1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) 17 { 18 /* 19 * In order to read the offloaded state of an rdp is a safe 20 * and stable way and prevent from its value to be changed 21 * under us, we must either hold the barrier mutex, the cpu 22 * hotplug lock (read or write) or the nocb lock. Local 23 * non-preemptible reads are also safe. NOCB kthreads and 24 * timers have their own means of synchronization against the 25 * offloaded state updaters. 26 */ 27 RCU_LOCKDEP_WARN( 28 !(lockdep_is_held(&rcu_state.barrier_mutex) || 29 (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || 30 rcu_lockdep_is_held_nocb(rdp) || 31 (rdp == this_cpu_ptr(&rcu_data) && 32 !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || 33 rcu_current_is_nocb_kthread(rdp)), 34 "Unsafe read of RCU_NOCB offloaded state" 35 ); 36 37 return rcu_segcblist_is_offloaded(&rdp->cblist); 38 } 39 40 /* 41 * Check the RCU kernel configuration parameters and print informative 42 * messages about anything out of the ordinary. 43 */ 44 static void __init rcu_bootup_announce_oddness(void) 45 { 46 if (IS_ENABLED(CONFIG_RCU_TRACE)) 47 pr_info("\tRCU event tracing is enabled.\n"); 48 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 49 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 50 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 51 RCU_FANOUT); 52 if (rcu_fanout_exact) 53 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 54 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 55 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 56 if (IS_ENABLED(CONFIG_PROVE_RCU)) 57 pr_info("\tRCU lockdep checking is enabled.\n"); 58 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 59 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); 60 if (RCU_NUM_LVLS >= 4) 61 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 62 if (RCU_FANOUT_LEAF != 16) 63 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 64 RCU_FANOUT_LEAF); 65 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 66 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 67 rcu_fanout_leaf); 68 if (nr_cpu_ids != NR_CPUS) 69 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 70 #ifdef CONFIG_RCU_BOOST 71 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 72 kthread_prio, CONFIG_RCU_BOOST_DELAY); 73 #endif 74 if (blimit != DEFAULT_RCU_BLIMIT) 75 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 76 if (qhimark != DEFAULT_RCU_QHIMARK) 77 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 78 if (qlowmark != DEFAULT_RCU_QLOMARK) 79 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 80 if (qovld != DEFAULT_RCU_QOVLD) 81 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 82 if (jiffies_till_first_fqs != ULONG_MAX) 83 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 84 if (jiffies_till_next_fqs != ULONG_MAX) 85 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 86 if (jiffies_till_sched_qs != ULONG_MAX) 87 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 88 if (rcu_kick_kthreads) 89 pr_info("\tKick kthreads if too-long grace period.\n"); 90 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 91 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 92 if (gp_preinit_delay) 93 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 94 if (gp_init_delay) 95 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 96 if (gp_cleanup_delay) 97 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 98 if (!use_softirq) 99 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 100 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 101 pr_info("\tRCU debug extended QS entry/exit.\n"); 102 rcupdate_announce_bootup_oddness(); 103 } 104 105 #ifdef CONFIG_PREEMPT_RCU 106 107 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 108 static void rcu_read_unlock_special(struct task_struct *t); 109 110 /* 111 * Tell them what RCU they are running. 112 */ 113 static void __init rcu_bootup_announce(void) 114 { 115 pr_info("Preemptible hierarchical RCU implementation.\n"); 116 rcu_bootup_announce_oddness(); 117 } 118 119 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 120 #define RCU_GP_TASKS 0x8 121 #define RCU_EXP_TASKS 0x4 122 #define RCU_GP_BLKD 0x2 123 #define RCU_EXP_BLKD 0x1 124 125 /* 126 * Queues a task preempted within an RCU-preempt read-side critical 127 * section into the appropriate location within the ->blkd_tasks list, 128 * depending on the states of any ongoing normal and expedited grace 129 * periods. The ->gp_tasks pointer indicates which element the normal 130 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 131 * indicates which element the expedited grace period is waiting on (again, 132 * NULL if none). If a grace period is waiting on a given element in the 133 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 134 * adding a task to the tail of the list blocks any grace period that is 135 * already waiting on one of the elements. In contrast, adding a task 136 * to the head of the list won't block any grace period that is already 137 * waiting on one of the elements. 138 * 139 * This queuing is imprecise, and can sometimes make an ongoing grace 140 * period wait for a task that is not strictly speaking blocking it. 141 * Given the choice, we needlessly block a normal grace period rather than 142 * blocking an expedited grace period. 143 * 144 * Note that an endless sequence of expedited grace periods still cannot 145 * indefinitely postpone a normal grace period. Eventually, all of the 146 * fixed number of preempted tasks blocking the normal grace period that are 147 * not also blocking the expedited grace period will resume and complete 148 * their RCU read-side critical sections. At that point, the ->gp_tasks 149 * pointer will equal the ->exp_tasks pointer, at which point the end of 150 * the corresponding expedited grace period will also be the end of the 151 * normal grace period. 152 */ 153 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 154 __releases(rnp->lock) /* But leaves rrupts disabled. */ 155 { 156 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 157 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 158 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 159 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 160 struct task_struct *t = current; 161 162 raw_lockdep_assert_held_rcu_node(rnp); 163 WARN_ON_ONCE(rdp->mynode != rnp); 164 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 165 /* RCU better not be waiting on newly onlined CPUs! */ 166 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 167 rdp->grpmask); 168 169 /* 170 * Decide where to queue the newly blocked task. In theory, 171 * this could be an if-statement. In practice, when I tried 172 * that, it was quite messy. 173 */ 174 switch (blkd_state) { 175 case 0: 176 case RCU_EXP_TASKS: 177 case RCU_EXP_TASKS + RCU_GP_BLKD: 178 case RCU_GP_TASKS: 179 case RCU_GP_TASKS + RCU_EXP_TASKS: 180 181 /* 182 * Blocking neither GP, or first task blocking the normal 183 * GP but not blocking the already-waiting expedited GP. 184 * Queue at the head of the list to avoid unnecessarily 185 * blocking the already-waiting GPs. 186 */ 187 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 188 break; 189 190 case RCU_EXP_BLKD: 191 case RCU_GP_BLKD: 192 case RCU_GP_BLKD + RCU_EXP_BLKD: 193 case RCU_GP_TASKS + RCU_EXP_BLKD: 194 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 195 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 196 197 /* 198 * First task arriving that blocks either GP, or first task 199 * arriving that blocks the expedited GP (with the normal 200 * GP already waiting), or a task arriving that blocks 201 * both GPs with both GPs already waiting. Queue at the 202 * tail of the list to avoid any GP waiting on any of the 203 * already queued tasks that are not blocking it. 204 */ 205 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 206 break; 207 208 case RCU_EXP_TASKS + RCU_EXP_BLKD: 209 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 210 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 211 212 /* 213 * Second or subsequent task blocking the expedited GP. 214 * The task either does not block the normal GP, or is the 215 * first task blocking the normal GP. Queue just after 216 * the first task blocking the expedited GP. 217 */ 218 list_add(&t->rcu_node_entry, rnp->exp_tasks); 219 break; 220 221 case RCU_GP_TASKS + RCU_GP_BLKD: 222 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 223 224 /* 225 * Second or subsequent task blocking the normal GP. 226 * The task does not block the expedited GP. Queue just 227 * after the first task blocking the normal GP. 228 */ 229 list_add(&t->rcu_node_entry, rnp->gp_tasks); 230 break; 231 232 default: 233 234 /* Yet another exercise in excessive paranoia. */ 235 WARN_ON_ONCE(1); 236 break; 237 } 238 239 /* 240 * We have now queued the task. If it was the first one to 241 * block either grace period, update the ->gp_tasks and/or 242 * ->exp_tasks pointers, respectively, to reference the newly 243 * blocked tasks. 244 */ 245 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 246 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 247 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 248 } 249 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 250 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 251 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 252 !(rnp->qsmask & rdp->grpmask)); 253 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 254 !(rnp->expmask & rdp->grpmask)); 255 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 256 257 /* 258 * Report the quiescent state for the expedited GP. This expedited 259 * GP should not be able to end until we report, so there should be 260 * no need to check for a subsequent expedited GP. (Though we are 261 * still in a quiescent state in any case.) 262 */ 263 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) 264 rcu_report_exp_rdp(rdp); 265 else 266 WARN_ON_ONCE(rdp->exp_deferred_qs); 267 } 268 269 /* 270 * Record a preemptible-RCU quiescent state for the specified CPU. 271 * Note that this does not necessarily mean that the task currently running 272 * on the CPU is in a quiescent state: Instead, it means that the current 273 * grace period need not wait on any RCU read-side critical section that 274 * starts later on this CPU. It also means that if the current task is 275 * in an RCU read-side critical section, it has already added itself to 276 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 277 * current task, there might be any number of other tasks blocked while 278 * in an RCU read-side critical section. 279 * 280 * Callers to this function must disable preemption. 281 */ 282 static void rcu_qs(void) 283 { 284 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 285 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 286 trace_rcu_grace_period(TPS("rcu_preempt"), 287 __this_cpu_read(rcu_data.gp_seq), 288 TPS("cpuqs")); 289 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 290 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 291 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 292 } 293 } 294 295 /* 296 * We have entered the scheduler, and the current task might soon be 297 * context-switched away from. If this task is in an RCU read-side 298 * critical section, we will no longer be able to rely on the CPU to 299 * record that fact, so we enqueue the task on the blkd_tasks list. 300 * The task will dequeue itself when it exits the outermost enclosing 301 * RCU read-side critical section. Therefore, the current grace period 302 * cannot be permitted to complete until the blkd_tasks list entries 303 * predating the current grace period drain, in other words, until 304 * rnp->gp_tasks becomes NULL. 305 * 306 * Caller must disable interrupts. 307 */ 308 void rcu_note_context_switch(bool preempt) 309 { 310 struct task_struct *t = current; 311 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 312 struct rcu_node *rnp; 313 314 trace_rcu_utilization(TPS("Start context switch")); 315 lockdep_assert_irqs_disabled(); 316 WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); 317 if (rcu_preempt_depth() > 0 && 318 !t->rcu_read_unlock_special.b.blocked) { 319 320 /* Possibly blocking in an RCU read-side critical section. */ 321 rnp = rdp->mynode; 322 raw_spin_lock_rcu_node(rnp); 323 t->rcu_read_unlock_special.b.blocked = true; 324 t->rcu_blocked_node = rnp; 325 326 /* 327 * Verify the CPU's sanity, trace the preemption, and 328 * then queue the task as required based on the states 329 * of any ongoing and expedited grace periods. 330 */ 331 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 332 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 333 trace_rcu_preempt_task(rcu_state.name, 334 t->pid, 335 (rnp->qsmask & rdp->grpmask) 336 ? rnp->gp_seq 337 : rcu_seq_snap(&rnp->gp_seq)); 338 rcu_preempt_ctxt_queue(rnp, rdp); 339 } else { 340 rcu_preempt_deferred_qs(t); 341 } 342 343 /* 344 * Either we were not in an RCU read-side critical section to 345 * begin with, or we have now recorded that critical section 346 * globally. Either way, we can now note a quiescent state 347 * for this CPU. Again, if we were in an RCU read-side critical 348 * section, and if that critical section was blocking the current 349 * grace period, then the fact that the task has been enqueued 350 * means that we continue to block the current grace period. 351 */ 352 rcu_qs(); 353 if (rdp->exp_deferred_qs) 354 rcu_report_exp_rdp(rdp); 355 rcu_tasks_qs(current, preempt); 356 trace_rcu_utilization(TPS("End context switch")); 357 } 358 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 359 360 /* 361 * Check for preempted RCU readers blocking the current grace period 362 * for the specified rcu_node structure. If the caller needs a reliable 363 * answer, it must hold the rcu_node's ->lock. 364 */ 365 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 366 { 367 return READ_ONCE(rnp->gp_tasks) != NULL; 368 } 369 370 /* limit value for ->rcu_read_lock_nesting. */ 371 #define RCU_NEST_PMAX (INT_MAX / 2) 372 373 static void rcu_preempt_read_enter(void) 374 { 375 WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); 376 } 377 378 static int rcu_preempt_read_exit(void) 379 { 380 int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; 381 382 WRITE_ONCE(current->rcu_read_lock_nesting, ret); 383 return ret; 384 } 385 386 static void rcu_preempt_depth_set(int val) 387 { 388 WRITE_ONCE(current->rcu_read_lock_nesting, val); 389 } 390 391 /* 392 * Preemptible RCU implementation for rcu_read_lock(). 393 * Just increment ->rcu_read_lock_nesting, shared state will be updated 394 * if we block. 395 */ 396 void __rcu_read_lock(void) 397 { 398 rcu_preempt_read_enter(); 399 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 400 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 401 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 402 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 403 barrier(); /* critical section after entry code. */ 404 } 405 EXPORT_SYMBOL_GPL(__rcu_read_lock); 406 407 /* 408 * Preemptible RCU implementation for rcu_read_unlock(). 409 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 410 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 411 * invoke rcu_read_unlock_special() to clean up after a context switch 412 * in an RCU read-side critical section and other special cases. 413 */ 414 void __rcu_read_unlock(void) 415 { 416 struct task_struct *t = current; 417 418 barrier(); // critical section before exit code. 419 if (rcu_preempt_read_exit() == 0) { 420 barrier(); // critical-section exit before .s check. 421 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 422 rcu_read_unlock_special(t); 423 } 424 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 425 int rrln = rcu_preempt_depth(); 426 427 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 428 } 429 } 430 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 431 432 /* 433 * Advance a ->blkd_tasks-list pointer to the next entry, instead 434 * returning NULL if at the end of the list. 435 */ 436 static struct list_head *rcu_next_node_entry(struct task_struct *t, 437 struct rcu_node *rnp) 438 { 439 struct list_head *np; 440 441 np = t->rcu_node_entry.next; 442 if (np == &rnp->blkd_tasks) 443 np = NULL; 444 return np; 445 } 446 447 /* 448 * Return true if the specified rcu_node structure has tasks that were 449 * preempted within an RCU read-side critical section. 450 */ 451 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 452 { 453 return !list_empty(&rnp->blkd_tasks); 454 } 455 456 /* 457 * Report deferred quiescent states. The deferral time can 458 * be quite short, for example, in the case of the call from 459 * rcu_read_unlock_special(). 460 */ 461 static void 462 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 463 { 464 bool empty_exp; 465 bool empty_norm; 466 bool empty_exp_now; 467 struct list_head *np; 468 bool drop_boost_mutex = false; 469 struct rcu_data *rdp; 470 struct rcu_node *rnp; 471 union rcu_special special; 472 473 /* 474 * If RCU core is waiting for this CPU to exit its critical section, 475 * report the fact that it has exited. Because irqs are disabled, 476 * t->rcu_read_unlock_special cannot change. 477 */ 478 special = t->rcu_read_unlock_special; 479 rdp = this_cpu_ptr(&rcu_data); 480 if (!special.s && !rdp->exp_deferred_qs) { 481 local_irq_restore(flags); 482 return; 483 } 484 t->rcu_read_unlock_special.s = 0; 485 if (special.b.need_qs) { 486 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 487 rcu_report_qs_rdp(rdp); 488 udelay(rcu_unlock_delay); 489 } else { 490 rcu_qs(); 491 } 492 } 493 494 /* 495 * Respond to a request by an expedited grace period for a 496 * quiescent state from this CPU. Note that requests from 497 * tasks are handled when removing the task from the 498 * blocked-tasks list below. 499 */ 500 if (rdp->exp_deferred_qs) 501 rcu_report_exp_rdp(rdp); 502 503 /* Clean up if blocked during RCU read-side critical section. */ 504 if (special.b.blocked) { 505 506 /* 507 * Remove this task from the list it blocked on. The task 508 * now remains queued on the rcu_node corresponding to the 509 * CPU it first blocked on, so there is no longer any need 510 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 511 */ 512 rnp = t->rcu_blocked_node; 513 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 514 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 515 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 516 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 517 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 518 (!empty_norm || rnp->qsmask)); 519 empty_exp = sync_rcu_exp_done(rnp); 520 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 521 np = rcu_next_node_entry(t, rnp); 522 list_del_init(&t->rcu_node_entry); 523 t->rcu_blocked_node = NULL; 524 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 525 rnp->gp_seq, t->pid); 526 if (&t->rcu_node_entry == rnp->gp_tasks) 527 WRITE_ONCE(rnp->gp_tasks, np); 528 if (&t->rcu_node_entry == rnp->exp_tasks) 529 WRITE_ONCE(rnp->exp_tasks, np); 530 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 531 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 532 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; 533 if (&t->rcu_node_entry == rnp->boost_tasks) 534 WRITE_ONCE(rnp->boost_tasks, np); 535 } 536 537 /* 538 * If this was the last task on the current list, and if 539 * we aren't waiting on any CPUs, report the quiescent state. 540 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 541 * so we must take a snapshot of the expedited state. 542 */ 543 empty_exp_now = sync_rcu_exp_done(rnp); 544 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 545 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 546 rnp->gp_seq, 547 0, rnp->qsmask, 548 rnp->level, 549 rnp->grplo, 550 rnp->grphi, 551 !!rnp->gp_tasks); 552 rcu_report_unblock_qs_rnp(rnp, flags); 553 } else { 554 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 555 } 556 557 /* Unboost if we were boosted. */ 558 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 559 rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); 560 561 /* 562 * If this was the last task on the expedited lists, 563 * then we need to report up the rcu_node hierarchy. 564 */ 565 if (!empty_exp && empty_exp_now) 566 rcu_report_exp_rnp(rnp, true); 567 } else { 568 local_irq_restore(flags); 569 } 570 } 571 572 /* 573 * Is a deferred quiescent-state pending, and are we also not in 574 * an RCU read-side critical section? It is the caller's responsibility 575 * to ensure it is otherwise safe to report any deferred quiescent 576 * states. The reason for this is that it is safe to report a 577 * quiescent state during context switch even though preemption 578 * is disabled. This function cannot be expected to understand these 579 * nuances, so the caller must handle them. 580 */ 581 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 582 { 583 return (__this_cpu_read(rcu_data.exp_deferred_qs) || 584 READ_ONCE(t->rcu_read_unlock_special.s)) && 585 rcu_preempt_depth() == 0; 586 } 587 588 /* 589 * Report a deferred quiescent state if needed and safe to do so. 590 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 591 * not being in an RCU read-side critical section. The caller must 592 * evaluate safety in terms of interrupt, softirq, and preemption 593 * disabling. 594 */ 595 static void rcu_preempt_deferred_qs(struct task_struct *t) 596 { 597 unsigned long flags; 598 599 if (!rcu_preempt_need_deferred_qs(t)) 600 return; 601 local_irq_save(flags); 602 rcu_preempt_deferred_qs_irqrestore(t, flags); 603 } 604 605 /* 606 * Minimal handler to give the scheduler a chance to re-evaluate. 607 */ 608 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 609 { 610 struct rcu_data *rdp; 611 612 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 613 rdp->defer_qs_iw_pending = false; 614 } 615 616 /* 617 * Handle special cases during rcu_read_unlock(), such as needing to 618 * notify RCU core processing or task having blocked during the RCU 619 * read-side critical section. 620 */ 621 static void rcu_read_unlock_special(struct task_struct *t) 622 { 623 unsigned long flags; 624 bool irqs_were_disabled; 625 bool preempt_bh_were_disabled = 626 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 627 628 /* NMI handlers cannot block and cannot safely manipulate state. */ 629 if (in_nmi()) 630 return; 631 632 local_irq_save(flags); 633 irqs_were_disabled = irqs_disabled_flags(flags); 634 if (preempt_bh_were_disabled || irqs_were_disabled) { 635 bool expboost; // Expedited GP in flight or possible boosting. 636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 637 struct rcu_node *rnp = rdp->mynode; 638 639 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 640 (rdp->grpmask & READ_ONCE(rnp->expmask)) || 641 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 642 (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && 643 t->rcu_blocked_node); 644 // Need to defer quiescent state until everything is enabled. 645 if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) { 646 // Using softirq, safe to awaken, and either the 647 // wakeup is free or there is either an expedited 648 // GP in flight or a potential need to deboost. 649 raise_softirq_irqoff(RCU_SOFTIRQ); 650 } else { 651 // Enabling BH or preempt does reschedule, so... 652 // Also if no expediting and no possible deboosting, 653 // slow is OK. Plus nohz_full CPUs eventually get 654 // tick enabled. 655 set_tsk_need_resched(current); 656 set_preempt_need_resched(); 657 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 658 expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { 659 // Get scheduler to re-evaluate and call hooks. 660 // If !IRQ_WORK, FQS scan will eventually IPI. 661 init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler); 662 rdp->defer_qs_iw_pending = true; 663 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 664 } 665 } 666 local_irq_restore(flags); 667 return; 668 } 669 rcu_preempt_deferred_qs_irqrestore(t, flags); 670 } 671 672 /* 673 * Check that the list of blocked tasks for the newly completed grace 674 * period is in fact empty. It is a serious bug to complete a grace 675 * period that still has RCU readers blocked! This function must be 676 * invoked -before- updating this rnp's ->gp_seq. 677 * 678 * Also, if there are blocked tasks on the list, they automatically 679 * block the newly created grace period, so set up ->gp_tasks accordingly. 680 */ 681 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 682 { 683 struct task_struct *t; 684 685 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 686 raw_lockdep_assert_held_rcu_node(rnp); 687 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 688 dump_blkd_tasks(rnp, 10); 689 if (rcu_preempt_has_tasks(rnp) && 690 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 691 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 692 t = container_of(rnp->gp_tasks, struct task_struct, 693 rcu_node_entry); 694 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 695 rnp->gp_seq, t->pid); 696 } 697 WARN_ON_ONCE(rnp->qsmask); 698 } 699 700 /* 701 * Check for a quiescent state from the current CPU, including voluntary 702 * context switches for Tasks RCU. When a task blocks, the task is 703 * recorded in the corresponding CPU's rcu_node structure, which is checked 704 * elsewhere, hence this function need only check for quiescent states 705 * related to the current CPU, not to those related to tasks. 706 */ 707 static void rcu_flavor_sched_clock_irq(int user) 708 { 709 struct task_struct *t = current; 710 711 lockdep_assert_irqs_disabled(); 712 if (user || rcu_is_cpu_rrupt_from_idle()) { 713 rcu_note_voluntary_context_switch(current); 714 } 715 if (rcu_preempt_depth() > 0 || 716 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 717 /* No QS, force context switch if deferred. */ 718 if (rcu_preempt_need_deferred_qs(t)) { 719 set_tsk_need_resched(t); 720 set_preempt_need_resched(); 721 } 722 } else if (rcu_preempt_need_deferred_qs(t)) { 723 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 724 return; 725 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 726 rcu_qs(); /* Report immediate QS. */ 727 return; 728 } 729 730 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 731 if (rcu_preempt_depth() > 0 && 732 __this_cpu_read(rcu_data.core_needs_qs) && 733 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 734 !t->rcu_read_unlock_special.b.need_qs && 735 time_after(jiffies, rcu_state.gp_start + HZ)) 736 t->rcu_read_unlock_special.b.need_qs = true; 737 } 738 739 /* 740 * Check for a task exiting while in a preemptible-RCU read-side 741 * critical section, clean up if so. No need to issue warnings, as 742 * debug_check_no_locks_held() already does this if lockdep is enabled. 743 * Besides, if this function does anything other than just immediately 744 * return, there was a bug of some sort. Spewing warnings from this 745 * function is like as not to simply obscure important prior warnings. 746 */ 747 void exit_rcu(void) 748 { 749 struct task_struct *t = current; 750 751 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 752 rcu_preempt_depth_set(1); 753 barrier(); 754 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 755 } else if (unlikely(rcu_preempt_depth())) { 756 rcu_preempt_depth_set(1); 757 } else { 758 return; 759 } 760 __rcu_read_unlock(); 761 rcu_preempt_deferred_qs(current); 762 } 763 764 /* 765 * Dump the blocked-tasks state, but limit the list dump to the 766 * specified number of elements. 767 */ 768 static void 769 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 770 { 771 int cpu; 772 int i; 773 struct list_head *lhp; 774 bool onl; 775 struct rcu_data *rdp; 776 struct rcu_node *rnp1; 777 778 raw_lockdep_assert_held_rcu_node(rnp); 779 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 780 __func__, rnp->grplo, rnp->grphi, rnp->level, 781 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 782 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 783 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 784 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 785 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 786 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 787 READ_ONCE(rnp->exp_tasks)); 788 pr_info("%s: ->blkd_tasks", __func__); 789 i = 0; 790 list_for_each(lhp, &rnp->blkd_tasks) { 791 pr_cont(" %p", lhp); 792 if (++i >= ncheck) 793 break; 794 } 795 pr_cont("\n"); 796 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 797 rdp = per_cpu_ptr(&rcu_data, cpu); 798 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 799 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 800 cpu, ".o"[onl], 801 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 802 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 803 } 804 } 805 806 #else /* #ifdef CONFIG_PREEMPT_RCU */ 807 808 /* 809 * If strict grace periods are enabled, and if the calling 810 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 811 * report that quiescent state and, if requested, spin for a bit. 812 */ 813 void rcu_read_unlock_strict(void) 814 { 815 struct rcu_data *rdp; 816 817 if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 818 return; 819 rdp = this_cpu_ptr(&rcu_data); 820 rcu_report_qs_rdp(rdp); 821 udelay(rcu_unlock_delay); 822 } 823 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 824 825 /* 826 * Tell them what RCU they are running. 827 */ 828 static void __init rcu_bootup_announce(void) 829 { 830 pr_info("Hierarchical RCU implementation.\n"); 831 rcu_bootup_announce_oddness(); 832 } 833 834 /* 835 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 836 * how many quiescent states passed, just if there was at least one since 837 * the start of the grace period, this just sets a flag. The caller must 838 * have disabled preemption. 839 */ 840 static void rcu_qs(void) 841 { 842 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 843 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 844 return; 845 trace_rcu_grace_period(TPS("rcu_sched"), 846 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 847 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 848 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 849 return; 850 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 851 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 852 } 853 854 /* 855 * Register an urgently needed quiescent state. If there is an 856 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 857 * dyntick-idle quiescent state visible to other CPUs, which will in 858 * some cases serve for expedited as well as normal grace periods. 859 * Either way, register a lightweight quiescent state. 860 */ 861 void rcu_all_qs(void) 862 { 863 unsigned long flags; 864 865 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 866 return; 867 preempt_disable(); 868 /* Load rcu_urgent_qs before other flags. */ 869 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 870 preempt_enable(); 871 return; 872 } 873 this_cpu_write(rcu_data.rcu_urgent_qs, false); 874 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 875 local_irq_save(flags); 876 rcu_momentary_dyntick_idle(); 877 local_irq_restore(flags); 878 } 879 rcu_qs(); 880 preempt_enable(); 881 } 882 EXPORT_SYMBOL_GPL(rcu_all_qs); 883 884 /* 885 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 886 */ 887 void rcu_note_context_switch(bool preempt) 888 { 889 trace_rcu_utilization(TPS("Start context switch")); 890 rcu_qs(); 891 /* Load rcu_urgent_qs before other flags. */ 892 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 893 goto out; 894 this_cpu_write(rcu_data.rcu_urgent_qs, false); 895 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 896 rcu_momentary_dyntick_idle(); 897 rcu_tasks_qs(current, preempt); 898 out: 899 trace_rcu_utilization(TPS("End context switch")); 900 } 901 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 902 903 /* 904 * Because preemptible RCU does not exist, there are never any preempted 905 * RCU readers. 906 */ 907 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 908 { 909 return 0; 910 } 911 912 /* 913 * Because there is no preemptible RCU, there can be no readers blocked. 914 */ 915 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 916 { 917 return false; 918 } 919 920 /* 921 * Because there is no preemptible RCU, there can be no deferred quiescent 922 * states. 923 */ 924 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 925 { 926 return false; 927 } 928 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 929 930 /* 931 * Because there is no preemptible RCU, there can be no readers blocked, 932 * so there is no need to check for blocked tasks. So check only for 933 * bogus qsmask values. 934 */ 935 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 936 { 937 WARN_ON_ONCE(rnp->qsmask); 938 } 939 940 /* 941 * Check to see if this CPU is in a non-context-switch quiescent state, 942 * namely user mode and idle loop. 943 */ 944 static void rcu_flavor_sched_clock_irq(int user) 945 { 946 if (user || rcu_is_cpu_rrupt_from_idle()) { 947 948 /* 949 * Get here if this CPU took its interrupt from user 950 * mode or from the idle loop, and if this is not a 951 * nested interrupt. In this case, the CPU is in 952 * a quiescent state, so note it. 953 * 954 * No memory barrier is required here because rcu_qs() 955 * references only CPU-local variables that other CPUs 956 * neither access nor modify, at least not while the 957 * corresponding CPU is online. 958 */ 959 960 rcu_qs(); 961 } 962 } 963 964 /* 965 * Because preemptible RCU does not exist, tasks cannot possibly exit 966 * while in preemptible RCU read-side critical sections. 967 */ 968 void exit_rcu(void) 969 { 970 } 971 972 /* 973 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 974 */ 975 static void 976 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 977 { 978 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 979 } 980 981 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 982 983 /* 984 * If boosting, set rcuc kthreads to realtime priority. 985 */ 986 static void rcu_cpu_kthread_setup(unsigned int cpu) 987 { 988 #ifdef CONFIG_RCU_BOOST 989 struct sched_param sp; 990 991 sp.sched_priority = kthread_prio; 992 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 993 #endif /* #ifdef CONFIG_RCU_BOOST */ 994 } 995 996 #ifdef CONFIG_RCU_BOOST 997 998 /* 999 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1000 * or ->boost_tasks, advancing the pointer to the next task in the 1001 * ->blkd_tasks list. 1002 * 1003 * Note that irqs must be enabled: boosting the task can block. 1004 * Returns 1 if there are more tasks needing to be boosted. 1005 */ 1006 static int rcu_boost(struct rcu_node *rnp) 1007 { 1008 unsigned long flags; 1009 struct task_struct *t; 1010 struct list_head *tb; 1011 1012 if (READ_ONCE(rnp->exp_tasks) == NULL && 1013 READ_ONCE(rnp->boost_tasks) == NULL) 1014 return 0; /* Nothing left to boost. */ 1015 1016 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1017 1018 /* 1019 * Recheck under the lock: all tasks in need of boosting 1020 * might exit their RCU read-side critical sections on their own. 1021 */ 1022 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1023 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1024 return 0; 1025 } 1026 1027 /* 1028 * Preferentially boost tasks blocking expedited grace periods. 1029 * This cannot starve the normal grace periods because a second 1030 * expedited grace period must boost all blocked tasks, including 1031 * those blocking the pre-existing normal grace period. 1032 */ 1033 if (rnp->exp_tasks != NULL) 1034 tb = rnp->exp_tasks; 1035 else 1036 tb = rnp->boost_tasks; 1037 1038 /* 1039 * We boost task t by manufacturing an rt_mutex that appears to 1040 * be held by task t. We leave a pointer to that rt_mutex where 1041 * task t can find it, and task t will release the mutex when it 1042 * exits its outermost RCU read-side critical section. Then 1043 * simply acquiring this artificial rt_mutex will boost task 1044 * t's priority. (Thanks to tglx for suggesting this approach!) 1045 * 1046 * Note that task t must acquire rnp->lock to remove itself from 1047 * the ->blkd_tasks list, which it will do from exit() if from 1048 * nowhere else. We therefore are guaranteed that task t will 1049 * stay around at least until we drop rnp->lock. Note that 1050 * rnp->lock also resolves races between our priority boosting 1051 * and task t's exiting its outermost RCU read-side critical 1052 * section. 1053 */ 1054 t = container_of(tb, struct task_struct, rcu_node_entry); 1055 rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); 1056 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1057 /* Lock only for side effect: boosts task t's priority. */ 1058 rt_mutex_lock(&rnp->boost_mtx); 1059 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1060 rnp->n_boosts++; 1061 1062 return READ_ONCE(rnp->exp_tasks) != NULL || 1063 READ_ONCE(rnp->boost_tasks) != NULL; 1064 } 1065 1066 /* 1067 * Priority-boosting kthread, one per leaf rcu_node. 1068 */ 1069 static int rcu_boost_kthread(void *arg) 1070 { 1071 struct rcu_node *rnp = (struct rcu_node *)arg; 1072 int spincnt = 0; 1073 int more2boost; 1074 1075 trace_rcu_utilization(TPS("Start boost kthread@init")); 1076 for (;;) { 1077 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1078 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1079 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1080 READ_ONCE(rnp->exp_tasks)); 1081 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1082 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1083 more2boost = rcu_boost(rnp); 1084 if (more2boost) 1085 spincnt++; 1086 else 1087 spincnt = 0; 1088 if (spincnt > 10) { 1089 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1090 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1091 schedule_timeout_idle(2); 1092 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1093 spincnt = 0; 1094 } 1095 } 1096 /* NOTREACHED */ 1097 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1098 return 0; 1099 } 1100 1101 /* 1102 * Check to see if it is time to start boosting RCU readers that are 1103 * blocking the current grace period, and, if so, tell the per-rcu_node 1104 * kthread to start boosting them. If there is an expedited grace 1105 * period in progress, it is always time to boost. 1106 * 1107 * The caller must hold rnp->lock, which this function releases. 1108 * The ->boost_kthread_task is immortal, so we don't need to worry 1109 * about it going away. 1110 */ 1111 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1112 __releases(rnp->lock) 1113 { 1114 raw_lockdep_assert_held_rcu_node(rnp); 1115 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1116 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1117 return; 1118 } 1119 if (rnp->exp_tasks != NULL || 1120 (rnp->gp_tasks != NULL && 1121 rnp->boost_tasks == NULL && 1122 rnp->qsmask == 0 && 1123 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { 1124 if (rnp->exp_tasks == NULL) 1125 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1126 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1127 rcu_wake_cond(rnp->boost_kthread_task, 1128 READ_ONCE(rnp->boost_kthread_status)); 1129 } else { 1130 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1131 } 1132 } 1133 1134 /* 1135 * Is the current CPU running the RCU-callbacks kthread? 1136 * Caller must have preemption disabled. 1137 */ 1138 static bool rcu_is_callbacks_kthread(void) 1139 { 1140 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1141 } 1142 1143 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1144 1145 /* 1146 * Do priority-boost accounting for the start of a new grace period. 1147 */ 1148 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1149 { 1150 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1151 } 1152 1153 /* 1154 * Create an RCU-boost kthread for the specified node if one does not 1155 * already exist. We only create this kthread for preemptible RCU. 1156 * Returns zero if all is well, a negated errno otherwise. 1157 */ 1158 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1159 { 1160 unsigned long flags; 1161 int rnp_index = rnp - rcu_get_root(); 1162 struct sched_param sp; 1163 struct task_struct *t; 1164 1165 if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) 1166 return; 1167 1168 rcu_state.boost = 1; 1169 1170 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1171 "rcub/%d", rnp_index); 1172 if (WARN_ON_ONCE(IS_ERR(t))) 1173 return; 1174 1175 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1176 rnp->boost_kthread_task = t; 1177 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1178 sp.sched_priority = kthread_prio; 1179 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1180 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1181 } 1182 1183 /* 1184 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1185 * served by the rcu_node in question. The CPU hotplug lock is still 1186 * held, so the value of rnp->qsmaskinit will be stable. 1187 * 1188 * We don't include outgoingcpu in the affinity set, use -1 if there is 1189 * no outgoing CPU. If there are no CPUs left in the affinity set, 1190 * this function allows the kthread to execute on any CPU. 1191 */ 1192 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1193 { 1194 struct task_struct *t = rnp->boost_kthread_task; 1195 unsigned long mask = rcu_rnp_online_cpus(rnp); 1196 cpumask_var_t cm; 1197 int cpu; 1198 1199 if (!t) 1200 return; 1201 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1202 return; 1203 for_each_leaf_node_possible_cpu(rnp, cpu) 1204 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1205 cpu != outgoingcpu) 1206 cpumask_set_cpu(cpu, cm); 1207 if (cpumask_weight(cm) == 0) 1208 cpumask_setall(cm); 1209 set_cpus_allowed_ptr(t, cm); 1210 free_cpumask_var(cm); 1211 } 1212 1213 /* 1214 * Spawn boost kthreads -- called as soon as the scheduler is running. 1215 */ 1216 static void __init rcu_spawn_boost_kthreads(void) 1217 { 1218 struct rcu_node *rnp; 1219 1220 rcu_for_each_leaf_node(rnp) 1221 if (rcu_rnp_online_cpus(rnp)) 1222 rcu_spawn_one_boost_kthread(rnp); 1223 } 1224 1225 #else /* #ifdef CONFIG_RCU_BOOST */ 1226 1227 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1228 __releases(rnp->lock) 1229 { 1230 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1231 } 1232 1233 static bool rcu_is_callbacks_kthread(void) 1234 { 1235 return false; 1236 } 1237 1238 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1239 { 1240 } 1241 1242 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1243 { 1244 } 1245 1246 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1247 { 1248 } 1249 1250 static void __init rcu_spawn_boost_kthreads(void) 1251 { 1252 } 1253 1254 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1255 1256 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1257 1258 /* 1259 * Check to see if any future non-offloaded RCU-related work will need 1260 * to be done by the current CPU, even if none need be done immediately, 1261 * returning 1 if so. This function is part of the RCU implementation; 1262 * it is -not- an exported member of the RCU API. 1263 * 1264 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1265 * CPU has RCU callbacks queued. 1266 */ 1267 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1268 { 1269 *nextevt = KTIME_MAX; 1270 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1271 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 1272 } 1273 1274 /* 1275 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1276 * after it. 1277 */ 1278 static void rcu_cleanup_after_idle(void) 1279 { 1280 } 1281 1282 /* 1283 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1284 * is nothing. 1285 */ 1286 static void rcu_prepare_for_idle(void) 1287 { 1288 } 1289 1290 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1291 1292 /* 1293 * This code is invoked when a CPU goes idle, at which point we want 1294 * to have the CPU do everything required for RCU so that it can enter 1295 * the energy-efficient dyntick-idle mode. 1296 * 1297 * The following preprocessor symbol controls this: 1298 * 1299 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1300 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1301 * is sized to be roughly one RCU grace period. Those energy-efficiency 1302 * benchmarkers who might otherwise be tempted to set this to a large 1303 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1304 * system. And if you are -that- concerned about energy efficiency, 1305 * just power the system down and be done with it! 1306 * 1307 * The value below works well in practice. If future workloads require 1308 * adjustment, they can be converted into kernel config parameters, though 1309 * making the state machine smarter might be a better option. 1310 */ 1311 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1312 1313 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1314 module_param(rcu_idle_gp_delay, int, 0644); 1315 1316 /* 1317 * Try to advance callbacks on the current CPU, but only if it has been 1318 * awhile since the last time we did so. Afterwards, if there are any 1319 * callbacks ready for immediate invocation, return true. 1320 */ 1321 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1322 { 1323 bool cbs_ready = false; 1324 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1325 struct rcu_node *rnp; 1326 1327 /* Exit early if we advanced recently. */ 1328 if (jiffies == rdp->last_advance_all) 1329 return false; 1330 rdp->last_advance_all = jiffies; 1331 1332 rnp = rdp->mynode; 1333 1334 /* 1335 * Don't bother checking unless a grace period has 1336 * completed since we last checked and there are 1337 * callbacks not yet ready to invoke. 1338 */ 1339 if ((rcu_seq_completed_gp(rdp->gp_seq, 1340 rcu_seq_current(&rnp->gp_seq)) || 1341 unlikely(READ_ONCE(rdp->gpwrap))) && 1342 rcu_segcblist_pend_cbs(&rdp->cblist)) 1343 note_gp_changes(rdp); 1344 1345 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1346 cbs_ready = true; 1347 return cbs_ready; 1348 } 1349 1350 /* 1351 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1352 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1353 * caller about what to set the timeout. 1354 * 1355 * The caller must have disabled interrupts. 1356 */ 1357 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1358 { 1359 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1360 unsigned long dj; 1361 1362 lockdep_assert_irqs_disabled(); 1363 1364 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ 1365 if (rcu_segcblist_empty(&rdp->cblist) || 1366 rcu_rdp_is_offloaded(rdp)) { 1367 *nextevt = KTIME_MAX; 1368 return 0; 1369 } 1370 1371 /* Attempt to advance callbacks. */ 1372 if (rcu_try_advance_all_cbs()) { 1373 /* Some ready to invoke, so initiate later invocation. */ 1374 invoke_rcu_core(); 1375 return 1; 1376 } 1377 rdp->last_accelerate = jiffies; 1378 1379 /* Request timer and round. */ 1380 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; 1381 1382 *nextevt = basemono + dj * TICK_NSEC; 1383 return 0; 1384 } 1385 1386 /* 1387 * Prepare a CPU for idle from an RCU perspective. The first major task is to 1388 * sense whether nohz mode has been enabled or disabled via sysfs. The second 1389 * major task is to accelerate (that is, assign grace-period numbers to) any 1390 * recently arrived callbacks. 1391 * 1392 * The caller must have disabled interrupts. 1393 */ 1394 static void rcu_prepare_for_idle(void) 1395 { 1396 bool needwake; 1397 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1398 struct rcu_node *rnp; 1399 int tne; 1400 1401 lockdep_assert_irqs_disabled(); 1402 if (rcu_rdp_is_offloaded(rdp)) 1403 return; 1404 1405 /* Handle nohz enablement switches conservatively. */ 1406 tne = READ_ONCE(tick_nohz_active); 1407 if (tne != rdp->tick_nohz_enabled_snap) { 1408 if (!rcu_segcblist_empty(&rdp->cblist)) 1409 invoke_rcu_core(); /* force nohz to see update. */ 1410 rdp->tick_nohz_enabled_snap = tne; 1411 return; 1412 } 1413 if (!tne) 1414 return; 1415 1416 /* 1417 * If we have not yet accelerated this jiffy, accelerate all 1418 * callbacks on this CPU. 1419 */ 1420 if (rdp->last_accelerate == jiffies) 1421 return; 1422 rdp->last_accelerate = jiffies; 1423 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1424 rnp = rdp->mynode; 1425 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1426 needwake = rcu_accelerate_cbs(rnp, rdp); 1427 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1428 if (needwake) 1429 rcu_gp_kthread_wake(); 1430 } 1431 } 1432 1433 /* 1434 * Clean up for exit from idle. Attempt to advance callbacks based on 1435 * any grace periods that elapsed while the CPU was idle, and if any 1436 * callbacks are now ready to invoke, initiate invocation. 1437 */ 1438 static void rcu_cleanup_after_idle(void) 1439 { 1440 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1441 1442 lockdep_assert_irqs_disabled(); 1443 if (rcu_rdp_is_offloaded(rdp)) 1444 return; 1445 if (rcu_try_advance_all_cbs()) 1446 invoke_rcu_core(); 1447 } 1448 1449 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1450 1451 /* 1452 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 1453 * grace-period kthread will do force_quiescent_state() processing? 1454 * The idea is to avoid waking up RCU core processing on such a 1455 * CPU unless the grace period has extended for too long. 1456 * 1457 * This code relies on the fact that all NO_HZ_FULL CPUs are also 1458 * CONFIG_RCU_NOCB_CPU CPUs. 1459 */ 1460 static bool rcu_nohz_full_cpu(void) 1461 { 1462 #ifdef CONFIG_NO_HZ_FULL 1463 if (tick_nohz_full_cpu(smp_processor_id()) && 1464 (!rcu_gp_in_progress() || 1465 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 1466 return true; 1467 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 1468 return false; 1469 } 1470 1471 /* 1472 * Bind the RCU grace-period kthreads to the housekeeping CPU. 1473 */ 1474 static void rcu_bind_gp_kthread(void) 1475 { 1476 if (!tick_nohz_full_enabled()) 1477 return; 1478 housekeeping_affine(current, HK_FLAG_RCU); 1479 } 1480 1481 /* Record the current task on dyntick-idle entry. */ 1482 static __always_inline void rcu_dynticks_task_enter(void) 1483 { 1484 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 1485 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 1486 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 1487 } 1488 1489 /* Record no current task on dyntick-idle exit. */ 1490 static __always_inline void rcu_dynticks_task_exit(void) 1491 { 1492 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 1493 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 1494 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 1495 } 1496 1497 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 1498 static __always_inline void rcu_dynticks_task_trace_enter(void) 1499 { 1500 #ifdef CONFIG_TASKS_TRACE_RCU 1501 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1502 current->trc_reader_special.b.need_mb = true; 1503 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1504 } 1505 1506 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 1507 static __always_inline void rcu_dynticks_task_trace_exit(void) 1508 { 1509 #ifdef CONFIG_TASKS_TRACE_RCU 1510 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1511 current->trc_reader_special.b.need_mb = false; 1512 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1513 } 1514