xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 9659281c)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 	return lockdep_is_held(&rdp->nocb_lock);
22 }
23 
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 	/* Race on early boot between thread creation and assignment */
27 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 		return true;
29 
30 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 		if (in_task())
32 			return true;
33 	return false;
34 }
35 
36 #else
37 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
38 {
39 	return 0;
40 }
41 
42 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
43 {
44 	return false;
45 }
46 
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48 
49 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
50 {
51 	/*
52 	 * In order to read the offloaded state of an rdp is a safe
53 	 * and stable way and prevent from its value to be changed
54 	 * under us, we must either hold the barrier mutex, the cpu
55 	 * hotplug lock (read or write) or the nocb lock. Local
56 	 * non-preemptible reads are also safe. NOCB kthreads and
57 	 * timers have their own means of synchronization against the
58 	 * offloaded state updaters.
59 	 */
60 	RCU_LOCKDEP_WARN(
61 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
62 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
63 		  rcu_lockdep_is_held_nocb(rdp) ||
64 		  (rdp == this_cpu_ptr(&rcu_data) &&
65 		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
66 		  rcu_current_is_nocb_kthread(rdp)),
67 		"Unsafe read of RCU_NOCB offloaded state"
68 	);
69 
70 	return rcu_segcblist_is_offloaded(&rdp->cblist);
71 }
72 
73 /*
74  * Check the RCU kernel configuration parameters and print informative
75  * messages about anything out of the ordinary.
76  */
77 static void __init rcu_bootup_announce_oddness(void)
78 {
79 	if (IS_ENABLED(CONFIG_RCU_TRACE))
80 		pr_info("\tRCU event tracing is enabled.\n");
81 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
82 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
83 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
84 			RCU_FANOUT);
85 	if (rcu_fanout_exact)
86 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
87 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
88 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
89 	if (IS_ENABLED(CONFIG_PROVE_RCU))
90 		pr_info("\tRCU lockdep checking is enabled.\n");
91 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
92 		pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
93 	if (RCU_NUM_LVLS >= 4)
94 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
95 	if (RCU_FANOUT_LEAF != 16)
96 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
97 			RCU_FANOUT_LEAF);
98 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
99 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
100 			rcu_fanout_leaf);
101 	if (nr_cpu_ids != NR_CPUS)
102 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
103 #ifdef CONFIG_RCU_BOOST
104 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
105 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
106 #endif
107 	if (blimit != DEFAULT_RCU_BLIMIT)
108 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
109 	if (qhimark != DEFAULT_RCU_QHIMARK)
110 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
111 	if (qlowmark != DEFAULT_RCU_QLOMARK)
112 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
113 	if (qovld != DEFAULT_RCU_QOVLD)
114 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
115 	if (jiffies_till_first_fqs != ULONG_MAX)
116 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
117 	if (jiffies_till_next_fqs != ULONG_MAX)
118 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
119 	if (jiffies_till_sched_qs != ULONG_MAX)
120 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
121 	if (rcu_kick_kthreads)
122 		pr_info("\tKick kthreads if too-long grace period.\n");
123 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
124 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
125 	if (gp_preinit_delay)
126 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
127 	if (gp_init_delay)
128 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
129 	if (gp_cleanup_delay)
130 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
131 	if (!use_softirq)
132 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
133 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
134 		pr_info("\tRCU debug extended QS entry/exit.\n");
135 	rcupdate_announce_bootup_oddness();
136 }
137 
138 #ifdef CONFIG_PREEMPT_RCU
139 
140 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
141 static void rcu_read_unlock_special(struct task_struct *t);
142 
143 /*
144  * Tell them what RCU they are running.
145  */
146 static void __init rcu_bootup_announce(void)
147 {
148 	pr_info("Preemptible hierarchical RCU implementation.\n");
149 	rcu_bootup_announce_oddness();
150 }
151 
152 /* Flags for rcu_preempt_ctxt_queue() decision table. */
153 #define RCU_GP_TASKS	0x8
154 #define RCU_EXP_TASKS	0x4
155 #define RCU_GP_BLKD	0x2
156 #define RCU_EXP_BLKD	0x1
157 
158 /*
159  * Queues a task preempted within an RCU-preempt read-side critical
160  * section into the appropriate location within the ->blkd_tasks list,
161  * depending on the states of any ongoing normal and expedited grace
162  * periods.  The ->gp_tasks pointer indicates which element the normal
163  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
164  * indicates which element the expedited grace period is waiting on (again,
165  * NULL if none).  If a grace period is waiting on a given element in the
166  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
167  * adding a task to the tail of the list blocks any grace period that is
168  * already waiting on one of the elements.  In contrast, adding a task
169  * to the head of the list won't block any grace period that is already
170  * waiting on one of the elements.
171  *
172  * This queuing is imprecise, and can sometimes make an ongoing grace
173  * period wait for a task that is not strictly speaking blocking it.
174  * Given the choice, we needlessly block a normal grace period rather than
175  * blocking an expedited grace period.
176  *
177  * Note that an endless sequence of expedited grace periods still cannot
178  * indefinitely postpone a normal grace period.  Eventually, all of the
179  * fixed number of preempted tasks blocking the normal grace period that are
180  * not also blocking the expedited grace period will resume and complete
181  * their RCU read-side critical sections.  At that point, the ->gp_tasks
182  * pointer will equal the ->exp_tasks pointer, at which point the end of
183  * the corresponding expedited grace period will also be the end of the
184  * normal grace period.
185  */
186 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
187 	__releases(rnp->lock) /* But leaves rrupts disabled. */
188 {
189 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
190 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
191 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
192 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
193 	struct task_struct *t = current;
194 
195 	raw_lockdep_assert_held_rcu_node(rnp);
196 	WARN_ON_ONCE(rdp->mynode != rnp);
197 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
198 	/* RCU better not be waiting on newly onlined CPUs! */
199 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
200 		     rdp->grpmask);
201 
202 	/*
203 	 * Decide where to queue the newly blocked task.  In theory,
204 	 * this could be an if-statement.  In practice, when I tried
205 	 * that, it was quite messy.
206 	 */
207 	switch (blkd_state) {
208 	case 0:
209 	case                RCU_EXP_TASKS:
210 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
211 	case RCU_GP_TASKS:
212 	case RCU_GP_TASKS + RCU_EXP_TASKS:
213 
214 		/*
215 		 * Blocking neither GP, or first task blocking the normal
216 		 * GP but not blocking the already-waiting expedited GP.
217 		 * Queue at the head of the list to avoid unnecessarily
218 		 * blocking the already-waiting GPs.
219 		 */
220 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
221 		break;
222 
223 	case                                              RCU_EXP_BLKD:
224 	case                                RCU_GP_BLKD:
225 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
226 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
227 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
228 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
229 
230 		/*
231 		 * First task arriving that blocks either GP, or first task
232 		 * arriving that blocks the expedited GP (with the normal
233 		 * GP already waiting), or a task arriving that blocks
234 		 * both GPs with both GPs already waiting.  Queue at the
235 		 * tail of the list to avoid any GP waiting on any of the
236 		 * already queued tasks that are not blocking it.
237 		 */
238 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
239 		break;
240 
241 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
242 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
243 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
244 
245 		/*
246 		 * Second or subsequent task blocking the expedited GP.
247 		 * The task either does not block the normal GP, or is the
248 		 * first task blocking the normal GP.  Queue just after
249 		 * the first task blocking the expedited GP.
250 		 */
251 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
252 		break;
253 
254 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
255 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
256 
257 		/*
258 		 * Second or subsequent task blocking the normal GP.
259 		 * The task does not block the expedited GP. Queue just
260 		 * after the first task blocking the normal GP.
261 		 */
262 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
263 		break;
264 
265 	default:
266 
267 		/* Yet another exercise in excessive paranoia. */
268 		WARN_ON_ONCE(1);
269 		break;
270 	}
271 
272 	/*
273 	 * We have now queued the task.  If it was the first one to
274 	 * block either grace period, update the ->gp_tasks and/or
275 	 * ->exp_tasks pointers, respectively, to reference the newly
276 	 * blocked tasks.
277 	 */
278 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
279 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
280 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
281 	}
282 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
283 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
284 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
285 		     !(rnp->qsmask & rdp->grpmask));
286 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
287 		     !(rnp->expmask & rdp->grpmask));
288 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
289 
290 	/*
291 	 * Report the quiescent state for the expedited GP.  This expedited
292 	 * GP should not be able to end until we report, so there should be
293 	 * no need to check for a subsequent expedited GP.  (Though we are
294 	 * still in a quiescent state in any case.)
295 	 */
296 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
297 		rcu_report_exp_rdp(rdp);
298 	else
299 		WARN_ON_ONCE(rdp->exp_deferred_qs);
300 }
301 
302 /*
303  * Record a preemptible-RCU quiescent state for the specified CPU.
304  * Note that this does not necessarily mean that the task currently running
305  * on the CPU is in a quiescent state:  Instead, it means that the current
306  * grace period need not wait on any RCU read-side critical section that
307  * starts later on this CPU.  It also means that if the current task is
308  * in an RCU read-side critical section, it has already added itself to
309  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
310  * current task, there might be any number of other tasks blocked while
311  * in an RCU read-side critical section.
312  *
313  * Callers to this function must disable preemption.
314  */
315 static void rcu_qs(void)
316 {
317 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
318 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
319 		trace_rcu_grace_period(TPS("rcu_preempt"),
320 				       __this_cpu_read(rcu_data.gp_seq),
321 				       TPS("cpuqs"));
322 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
323 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
324 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
325 	}
326 }
327 
328 /*
329  * We have entered the scheduler, and the current task might soon be
330  * context-switched away from.  If this task is in an RCU read-side
331  * critical section, we will no longer be able to rely on the CPU to
332  * record that fact, so we enqueue the task on the blkd_tasks list.
333  * The task will dequeue itself when it exits the outermost enclosing
334  * RCU read-side critical section.  Therefore, the current grace period
335  * cannot be permitted to complete until the blkd_tasks list entries
336  * predating the current grace period drain, in other words, until
337  * rnp->gp_tasks becomes NULL.
338  *
339  * Caller must disable interrupts.
340  */
341 void rcu_note_context_switch(bool preempt)
342 {
343 	struct task_struct *t = current;
344 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
345 	struct rcu_node *rnp;
346 
347 	trace_rcu_utilization(TPS("Start context switch"));
348 	lockdep_assert_irqs_disabled();
349 	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
350 	if (rcu_preempt_depth() > 0 &&
351 	    !t->rcu_read_unlock_special.b.blocked) {
352 
353 		/* Possibly blocking in an RCU read-side critical section. */
354 		rnp = rdp->mynode;
355 		raw_spin_lock_rcu_node(rnp);
356 		t->rcu_read_unlock_special.b.blocked = true;
357 		t->rcu_blocked_node = rnp;
358 
359 		/*
360 		 * Verify the CPU's sanity, trace the preemption, and
361 		 * then queue the task as required based on the states
362 		 * of any ongoing and expedited grace periods.
363 		 */
364 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
365 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
366 		trace_rcu_preempt_task(rcu_state.name,
367 				       t->pid,
368 				       (rnp->qsmask & rdp->grpmask)
369 				       ? rnp->gp_seq
370 				       : rcu_seq_snap(&rnp->gp_seq));
371 		rcu_preempt_ctxt_queue(rnp, rdp);
372 	} else {
373 		rcu_preempt_deferred_qs(t);
374 	}
375 
376 	/*
377 	 * Either we were not in an RCU read-side critical section to
378 	 * begin with, or we have now recorded that critical section
379 	 * globally.  Either way, we can now note a quiescent state
380 	 * for this CPU.  Again, if we were in an RCU read-side critical
381 	 * section, and if that critical section was blocking the current
382 	 * grace period, then the fact that the task has been enqueued
383 	 * means that we continue to block the current grace period.
384 	 */
385 	rcu_qs();
386 	if (rdp->exp_deferred_qs)
387 		rcu_report_exp_rdp(rdp);
388 	rcu_tasks_qs(current, preempt);
389 	trace_rcu_utilization(TPS("End context switch"));
390 }
391 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
392 
393 /*
394  * Check for preempted RCU readers blocking the current grace period
395  * for the specified rcu_node structure.  If the caller needs a reliable
396  * answer, it must hold the rcu_node's ->lock.
397  */
398 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
399 {
400 	return READ_ONCE(rnp->gp_tasks) != NULL;
401 }
402 
403 /* limit value for ->rcu_read_lock_nesting. */
404 #define RCU_NEST_PMAX (INT_MAX / 2)
405 
406 static void rcu_preempt_read_enter(void)
407 {
408 	current->rcu_read_lock_nesting++;
409 }
410 
411 static int rcu_preempt_read_exit(void)
412 {
413 	return --current->rcu_read_lock_nesting;
414 }
415 
416 static void rcu_preempt_depth_set(int val)
417 {
418 	current->rcu_read_lock_nesting = val;
419 }
420 
421 /*
422  * Preemptible RCU implementation for rcu_read_lock().
423  * Just increment ->rcu_read_lock_nesting, shared state will be updated
424  * if we block.
425  */
426 void __rcu_read_lock(void)
427 {
428 	rcu_preempt_read_enter();
429 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
430 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
431 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
432 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
433 	barrier();  /* critical section after entry code. */
434 }
435 EXPORT_SYMBOL_GPL(__rcu_read_lock);
436 
437 /*
438  * Preemptible RCU implementation for rcu_read_unlock().
439  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
440  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
441  * invoke rcu_read_unlock_special() to clean up after a context switch
442  * in an RCU read-side critical section and other special cases.
443  */
444 void __rcu_read_unlock(void)
445 {
446 	struct task_struct *t = current;
447 
448 	barrier();  // critical section before exit code.
449 	if (rcu_preempt_read_exit() == 0) {
450 		barrier();  // critical-section exit before .s check.
451 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
452 			rcu_read_unlock_special(t);
453 	}
454 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
455 		int rrln = rcu_preempt_depth();
456 
457 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
458 	}
459 }
460 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
461 
462 /*
463  * Advance a ->blkd_tasks-list pointer to the next entry, instead
464  * returning NULL if at the end of the list.
465  */
466 static struct list_head *rcu_next_node_entry(struct task_struct *t,
467 					     struct rcu_node *rnp)
468 {
469 	struct list_head *np;
470 
471 	np = t->rcu_node_entry.next;
472 	if (np == &rnp->blkd_tasks)
473 		np = NULL;
474 	return np;
475 }
476 
477 /*
478  * Return true if the specified rcu_node structure has tasks that were
479  * preempted within an RCU read-side critical section.
480  */
481 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
482 {
483 	return !list_empty(&rnp->blkd_tasks);
484 }
485 
486 /*
487  * Report deferred quiescent states.  The deferral time can
488  * be quite short, for example, in the case of the call from
489  * rcu_read_unlock_special().
490  */
491 static void
492 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
493 {
494 	bool empty_exp;
495 	bool empty_norm;
496 	bool empty_exp_now;
497 	struct list_head *np;
498 	bool drop_boost_mutex = false;
499 	struct rcu_data *rdp;
500 	struct rcu_node *rnp;
501 	union rcu_special special;
502 
503 	/*
504 	 * If RCU core is waiting for this CPU to exit its critical section,
505 	 * report the fact that it has exited.  Because irqs are disabled,
506 	 * t->rcu_read_unlock_special cannot change.
507 	 */
508 	special = t->rcu_read_unlock_special;
509 	rdp = this_cpu_ptr(&rcu_data);
510 	if (!special.s && !rdp->exp_deferred_qs) {
511 		local_irq_restore(flags);
512 		return;
513 	}
514 	t->rcu_read_unlock_special.s = 0;
515 	if (special.b.need_qs) {
516 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
517 			rcu_report_qs_rdp(rdp);
518 			udelay(rcu_unlock_delay);
519 		} else {
520 			rcu_qs();
521 		}
522 	}
523 
524 	/*
525 	 * Respond to a request by an expedited grace period for a
526 	 * quiescent state from this CPU.  Note that requests from
527 	 * tasks are handled when removing the task from the
528 	 * blocked-tasks list below.
529 	 */
530 	if (rdp->exp_deferred_qs)
531 		rcu_report_exp_rdp(rdp);
532 
533 	/* Clean up if blocked during RCU read-side critical section. */
534 	if (special.b.blocked) {
535 
536 		/*
537 		 * Remove this task from the list it blocked on.  The task
538 		 * now remains queued on the rcu_node corresponding to the
539 		 * CPU it first blocked on, so there is no longer any need
540 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
541 		 */
542 		rnp = t->rcu_blocked_node;
543 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
544 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
545 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
546 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
547 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
548 			     (!empty_norm || rnp->qsmask));
549 		empty_exp = sync_rcu_exp_done(rnp);
550 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
551 		np = rcu_next_node_entry(t, rnp);
552 		list_del_init(&t->rcu_node_entry);
553 		t->rcu_blocked_node = NULL;
554 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
555 						rnp->gp_seq, t->pid);
556 		if (&t->rcu_node_entry == rnp->gp_tasks)
557 			WRITE_ONCE(rnp->gp_tasks, np);
558 		if (&t->rcu_node_entry == rnp->exp_tasks)
559 			WRITE_ONCE(rnp->exp_tasks, np);
560 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
561 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
562 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
563 			if (&t->rcu_node_entry == rnp->boost_tasks)
564 				WRITE_ONCE(rnp->boost_tasks, np);
565 		}
566 
567 		/*
568 		 * If this was the last task on the current list, and if
569 		 * we aren't waiting on any CPUs, report the quiescent state.
570 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
571 		 * so we must take a snapshot of the expedited state.
572 		 */
573 		empty_exp_now = sync_rcu_exp_done(rnp);
574 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
575 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
576 							 rnp->gp_seq,
577 							 0, rnp->qsmask,
578 							 rnp->level,
579 							 rnp->grplo,
580 							 rnp->grphi,
581 							 !!rnp->gp_tasks);
582 			rcu_report_unblock_qs_rnp(rnp, flags);
583 		} else {
584 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
585 		}
586 
587 		/* Unboost if we were boosted. */
588 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
589 			rt_mutex_futex_unlock(&rnp->boost_mtx);
590 
591 		/*
592 		 * If this was the last task on the expedited lists,
593 		 * then we need to report up the rcu_node hierarchy.
594 		 */
595 		if (!empty_exp && empty_exp_now)
596 			rcu_report_exp_rnp(rnp, true);
597 	} else {
598 		local_irq_restore(flags);
599 	}
600 }
601 
602 /*
603  * Is a deferred quiescent-state pending, and are we also not in
604  * an RCU read-side critical section?  It is the caller's responsibility
605  * to ensure it is otherwise safe to report any deferred quiescent
606  * states.  The reason for this is that it is safe to report a
607  * quiescent state during context switch even though preemption
608  * is disabled.  This function cannot be expected to understand these
609  * nuances, so the caller must handle them.
610  */
611 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
612 {
613 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
614 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
615 	       rcu_preempt_depth() == 0;
616 }
617 
618 /*
619  * Report a deferred quiescent state if needed and safe to do so.
620  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
621  * not being in an RCU read-side critical section.  The caller must
622  * evaluate safety in terms of interrupt, softirq, and preemption
623  * disabling.
624  */
625 static void rcu_preempt_deferred_qs(struct task_struct *t)
626 {
627 	unsigned long flags;
628 
629 	if (!rcu_preempt_need_deferred_qs(t))
630 		return;
631 	local_irq_save(flags);
632 	rcu_preempt_deferred_qs_irqrestore(t, flags);
633 }
634 
635 /*
636  * Minimal handler to give the scheduler a chance to re-evaluate.
637  */
638 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
639 {
640 	struct rcu_data *rdp;
641 
642 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
643 	rdp->defer_qs_iw_pending = false;
644 }
645 
646 /*
647  * Handle special cases during rcu_read_unlock(), such as needing to
648  * notify RCU core processing or task having blocked during the RCU
649  * read-side critical section.
650  */
651 static void rcu_read_unlock_special(struct task_struct *t)
652 {
653 	unsigned long flags;
654 	bool irqs_were_disabled;
655 	bool preempt_bh_were_disabled =
656 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
657 
658 	/* NMI handlers cannot block and cannot safely manipulate state. */
659 	if (in_nmi())
660 		return;
661 
662 	local_irq_save(flags);
663 	irqs_were_disabled = irqs_disabled_flags(flags);
664 	if (preempt_bh_were_disabled || irqs_were_disabled) {
665 		bool expboost; // Expedited GP in flight or possible boosting.
666 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
667 		struct rcu_node *rnp = rdp->mynode;
668 
669 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
670 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
671 			   IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
672 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
673 			    t->rcu_blocked_node);
674 		// Need to defer quiescent state until everything is enabled.
675 		if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) {
676 			// Using softirq, safe to awaken, and either the
677 			// wakeup is free or there is either an expedited
678 			// GP in flight or a potential need to deboost.
679 			raise_softirq_irqoff(RCU_SOFTIRQ);
680 		} else {
681 			// Enabling BH or preempt does reschedule, so...
682 			// Also if no expediting and no possible deboosting,
683 			// slow is OK.  Plus nohz_full CPUs eventually get
684 			// tick enabled.
685 			set_tsk_need_resched(current);
686 			set_preempt_need_resched();
687 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
688 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
689 				// Get scheduler to re-evaluate and call hooks.
690 				// If !IRQ_WORK, FQS scan will eventually IPI.
691 				init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
692 				rdp->defer_qs_iw_pending = true;
693 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
694 			}
695 		}
696 		local_irq_restore(flags);
697 		return;
698 	}
699 	rcu_preempt_deferred_qs_irqrestore(t, flags);
700 }
701 
702 /*
703  * Check that the list of blocked tasks for the newly completed grace
704  * period is in fact empty.  It is a serious bug to complete a grace
705  * period that still has RCU readers blocked!  This function must be
706  * invoked -before- updating this rnp's ->gp_seq.
707  *
708  * Also, if there are blocked tasks on the list, they automatically
709  * block the newly created grace period, so set up ->gp_tasks accordingly.
710  */
711 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
712 {
713 	struct task_struct *t;
714 
715 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
716 	raw_lockdep_assert_held_rcu_node(rnp);
717 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
718 		dump_blkd_tasks(rnp, 10);
719 	if (rcu_preempt_has_tasks(rnp) &&
720 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
721 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
722 		t = container_of(rnp->gp_tasks, struct task_struct,
723 				 rcu_node_entry);
724 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
725 						rnp->gp_seq, t->pid);
726 	}
727 	WARN_ON_ONCE(rnp->qsmask);
728 }
729 
730 /*
731  * Check for a quiescent state from the current CPU, including voluntary
732  * context switches for Tasks RCU.  When a task blocks, the task is
733  * recorded in the corresponding CPU's rcu_node structure, which is checked
734  * elsewhere, hence this function need only check for quiescent states
735  * related to the current CPU, not to those related to tasks.
736  */
737 static void rcu_flavor_sched_clock_irq(int user)
738 {
739 	struct task_struct *t = current;
740 
741 	lockdep_assert_irqs_disabled();
742 	if (user || rcu_is_cpu_rrupt_from_idle()) {
743 		rcu_note_voluntary_context_switch(current);
744 	}
745 	if (rcu_preempt_depth() > 0 ||
746 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
747 		/* No QS, force context switch if deferred. */
748 		if (rcu_preempt_need_deferred_qs(t)) {
749 			set_tsk_need_resched(t);
750 			set_preempt_need_resched();
751 		}
752 	} else if (rcu_preempt_need_deferred_qs(t)) {
753 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
754 		return;
755 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
756 		rcu_qs(); /* Report immediate QS. */
757 		return;
758 	}
759 
760 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
761 	if (rcu_preempt_depth() > 0 &&
762 	    __this_cpu_read(rcu_data.core_needs_qs) &&
763 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
764 	    !t->rcu_read_unlock_special.b.need_qs &&
765 	    time_after(jiffies, rcu_state.gp_start + HZ))
766 		t->rcu_read_unlock_special.b.need_qs = true;
767 }
768 
769 /*
770  * Check for a task exiting while in a preemptible-RCU read-side
771  * critical section, clean up if so.  No need to issue warnings, as
772  * debug_check_no_locks_held() already does this if lockdep is enabled.
773  * Besides, if this function does anything other than just immediately
774  * return, there was a bug of some sort.  Spewing warnings from this
775  * function is like as not to simply obscure important prior warnings.
776  */
777 void exit_rcu(void)
778 {
779 	struct task_struct *t = current;
780 
781 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
782 		rcu_preempt_depth_set(1);
783 		barrier();
784 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
785 	} else if (unlikely(rcu_preempt_depth())) {
786 		rcu_preempt_depth_set(1);
787 	} else {
788 		return;
789 	}
790 	__rcu_read_unlock();
791 	rcu_preempt_deferred_qs(current);
792 }
793 
794 /*
795  * Dump the blocked-tasks state, but limit the list dump to the
796  * specified number of elements.
797  */
798 static void
799 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
800 {
801 	int cpu;
802 	int i;
803 	struct list_head *lhp;
804 	bool onl;
805 	struct rcu_data *rdp;
806 	struct rcu_node *rnp1;
807 
808 	raw_lockdep_assert_held_rcu_node(rnp);
809 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
810 		__func__, rnp->grplo, rnp->grphi, rnp->level,
811 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
812 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
813 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
814 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
815 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
816 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
817 		READ_ONCE(rnp->exp_tasks));
818 	pr_info("%s: ->blkd_tasks", __func__);
819 	i = 0;
820 	list_for_each(lhp, &rnp->blkd_tasks) {
821 		pr_cont(" %p", lhp);
822 		if (++i >= ncheck)
823 			break;
824 	}
825 	pr_cont("\n");
826 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
827 		rdp = per_cpu_ptr(&rcu_data, cpu);
828 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
829 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
830 			cpu, ".o"[onl],
831 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
832 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
833 	}
834 }
835 
836 #else /* #ifdef CONFIG_PREEMPT_RCU */
837 
838 /*
839  * If strict grace periods are enabled, and if the calling
840  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
841  * report that quiescent state and, if requested, spin for a bit.
842  */
843 void rcu_read_unlock_strict(void)
844 {
845 	struct rcu_data *rdp;
846 
847 	if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
848 	   irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
849 		return;
850 	rdp = this_cpu_ptr(&rcu_data);
851 	rcu_report_qs_rdp(rdp);
852 	udelay(rcu_unlock_delay);
853 }
854 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
855 
856 /*
857  * Tell them what RCU they are running.
858  */
859 static void __init rcu_bootup_announce(void)
860 {
861 	pr_info("Hierarchical RCU implementation.\n");
862 	rcu_bootup_announce_oddness();
863 }
864 
865 /*
866  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
867  * how many quiescent states passed, just if there was at least one since
868  * the start of the grace period, this just sets a flag.  The caller must
869  * have disabled preemption.
870  */
871 static void rcu_qs(void)
872 {
873 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
874 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
875 		return;
876 	trace_rcu_grace_period(TPS("rcu_sched"),
877 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
878 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
879 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
880 		return;
881 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
882 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
883 }
884 
885 /*
886  * Register an urgently needed quiescent state.  If there is an
887  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
888  * dyntick-idle quiescent state visible to other CPUs, which will in
889  * some cases serve for expedited as well as normal grace periods.
890  * Either way, register a lightweight quiescent state.
891  */
892 void rcu_all_qs(void)
893 {
894 	unsigned long flags;
895 
896 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
897 		return;
898 	preempt_disable();
899 	/* Load rcu_urgent_qs before other flags. */
900 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
901 		preempt_enable();
902 		return;
903 	}
904 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
905 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
906 		local_irq_save(flags);
907 		rcu_momentary_dyntick_idle();
908 		local_irq_restore(flags);
909 	}
910 	rcu_qs();
911 	preempt_enable();
912 }
913 EXPORT_SYMBOL_GPL(rcu_all_qs);
914 
915 /*
916  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
917  */
918 void rcu_note_context_switch(bool preempt)
919 {
920 	trace_rcu_utilization(TPS("Start context switch"));
921 	rcu_qs();
922 	/* Load rcu_urgent_qs before other flags. */
923 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
924 		goto out;
925 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
926 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
927 		rcu_momentary_dyntick_idle();
928 	rcu_tasks_qs(current, preempt);
929 out:
930 	trace_rcu_utilization(TPS("End context switch"));
931 }
932 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
933 
934 /*
935  * Because preemptible RCU does not exist, there are never any preempted
936  * RCU readers.
937  */
938 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
939 {
940 	return 0;
941 }
942 
943 /*
944  * Because there is no preemptible RCU, there can be no readers blocked.
945  */
946 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
947 {
948 	return false;
949 }
950 
951 /*
952  * Because there is no preemptible RCU, there can be no deferred quiescent
953  * states.
954  */
955 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
956 {
957 	return false;
958 }
959 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
960 
961 /*
962  * Because there is no preemptible RCU, there can be no readers blocked,
963  * so there is no need to check for blocked tasks.  So check only for
964  * bogus qsmask values.
965  */
966 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
967 {
968 	WARN_ON_ONCE(rnp->qsmask);
969 }
970 
971 /*
972  * Check to see if this CPU is in a non-context-switch quiescent state,
973  * namely user mode and idle loop.
974  */
975 static void rcu_flavor_sched_clock_irq(int user)
976 {
977 	if (user || rcu_is_cpu_rrupt_from_idle()) {
978 
979 		/*
980 		 * Get here if this CPU took its interrupt from user
981 		 * mode or from the idle loop, and if this is not a
982 		 * nested interrupt.  In this case, the CPU is in
983 		 * a quiescent state, so note it.
984 		 *
985 		 * No memory barrier is required here because rcu_qs()
986 		 * references only CPU-local variables that other CPUs
987 		 * neither access nor modify, at least not while the
988 		 * corresponding CPU is online.
989 		 */
990 
991 		rcu_qs();
992 	}
993 }
994 
995 /*
996  * Because preemptible RCU does not exist, tasks cannot possibly exit
997  * while in preemptible RCU read-side critical sections.
998  */
999 void exit_rcu(void)
1000 {
1001 }
1002 
1003 /*
1004  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1005  */
1006 static void
1007 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1008 {
1009 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1010 }
1011 
1012 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1013 
1014 /*
1015  * If boosting, set rcuc kthreads to realtime priority.
1016  */
1017 static void rcu_cpu_kthread_setup(unsigned int cpu)
1018 {
1019 #ifdef CONFIG_RCU_BOOST
1020 	struct sched_param sp;
1021 
1022 	sp.sched_priority = kthread_prio;
1023 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1024 #endif /* #ifdef CONFIG_RCU_BOOST */
1025 }
1026 
1027 #ifdef CONFIG_RCU_BOOST
1028 
1029 /*
1030  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1031  * or ->boost_tasks, advancing the pointer to the next task in the
1032  * ->blkd_tasks list.
1033  *
1034  * Note that irqs must be enabled: boosting the task can block.
1035  * Returns 1 if there are more tasks needing to be boosted.
1036  */
1037 static int rcu_boost(struct rcu_node *rnp)
1038 {
1039 	unsigned long flags;
1040 	struct task_struct *t;
1041 	struct list_head *tb;
1042 
1043 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1044 	    READ_ONCE(rnp->boost_tasks) == NULL)
1045 		return 0;  /* Nothing left to boost. */
1046 
1047 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1048 
1049 	/*
1050 	 * Recheck under the lock: all tasks in need of boosting
1051 	 * might exit their RCU read-side critical sections on their own.
1052 	 */
1053 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1054 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1055 		return 0;
1056 	}
1057 
1058 	/*
1059 	 * Preferentially boost tasks blocking expedited grace periods.
1060 	 * This cannot starve the normal grace periods because a second
1061 	 * expedited grace period must boost all blocked tasks, including
1062 	 * those blocking the pre-existing normal grace period.
1063 	 */
1064 	if (rnp->exp_tasks != NULL)
1065 		tb = rnp->exp_tasks;
1066 	else
1067 		tb = rnp->boost_tasks;
1068 
1069 	/*
1070 	 * We boost task t by manufacturing an rt_mutex that appears to
1071 	 * be held by task t.  We leave a pointer to that rt_mutex where
1072 	 * task t can find it, and task t will release the mutex when it
1073 	 * exits its outermost RCU read-side critical section.  Then
1074 	 * simply acquiring this artificial rt_mutex will boost task
1075 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1076 	 *
1077 	 * Note that task t must acquire rnp->lock to remove itself from
1078 	 * the ->blkd_tasks list, which it will do from exit() if from
1079 	 * nowhere else.  We therefore are guaranteed that task t will
1080 	 * stay around at least until we drop rnp->lock.  Note that
1081 	 * rnp->lock also resolves races between our priority boosting
1082 	 * and task t's exiting its outermost RCU read-side critical
1083 	 * section.
1084 	 */
1085 	t = container_of(tb, struct task_struct, rcu_node_entry);
1086 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1087 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1088 	/* Lock only for side effect: boosts task t's priority. */
1089 	rt_mutex_lock(&rnp->boost_mtx);
1090 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1091 	rnp->n_boosts++;
1092 
1093 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1094 	       READ_ONCE(rnp->boost_tasks) != NULL;
1095 }
1096 
1097 /*
1098  * Priority-boosting kthread, one per leaf rcu_node.
1099  */
1100 static int rcu_boost_kthread(void *arg)
1101 {
1102 	struct rcu_node *rnp = (struct rcu_node *)arg;
1103 	int spincnt = 0;
1104 	int more2boost;
1105 
1106 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1107 	for (;;) {
1108 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1109 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1110 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1111 			 READ_ONCE(rnp->exp_tasks));
1112 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1113 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1114 		more2boost = rcu_boost(rnp);
1115 		if (more2boost)
1116 			spincnt++;
1117 		else
1118 			spincnt = 0;
1119 		if (spincnt > 10) {
1120 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1121 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1122 			schedule_timeout_idle(2);
1123 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1124 			spincnt = 0;
1125 		}
1126 	}
1127 	/* NOTREACHED */
1128 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1129 	return 0;
1130 }
1131 
1132 /*
1133  * Check to see if it is time to start boosting RCU readers that are
1134  * blocking the current grace period, and, if so, tell the per-rcu_node
1135  * kthread to start boosting them.  If there is an expedited grace
1136  * period in progress, it is always time to boost.
1137  *
1138  * The caller must hold rnp->lock, which this function releases.
1139  * The ->boost_kthread_task is immortal, so we don't need to worry
1140  * about it going away.
1141  */
1142 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1143 	__releases(rnp->lock)
1144 {
1145 	raw_lockdep_assert_held_rcu_node(rnp);
1146 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1147 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1148 		return;
1149 	}
1150 	if (rnp->exp_tasks != NULL ||
1151 	    (rnp->gp_tasks != NULL &&
1152 	     rnp->boost_tasks == NULL &&
1153 	     rnp->qsmask == 0 &&
1154 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1155 		if (rnp->exp_tasks == NULL)
1156 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1157 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1158 		rcu_wake_cond(rnp->boost_kthread_task,
1159 			      READ_ONCE(rnp->boost_kthread_status));
1160 	} else {
1161 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1162 	}
1163 }
1164 
1165 /*
1166  * Is the current CPU running the RCU-callbacks kthread?
1167  * Caller must have preemption disabled.
1168  */
1169 static bool rcu_is_callbacks_kthread(void)
1170 {
1171 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1172 }
1173 
1174 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1175 
1176 /*
1177  * Do priority-boost accounting for the start of a new grace period.
1178  */
1179 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1180 {
1181 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1182 }
1183 
1184 /*
1185  * Create an RCU-boost kthread for the specified node if one does not
1186  * already exist.  We only create this kthread for preemptible RCU.
1187  * Returns zero if all is well, a negated errno otherwise.
1188  */
1189 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1190 {
1191 	unsigned long flags;
1192 	int rnp_index = rnp - rcu_get_root();
1193 	struct sched_param sp;
1194 	struct task_struct *t;
1195 
1196 	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
1197 		return;
1198 
1199 	rcu_state.boost = 1;
1200 
1201 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1202 			   "rcub/%d", rnp_index);
1203 	if (WARN_ON_ONCE(IS_ERR(t)))
1204 		return;
1205 
1206 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1207 	rnp->boost_kthread_task = t;
1208 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1209 	sp.sched_priority = kthread_prio;
1210 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1211 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1212 }
1213 
1214 /*
1215  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1216  * served by the rcu_node in question.  The CPU hotplug lock is still
1217  * held, so the value of rnp->qsmaskinit will be stable.
1218  *
1219  * We don't include outgoingcpu in the affinity set, use -1 if there is
1220  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1221  * this function allows the kthread to execute on any CPU.
1222  */
1223 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1224 {
1225 	struct task_struct *t = rnp->boost_kthread_task;
1226 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1227 	cpumask_var_t cm;
1228 	int cpu;
1229 
1230 	if (!t)
1231 		return;
1232 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1233 		return;
1234 	for_each_leaf_node_possible_cpu(rnp, cpu)
1235 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1236 		    cpu != outgoingcpu)
1237 			cpumask_set_cpu(cpu, cm);
1238 	if (cpumask_weight(cm) == 0)
1239 		cpumask_setall(cm);
1240 	set_cpus_allowed_ptr(t, cm);
1241 	free_cpumask_var(cm);
1242 }
1243 
1244 /*
1245  * Spawn boost kthreads -- called as soon as the scheduler is running.
1246  */
1247 static void __init rcu_spawn_boost_kthreads(void)
1248 {
1249 	struct rcu_node *rnp;
1250 
1251 	rcu_for_each_leaf_node(rnp)
1252 		if (rcu_rnp_online_cpus(rnp))
1253 			rcu_spawn_one_boost_kthread(rnp);
1254 }
1255 
1256 #else /* #ifdef CONFIG_RCU_BOOST */
1257 
1258 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1259 	__releases(rnp->lock)
1260 {
1261 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1262 }
1263 
1264 static bool rcu_is_callbacks_kthread(void)
1265 {
1266 	return false;
1267 }
1268 
1269 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1270 {
1271 }
1272 
1273 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1274 {
1275 }
1276 
1277 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1278 {
1279 }
1280 
1281 static void __init rcu_spawn_boost_kthreads(void)
1282 {
1283 }
1284 
1285 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1286 
1287 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1288 
1289 /*
1290  * Check to see if any future non-offloaded RCU-related work will need
1291  * to be done by the current CPU, even if none need be done immediately,
1292  * returning 1 if so.  This function is part of the RCU implementation;
1293  * it is -not- an exported member of the RCU API.
1294  *
1295  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1296  * CPU has RCU callbacks queued.
1297  */
1298 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1299 {
1300 	*nextevt = KTIME_MAX;
1301 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1302 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
1303 }
1304 
1305 /*
1306  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1307  * after it.
1308  */
1309 static void rcu_cleanup_after_idle(void)
1310 {
1311 }
1312 
1313 /*
1314  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1315  * is nothing.
1316  */
1317 static void rcu_prepare_for_idle(void)
1318 {
1319 }
1320 
1321 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1322 
1323 /*
1324  * This code is invoked when a CPU goes idle, at which point we want
1325  * to have the CPU do everything required for RCU so that it can enter
1326  * the energy-efficient dyntick-idle mode.
1327  *
1328  * The following preprocessor symbol controls this:
1329  *
1330  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1331  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1332  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1333  *	benchmarkers who might otherwise be tempted to set this to a large
1334  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1335  *	system.  And if you are -that- concerned about energy efficiency,
1336  *	just power the system down and be done with it!
1337  *
1338  * The value below works well in practice.  If future workloads require
1339  * adjustment, they can be converted into kernel config parameters, though
1340  * making the state machine smarter might be a better option.
1341  */
1342 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1343 
1344 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1345 module_param(rcu_idle_gp_delay, int, 0644);
1346 
1347 /*
1348  * Try to advance callbacks on the current CPU, but only if it has been
1349  * awhile since the last time we did so.  Afterwards, if there are any
1350  * callbacks ready for immediate invocation, return true.
1351  */
1352 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1353 {
1354 	bool cbs_ready = false;
1355 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1356 	struct rcu_node *rnp;
1357 
1358 	/* Exit early if we advanced recently. */
1359 	if (jiffies == rdp->last_advance_all)
1360 		return false;
1361 	rdp->last_advance_all = jiffies;
1362 
1363 	rnp = rdp->mynode;
1364 
1365 	/*
1366 	 * Don't bother checking unless a grace period has
1367 	 * completed since we last checked and there are
1368 	 * callbacks not yet ready to invoke.
1369 	 */
1370 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1371 				  rcu_seq_current(&rnp->gp_seq)) ||
1372 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1373 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1374 		note_gp_changes(rdp);
1375 
1376 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1377 		cbs_ready = true;
1378 	return cbs_ready;
1379 }
1380 
1381 /*
1382  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1383  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1384  * caller about what to set the timeout.
1385  *
1386  * The caller must have disabled interrupts.
1387  */
1388 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1389 {
1390 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1391 	unsigned long dj;
1392 
1393 	lockdep_assert_irqs_disabled();
1394 
1395 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1396 	if (rcu_segcblist_empty(&rdp->cblist) ||
1397 	    rcu_rdp_is_offloaded(rdp)) {
1398 		*nextevt = KTIME_MAX;
1399 		return 0;
1400 	}
1401 
1402 	/* Attempt to advance callbacks. */
1403 	if (rcu_try_advance_all_cbs()) {
1404 		/* Some ready to invoke, so initiate later invocation. */
1405 		invoke_rcu_core();
1406 		return 1;
1407 	}
1408 	rdp->last_accelerate = jiffies;
1409 
1410 	/* Request timer and round. */
1411 	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1412 
1413 	*nextevt = basemono + dj * TICK_NSEC;
1414 	return 0;
1415 }
1416 
1417 /*
1418  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1419  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1420  * major task is to accelerate (that is, assign grace-period numbers to) any
1421  * recently arrived callbacks.
1422  *
1423  * The caller must have disabled interrupts.
1424  */
1425 static void rcu_prepare_for_idle(void)
1426 {
1427 	bool needwake;
1428 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1429 	struct rcu_node *rnp;
1430 	int tne;
1431 
1432 	lockdep_assert_irqs_disabled();
1433 	if (rcu_rdp_is_offloaded(rdp))
1434 		return;
1435 
1436 	/* Handle nohz enablement switches conservatively. */
1437 	tne = READ_ONCE(tick_nohz_active);
1438 	if (tne != rdp->tick_nohz_enabled_snap) {
1439 		if (!rcu_segcblist_empty(&rdp->cblist))
1440 			invoke_rcu_core(); /* force nohz to see update. */
1441 		rdp->tick_nohz_enabled_snap = tne;
1442 		return;
1443 	}
1444 	if (!tne)
1445 		return;
1446 
1447 	/*
1448 	 * If we have not yet accelerated this jiffy, accelerate all
1449 	 * callbacks on this CPU.
1450 	 */
1451 	if (rdp->last_accelerate == jiffies)
1452 		return;
1453 	rdp->last_accelerate = jiffies;
1454 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1455 		rnp = rdp->mynode;
1456 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1457 		needwake = rcu_accelerate_cbs(rnp, rdp);
1458 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1459 		if (needwake)
1460 			rcu_gp_kthread_wake();
1461 	}
1462 }
1463 
1464 /*
1465  * Clean up for exit from idle.  Attempt to advance callbacks based on
1466  * any grace periods that elapsed while the CPU was idle, and if any
1467  * callbacks are now ready to invoke, initiate invocation.
1468  */
1469 static void rcu_cleanup_after_idle(void)
1470 {
1471 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1472 
1473 	lockdep_assert_irqs_disabled();
1474 	if (rcu_rdp_is_offloaded(rdp))
1475 		return;
1476 	if (rcu_try_advance_all_cbs())
1477 		invoke_rcu_core();
1478 }
1479 
1480 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1481 
1482 #ifdef CONFIG_RCU_NOCB_CPU
1483 
1484 /*
1485  * Offload callback processing from the boot-time-specified set of CPUs
1486  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1487  * created that pull the callbacks from the corresponding CPU, wait for
1488  * a grace period to elapse, and invoke the callbacks.  These kthreads
1489  * are organized into GP kthreads, which manage incoming callbacks, wait for
1490  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1491  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1492  * do a wake_up() on their GP kthread when they insert a callback into any
1493  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1494  * in which case each kthread actively polls its CPU.  (Which isn't so great
1495  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1496  *
1497  * This is intended to be used in conjunction with Frederic Weisbecker's
1498  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1499  * running CPU-bound user-mode computations.
1500  *
1501  * Offloading of callbacks can also be used as an energy-efficiency
1502  * measure because CPUs with no RCU callbacks queued are more aggressive
1503  * about entering dyntick-idle mode.
1504  */
1505 
1506 
1507 /*
1508  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1509  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
1510  */
1511 static int __init rcu_nocb_setup(char *str)
1512 {
1513 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1514 	if (cpulist_parse(str, rcu_nocb_mask)) {
1515 		pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1516 		cpumask_setall(rcu_nocb_mask);
1517 	}
1518 	return 1;
1519 }
1520 __setup("rcu_nocbs=", rcu_nocb_setup);
1521 
1522 static int __init parse_rcu_nocb_poll(char *arg)
1523 {
1524 	rcu_nocb_poll = true;
1525 	return 0;
1526 }
1527 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1528 
1529 /*
1530  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1531  * After all, the main point of bypassing is to avoid lock contention
1532  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1533  */
1534 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1535 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1536 
1537 /*
1538  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1539  * lock isn't immediately available, increment ->nocb_lock_contended to
1540  * flag the contention.
1541  */
1542 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1543 	__acquires(&rdp->nocb_bypass_lock)
1544 {
1545 	lockdep_assert_irqs_disabled();
1546 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1547 		return;
1548 	atomic_inc(&rdp->nocb_lock_contended);
1549 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1550 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1551 	raw_spin_lock(&rdp->nocb_bypass_lock);
1552 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1553 	atomic_dec(&rdp->nocb_lock_contended);
1554 }
1555 
1556 /*
1557  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1558  * not contended.  Please note that this is extremely special-purpose,
1559  * relying on the fact that at most two kthreads and one CPU contend for
1560  * this lock, and also that the two kthreads are guaranteed to have frequent
1561  * grace-period-duration time intervals between successive acquisitions
1562  * of the lock.  This allows us to use an extremely simple throttling
1563  * mechanism, and further to apply it only to the CPU doing floods of
1564  * call_rcu() invocations.  Don't try this at home!
1565  */
1566 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1567 {
1568 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1569 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1570 		cpu_relax();
1571 }
1572 
1573 /*
1574  * Conditionally acquire the specified rcu_data structure's
1575  * ->nocb_bypass_lock.
1576  */
1577 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1578 {
1579 	lockdep_assert_irqs_disabled();
1580 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1581 }
1582 
1583 /*
1584  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1585  */
1586 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1587 	__releases(&rdp->nocb_bypass_lock)
1588 {
1589 	lockdep_assert_irqs_disabled();
1590 	raw_spin_unlock(&rdp->nocb_bypass_lock);
1591 }
1592 
1593 /*
1594  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1595  * if it corresponds to a no-CBs CPU.
1596  */
1597 static void rcu_nocb_lock(struct rcu_data *rdp)
1598 {
1599 	lockdep_assert_irqs_disabled();
1600 	if (!rcu_rdp_is_offloaded(rdp))
1601 		return;
1602 	raw_spin_lock(&rdp->nocb_lock);
1603 }
1604 
1605 /*
1606  * Release the specified rcu_data structure's ->nocb_lock, but only
1607  * if it corresponds to a no-CBs CPU.
1608  */
1609 static void rcu_nocb_unlock(struct rcu_data *rdp)
1610 {
1611 	if (rcu_rdp_is_offloaded(rdp)) {
1612 		lockdep_assert_irqs_disabled();
1613 		raw_spin_unlock(&rdp->nocb_lock);
1614 	}
1615 }
1616 
1617 /*
1618  * Release the specified rcu_data structure's ->nocb_lock and restore
1619  * interrupts, but only if it corresponds to a no-CBs CPU.
1620  */
1621 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1622 				       unsigned long flags)
1623 {
1624 	if (rcu_rdp_is_offloaded(rdp)) {
1625 		lockdep_assert_irqs_disabled();
1626 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1627 	} else {
1628 		local_irq_restore(flags);
1629 	}
1630 }
1631 
1632 /* Lockdep check that ->cblist may be safely accessed. */
1633 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1634 {
1635 	lockdep_assert_irqs_disabled();
1636 	if (rcu_rdp_is_offloaded(rdp))
1637 		lockdep_assert_held(&rdp->nocb_lock);
1638 }
1639 
1640 /*
1641  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1642  * grace period.
1643  */
1644 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1645 {
1646 	swake_up_all(sq);
1647 }
1648 
1649 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1650 {
1651 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1652 }
1653 
1654 static void rcu_init_one_nocb(struct rcu_node *rnp)
1655 {
1656 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1657 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1658 }
1659 
1660 /* Is the specified CPU a no-CBs CPU? */
1661 bool rcu_is_nocb_cpu(int cpu)
1662 {
1663 	if (cpumask_available(rcu_nocb_mask))
1664 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1665 	return false;
1666 }
1667 
1668 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
1669 			   struct rcu_data *rdp,
1670 			   bool force, unsigned long flags)
1671 	__releases(rdp_gp->nocb_gp_lock)
1672 {
1673 	bool needwake = false;
1674 
1675 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1676 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1677 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1678 				    TPS("AlreadyAwake"));
1679 		return false;
1680 	}
1681 
1682 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
1683 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
1684 		del_timer(&rdp_gp->nocb_timer);
1685 	}
1686 
1687 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1688 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1689 		needwake = true;
1690 	}
1691 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1692 	if (needwake) {
1693 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1694 		wake_up_process(rdp_gp->nocb_gp_kthread);
1695 	}
1696 
1697 	return needwake;
1698 }
1699 
1700 /*
1701  * Kick the GP kthread for this NOCB group.
1702  */
1703 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1704 {
1705 	unsigned long flags;
1706 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1707 
1708 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1709 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
1710 }
1711 
1712 /*
1713  * Arrange to wake the GP kthread for this NOCB group at some future
1714  * time when it is safe to do so.
1715  */
1716 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1717 			       const char *reason)
1718 {
1719 	unsigned long flags;
1720 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1721 
1722 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1723 
1724 	/*
1725 	 * Bypass wakeup overrides previous deferments. In case
1726 	 * of callback storm, no need to wake up too early.
1727 	 */
1728 	if (waketype == RCU_NOCB_WAKE_BYPASS) {
1729 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
1730 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
1731 	} else {
1732 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
1733 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
1734 		if (rdp_gp->nocb_defer_wakeup < waketype)
1735 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
1736 	}
1737 
1738 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1739 
1740 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1741 }
1742 
1743 /*
1744  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1745  * However, if there is a callback to be enqueued and if ->nocb_bypass
1746  * proves to be initially empty, just return false because the no-CB GP
1747  * kthread may need to be awakened in this case.
1748  *
1749  * Note that this function always returns true if rhp is NULL.
1750  */
1751 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1752 				     unsigned long j)
1753 {
1754 	struct rcu_cblist rcl;
1755 
1756 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
1757 	rcu_lockdep_assert_cblist_protected(rdp);
1758 	lockdep_assert_held(&rdp->nocb_bypass_lock);
1759 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1760 		raw_spin_unlock(&rdp->nocb_bypass_lock);
1761 		return false;
1762 	}
1763 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1764 	if (rhp)
1765 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1766 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1767 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1768 	WRITE_ONCE(rdp->nocb_bypass_first, j);
1769 	rcu_nocb_bypass_unlock(rdp);
1770 	return true;
1771 }
1772 
1773 /*
1774  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1775  * However, if there is a callback to be enqueued and if ->nocb_bypass
1776  * proves to be initially empty, just return false because the no-CB GP
1777  * kthread may need to be awakened in this case.
1778  *
1779  * Note that this function always returns true if rhp is NULL.
1780  */
1781 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1782 				  unsigned long j)
1783 {
1784 	if (!rcu_rdp_is_offloaded(rdp))
1785 		return true;
1786 	rcu_lockdep_assert_cblist_protected(rdp);
1787 	rcu_nocb_bypass_lock(rdp);
1788 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1789 }
1790 
1791 /*
1792  * If the ->nocb_bypass_lock is immediately available, flush the
1793  * ->nocb_bypass queue into ->cblist.
1794  */
1795 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1796 {
1797 	rcu_lockdep_assert_cblist_protected(rdp);
1798 	if (!rcu_rdp_is_offloaded(rdp) ||
1799 	    !rcu_nocb_bypass_trylock(rdp))
1800 		return;
1801 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1802 }
1803 
1804 /*
1805  * See whether it is appropriate to use the ->nocb_bypass list in order
1806  * to control contention on ->nocb_lock.  A limited number of direct
1807  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1808  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1809  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1810  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1811  * used if ->cblist is empty, because otherwise callbacks can be stranded
1812  * on ->nocb_bypass because we cannot count on the current CPU ever again
1813  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1814  * non-empty, the corresponding no-CBs grace-period kthread must not be
1815  * in an indefinite sleep state.
1816  *
1817  * Finally, it is not permitted to use the bypass during early boot,
1818  * as doing so would confuse the auto-initialization code.  Besides
1819  * which, there is no point in worrying about lock contention while
1820  * there is only one CPU in operation.
1821  */
1822 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1823 				bool *was_alldone, unsigned long flags)
1824 {
1825 	unsigned long c;
1826 	unsigned long cur_gp_seq;
1827 	unsigned long j = jiffies;
1828 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1829 
1830 	lockdep_assert_irqs_disabled();
1831 
1832 	// Pure softirq/rcuc based processing: no bypassing, no
1833 	// locking.
1834 	if (!rcu_rdp_is_offloaded(rdp)) {
1835 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1836 		return false;
1837 	}
1838 
1839 	// In the process of (de-)offloading: no bypassing, but
1840 	// locking.
1841 	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
1842 		rcu_nocb_lock(rdp);
1843 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1844 		return false; /* Not offloaded, no bypassing. */
1845 	}
1846 
1847 	// Don't use ->nocb_bypass during early boot.
1848 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1849 		rcu_nocb_lock(rdp);
1850 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1851 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1852 		return false;
1853 	}
1854 
1855 	// If we have advanced to a new jiffy, reset counts to allow
1856 	// moving back from ->nocb_bypass to ->cblist.
1857 	if (j == rdp->nocb_nobypass_last) {
1858 		c = rdp->nocb_nobypass_count + 1;
1859 	} else {
1860 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1861 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1862 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1863 				 nocb_nobypass_lim_per_jiffy))
1864 			c = 0;
1865 		else if (c > nocb_nobypass_lim_per_jiffy)
1866 			c = nocb_nobypass_lim_per_jiffy;
1867 	}
1868 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1869 
1870 	// If there hasn't yet been all that many ->cblist enqueues
1871 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1872 	// ->nocb_bypass first.
1873 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1874 		rcu_nocb_lock(rdp);
1875 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1876 		if (*was_alldone)
1877 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1878 					    TPS("FirstQ"));
1879 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1880 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1881 		return false; // Caller must enqueue the callback.
1882 	}
1883 
1884 	// If ->nocb_bypass has been used too long or is too full,
1885 	// flush ->nocb_bypass to ->cblist.
1886 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1887 	    ncbs >= qhimark) {
1888 		rcu_nocb_lock(rdp);
1889 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1890 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1891 			if (*was_alldone)
1892 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1893 						    TPS("FirstQ"));
1894 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1895 			return false; // Caller must enqueue the callback.
1896 		}
1897 		if (j != rdp->nocb_gp_adv_time &&
1898 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1899 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1900 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1901 			rdp->nocb_gp_adv_time = j;
1902 		}
1903 		rcu_nocb_unlock_irqrestore(rdp, flags);
1904 		return true; // Callback already enqueued.
1905 	}
1906 
1907 	// We need to use the bypass.
1908 	rcu_nocb_wait_contended(rdp);
1909 	rcu_nocb_bypass_lock(rdp);
1910 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1911 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1912 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1913 	if (!ncbs) {
1914 		WRITE_ONCE(rdp->nocb_bypass_first, j);
1915 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1916 	}
1917 	rcu_nocb_bypass_unlock(rdp);
1918 	smp_mb(); /* Order enqueue before wake. */
1919 	if (ncbs) {
1920 		local_irq_restore(flags);
1921 	} else {
1922 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1923 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1924 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1925 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1926 					    TPS("FirstBQwake"));
1927 			__call_rcu_nocb_wake(rdp, true, flags);
1928 		} else {
1929 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1930 					    TPS("FirstBQnoWake"));
1931 			rcu_nocb_unlock_irqrestore(rdp, flags);
1932 		}
1933 	}
1934 	return true; // Callback already enqueued.
1935 }
1936 
1937 /*
1938  * Awaken the no-CBs grace-period kthread if needed, either due to it
1939  * legitimately being asleep or due to overload conditions.
1940  *
1941  * If warranted, also wake up the kthread servicing this CPUs queues.
1942  */
1943 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1944 				 unsigned long flags)
1945 				 __releases(rdp->nocb_lock)
1946 {
1947 	unsigned long cur_gp_seq;
1948 	unsigned long j;
1949 	long len;
1950 	struct task_struct *t;
1951 
1952 	// If we are being polled or there is no kthread, just leave.
1953 	t = READ_ONCE(rdp->nocb_gp_kthread);
1954 	if (rcu_nocb_poll || !t) {
1955 		rcu_nocb_unlock_irqrestore(rdp, flags);
1956 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1957 				    TPS("WakeNotPoll"));
1958 		return;
1959 	}
1960 	// Need to actually to a wakeup.
1961 	len = rcu_segcblist_n_cbs(&rdp->cblist);
1962 	if (was_alldone) {
1963 		rdp->qlen_last_fqs_check = len;
1964 		if (!irqs_disabled_flags(flags)) {
1965 			/* ... if queue was empty ... */
1966 			rcu_nocb_unlock_irqrestore(rdp, flags);
1967 			wake_nocb_gp(rdp, false);
1968 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1969 					    TPS("WakeEmpty"));
1970 		} else {
1971 			rcu_nocb_unlock_irqrestore(rdp, flags);
1972 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1973 					   TPS("WakeEmptyIsDeferred"));
1974 		}
1975 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1976 		/* ... or if many callbacks queued. */
1977 		rdp->qlen_last_fqs_check = len;
1978 		j = jiffies;
1979 		if (j != rdp->nocb_gp_adv_time &&
1980 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1981 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1982 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1983 			rdp->nocb_gp_adv_time = j;
1984 		}
1985 		smp_mb(); /* Enqueue before timer_pending(). */
1986 		if ((rdp->nocb_cb_sleep ||
1987 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1988 		    !timer_pending(&rdp->nocb_timer)) {
1989 			rcu_nocb_unlock_irqrestore(rdp, flags);
1990 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1991 					   TPS("WakeOvfIsDeferred"));
1992 		} else {
1993 			rcu_nocb_unlock_irqrestore(rdp, flags);
1994 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1995 		}
1996 	} else {
1997 		rcu_nocb_unlock_irqrestore(rdp, flags);
1998 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1999 	}
2000 	return;
2001 }
2002 
2003 /*
2004  * Check if we ignore this rdp.
2005  *
2006  * We check that without holding the nocb lock but
2007  * we make sure not to miss a freshly offloaded rdp
2008  * with the current ordering:
2009  *
2010  *  rdp_offload_toggle()        nocb_gp_enabled_cb()
2011  * -------------------------   ----------------------------
2012  *    WRITE flags                 LOCK nocb_gp_lock
2013  *    LOCK nocb_gp_lock           READ/WRITE nocb_gp_sleep
2014  *    READ/WRITE nocb_gp_sleep    UNLOCK nocb_gp_lock
2015  *    UNLOCK nocb_gp_lock         READ flags
2016  */
2017 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
2018 {
2019 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
2020 
2021 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
2022 }
2023 
2024 static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
2025 						     bool *needwake_state)
2026 {
2027 	struct rcu_segcblist *cblist = &rdp->cblist;
2028 
2029 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
2030 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
2031 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
2032 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
2033 				*needwake_state = true;
2034 		}
2035 		return false;
2036 	}
2037 
2038 	/*
2039 	 * De-offloading. Clear our flag and notify the de-offload worker.
2040 	 * We will ignore this rdp until it ever gets re-offloaded.
2041 	 */
2042 	WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
2043 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
2044 	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
2045 		*needwake_state = true;
2046 	return true;
2047 }
2048 
2049 
2050 /*
2051  * No-CBs GP kthreads come here to wait for additional callbacks to show up
2052  * or for grace periods to end.
2053  */
2054 static void nocb_gp_wait(struct rcu_data *my_rdp)
2055 {
2056 	bool bypass = false;
2057 	long bypass_ncbs;
2058 	int __maybe_unused cpu = my_rdp->cpu;
2059 	unsigned long cur_gp_seq;
2060 	unsigned long flags;
2061 	bool gotcbs = false;
2062 	unsigned long j = jiffies;
2063 	bool needwait_gp = false; // This prevents actual uninitialized use.
2064 	bool needwake;
2065 	bool needwake_gp;
2066 	struct rcu_data *rdp;
2067 	struct rcu_node *rnp;
2068 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
2069 	bool wasempty = false;
2070 
2071 	/*
2072 	 * Each pass through the following loop checks for CBs and for the
2073 	 * nearest grace period (if any) to wait for next.  The CB kthreads
2074 	 * and the global grace-period kthread are awakened if needed.
2075 	 */
2076 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
2077 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
2078 		bool needwake_state = false;
2079 
2080 		if (!nocb_gp_enabled_cb(rdp))
2081 			continue;
2082 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
2083 		rcu_nocb_lock_irqsave(rdp, flags);
2084 		if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
2085 			rcu_nocb_unlock_irqrestore(rdp, flags);
2086 			if (needwake_state)
2087 				swake_up_one(&rdp->nocb_state_wq);
2088 			continue;
2089 		}
2090 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
2091 		if (bypass_ncbs &&
2092 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
2093 		     bypass_ncbs > 2 * qhimark)) {
2094 			// Bypass full or old, so flush it.
2095 			(void)rcu_nocb_try_flush_bypass(rdp, j);
2096 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
2097 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
2098 			rcu_nocb_unlock_irqrestore(rdp, flags);
2099 			if (needwake_state)
2100 				swake_up_one(&rdp->nocb_state_wq);
2101 			continue; /* No callbacks here, try next. */
2102 		}
2103 		if (bypass_ncbs) {
2104 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2105 					    TPS("Bypass"));
2106 			bypass = true;
2107 		}
2108 		rnp = rdp->mynode;
2109 
2110 		// Advance callbacks if helpful and low contention.
2111 		needwake_gp = false;
2112 		if (!rcu_segcblist_restempty(&rdp->cblist,
2113 					     RCU_NEXT_READY_TAIL) ||
2114 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2115 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
2116 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
2117 			needwake_gp = rcu_advance_cbs(rnp, rdp);
2118 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
2119 							   RCU_NEXT_READY_TAIL);
2120 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
2121 		}
2122 		// Need to wait on some grace period?
2123 		WARN_ON_ONCE(wasempty &&
2124 			     !rcu_segcblist_restempty(&rdp->cblist,
2125 						      RCU_NEXT_READY_TAIL));
2126 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2127 			if (!needwait_gp ||
2128 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2129 				wait_gp_seq = cur_gp_seq;
2130 			needwait_gp = true;
2131 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2132 					    TPS("NeedWaitGP"));
2133 		}
2134 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135 			needwake = rdp->nocb_cb_sleep;
2136 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
2137 			smp_mb(); /* CB invocation -after- GP end. */
2138 		} else {
2139 			needwake = false;
2140 		}
2141 		rcu_nocb_unlock_irqrestore(rdp, flags);
2142 		if (needwake) {
2143 			swake_up_one(&rdp->nocb_cb_wq);
2144 			gotcbs = true;
2145 		}
2146 		if (needwake_gp)
2147 			rcu_gp_kthread_wake();
2148 		if (needwake_state)
2149 			swake_up_one(&rdp->nocb_state_wq);
2150 	}
2151 
2152 	my_rdp->nocb_gp_bypass = bypass;
2153 	my_rdp->nocb_gp_gp = needwait_gp;
2154 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2155 
2156 	if (bypass && !rcu_nocb_poll) {
2157 		// At least one child with non-empty ->nocb_bypass, so set
2158 		// timer in order to avoid stranding its callbacks.
2159 		wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
2160 				   TPS("WakeBypassIsDeferred"));
2161 	}
2162 	if (rcu_nocb_poll) {
2163 		/* Polling, so trace if first poll in the series. */
2164 		if (gotcbs)
2165 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2166 		schedule_timeout_idle(1);
2167 	} else if (!needwait_gp) {
2168 		/* Wait for callbacks to appear. */
2169 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2170 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2171 				!READ_ONCE(my_rdp->nocb_gp_sleep));
2172 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2173 	} else {
2174 		rnp = my_rdp->mynode;
2175 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2176 		swait_event_interruptible_exclusive(
2177 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2178 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2179 			!READ_ONCE(my_rdp->nocb_gp_sleep));
2180 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2181 	}
2182 	if (!rcu_nocb_poll) {
2183 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2184 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
2185 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2186 			del_timer(&my_rdp->nocb_timer);
2187 		}
2188 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2189 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2190 	}
2191 	my_rdp->nocb_gp_seq = -1;
2192 	WARN_ON(signal_pending(current));
2193 }
2194 
2195 /*
2196  * No-CBs grace-period-wait kthread.  There is one of these per group
2197  * of CPUs, but only once at least one CPU in that group has come online
2198  * at least once since boot.  This kthread checks for newly posted
2199  * callbacks from any of the CPUs it is responsible for, waits for a
2200  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2201  * that then have callback-invocation work to do.
2202  */
2203 static int rcu_nocb_gp_kthread(void *arg)
2204 {
2205 	struct rcu_data *rdp = arg;
2206 
2207 	for (;;) {
2208 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2209 		nocb_gp_wait(rdp);
2210 		cond_resched_tasks_rcu_qs();
2211 	}
2212 	return 0;
2213 }
2214 
2215 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
2216 {
2217 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
2218 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
2219 }
2220 
2221 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
2222 {
2223 	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
2224 }
2225 
2226 /*
2227  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2228  * then, if there are no more, wait for more to appear.
2229  */
2230 static void nocb_cb_wait(struct rcu_data *rdp)
2231 {
2232 	struct rcu_segcblist *cblist = &rdp->cblist;
2233 	unsigned long cur_gp_seq;
2234 	unsigned long flags;
2235 	bool needwake_state = false;
2236 	bool needwake_gp = false;
2237 	bool can_sleep = true;
2238 	struct rcu_node *rnp = rdp->mynode;
2239 
2240 	local_irq_save(flags);
2241 	rcu_momentary_dyntick_idle();
2242 	local_irq_restore(flags);
2243 	/*
2244 	 * Disable BH to provide the expected environment.  Also, when
2245 	 * transitioning to/from NOCB mode, a self-requeuing callback might
2246 	 * be invoked from softirq.  A short grace period could cause both
2247 	 * instances of this callback would execute concurrently.
2248 	 */
2249 	local_bh_disable();
2250 	rcu_do_batch(rdp);
2251 	local_bh_enable();
2252 	lockdep_assert_irqs_enabled();
2253 	rcu_nocb_lock_irqsave(rdp, flags);
2254 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
2255 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2256 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2257 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2258 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2259 	}
2260 
2261 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
2262 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
2263 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
2264 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
2265 				needwake_state = true;
2266 		}
2267 		if (rcu_segcblist_ready_cbs(cblist))
2268 			can_sleep = false;
2269 	} else {
2270 		/*
2271 		 * De-offloading. Clear our flag and notify the de-offload worker.
2272 		 * We won't touch the callbacks and keep sleeping until we ever
2273 		 * get re-offloaded.
2274 		 */
2275 		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
2276 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
2277 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
2278 			needwake_state = true;
2279 	}
2280 
2281 	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
2282 
2283 	if (rdp->nocb_cb_sleep)
2284 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2285 
2286 	rcu_nocb_unlock_irqrestore(rdp, flags);
2287 	if (needwake_gp)
2288 		rcu_gp_kthread_wake();
2289 
2290 	if (needwake_state)
2291 		swake_up_one(&rdp->nocb_state_wq);
2292 
2293 	do {
2294 		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2295 						    nocb_cb_wait_cond(rdp));
2296 
2297 		// VVV Ensure CB invocation follows _sleep test.
2298 		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
2299 			WARN_ON(signal_pending(current));
2300 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2301 		}
2302 	} while (!nocb_cb_can_run(rdp));
2303 }
2304 
2305 /*
2306  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2307  * nocb_cb_wait() to do the dirty work.
2308  */
2309 static int rcu_nocb_cb_kthread(void *arg)
2310 {
2311 	struct rcu_data *rdp = arg;
2312 
2313 	// Each pass through this loop does one callback batch, and,
2314 	// if there are no more ready callbacks, waits for them.
2315 	for (;;) {
2316 		nocb_cb_wait(rdp);
2317 		cond_resched_tasks_rcu_qs();
2318 	}
2319 	return 0;
2320 }
2321 
2322 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2323 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
2324 {
2325 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
2326 }
2327 
2328 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2329 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
2330 					   struct rcu_data *rdp, int level,
2331 					   unsigned long flags)
2332 	__releases(rdp_gp->nocb_gp_lock)
2333 {
2334 	int ndw;
2335 	int ret;
2336 
2337 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
2338 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
2339 		return false;
2340 	}
2341 
2342 	ndw = rdp_gp->nocb_defer_wakeup;
2343 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2344 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2345 
2346 	return ret;
2347 }
2348 
2349 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2350 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2351 {
2352 	unsigned long flags;
2353 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2354 
2355 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
2356 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
2357 
2358 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
2359 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
2360 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
2361 }
2362 
2363 /*
2364  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2365  * This means we do an inexact common-case check.  Note that if
2366  * we miss, ->nocb_timer will eventually clean things up.
2367  */
2368 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
2369 {
2370 	unsigned long flags;
2371 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
2372 
2373 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
2374 		return false;
2375 
2376 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
2377 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
2378 }
2379 
2380 void rcu_nocb_flush_deferred_wakeup(void)
2381 {
2382 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
2383 }
2384 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
2385 
2386 static int rdp_offload_toggle(struct rcu_data *rdp,
2387 			       bool offload, unsigned long flags)
2388 	__releases(rdp->nocb_lock)
2389 {
2390 	struct rcu_segcblist *cblist = &rdp->cblist;
2391 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
2392 	bool wake_gp = false;
2393 
2394 	rcu_segcblist_offload(cblist, offload);
2395 
2396 	if (rdp->nocb_cb_sleep)
2397 		rdp->nocb_cb_sleep = false;
2398 	rcu_nocb_unlock_irqrestore(rdp, flags);
2399 
2400 	/*
2401 	 * Ignore former value of nocb_cb_sleep and force wake up as it could
2402 	 * have been spuriously set to false already.
2403 	 */
2404 	swake_up_one(&rdp->nocb_cb_wq);
2405 
2406 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
2407 	if (rdp_gp->nocb_gp_sleep) {
2408 		rdp_gp->nocb_gp_sleep = false;
2409 		wake_gp = true;
2410 	}
2411 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
2412 
2413 	if (wake_gp)
2414 		wake_up_process(rdp_gp->nocb_gp_kthread);
2415 
2416 	return 0;
2417 }
2418 
2419 static long rcu_nocb_rdp_deoffload(void *arg)
2420 {
2421 	struct rcu_data *rdp = arg;
2422 	struct rcu_segcblist *cblist = &rdp->cblist;
2423 	unsigned long flags;
2424 	int ret;
2425 
2426 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
2427 
2428 	pr_info("De-offloading %d\n", rdp->cpu);
2429 
2430 	rcu_nocb_lock_irqsave(rdp, flags);
2431 	/*
2432 	 * Flush once and for all now. This suffices because we are
2433 	 * running on the target CPU holding ->nocb_lock (thus having
2434 	 * interrupts disabled), and because rdp_offload_toggle()
2435 	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
2436 	 * Thus future calls to rcu_segcblist_completely_offloaded() will
2437 	 * return false, which means that future calls to rcu_nocb_try_bypass()
2438 	 * will refuse to put anything into the bypass.
2439 	 */
2440 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2441 	ret = rdp_offload_toggle(rdp, false, flags);
2442 	swait_event_exclusive(rdp->nocb_state_wq,
2443 			      !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
2444 							SEGCBLIST_KTHREAD_GP));
2445 	/*
2446 	 * Lock one last time to acquire latest callback updates from kthreads
2447 	 * so we can later handle callbacks locally without locking.
2448 	 */
2449 	rcu_nocb_lock_irqsave(rdp, flags);
2450 	/*
2451 	 * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY after the nocb
2452 	 * lock is released but how about being paranoid for once?
2453 	 */
2454 	rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY);
2455 	/*
2456 	 * With SEGCBLIST_SOFTIRQ_ONLY, we can't use
2457 	 * rcu_nocb_unlock_irqrestore() anymore.
2458 	 */
2459 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2460 
2461 	/* Sanity check */
2462 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
2463 
2464 
2465 	return ret;
2466 }
2467 
2468 int rcu_nocb_cpu_deoffload(int cpu)
2469 {
2470 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2471 	int ret = 0;
2472 
2473 	mutex_lock(&rcu_state.barrier_mutex);
2474 	cpus_read_lock();
2475 	if (rcu_rdp_is_offloaded(rdp)) {
2476 		if (cpu_online(cpu)) {
2477 			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
2478 			if (!ret)
2479 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
2480 		} else {
2481 			pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
2482 			ret = -EINVAL;
2483 		}
2484 	}
2485 	cpus_read_unlock();
2486 	mutex_unlock(&rcu_state.barrier_mutex);
2487 
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
2491 
2492 static long rcu_nocb_rdp_offload(void *arg)
2493 {
2494 	struct rcu_data *rdp = arg;
2495 	struct rcu_segcblist *cblist = &rdp->cblist;
2496 	unsigned long flags;
2497 	int ret;
2498 
2499 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
2500 	/*
2501 	 * For now we only support re-offload, ie: the rdp must have been
2502 	 * offloaded on boot first.
2503 	 */
2504 	if (!rdp->nocb_gp_rdp)
2505 		return -EINVAL;
2506 
2507 	pr_info("Offloading %d\n", rdp->cpu);
2508 	/*
2509 	 * Can't use rcu_nocb_lock_irqsave() while we are in
2510 	 * SEGCBLIST_SOFTIRQ_ONLY mode.
2511 	 */
2512 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2513 
2514 	/*
2515 	 * We didn't take the nocb lock while working on the
2516 	 * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode.
2517 	 * Every modifications that have been done previously on
2518 	 * rdp->cblist must be visible remotely by the nocb kthreads
2519 	 * upon wake up after reading the cblist flags.
2520 	 *
2521 	 * The layout against nocb_lock enforces that ordering:
2522 	 *
2523 	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
2524 	 * -------------------------   ----------------------------
2525 	 *      WRITE callbacks           rcu_nocb_lock()
2526 	 *      rcu_nocb_lock()           READ flags
2527 	 *      WRITE flags               READ callbacks
2528 	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
2529 	 */
2530 	ret = rdp_offload_toggle(rdp, true, flags);
2531 	swait_event_exclusive(rdp->nocb_state_wq,
2532 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
2533 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
2534 
2535 	return ret;
2536 }
2537 
2538 int rcu_nocb_cpu_offload(int cpu)
2539 {
2540 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2541 	int ret = 0;
2542 
2543 	mutex_lock(&rcu_state.barrier_mutex);
2544 	cpus_read_lock();
2545 	if (!rcu_rdp_is_offloaded(rdp)) {
2546 		if (cpu_online(cpu)) {
2547 			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
2548 			if (!ret)
2549 				cpumask_set_cpu(cpu, rcu_nocb_mask);
2550 		} else {
2551 			pr_info("NOCB: Can't CB-offload an offline CPU\n");
2552 			ret = -EINVAL;
2553 		}
2554 	}
2555 	cpus_read_unlock();
2556 	mutex_unlock(&rcu_state.barrier_mutex);
2557 
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
2561 
2562 void __init rcu_init_nohz(void)
2563 {
2564 	int cpu;
2565 	bool need_rcu_nocb_mask = false;
2566 	struct rcu_data *rdp;
2567 
2568 #if defined(CONFIG_NO_HZ_FULL)
2569 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2570 		need_rcu_nocb_mask = true;
2571 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2572 
2573 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2574 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2575 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2576 			return;
2577 		}
2578 	}
2579 	if (!cpumask_available(rcu_nocb_mask))
2580 		return;
2581 
2582 #if defined(CONFIG_NO_HZ_FULL)
2583 	if (tick_nohz_full_running)
2584 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2585 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2586 
2587 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2588 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2589 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2590 			    rcu_nocb_mask);
2591 	}
2592 	if (cpumask_empty(rcu_nocb_mask))
2593 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2594 	else
2595 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2596 			cpumask_pr_args(rcu_nocb_mask));
2597 	if (rcu_nocb_poll)
2598 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2599 
2600 	for_each_cpu(cpu, rcu_nocb_mask) {
2601 		rdp = per_cpu_ptr(&rcu_data, cpu);
2602 		if (rcu_segcblist_empty(&rdp->cblist))
2603 			rcu_segcblist_init(&rdp->cblist);
2604 		rcu_segcblist_offload(&rdp->cblist, true);
2605 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
2606 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP);
2607 	}
2608 	rcu_organize_nocb_kthreads();
2609 }
2610 
2611 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2612 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2613 {
2614 	init_swait_queue_head(&rdp->nocb_cb_wq);
2615 	init_swait_queue_head(&rdp->nocb_gp_wq);
2616 	init_swait_queue_head(&rdp->nocb_state_wq);
2617 	raw_spin_lock_init(&rdp->nocb_lock);
2618 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2619 	raw_spin_lock_init(&rdp->nocb_gp_lock);
2620 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2621 	rcu_cblist_init(&rdp->nocb_bypass);
2622 }
2623 
2624 /*
2625  * If the specified CPU is a no-CBs CPU that does not already have its
2626  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2627  * for this CPU's group has not yet been created, spawn it as well.
2628  */
2629 static void rcu_spawn_one_nocb_kthread(int cpu)
2630 {
2631 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2632 	struct rcu_data *rdp_gp;
2633 	struct task_struct *t;
2634 
2635 	/*
2636 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2637 	 * then nothing to do.
2638 	 */
2639 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2640 		return;
2641 
2642 	/* If we didn't spawn the GP kthread first, reorganize! */
2643 	rdp_gp = rdp->nocb_gp_rdp;
2644 	if (!rdp_gp->nocb_gp_kthread) {
2645 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2646 				"rcuog/%d", rdp_gp->cpu);
2647 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2648 			return;
2649 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2650 	}
2651 
2652 	/* Spawn the kthread for this CPU. */
2653 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2654 			"rcuo%c/%d", rcu_state.abbr, cpu);
2655 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2656 		return;
2657 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2658 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2659 }
2660 
2661 /*
2662  * If the specified CPU is a no-CBs CPU that does not already have its
2663  * rcuo kthread, spawn it.
2664  */
2665 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2666 {
2667 	if (rcu_scheduler_fully_active)
2668 		rcu_spawn_one_nocb_kthread(cpu);
2669 }
2670 
2671 /*
2672  * Once the scheduler is running, spawn rcuo kthreads for all online
2673  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2674  * non-boot CPUs come online -- if this changes, we will need to add
2675  * some mutual exclusion.
2676  */
2677 static void __init rcu_spawn_nocb_kthreads(void)
2678 {
2679 	int cpu;
2680 
2681 	for_each_online_cpu(cpu)
2682 		rcu_spawn_cpu_nocb_kthread(cpu);
2683 }
2684 
2685 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2686 static int rcu_nocb_gp_stride = -1;
2687 module_param(rcu_nocb_gp_stride, int, 0444);
2688 
2689 /*
2690  * Initialize GP-CB relationships for all no-CBs CPU.
2691  */
2692 static void __init rcu_organize_nocb_kthreads(void)
2693 {
2694 	int cpu;
2695 	bool firsttime = true;
2696 	bool gotnocbs = false;
2697 	bool gotnocbscbs = true;
2698 	int ls = rcu_nocb_gp_stride;
2699 	int nl = 0;  /* Next GP kthread. */
2700 	struct rcu_data *rdp;
2701 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2702 	struct rcu_data *rdp_prev = NULL;
2703 
2704 	if (!cpumask_available(rcu_nocb_mask))
2705 		return;
2706 	if (ls == -1) {
2707 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2708 		rcu_nocb_gp_stride = ls;
2709 	}
2710 
2711 	/*
2712 	 * Each pass through this loop sets up one rcu_data structure.
2713 	 * Should the corresponding CPU come online in the future, then
2714 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2715 	 */
2716 	for_each_cpu(cpu, rcu_nocb_mask) {
2717 		rdp = per_cpu_ptr(&rcu_data, cpu);
2718 		if (rdp->cpu >= nl) {
2719 			/* New GP kthread, set up for CBs & next GP. */
2720 			gotnocbs = true;
2721 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2722 			rdp->nocb_gp_rdp = rdp;
2723 			rdp_gp = rdp;
2724 			if (dump_tree) {
2725 				if (!firsttime)
2726 					pr_cont("%s\n", gotnocbscbs
2727 							? "" : " (self only)");
2728 				gotnocbscbs = false;
2729 				firsttime = false;
2730 				pr_alert("%s: No-CB GP kthread CPU %d:",
2731 					 __func__, cpu);
2732 			}
2733 		} else {
2734 			/* Another CB kthread, link to previous GP kthread. */
2735 			gotnocbscbs = true;
2736 			rdp->nocb_gp_rdp = rdp_gp;
2737 			rdp_prev->nocb_next_cb_rdp = rdp;
2738 			if (dump_tree)
2739 				pr_cont(" %d", cpu);
2740 		}
2741 		rdp_prev = rdp;
2742 	}
2743 	if (gotnocbs && dump_tree)
2744 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2745 }
2746 
2747 /*
2748  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2749  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2750  */
2751 void rcu_bind_current_to_nocb(void)
2752 {
2753 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2754 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2755 }
2756 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2757 
2758 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
2759 #ifdef CONFIG_SMP
2760 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
2761 {
2762 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
2763 }
2764 #else // #ifdef CONFIG_SMP
2765 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
2766 {
2767 	return "";
2768 }
2769 #endif // #else #ifdef CONFIG_SMP
2770 
2771 /*
2772  * Dump out nocb grace-period kthread state for the specified rcu_data
2773  * structure.
2774  */
2775 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2776 {
2777 	struct rcu_node *rnp = rdp->mynode;
2778 
2779 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
2780 		rdp->cpu,
2781 		"kK"[!!rdp->nocb_gp_kthread],
2782 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2783 		"dD"[!!rdp->nocb_defer_wakeup],
2784 		"tT"[timer_pending(&rdp->nocb_timer)],
2785 		"sS"[!!rdp->nocb_gp_sleep],
2786 		".W"[swait_active(&rdp->nocb_gp_wq)],
2787 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2788 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2789 		".B"[!!rdp->nocb_gp_bypass],
2790 		".G"[!!rdp->nocb_gp_gp],
2791 		(long)rdp->nocb_gp_seq,
2792 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
2793 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
2794 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
2795 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
2796 }
2797 
2798 /* Dump out nocb kthread state for the specified rcu_data structure. */
2799 static void show_rcu_nocb_state(struct rcu_data *rdp)
2800 {
2801 	char bufw[20];
2802 	char bufr[20];
2803 	struct rcu_segcblist *rsclp = &rdp->cblist;
2804 	bool waslocked;
2805 	bool wassleep;
2806 
2807 	if (rdp->nocb_gp_rdp == rdp)
2808 		show_rcu_nocb_gp_state(rdp);
2809 
2810 	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
2811 	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
2812 	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
2813 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2814 		rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1,
2815 		"kK"[!!rdp->nocb_cb_kthread],
2816 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2817 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2818 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2819 		"sS"[!!rdp->nocb_cb_sleep],
2820 		".W"[swait_active(&rdp->nocb_cb_wq)],
2821 		jiffies - rdp->nocb_bypass_first,
2822 		jiffies - rdp->nocb_nobypass_last,
2823 		rdp->nocb_nobypass_count,
2824 		".D"[rcu_segcblist_ready_cbs(rsclp)],
2825 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
2826 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
2827 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
2828 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
2829 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
2830 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2831 		rcu_segcblist_n_cbs(&rdp->cblist),
2832 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
2833 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
2834 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
2835 
2836 	/* It is OK for GP kthreads to have GP state. */
2837 	if (rdp->nocb_gp_rdp == rdp)
2838 		return;
2839 
2840 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2841 	wassleep = swait_active(&rdp->nocb_gp_wq);
2842 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
2843 		return;  /* Nothing untoward. */
2844 
2845 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
2846 		"lL"[waslocked],
2847 		"dD"[!!rdp->nocb_defer_wakeup],
2848 		"sS"[!!rdp->nocb_gp_sleep],
2849 		".W"[wassleep]);
2850 }
2851 
2852 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2853 
2854 /* No ->nocb_lock to acquire.  */
2855 static void rcu_nocb_lock(struct rcu_data *rdp)
2856 {
2857 }
2858 
2859 /* No ->nocb_lock to release.  */
2860 static void rcu_nocb_unlock(struct rcu_data *rdp)
2861 {
2862 }
2863 
2864 /* No ->nocb_lock to release.  */
2865 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2866 				       unsigned long flags)
2867 {
2868 	local_irq_restore(flags);
2869 }
2870 
2871 /* Lockdep check that ->cblist may be safely accessed. */
2872 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2873 {
2874 	lockdep_assert_irqs_disabled();
2875 }
2876 
2877 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2878 {
2879 }
2880 
2881 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2882 {
2883 	return NULL;
2884 }
2885 
2886 static void rcu_init_one_nocb(struct rcu_node *rnp)
2887 {
2888 }
2889 
2890 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2891 				  unsigned long j)
2892 {
2893 	return true;
2894 }
2895 
2896 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2897 				bool *was_alldone, unsigned long flags)
2898 {
2899 	return false;
2900 }
2901 
2902 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2903 				 unsigned long flags)
2904 {
2905 	WARN_ON_ONCE(1);  /* Should be dead code! */
2906 }
2907 
2908 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2909 {
2910 }
2911 
2912 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
2913 {
2914 	return false;
2915 }
2916 
2917 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
2918 {
2919 	return false;
2920 }
2921 
2922 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2923 {
2924 }
2925 
2926 static void __init rcu_spawn_nocb_kthreads(void)
2927 {
2928 }
2929 
2930 static void show_rcu_nocb_state(struct rcu_data *rdp)
2931 {
2932 }
2933 
2934 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2935 
2936 /*
2937  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2938  * grace-period kthread will do force_quiescent_state() processing?
2939  * The idea is to avoid waking up RCU core processing on such a
2940  * CPU unless the grace period has extended for too long.
2941  *
2942  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2943  * CONFIG_RCU_NOCB_CPU CPUs.
2944  */
2945 static bool rcu_nohz_full_cpu(void)
2946 {
2947 #ifdef CONFIG_NO_HZ_FULL
2948 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2949 	    (!rcu_gp_in_progress() ||
2950 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2951 		return true;
2952 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2953 	return false;
2954 }
2955 
2956 /*
2957  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2958  */
2959 static void rcu_bind_gp_kthread(void)
2960 {
2961 	if (!tick_nohz_full_enabled())
2962 		return;
2963 	housekeeping_affine(current, HK_FLAG_RCU);
2964 }
2965 
2966 /* Record the current task on dyntick-idle entry. */
2967 static void noinstr rcu_dynticks_task_enter(void)
2968 {
2969 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2970 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2971 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2972 }
2973 
2974 /* Record no current task on dyntick-idle exit. */
2975 static void noinstr rcu_dynticks_task_exit(void)
2976 {
2977 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2978 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2979 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2980 }
2981 
2982 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2983 static void rcu_dynticks_task_trace_enter(void)
2984 {
2985 #ifdef CONFIG_TASKS_RCU_TRACE
2986 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2987 		current->trc_reader_special.b.need_mb = true;
2988 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2989 }
2990 
2991 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2992 static void rcu_dynticks_task_trace_exit(void)
2993 {
2994 #ifdef CONFIG_TASKS_RCU_TRACE
2995 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2996 		current->trc_reader_special.b.need_mb = false;
2997 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2998 }
2999