS("WakeNotPoll")); 1952 return; 1953 } 1954 len = atomic_long_read(&rdp->nocb_q_count); 1955 if (old_rhpp == &rdp->nocb_head) { 1956 if (!irqs_disabled_flags(flags)) { 1957 /* ... if queue was empty ... */ 1958 wake_nocb_leader(rdp, false); 1959 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1960 TPS("WakeEmpty")); 1961 } else { 1962 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 1963 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1964 TPS("WakeEmptyIsDeferred")); 1965 } 1966 rdp->qlen_last_fqs_check = 0; 1967 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1968 /* ... or if many callbacks queued. */ 1969 if (!irqs_disabled_flags(flags)) { 1970 wake_nocb_leader(rdp, true); 1971 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1972 TPS("WakeOvf")); 1973 } else { 1974 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 1975 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1976 TPS("WakeOvfIsDeferred")); 1977 } 1978 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1979 } else { 1980 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1981 } 1982 return; 1983 } 1984 1985 /* 1986 * This is a helper for __call_rcu(), which invokes this when the normal 1987 * callback queue is inoperable. If this is not a no-CBs CPU, this 1988 * function returns failure back to __call_rcu(), which can complain 1989 * appropriately. 1990 * 1991 * Otherwise, this function queues the callback where the corresponding 1992 * "rcuo" kthread can find it. 1993 */ 1994 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1995 bool lazy, unsigned long flags) 1996 { 1997 1998 if (!rcu_is_nocb_cpu(rdp->cpu)) 1999 return false; 2000 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2001 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2002 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2003 (unsigned long)rhp->func, 2004 -atomic_long_read(&rdp->nocb_q_count_lazy), 2005 -atomic_long_read(&rdp->nocb_q_count)); 2006 else 2007 trace_rcu_callback(rdp->rsp->name, rhp, 2008 -atomic_long_read(&rdp->nocb_q_count_lazy), 2009 -atomic_long_read(&rdp->nocb_q_count)); 2010 2011 /* 2012 * If called from an extended quiescent state with interrupts 2013 * disabled, invoke the RCU core in order to allow the idle-entry 2014 * deferred-wakeup check to function. 2015 */ 2016 if (irqs_disabled_flags(flags) && 2017 !rcu_is_watching() && 2018 cpu_online(smp_processor_id())) 2019 invoke_rcu_core(); 2020 2021 return true; 2022 } 2023 2024 /* 2025 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2026 * not a no-CBs CPU. 2027 */ 2028 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2029 struct rcu_data *rdp, 2030 unsigned long flags) 2031 { 2032 long ql = rsp->qlen; 2033 long qll = rsp->qlen_lazy; 2034 2035 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 2036 if (!rcu_is_nocb_cpu(smp_processor_id())) 2037 return false; 2038 rsp->qlen = 0; 2039 rsp->qlen_lazy = 0; 2040 2041 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 2042 if (rsp->orphan_donelist != NULL) { 2043 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 2044 rsp->orphan_donetail, ql, qll, flags); 2045 ql = qll = 0; 2046 rsp->orphan_donelist = NULL; 2047 rsp->orphan_donetail = &rsp->orphan_donelist; 2048 } 2049 if (rsp->orphan_nxtlist != NULL) { 2050 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2051 rsp->orphan_nxttail, ql, qll, flags); 2052 ql = qll = 0; 2053 rsp->orphan_nxtlist = NULL; 2054 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2055 } 2056 return true; 2057 } 2058 2059 /* 2060 * If necessary, kick off a new grace period, and either way wait 2061 * for a subsequent grace period to complete. 2062 */ 2063 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2064 { 2065 unsigned long c; 2066 bool d; 2067 unsigned long flags; 2068 bool needwake; 2069 struct rcu_node *rnp = rdp->mynode; 2070 2071 raw_spin_lock_irqsave(&rnp->lock, flags); 2072 smp_mb__after_unlock_lock(); 2073 needwake = rcu_start_future_gp(rnp, rdp, &c); 2074 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2075 if (needwake) 2076 rcu_gp_kthread_wake(rdp->rsp); 2077 2078 /* 2079 * Wait for the grace period. Do so interruptibly to avoid messing 2080 * up the load average. 2081 */ 2082 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2083 for (;;) { 2084 wait_event_interruptible( 2085 rnp->nocb_gp_wq[c & 0x1], 2086 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2087 if (likely(d)) 2088 break; 2089 WARN_ON(signal_pending(current)); 2090 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2091 } 2092 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2093 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2094 } 2095 2096 /* 2097 * Leaders come here to wait for additional callbacks to show up. 2098 * This function does not return until callbacks appear. 2099 */ 2100 static void nocb_leader_wait(struct rcu_data *my_rdp) 2101 { 2102 bool firsttime = true; 2103 bool gotcbs; 2104 struct rcu_data *rdp; 2105 struct rcu_head **tail; 2106 2107 wait_again: 2108 2109 /* Wait for callbacks to appear. */ 2110 if (!rcu_nocb_poll) { 2111 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2112 wait_event_interruptible(my_rdp->nocb_wq, 2113 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2114 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2115 } else if (firsttime) { 2116 firsttime = false; /* Don't drown trace log with "Poll"! */ 2117 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2118 } 2119 2120 /* 2121 * Each pass through the following loop checks a follower for CBs. 2122 * We are our own first follower. Any CBs found are moved to 2123 * nocb_gp_head, where they await a grace period. 2124 */ 2125 gotcbs = false; 2126 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2127 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2128 if (!rdp->nocb_gp_head) 2129 continue; /* No CBs here, try next follower. */ 2130 2131 /* Move callbacks to wait-for-GP list, which is empty. */ 2132 WRITE_ONCE(rdp->nocb_head, NULL); 2133 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2134 gotcbs = true; 2135 } 2136 2137 /* 2138 * If there were no callbacks, sleep a bit, rescan after a 2139 * memory barrier, and go retry. 2140 */ 2141 if (unlikely(!gotcbs)) { 2142 if (!rcu_nocb_poll) 2143 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2144 "WokeEmpty"); 2145 WARN_ON(signal_pending(current)); 2146 schedule_timeout_interruptible(1); 2147 2148 /* Rescan in case we were a victim of memory ordering. */ 2149 my_rdp->nocb_leader_sleep = true; 2150 smp_mb(); /* Ensure _sleep true before scan. */ 2151 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2152 if (READ_ONCE(rdp->nocb_head)) { 2153 /* Found CB, so short-circuit next wait. */ 2154 my_rdp->nocb_leader_sleep = false; 2155 break; 2156 } 2157 goto wait_again; 2158 } 2159 2160 /* Wait for one grace period. */ 2161 rcu_nocb_wait_gp(my_rdp); 2162 2163 /* 2164 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2165 * We set it now, but recheck for new callbacks while 2166 * traversing our follower list. 2167 */ 2168 my_rdp->nocb_leader_sleep = true; 2169 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2170 2171 /* Each pass through the following loop wakes a follower, if needed. */ 2172 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2173 if (READ_ONCE(rdp->nocb_head)) 2174 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2175 if (!rdp->nocb_gp_head) 2176 continue; /* No CBs, so no need to wake follower. */ 2177 2178 /* Append callbacks to follower's "done" list. */ 2179 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2180 *tail = rdp->nocb_gp_head; 2181 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2182 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2183 /* 2184 * List was empty, wake up the follower. 2185 * Memory barriers supplied by atomic_long_add(). 2186 */ 2187 wake_up(&rdp->nocb_wq); 2188 } 2189 } 2190 2191 /* If we (the leader) don't have CBs, go wait some more. */ 2192 if (!my_rdp->nocb_follower_head) 2193 goto wait_again; 2194 } 2195 2196 /* 2197 * Followers come here to wait for additional callbacks to show up. 2198 * This function does not return until callbacks appear. 2199 */ 2200 static void nocb_follower_wait(struct rcu_data *rdp) 2201 { 2202 bool firsttime = true; 2203 2204 for (;;) { 2205 if (!rcu_nocb_poll) { 2206 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2207 "FollowerSleep"); 2208 wait_event_interruptible(rdp->nocb_wq, 2209 READ_ONCE(rdp->nocb_follower_head)); 2210 } else if (firsttime) { 2211 /* Don't drown trace log with "Poll"! */ 2212 firsttime = false; 2213 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2214 } 2215 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2216 /* ^^^ Ensure CB invocation follows _head test. */ 2217 return; 2218 } 2219 if (!rcu_nocb_poll) 2220 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2221 "WokeEmpty"); 2222 WARN_ON(signal_pending(current)); 2223 schedule_timeout_interruptible(1); 2224 } 2225 } 2226 2227 /* 2228 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2229 * callbacks queued by the corresponding no-CBs CPU, however, there is 2230 * an optional leader-follower relationship so that the grace-period 2231 * kthreads don't have to do quite so many wakeups. 2232 */ 2233 static int rcu_nocb_kthread(void *arg) 2234 { 2235 int c, cl; 2236 struct rcu_head *list; 2237 struct rcu_head *next; 2238 struct rcu_head **tail; 2239 struct rcu_data *rdp = arg; 2240 2241 /* Each pass through this loop invokes one batch of callbacks */ 2242 for (;;) { 2243 /* Wait for callbacks. */ 2244 if (rdp->nocb_leader == rdp) 2245 nocb_leader_wait(rdp); 2246 else 2247 nocb_follower_wait(rdp); 2248 2249 /* Pull the ready-to-invoke callbacks onto local list. */ 2250 list = READ_ONCE(rdp->nocb_follower_head); 2251 BUG_ON(!list); 2252 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2253 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2254 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2255 2256 /* Each pass through the following loop invokes a callback. */ 2257 trace_rcu_batch_start(rdp->rsp->name, 2258 atomic_long_read(&rdp->nocb_q_count_lazy), 2259 atomic_long_read(&rdp->nocb_q_count), -1); 2260 c = cl = 0; 2261 while (list) { 2262 next = list->next; 2263 /* Wait for enqueuing to complete, if needed. */ 2264 while (next == NULL && &list->next != tail) { 2265 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2266 TPS("WaitQueue")); 2267 schedule_timeout_interruptible(1); 2268 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2269 TPS("WokeQueue")); 2270 next = list->next; 2271 } 2272 debug_rcu_head_unqueue(list); 2273 local_bh_disable(); 2274 if (__rcu_reclaim(rdp->rsp->name, list)) 2275 cl++; 2276 c++; 2277 local_bh_enable(); 2278 list = next; 2279 } 2280 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2281 smp_mb__before_atomic(); /* _add after CB invocation. */ 2282 atomic_long_add(-c, &rdp->nocb_q_count); 2283 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2284 rdp->n_nocbs_invoked += c; 2285 } 2286 return 0; 2287 } 2288 2289 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2290 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2291 { 2292 return READ_ONCE(rdp->nocb_defer_wakeup); 2293 } 2294 2295 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2296 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2297 { 2298 int ndw; 2299 2300 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2301 return; 2302 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2303 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); 2304 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2305 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2306 } 2307 2308 void __init rcu_init_nohz(void) 2309 { 2310 int cpu; 2311 bool need_rcu_nocb_mask = true; 2312 struct rcu_state *rsp; 2313 2314 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2315 need_rcu_nocb_mask = false; 2316 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2317 2318 #if defined(CONFIG_NO_HZ_FULL) 2319 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2320 need_rcu_nocb_mask = true; 2321 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2322 2323 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2324 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2325 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2326 return; 2327 } 2328 have_rcu_nocb_mask = true; 2329 } 2330 if (!have_rcu_nocb_mask) 2331 return; 2332 2333 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2334 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2335 cpumask_set_cpu(0, rcu_nocb_mask); 2336 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2337 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2338 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2339 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2340 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2341 #if defined(CONFIG_NO_HZ_FULL) 2342 if (tick_nohz_full_running) 2343 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2344 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2345 2346 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2347 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2348 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2349 rcu_nocb_mask); 2350 } 2351 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2352 cpumask_pr_args(rcu_nocb_mask)); 2353 if (rcu_nocb_poll) 2354 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2355 2356 for_each_rcu_flavor(rsp) { 2357 for_each_cpu(cpu, rcu_nocb_mask) 2358 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2359 rcu_organize_nocb_kthreads(rsp); 2360 } 2361 } 2362 2363 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2364 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2365 { 2366 rdp->nocb_tail = &rdp->nocb_head; 2367 init_waitqueue_head(&rdp->nocb_wq); 2368 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2369 } 2370 2371 /* 2372 * If the specified CPU is a no-CBs CPU that does not already have its 2373 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2374 * brought online out of order, this can require re-organizing the 2375 * leader-follower relationships. 2376 */ 2377 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2378 { 2379 struct rcu_data *rdp; 2380 struct rcu_data *rdp_last; 2381 struct rcu_data *rdp_old_leader; 2382 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2383 struct task_struct *t; 2384 2385 /* 2386 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2387 * then nothing to do. 2388 */ 2389 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2390 return; 2391 2392 /* If we didn't spawn the leader first, reorganize! */ 2393 rdp_old_leader = rdp_spawn->nocb_leader; 2394 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2395 rdp_last = NULL; 2396 rdp = rdp_old_leader; 2397 do { 2398 rdp->nocb_leader = rdp_spawn; 2399 if (rdp_last && rdp != rdp_spawn) 2400 rdp_last->nocb_next_follower = rdp; 2401 if (rdp == rdp_spawn) { 2402 rdp = rdp->nocb_next_follower; 2403 } else { 2404 rdp_last = rdp; 2405 rdp = rdp->nocb_next_follower; 2406 rdp_last->nocb_next_follower = NULL; 2407 } 2408 } while (rdp); 2409 rdp_spawn->nocb_next_follower = rdp_old_leader; 2410 } 2411 2412 /* Spawn the kthread for this CPU and RCU flavor. */ 2413 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2414 "rcuo%c/%d", rsp->abbr, cpu); 2415 BUG_ON(IS_ERR(t)); 2416 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2417 } 2418 2419 /* 2420 * If the specified CPU is a no-CBs CPU that does not already have its 2421 * rcuo kthreads, spawn them. 2422 */ 2423 static void rcu_spawn_all_nocb_kthreads(int cpu) 2424 { 2425 struct rcu_state *rsp; 2426 2427 if (rcu_scheduler_fully_active) 2428 for_each_rcu_flavor(rsp) 2429 rcu_spawn_one_nocb_kthread(rsp, cpu); 2430 } 2431 2432 /* 2433 * Once the scheduler is running, spawn rcuo kthreads for all online 2434 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2435 * non-boot CPUs come online -- if this changes, we will need to add 2436 * some mutual exclusion. 2437 */ 2438 static void __init rcu_spawn_nocb_kthreads(void) 2439 { 2440 int cpu; 2441 2442 for_each_online_cpu(cpu) 2443 rcu_spawn_all_nocb_kthreads(cpu); 2444 } 2445 2446 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2447 static int rcu_nocb_leader_stride = -1; 2448 module_param(rcu_nocb_leader_stride, int, 0444); 2449 2450 /* 2451 * Initialize leader-follower relationships for all no-CBs CPU. 2452 */ 2453 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2454 { 2455 int cpu; 2456 int ls = rcu_nocb_leader_stride; 2457 int nl = 0; /* Next leader. */ 2458 struct rcu_data *rdp; 2459 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2460 struct rcu_data *rdp_prev = NULL; 2461 2462 if (!have_rcu_nocb_mask) 2463 return; 2464 if (ls == -1) { 2465 ls = int_sqrt(nr_cpu_ids); 2466 rcu_nocb_leader_stride = ls; 2467 } 2468 2469 /* 2470 * Each pass through this loop sets up one rcu_data structure and 2471 * spawns one rcu_nocb_kthread(). 2472 */ 2473 for_each_cpu(cpu, rcu_nocb_mask) { 2474 rdp = per_cpu_ptr(rsp->rda, cpu); 2475 if (rdp->cpu >= nl) { 2476 /* New leader, set up for followers & next leader. */ 2477 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2478 rdp->nocb_leader = rdp; 2479 rdp_leader = rdp; 2480 } else { 2481 /* Another follower, link to previous leader. */ 2482 rdp->nocb_leader = rdp_leader; 2483 rdp_prev->nocb_next_follower = rdp; 2484 } 2485 rdp_prev = rdp; 2486 } 2487 } 2488 2489 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2490 static bool init_nocb_callback_list(struct rcu_data *rdp) 2491 { 2492 if (!rcu_is_nocb_cpu(rdp->cpu)) 2493 return false; 2494 2495 /* If there are early-boot callbacks, move them to nocb lists. */ 2496 if (rdp->nxtlist) { 2497 rdp->nocb_head = rdp->nxtlist; 2498 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; 2499 atomic_long_set(&rdp->nocb_q_count, rdp->qlen); 2500 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); 2501 rdp->nxtlist = NULL; 2502 rdp->qlen = 0; 2503 rdp->qlen_lazy = 0; 2504 } 2505 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2506 return true; 2507 } 2508 2509 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2510 2511 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2512 { 2513 WARN_ON_ONCE(1); /* Should be dead code. */ 2514 return false; 2515 } 2516 2517 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2518 { 2519 } 2520 2521 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2522 { 2523 } 2524 2525 static void rcu_init_one_nocb(struct rcu_node *rnp) 2526 { 2527 } 2528 2529 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2530 bool lazy, unsigned long flags) 2531 { 2532 return false; 2533 } 2534 2535 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2536 struct rcu_data *rdp, 2537 unsigned long flags) 2538 { 2539 return false; 2540 } 2541 2542 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2543 { 2544 } 2545 2546 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2547 { 2548 return false; 2549 } 2550 2551 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2552 { 2553 } 2554 2555 static void rcu_spawn_all_nocb_kthreads(int cpu) 2556 { 2557 } 2558 2559 static void __init rcu_spawn_nocb_kthreads(void) 2560 { 2561 } 2562 2563 static bool init_nocb_callback_list(struct rcu_data *rdp) 2564 { 2565 return false; 2566 } 2567 2568 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2569 2570 /* 2571 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2572 * arbitrarily long period of time with the scheduling-clock tick turned 2573 * off. RCU will be paying attention to this CPU because it is in the 2574 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2575 * machine because the scheduling-clock tick has been disabled. Therefore, 2576 * if an adaptive-ticks CPU is failing to respond to the current grace 2577 * period and has not be idle from an RCU perspective, kick it. 2578 */ 2579 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2580 { 2581 #ifdef CONFIG_NO_HZ_FULL 2582 if (tick_nohz_full_cpu(cpu)) 2583 smp_send_reschedule(cpu); 2584 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2585 } 2586 2587 2588 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2589 2590 static int full_sysidle_state; /* Current system-idle state. */ 2591 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2592 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2593 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2594 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2595 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2596 2597 /* 2598 * Invoked to note exit from irq or task transition to idle. Note that 2599 * usermode execution does -not- count as idle here! After all, we want 2600 * to detect full-system idle states, not RCU quiescent states and grace 2601 * periods. The caller must have disabled interrupts. 2602 */ 2603 static void rcu_sysidle_enter(int irq) 2604 { 2605 unsigned long j; 2606 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2607 2608 /* If there are no nohz_full= CPUs, no need to track this. */ 2609 if (!tick_nohz_full_enabled()) 2610 return; 2611 2612 /* Adjust nesting, check for fully idle. */ 2613 if (irq) { 2614 rdtp->dynticks_idle_nesting--; 2615 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2616 if (rdtp->dynticks_idle_nesting != 0) 2617 return; /* Still not fully idle. */ 2618 } else { 2619 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2620 DYNTICK_TASK_NEST_VALUE) { 2621 rdtp->dynticks_idle_nesting = 0; 2622 } else { 2623 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2624 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2625 return; /* Still not fully idle. */ 2626 } 2627 } 2628 2629 /* Record start of fully idle period. */ 2630 j = jiffies; 2631 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); 2632 smp_mb__before_atomic(); 2633 atomic_inc(&rdtp->dynticks_idle); 2634 smp_mb__after_atomic(); 2635 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2636 } 2637 2638 /* 2639 * Unconditionally force exit from full system-idle state. This is 2640 * invoked when a normal CPU exits idle, but must be called separately 2641 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2642 * is that the timekeeping CPU is permitted to take scheduling-clock 2643 * interrupts while the system is in system-idle state, and of course 2644 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2645 * interrupt from any other type of interrupt. 2646 */ 2647 void rcu_sysidle_force_exit(void) 2648 { 2649 int oldstate = READ_ONCE(full_sysidle_state); 2650 int newoldstate; 2651 2652 /* 2653 * Each pass through the following loop attempts to exit full 2654 * system-idle state. If contention proves to be a problem, 2655 * a trylock-based contention tree could be used here. 2656 */ 2657 while (oldstate > RCU_SYSIDLE_SHORT) { 2658 newoldstate = cmpxchg(&full_sysidle_state, 2659 oldstate, RCU_SYSIDLE_NOT); 2660 if (oldstate == newoldstate && 2661 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2662 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2663 return; /* We cleared it, done! */ 2664 } 2665 oldstate = newoldstate; 2666 } 2667 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2668 } 2669 2670 /* 2671 * Invoked to note entry to irq or task transition from idle. Note that 2672 * usermode execution does -not- count as idle here! The caller must 2673 * have disabled interrupts. 2674 */ 2675 static void rcu_sysidle_exit(int irq) 2676 { 2677 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2678 2679 /* If there are no nohz_full= CPUs, no need to track this. */ 2680 if (!tick_nohz_full_enabled()) 2681 return; 2682 2683 /* Adjust nesting, check for already non-idle. */ 2684 if (irq) { 2685 rdtp->dynticks_idle_nesting++; 2686 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2687 if (rdtp->dynticks_idle_nesting != 1) 2688 return; /* Already non-idle. */ 2689 } else { 2690 /* 2691 * Allow for irq misnesting. Yes, it really is possible 2692 * to enter an irq handler then never leave it, and maybe 2693 * also vice versa. Handle both possibilities. 2694 */ 2695 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2696 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2697 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2698 return; /* Already non-idle. */ 2699 } else { 2700 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2701 } 2702 } 2703 2704 /* Record end of idle period. */ 2705 smp_mb__before_atomic(); 2706 atomic_inc(&rdtp->dynticks_idle); 2707 smp_mb__after_atomic(); 2708 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2709 2710 /* 2711 * If we are the timekeeping CPU, we are permitted to be non-idle 2712 * during a system-idle state. This must be the case, because 2713 * the timekeeping CPU has to take scheduling-clock interrupts 2714 * during the time that the system is transitioning to full 2715 * system-idle state. This means that the timekeeping CPU must 2716 * invoke rcu_sysidle_force_exit() directly if it does anything 2717 * more than take a scheduling-clock interrupt. 2718 */ 2719 if (smp_processor_id() == tick_do_timer_cpu) 2720 return; 2721 2722 /* Update system-idle state: We are clearly no longer fully idle! */ 2723 rcu_sysidle_force_exit(); 2724 } 2725 2726 /* 2727 * Check to see if the current CPU is idle. Note that usermode execution 2728 * does not count as idle. The caller must have disabled interrupts, 2729 * and must be running on tick_do_timer_cpu. 2730 */ 2731 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2732 unsigned long *maxj) 2733 { 2734 int cur; 2735 unsigned long j; 2736 struct rcu_dynticks *rdtp = rdp->dynticks; 2737 2738 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2739 if (!tick_nohz_full_enabled()) 2740 return; 2741 2742 /* 2743 * If some other CPU has already reported non-idle, if this is 2744 * not the flavor of RCU that tracks sysidle state, or if this 2745 * is an offline or the timekeeping CPU, nothing to do. 2746 */ 2747 if (!*isidle || rdp->rsp != rcu_state_p || 2748 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2749 return; 2750 /* Verify affinity of current kthread. */ 2751 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2752 2753 /* Pick up current idle and NMI-nesting counter and check. */ 2754 cur = atomic_read(&rdtp->dynticks_idle); 2755 if (cur & 0x1) { 2756 *isidle = false; /* We are not idle! */ 2757 return; 2758 } 2759 smp_mb(); /* Read counters before timestamps. */ 2760 2761 /* Pick up timestamps. */ 2762 j = READ_ONCE(rdtp->dynticks_idle_jiffies); 2763 /* If this CPU entered idle more recently, update maxj timestamp. */ 2764 if (ULONG_CMP_LT(*maxj, j)) 2765 *maxj = j; 2766 } 2767 2768 /* 2769 * Is this the flavor of RCU that is handling full-system idle? 2770 */ 2771 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2772 { 2773 return rsp == rcu_state_p; 2774 } 2775 2776 /* 2777 * Return a delay in jiffies based on the number of CPUs, rcu_node 2778 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2779 * systems more time to transition to full-idle state in order to 2780 * avoid the cache thrashing that otherwise occur on the state variable. 2781 * Really small systems (less than a couple of tens of CPUs) should 2782 * instead use a single global atomically incremented counter, and later 2783 * versions of this will automatically reconfigure themselves accordingly. 2784 */ 2785 static unsigned long rcu_sysidle_delay(void) 2786 { 2787 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2788 return 0; 2789 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2790 } 2791 2792 /* 2793 * Advance the full-system-idle state. This is invoked when all of 2794 * the non-timekeeping CPUs are idle. 2795 */ 2796 static void rcu_sysidle(unsigned long j) 2797 { 2798 /* Check the current state. */ 2799 switch (READ_ONCE(full_sysidle_state)) { 2800 case RCU_SYSIDLE_NOT: 2801 2802 /* First time all are idle, so note a short idle period. */ 2803 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); 2804 break; 2805 2806 case RCU_SYSIDLE_SHORT: 2807 2808 /* 2809 * Idle for a bit, time to advance to next state? 2810 * cmpxchg failure means race with non-idle, let them win. 2811 */ 2812 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2813 (void)cmpxchg(&full_sysidle_state, 2814 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2815 break; 2816 2817 case RCU_SYSIDLE_LONG: 2818 2819 /* 2820 * Do an additional check pass before advancing to full. 2821 * cmpxchg failure means race with non-idle, let them win. 2822 */ 2823 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2824 (void)cmpxchg(&full_sysidle_state, 2825 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2826 break; 2827 2828 default: 2829 break; 2830 } 2831 } 2832 2833 /* 2834 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2835 * back to the beginning. 2836 */ 2837 static void rcu_sysidle_cancel(void) 2838 { 2839 smp_mb(); 2840 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2841 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); 2842 } 2843 2844 /* 2845 * Update the sysidle state based on the results of a force-quiescent-state 2846 * scan of the CPUs' dyntick-idle state. 2847 */ 2848 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2849 unsigned long maxj, bool gpkt) 2850 { 2851 if (rsp != rcu_state_p) 2852 return; /* Wrong flavor, ignore. */ 2853 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2854 return; /* Running state machine from timekeeping CPU. */ 2855 if (isidle) 2856 rcu_sysidle(maxj); /* More idle! */ 2857 else 2858 rcu_sysidle_cancel(); /* Idle is over. */ 2859 } 2860 2861 /* 2862 * Wrapper for rcu_sysidle_report() when called from the grace-period 2863 * kthread's context. 2864 */ 2865 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2866 unsigned long maxj) 2867 { 2868 /* If there are no nohz_full= CPUs, no need to track this. */ 2869 if (!tick_nohz_full_enabled()) 2870 return; 2871 2872 rcu_sysidle_report(rsp, isidle, maxj, true); 2873 } 2874 2875 /* Callback and function for forcing an RCU grace period. */ 2876 struct rcu_sysidle_head { 2877 struct rcu_head rh; 2878 int inuse; 2879 }; 2880 2881 static void rcu_sysidle_cb(struct rcu_head *rhp) 2882 { 2883 struct rcu_sysidle_head *rshp; 2884 2885 /* 2886 * The following memory barrier is needed to replace the 2887 * memory barriers that would normally be in the memory 2888 * allocator. 2889 */ 2890 smp_mb(); /* grace period precedes setting inuse. */ 2891 2892 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2893 WRITE_ONCE(rshp->inuse, 0); 2894 } 2895 2896 /* 2897 * Check to see if the system is fully idle, other than the timekeeping CPU. 2898 * The caller must have disabled interrupts. This is not intended to be 2899 * called unless tick_nohz_full_enabled(). 2900 */ 2901 bool rcu_sys_is_idle(void) 2902 { 2903 static struct rcu_sysidle_head rsh; 2904 int rss = READ_ONCE(full_sysidle_state); 2905 2906 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2907 return false; 2908 2909 /* Handle small-system case by doing a full scan of CPUs. */ 2910 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2911 int oldrss = rss - 1; 2912 2913 /* 2914 * One pass to advance to each state up to _FULL. 2915 * Give up if any pass fails to advance the state. 2916 */ 2917 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2918 int cpu; 2919 bool isidle = true; 2920 unsigned long maxj = jiffies - ULONG_MAX / 4; 2921 struct rcu_data *rdp; 2922 2923 /* Scan all the CPUs looking for nonidle CPUs. */ 2924 for_each_possible_cpu(cpu) { 2925 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2926 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2927 if (!isidle) 2928 break; 2929 } 2930 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2931 oldrss = rss; 2932 rss = READ_ONCE(full_sysidle_state); 2933 } 2934 } 2935 2936 /* If this is the first observation of an idle period, record it. */ 2937 if (rss == RCU_SYSIDLE_FULL) { 2938 rss = cmpxchg(&full_sysidle_state, 2939 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2940 return rss == RCU_SYSIDLE_FULL; 2941 } 2942 2943 smp_mb(); /* ensure rss load happens before later caller actions. */ 2944 2945 /* If already fully idle, tell the caller (in case of races). */ 2946 if (rss == RCU_SYSIDLE_FULL_NOTED) 2947 return true; 2948 2949 /* 2950 * If we aren't there yet, and a grace period is not in flight, 2951 * initiate a grace period. Either way, tell the caller that 2952 * we are not there yet. We use an xchg() rather than an assignment 2953 * to make up for the memory barriers that would otherwise be 2954 * provided by the memory allocator. 2955 */ 2956 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2957 !rcu_gp_in_progress(rcu_state_p) && 2958 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2959 call_rcu(&rsh.rh, rcu_sysidle_cb); 2960 return false; 2961 } 2962 2963 /* 2964 * Initialize dynticks sysidle state for CPUs coming online. 2965 */ 2966 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2967 { 2968 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 2969 } 2970 2971 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2972 2973 static void rcu_sysidle_enter(int irq) 2974 { 2975 } 2976 2977 static void rcu_sysidle_exit(int irq) 2978 { 2979 } 2980 2981 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2982 unsigned long *maxj) 2983 { 2984 } 2985 2986 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2987 { 2988 return false; 2989 } 2990 2991 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2992 unsigned long maxj) 2993 { 2994 } 2995 2996 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2997 { 2998 } 2999 3000 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3001 3002 /* 3003 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 3004 * grace-period kthread will do force_quiescent_state() processing? 3005 * The idea is to avoid waking up RCU core processing on such a 3006 * CPU unless the grace period has extended for too long. 3007 * 3008 * This code relies on the fact that all NO_HZ_FULL CPUs are also 3009 * CONFIG_RCU_NOCB_CPU CPUs. 3010 */ 3011 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 3012 { 3013 #ifdef CONFIG_NO_HZ_FULL 3014 if (tick_nohz_full_cpu(smp_processor_id()) && 3015 (!rcu_gp_in_progress(rsp) || 3016 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 3017 return true; 3018 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 3019 return false; 3020 } 3021 3022 /* 3023 * Bind the grace-period kthread for the sysidle flavor of RCU to the 3024 * timekeeping CPU. 3025 */ 3026 static void rcu_bind_gp_kthread(void) 3027 { 3028 int __maybe_unused cpu; 3029 3030 if (!tick_nohz_full_enabled()) 3031 return; 3032 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 3033 cpu = tick_do_timer_cpu; 3034 if (cpu >= 0 && cpu < nr_cpu_ids) 3035 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 3036 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3037 housekeeping_affine(current); 3038 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3039 } 3040 3041 /* Record the current task on dyntick-idle entry. */ 3042 static void rcu_dynticks_task_enter(void) 3043 { 3044 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3045 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 3046 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3047 } 3048 3049 /* Record no current task on dyntick-idle exit. */ 3050 static void rcu_dynticks_task_exit(void) 3051 { 3052 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3053 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 3054 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3055 } 3056