1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #ifdef CONFIG_RCU_BOOST 34 35 #include "../locking/rtmutex_common.h" 36 37 /* 38 * Control variables for per-CPU and per-rcu_node kthreads. These 39 * handle all flavors of RCU. 40 */ 41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 44 DEFINE_PER_CPU(char, rcu_cpu_has_work); 45 46 #else /* #ifdef CONFIG_RCU_BOOST */ 47 48 /* 49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 50 * all uses are in dead code. Provide a definition to keep the compiler 51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 52 * This probably needs to be excluded from -rt builds. 53 */ 54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 55 56 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 57 58 #ifdef CONFIG_RCU_NOCB_CPU 59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 63 64 /* 65 * Check the RCU kernel configuration parameters and print informative 66 * messages about anything out of the ordinary. If you like #ifdef, you 67 * will love this function. 68 */ 69 static void __init rcu_bootup_announce_oddness(void) 70 { 71 if (IS_ENABLED(CONFIG_RCU_TRACE)) 72 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 76 RCU_FANOUT); 77 if (rcu_fanout_exact) 78 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 81 if (IS_ENABLED(CONFIG_PROVE_RCU)) 82 pr_info("\tRCU lockdep checking is enabled.\n"); 83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE)) 84 pr_info("\tRCU torture testing starts during boot.\n"); 85 if (RCU_NUM_LVLS >= 4) 86 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 87 if (RCU_FANOUT_LEAF != 16) 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 89 RCU_FANOUT_LEAF); 90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 92 if (nr_cpu_ids != NR_CPUS) 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 94 if (IS_ENABLED(CONFIG_RCU_BOOST)) 95 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 96 } 97 98 #ifdef CONFIG_PREEMPT_RCU 99 100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 103 104 static int rcu_preempted_readers_exp(struct rcu_node *rnp); 105 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 106 bool wake); 107 108 /* 109 * Tell them what RCU they are running. 110 */ 111 static void __init rcu_bootup_announce(void) 112 { 113 pr_info("Preemptible hierarchical RCU implementation.\n"); 114 rcu_bootup_announce_oddness(); 115 } 116 117 /* 118 * Record a preemptible-RCU quiescent state for the specified CPU. Note 119 * that this just means that the task currently running on the CPU is 120 * not in a quiescent state. There might be any number of tasks blocked 121 * while in an RCU read-side critical section. 122 * 123 * As with the other rcu_*_qs() functions, callers to this function 124 * must disable preemption. 125 */ 126 static void rcu_preempt_qs(void) 127 { 128 if (!__this_cpu_read(rcu_data_p->passed_quiesce)) { 129 trace_rcu_grace_period(TPS("rcu_preempt"), 130 __this_cpu_read(rcu_data_p->gpnum), 131 TPS("cpuqs")); 132 __this_cpu_write(rcu_data_p->passed_quiesce, 1); 133 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 134 current->rcu_read_unlock_special.b.need_qs = false; 135 } 136 } 137 138 /* 139 * We have entered the scheduler, and the current task might soon be 140 * context-switched away from. If this task is in an RCU read-side 141 * critical section, we will no longer be able to rely on the CPU to 142 * record that fact, so we enqueue the task on the blkd_tasks list. 143 * The task will dequeue itself when it exits the outermost enclosing 144 * RCU read-side critical section. Therefore, the current grace period 145 * cannot be permitted to complete until the blkd_tasks list entries 146 * predating the current grace period drain, in other words, until 147 * rnp->gp_tasks becomes NULL. 148 * 149 * Caller must disable preemption. 150 */ 151 static void rcu_preempt_note_context_switch(void) 152 { 153 struct task_struct *t = current; 154 unsigned long flags; 155 struct rcu_data *rdp; 156 struct rcu_node *rnp; 157 158 if (t->rcu_read_lock_nesting > 0 && 159 !t->rcu_read_unlock_special.b.blocked) { 160 161 /* Possibly blocking in an RCU read-side critical section. */ 162 rdp = this_cpu_ptr(rcu_state_p->rda); 163 rnp = rdp->mynode; 164 raw_spin_lock_irqsave(&rnp->lock, flags); 165 smp_mb__after_unlock_lock(); 166 t->rcu_read_unlock_special.b.blocked = true; 167 t->rcu_blocked_node = rnp; 168 169 /* 170 * If this CPU has already checked in, then this task 171 * will hold up the next grace period rather than the 172 * current grace period. Queue the task accordingly. 173 * If the task is queued for the current grace period 174 * (i.e., this CPU has not yet passed through a quiescent 175 * state for the current grace period), then as long 176 * as that task remains queued, the current grace period 177 * cannot end. Note that there is some uncertainty as 178 * to exactly when the current grace period started. 179 * We take a conservative approach, which can result 180 * in unnecessarily waiting on tasks that started very 181 * slightly after the current grace period began. C'est 182 * la vie!!! 183 * 184 * But first, note that the current CPU must still be 185 * on line! 186 */ 187 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 188 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 189 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { 190 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); 191 rnp->gp_tasks = &t->rcu_node_entry; 192 if (IS_ENABLED(CONFIG_RCU_BOOST) && 193 rnp->boost_tasks != NULL) 194 rnp->boost_tasks = rnp->gp_tasks; 195 } else { 196 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 197 if (rnp->qsmask & rdp->grpmask) 198 rnp->gp_tasks = &t->rcu_node_entry; 199 } 200 trace_rcu_preempt_task(rdp->rsp->name, 201 t->pid, 202 (rnp->qsmask & rdp->grpmask) 203 ? rnp->gpnum 204 : rnp->gpnum + 1); 205 raw_spin_unlock_irqrestore(&rnp->lock, flags); 206 } else if (t->rcu_read_lock_nesting < 0 && 207 t->rcu_read_unlock_special.s) { 208 209 /* 210 * Complete exit from RCU read-side critical section on 211 * behalf of preempted instance of __rcu_read_unlock(). 212 */ 213 rcu_read_unlock_special(t); 214 } 215 216 /* 217 * Either we were not in an RCU read-side critical section to 218 * begin with, or we have now recorded that critical section 219 * globally. Either way, we can now note a quiescent state 220 * for this CPU. Again, if we were in an RCU read-side critical 221 * section, and if that critical section was blocking the current 222 * grace period, then the fact that the task has been enqueued 223 * means that we continue to block the current grace period. 224 */ 225 rcu_preempt_qs(); 226 } 227 228 /* 229 * Check for preempted RCU readers blocking the current grace period 230 * for the specified rcu_node structure. If the caller needs a reliable 231 * answer, it must hold the rcu_node's ->lock. 232 */ 233 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 234 { 235 return rnp->gp_tasks != NULL; 236 } 237 238 /* 239 * Advance a ->blkd_tasks-list pointer to the next entry, instead 240 * returning NULL if at the end of the list. 241 */ 242 static struct list_head *rcu_next_node_entry(struct task_struct *t, 243 struct rcu_node *rnp) 244 { 245 struct list_head *np; 246 247 np = t->rcu_node_entry.next; 248 if (np == &rnp->blkd_tasks) 249 np = NULL; 250 return np; 251 } 252 253 /* 254 * Return true if the specified rcu_node structure has tasks that were 255 * preempted within an RCU read-side critical section. 256 */ 257 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 258 { 259 return !list_empty(&rnp->blkd_tasks); 260 } 261 262 /* 263 * Handle special cases during rcu_read_unlock(), such as needing to 264 * notify RCU core processing or task having blocked during the RCU 265 * read-side critical section. 266 */ 267 void rcu_read_unlock_special(struct task_struct *t) 268 { 269 bool empty_exp; 270 bool empty_norm; 271 bool empty_exp_now; 272 unsigned long flags; 273 struct list_head *np; 274 bool drop_boost_mutex = false; 275 struct rcu_node *rnp; 276 union rcu_special special; 277 278 /* NMI handlers cannot block and cannot safely manipulate state. */ 279 if (in_nmi()) 280 return; 281 282 local_irq_save(flags); 283 284 /* 285 * If RCU core is waiting for this CPU to exit critical section, 286 * let it know that we have done so. Because irqs are disabled, 287 * t->rcu_read_unlock_special cannot change. 288 */ 289 special = t->rcu_read_unlock_special; 290 if (special.b.need_qs) { 291 rcu_preempt_qs(); 292 t->rcu_read_unlock_special.b.need_qs = false; 293 if (!t->rcu_read_unlock_special.s) { 294 local_irq_restore(flags); 295 return; 296 } 297 } 298 299 /* Hardware IRQ handlers cannot block, complain if they get here. */ 300 if (in_irq() || in_serving_softirq()) { 301 lockdep_rcu_suspicious(__FILE__, __LINE__, 302 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 303 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n", 304 t->rcu_read_unlock_special.s, 305 t->rcu_read_unlock_special.b.blocked, 306 t->rcu_read_unlock_special.b.need_qs); 307 local_irq_restore(flags); 308 return; 309 } 310 311 /* Clean up if blocked during RCU read-side critical section. */ 312 if (special.b.blocked) { 313 t->rcu_read_unlock_special.b.blocked = false; 314 315 /* 316 * Remove this task from the list it blocked on. The task 317 * now remains queued on the rcu_node corresponding to 318 * the CPU it first blocked on, so the first attempt to 319 * acquire the task's rcu_node's ->lock will succeed. 320 * Keep the loop and add a WARN_ON() out of sheer paranoia. 321 */ 322 for (;;) { 323 rnp = t->rcu_blocked_node; 324 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 325 smp_mb__after_unlock_lock(); 326 if (rnp == t->rcu_blocked_node) 327 break; 328 WARN_ON_ONCE(1); 329 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 330 } 331 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 332 empty_exp = !rcu_preempted_readers_exp(rnp); 333 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 334 np = rcu_next_node_entry(t, rnp); 335 list_del_init(&t->rcu_node_entry); 336 t->rcu_blocked_node = NULL; 337 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 338 rnp->gpnum, t->pid); 339 if (&t->rcu_node_entry == rnp->gp_tasks) 340 rnp->gp_tasks = np; 341 if (&t->rcu_node_entry == rnp->exp_tasks) 342 rnp->exp_tasks = np; 343 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 344 if (&t->rcu_node_entry == rnp->boost_tasks) 345 rnp->boost_tasks = np; 346 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 347 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 348 } 349 350 /* 351 * If this was the last task on the current list, and if 352 * we aren't waiting on any CPUs, report the quiescent state. 353 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 354 * so we must take a snapshot of the expedited state. 355 */ 356 empty_exp_now = !rcu_preempted_readers_exp(rnp); 357 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 358 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 359 rnp->gpnum, 360 0, rnp->qsmask, 361 rnp->level, 362 rnp->grplo, 363 rnp->grphi, 364 !!rnp->gp_tasks); 365 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 366 } else { 367 raw_spin_unlock_irqrestore(&rnp->lock, flags); 368 } 369 370 /* Unboost if we were boosted. */ 371 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 372 rt_mutex_unlock(&rnp->boost_mtx); 373 374 /* 375 * If this was the last task on the expedited lists, 376 * then we need to report up the rcu_node hierarchy. 377 */ 378 if (!empty_exp && empty_exp_now) 379 rcu_report_exp_rnp(rcu_state_p, rnp, true); 380 } else { 381 local_irq_restore(flags); 382 } 383 } 384 385 /* 386 * Dump detailed information for all tasks blocking the current RCU 387 * grace period on the specified rcu_node structure. 388 */ 389 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 390 { 391 unsigned long flags; 392 struct task_struct *t; 393 394 raw_spin_lock_irqsave(&rnp->lock, flags); 395 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 396 raw_spin_unlock_irqrestore(&rnp->lock, flags); 397 return; 398 } 399 t = list_entry(rnp->gp_tasks->prev, 400 struct task_struct, rcu_node_entry); 401 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 402 sched_show_task(t); 403 raw_spin_unlock_irqrestore(&rnp->lock, flags); 404 } 405 406 /* 407 * Dump detailed information for all tasks blocking the current RCU 408 * grace period. 409 */ 410 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 411 { 412 struct rcu_node *rnp = rcu_get_root(rsp); 413 414 rcu_print_detail_task_stall_rnp(rnp); 415 rcu_for_each_leaf_node(rsp, rnp) 416 rcu_print_detail_task_stall_rnp(rnp); 417 } 418 419 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 420 { 421 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 422 rnp->level, rnp->grplo, rnp->grphi); 423 } 424 425 static void rcu_print_task_stall_end(void) 426 { 427 pr_cont("\n"); 428 } 429 430 /* 431 * Scan the current list of tasks blocked within RCU read-side critical 432 * sections, printing out the tid of each. 433 */ 434 static int rcu_print_task_stall(struct rcu_node *rnp) 435 { 436 struct task_struct *t; 437 int ndetected = 0; 438 439 if (!rcu_preempt_blocked_readers_cgp(rnp)) 440 return 0; 441 rcu_print_task_stall_begin(rnp); 442 t = list_entry(rnp->gp_tasks->prev, 443 struct task_struct, rcu_node_entry); 444 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 445 pr_cont(" P%d", t->pid); 446 ndetected++; 447 } 448 rcu_print_task_stall_end(); 449 return ndetected; 450 } 451 452 /* 453 * Check that the list of blocked tasks for the newly completed grace 454 * period is in fact empty. It is a serious bug to complete a grace 455 * period that still has RCU readers blocked! This function must be 456 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 457 * must be held by the caller. 458 * 459 * Also, if there are blocked tasks on the list, they automatically 460 * block the newly created grace period, so set up ->gp_tasks accordingly. 461 */ 462 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 463 { 464 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 465 if (rcu_preempt_has_tasks(rnp)) 466 rnp->gp_tasks = rnp->blkd_tasks.next; 467 WARN_ON_ONCE(rnp->qsmask); 468 } 469 470 /* 471 * Check for a quiescent state from the current CPU. When a task blocks, 472 * the task is recorded in the corresponding CPU's rcu_node structure, 473 * which is checked elsewhere. 474 * 475 * Caller must disable hard irqs. 476 */ 477 static void rcu_preempt_check_callbacks(void) 478 { 479 struct task_struct *t = current; 480 481 if (t->rcu_read_lock_nesting == 0) { 482 rcu_preempt_qs(); 483 return; 484 } 485 if (t->rcu_read_lock_nesting > 0 && 486 __this_cpu_read(rcu_data_p->qs_pending) && 487 !__this_cpu_read(rcu_data_p->passed_quiesce)) 488 t->rcu_read_unlock_special.b.need_qs = true; 489 } 490 491 #ifdef CONFIG_RCU_BOOST 492 493 static void rcu_preempt_do_callbacks(void) 494 { 495 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 496 } 497 498 #endif /* #ifdef CONFIG_RCU_BOOST */ 499 500 /* 501 * Queue a preemptible-RCU callback for invocation after a grace period. 502 */ 503 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 504 { 505 __call_rcu(head, func, rcu_state_p, -1, 0); 506 } 507 EXPORT_SYMBOL_GPL(call_rcu); 508 509 /** 510 * synchronize_rcu - wait until a grace period has elapsed. 511 * 512 * Control will return to the caller some time after a full grace 513 * period has elapsed, in other words after all currently executing RCU 514 * read-side critical sections have completed. Note, however, that 515 * upon return from synchronize_rcu(), the caller might well be executing 516 * concurrently with new RCU read-side critical sections that began while 517 * synchronize_rcu() was waiting. RCU read-side critical sections are 518 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 519 * 520 * See the description of synchronize_sched() for more detailed information 521 * on memory ordering guarantees. 522 */ 523 void synchronize_rcu(void) 524 { 525 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 526 lock_is_held(&rcu_lock_map) || 527 lock_is_held(&rcu_sched_lock_map), 528 "Illegal synchronize_rcu() in RCU read-side critical section"); 529 if (!rcu_scheduler_active) 530 return; 531 if (rcu_gp_is_expedited()) 532 synchronize_rcu_expedited(); 533 else 534 wait_rcu_gp(call_rcu); 535 } 536 EXPORT_SYMBOL_GPL(synchronize_rcu); 537 538 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); 539 540 /* 541 * Return non-zero if there are any tasks in RCU read-side critical 542 * sections blocking the current preemptible-RCU expedited grace period. 543 * If there is no preemptible-RCU expedited grace period currently in 544 * progress, returns zero unconditionally. 545 */ 546 static int rcu_preempted_readers_exp(struct rcu_node *rnp) 547 { 548 return rnp->exp_tasks != NULL; 549 } 550 551 /* 552 * return non-zero if there is no RCU expedited grace period in progress 553 * for the specified rcu_node structure, in other words, if all CPUs and 554 * tasks covered by the specified rcu_node structure have done their bit 555 * for the current expedited grace period. Works only for preemptible 556 * RCU -- other RCU implementation use other means. 557 * 558 * Caller must hold the root rcu_node's exp_funnel_mutex. 559 */ 560 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 561 { 562 return !rcu_preempted_readers_exp(rnp) && 563 READ_ONCE(rnp->expmask) == 0; 564 } 565 566 /* 567 * Report the exit from RCU read-side critical section for the last task 568 * that queued itself during or before the current expedited preemptible-RCU 569 * grace period. This event is reported either to the rcu_node structure on 570 * which the task was queued or to one of that rcu_node structure's ancestors, 571 * recursively up the tree. (Calm down, calm down, we do the recursion 572 * iteratively!) 573 * 574 * Caller must hold the root rcu_node's exp_funnel_mutex. 575 */ 576 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 577 bool wake) 578 { 579 unsigned long flags; 580 unsigned long mask; 581 582 raw_spin_lock_irqsave(&rnp->lock, flags); 583 smp_mb__after_unlock_lock(); 584 for (;;) { 585 if (!sync_rcu_preempt_exp_done(rnp)) { 586 raw_spin_unlock_irqrestore(&rnp->lock, flags); 587 break; 588 } 589 if (rnp->parent == NULL) { 590 raw_spin_unlock_irqrestore(&rnp->lock, flags); 591 if (wake) { 592 smp_mb(); /* EGP done before wake_up(). */ 593 wake_up(&sync_rcu_preempt_exp_wq); 594 } 595 break; 596 } 597 mask = rnp->grpmask; 598 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 599 rnp = rnp->parent; 600 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 601 smp_mb__after_unlock_lock(); 602 rnp->expmask &= ~mask; 603 } 604 } 605 606 /* 607 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 608 * grace period for the specified rcu_node structure, phase 1. If there 609 * are such tasks, set the ->expmask bits up the rcu_node tree and also 610 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2 611 * that work is needed here. 612 * 613 * Caller must hold the root rcu_node's exp_funnel_mutex. 614 */ 615 static void 616 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp) 617 { 618 unsigned long flags; 619 unsigned long mask; 620 struct rcu_node *rnp_up; 621 622 raw_spin_lock_irqsave(&rnp->lock, flags); 623 smp_mb__after_unlock_lock(); 624 WARN_ON_ONCE(rnp->expmask); 625 WARN_ON_ONCE(rnp->exp_tasks); 626 if (!rcu_preempt_has_tasks(rnp)) { 627 /* No blocked tasks, nothing to do. */ 628 raw_spin_unlock_irqrestore(&rnp->lock, flags); 629 return; 630 } 631 /* Call for Phase 2 and propagate ->expmask bits up the tree. */ 632 rnp->expmask = 1; 633 rnp_up = rnp; 634 while (rnp_up->parent) { 635 mask = rnp_up->grpmask; 636 rnp_up = rnp_up->parent; 637 if (rnp_up->expmask & mask) 638 break; 639 raw_spin_lock(&rnp_up->lock); /* irqs already off */ 640 smp_mb__after_unlock_lock(); 641 rnp_up->expmask |= mask; 642 raw_spin_unlock(&rnp_up->lock); /* irqs still off */ 643 } 644 raw_spin_unlock_irqrestore(&rnp->lock, flags); 645 } 646 647 /* 648 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 649 * grace period for the specified rcu_node structure, phase 2. If the 650 * leaf rcu_node structure has its ->expmask field set, check for tasks. 651 * If there are some, clear ->expmask and set ->exp_tasks accordingly, 652 * then initiate RCU priority boosting. Otherwise, clear ->expmask and 653 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits, 654 * enabling rcu_read_unlock_special() to do the bit-clearing. 655 * 656 * Caller must hold the root rcu_node's exp_funnel_mutex. 657 */ 658 static void 659 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp) 660 { 661 unsigned long flags; 662 663 raw_spin_lock_irqsave(&rnp->lock, flags); 664 smp_mb__after_unlock_lock(); 665 if (!rnp->expmask) { 666 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */ 667 raw_spin_unlock_irqrestore(&rnp->lock, flags); 668 return; 669 } 670 671 /* Phase 1 is over. */ 672 rnp->expmask = 0; 673 674 /* 675 * If there are still blocked tasks, set up ->exp_tasks so that 676 * rcu_read_unlock_special() will wake us and then boost them. 677 */ 678 if (rcu_preempt_has_tasks(rnp)) { 679 rnp->exp_tasks = rnp->blkd_tasks.next; 680 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 681 return; 682 } 683 684 /* No longer any blocked tasks, so undo bit setting. */ 685 raw_spin_unlock_irqrestore(&rnp->lock, flags); 686 rcu_report_exp_rnp(rsp, rnp, false); 687 } 688 689 /** 690 * synchronize_rcu_expedited - Brute-force RCU grace period 691 * 692 * Wait for an RCU-preempt grace period, but expedite it. The basic 693 * idea is to invoke synchronize_sched_expedited() to push all the tasks to 694 * the ->blkd_tasks lists and wait for this list to drain. This consumes 695 * significant time on all CPUs and is unfriendly to real-time workloads, 696 * so is thus not recommended for any sort of common-case code. 697 * In fact, if you are using synchronize_rcu_expedited() in a loop, 698 * please restructure your code to batch your updates, and then Use a 699 * single synchronize_rcu() instead. 700 */ 701 void synchronize_rcu_expedited(void) 702 { 703 struct rcu_node *rnp; 704 struct rcu_node *rnp_unlock; 705 struct rcu_state *rsp = rcu_state_p; 706 unsigned long s; 707 708 s = rcu_exp_gp_seq_snap(rsp); 709 710 rnp_unlock = exp_funnel_lock(rsp, s); 711 if (rnp_unlock == NULL) 712 return; /* Someone else did our work for us. */ 713 714 rcu_exp_gp_seq_start(rsp); 715 716 /* force all RCU readers onto ->blkd_tasks lists. */ 717 synchronize_sched_expedited(); 718 719 /* 720 * Snapshot current state of ->blkd_tasks lists into ->expmask. 721 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special() 722 * to start clearing them. Doing this in one phase leads to 723 * strange races between setting and clearing bits, so just say "no"! 724 */ 725 rcu_for_each_leaf_node(rsp, rnp) 726 sync_rcu_preempt_exp_init1(rsp, rnp); 727 rcu_for_each_leaf_node(rsp, rnp) 728 sync_rcu_preempt_exp_init2(rsp, rnp); 729 730 /* Wait for snapshotted ->blkd_tasks lists to drain. */ 731 rnp = rcu_get_root(rsp); 732 wait_event(sync_rcu_preempt_exp_wq, 733 sync_rcu_preempt_exp_done(rnp)); 734 735 /* Clean up and exit. */ 736 rcu_exp_gp_seq_end(rsp); 737 mutex_unlock(&rnp_unlock->exp_funnel_mutex); 738 } 739 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 740 741 /** 742 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 743 * 744 * Note that this primitive does not necessarily wait for an RCU grace period 745 * to complete. For example, if there are no RCU callbacks queued anywhere 746 * in the system, then rcu_barrier() is within its rights to return 747 * immediately, without waiting for anything, much less an RCU grace period. 748 */ 749 void rcu_barrier(void) 750 { 751 _rcu_barrier(rcu_state_p); 752 } 753 EXPORT_SYMBOL_GPL(rcu_barrier); 754 755 /* 756 * Initialize preemptible RCU's state structures. 757 */ 758 static void __init __rcu_init_preempt(void) 759 { 760 rcu_init_one(rcu_state_p, rcu_data_p); 761 } 762 763 /* 764 * Check for a task exiting while in a preemptible-RCU read-side 765 * critical section, clean up if so. No need to issue warnings, 766 * as debug_check_no_locks_held() already does this if lockdep 767 * is enabled. 768 */ 769 void exit_rcu(void) 770 { 771 struct task_struct *t = current; 772 773 if (likely(list_empty(¤t->rcu_node_entry))) 774 return; 775 t->rcu_read_lock_nesting = 1; 776 barrier(); 777 t->rcu_read_unlock_special.b.blocked = true; 778 __rcu_read_unlock(); 779 } 780 781 #else /* #ifdef CONFIG_PREEMPT_RCU */ 782 783 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 784 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data; 785 786 /* 787 * Tell them what RCU they are running. 788 */ 789 static void __init rcu_bootup_announce(void) 790 { 791 pr_info("Hierarchical RCU implementation.\n"); 792 rcu_bootup_announce_oddness(); 793 } 794 795 /* 796 * Because preemptible RCU does not exist, we never have to check for 797 * CPUs being in quiescent states. 798 */ 799 static void rcu_preempt_note_context_switch(void) 800 { 801 } 802 803 /* 804 * Because preemptible RCU does not exist, there are never any preempted 805 * RCU readers. 806 */ 807 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 808 { 809 return 0; 810 } 811 812 /* 813 * Because there is no preemptible RCU, there can be no readers blocked. 814 */ 815 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 816 { 817 return false; 818 } 819 820 /* 821 * Because preemptible RCU does not exist, we never have to check for 822 * tasks blocked within RCU read-side critical sections. 823 */ 824 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 825 { 826 } 827 828 /* 829 * Because preemptible RCU does not exist, we never have to check for 830 * tasks blocked within RCU read-side critical sections. 831 */ 832 static int rcu_print_task_stall(struct rcu_node *rnp) 833 { 834 return 0; 835 } 836 837 /* 838 * Because there is no preemptible RCU, there can be no readers blocked, 839 * so there is no need to check for blocked tasks. So check only for 840 * bogus qsmask values. 841 */ 842 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 843 { 844 WARN_ON_ONCE(rnp->qsmask); 845 } 846 847 /* 848 * Because preemptible RCU does not exist, it never has any callbacks 849 * to check. 850 */ 851 static void rcu_preempt_check_callbacks(void) 852 { 853 } 854 855 /* 856 * Wait for an rcu-preempt grace period, but make it happen quickly. 857 * But because preemptible RCU does not exist, map to rcu-sched. 858 */ 859 void synchronize_rcu_expedited(void) 860 { 861 synchronize_sched_expedited(); 862 } 863 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 864 865 /* 866 * Because preemptible RCU does not exist, rcu_barrier() is just 867 * another name for rcu_barrier_sched(). 868 */ 869 void rcu_barrier(void) 870 { 871 rcu_barrier_sched(); 872 } 873 EXPORT_SYMBOL_GPL(rcu_barrier); 874 875 /* 876 * Because preemptible RCU does not exist, it need not be initialized. 877 */ 878 static void __init __rcu_init_preempt(void) 879 { 880 } 881 882 /* 883 * Because preemptible RCU does not exist, tasks cannot possibly exit 884 * while in preemptible RCU read-side critical sections. 885 */ 886 void exit_rcu(void) 887 { 888 } 889 890 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 891 892 #ifdef CONFIG_RCU_BOOST 893 894 #include "../locking/rtmutex_common.h" 895 896 #ifdef CONFIG_RCU_TRACE 897 898 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 899 { 900 if (!rcu_preempt_has_tasks(rnp)) 901 rnp->n_balk_blkd_tasks++; 902 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 903 rnp->n_balk_exp_gp_tasks++; 904 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 905 rnp->n_balk_boost_tasks++; 906 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 907 rnp->n_balk_notblocked++; 908 else if (rnp->gp_tasks != NULL && 909 ULONG_CMP_LT(jiffies, rnp->boost_time)) 910 rnp->n_balk_notyet++; 911 else 912 rnp->n_balk_nos++; 913 } 914 915 #else /* #ifdef CONFIG_RCU_TRACE */ 916 917 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 918 { 919 } 920 921 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 922 923 static void rcu_wake_cond(struct task_struct *t, int status) 924 { 925 /* 926 * If the thread is yielding, only wake it when this 927 * is invoked from idle 928 */ 929 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 930 wake_up_process(t); 931 } 932 933 /* 934 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 935 * or ->boost_tasks, advancing the pointer to the next task in the 936 * ->blkd_tasks list. 937 * 938 * Note that irqs must be enabled: boosting the task can block. 939 * Returns 1 if there are more tasks needing to be boosted. 940 */ 941 static int rcu_boost(struct rcu_node *rnp) 942 { 943 unsigned long flags; 944 struct task_struct *t; 945 struct list_head *tb; 946 947 if (READ_ONCE(rnp->exp_tasks) == NULL && 948 READ_ONCE(rnp->boost_tasks) == NULL) 949 return 0; /* Nothing left to boost. */ 950 951 raw_spin_lock_irqsave(&rnp->lock, flags); 952 smp_mb__after_unlock_lock(); 953 954 /* 955 * Recheck under the lock: all tasks in need of boosting 956 * might exit their RCU read-side critical sections on their own. 957 */ 958 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 959 raw_spin_unlock_irqrestore(&rnp->lock, flags); 960 return 0; 961 } 962 963 /* 964 * Preferentially boost tasks blocking expedited grace periods. 965 * This cannot starve the normal grace periods because a second 966 * expedited grace period must boost all blocked tasks, including 967 * those blocking the pre-existing normal grace period. 968 */ 969 if (rnp->exp_tasks != NULL) { 970 tb = rnp->exp_tasks; 971 rnp->n_exp_boosts++; 972 } else { 973 tb = rnp->boost_tasks; 974 rnp->n_normal_boosts++; 975 } 976 rnp->n_tasks_boosted++; 977 978 /* 979 * We boost task t by manufacturing an rt_mutex that appears to 980 * be held by task t. We leave a pointer to that rt_mutex where 981 * task t can find it, and task t will release the mutex when it 982 * exits its outermost RCU read-side critical section. Then 983 * simply acquiring this artificial rt_mutex will boost task 984 * t's priority. (Thanks to tglx for suggesting this approach!) 985 * 986 * Note that task t must acquire rnp->lock to remove itself from 987 * the ->blkd_tasks list, which it will do from exit() if from 988 * nowhere else. We therefore are guaranteed that task t will 989 * stay around at least until we drop rnp->lock. Note that 990 * rnp->lock also resolves races between our priority boosting 991 * and task t's exiting its outermost RCU read-side critical 992 * section. 993 */ 994 t = container_of(tb, struct task_struct, rcu_node_entry); 995 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 996 raw_spin_unlock_irqrestore(&rnp->lock, flags); 997 /* Lock only for side effect: boosts task t's priority. */ 998 rt_mutex_lock(&rnp->boost_mtx); 999 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1000 1001 return READ_ONCE(rnp->exp_tasks) != NULL || 1002 READ_ONCE(rnp->boost_tasks) != NULL; 1003 } 1004 1005 /* 1006 * Priority-boosting kthread, one per leaf rcu_node. 1007 */ 1008 static int rcu_boost_kthread(void *arg) 1009 { 1010 struct rcu_node *rnp = (struct rcu_node *)arg; 1011 int spincnt = 0; 1012 int more2boost; 1013 1014 trace_rcu_utilization(TPS("Start boost kthread@init")); 1015 for (;;) { 1016 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1017 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1018 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1019 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1020 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1021 more2boost = rcu_boost(rnp); 1022 if (more2boost) 1023 spincnt++; 1024 else 1025 spincnt = 0; 1026 if (spincnt > 10) { 1027 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1028 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1029 schedule_timeout_interruptible(2); 1030 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1031 spincnt = 0; 1032 } 1033 } 1034 /* NOTREACHED */ 1035 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1036 return 0; 1037 } 1038 1039 /* 1040 * Check to see if it is time to start boosting RCU readers that are 1041 * blocking the current grace period, and, if so, tell the per-rcu_node 1042 * kthread to start boosting them. If there is an expedited grace 1043 * period in progress, it is always time to boost. 1044 * 1045 * The caller must hold rnp->lock, which this function releases. 1046 * The ->boost_kthread_task is immortal, so we don't need to worry 1047 * about it going away. 1048 */ 1049 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1050 __releases(rnp->lock) 1051 { 1052 struct task_struct *t; 1053 1054 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1055 rnp->n_balk_exp_gp_tasks++; 1056 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1057 return; 1058 } 1059 if (rnp->exp_tasks != NULL || 1060 (rnp->gp_tasks != NULL && 1061 rnp->boost_tasks == NULL && 1062 rnp->qsmask == 0 && 1063 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1064 if (rnp->exp_tasks == NULL) 1065 rnp->boost_tasks = rnp->gp_tasks; 1066 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1067 t = rnp->boost_kthread_task; 1068 if (t) 1069 rcu_wake_cond(t, rnp->boost_kthread_status); 1070 } else { 1071 rcu_initiate_boost_trace(rnp); 1072 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1073 } 1074 } 1075 1076 /* 1077 * Wake up the per-CPU kthread to invoke RCU callbacks. 1078 */ 1079 static void invoke_rcu_callbacks_kthread(void) 1080 { 1081 unsigned long flags; 1082 1083 local_irq_save(flags); 1084 __this_cpu_write(rcu_cpu_has_work, 1); 1085 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1086 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1087 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1088 __this_cpu_read(rcu_cpu_kthread_status)); 1089 } 1090 local_irq_restore(flags); 1091 } 1092 1093 /* 1094 * Is the current CPU running the RCU-callbacks kthread? 1095 * Caller must have preemption disabled. 1096 */ 1097 static bool rcu_is_callbacks_kthread(void) 1098 { 1099 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1100 } 1101 1102 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1103 1104 /* 1105 * Do priority-boost accounting for the start of a new grace period. 1106 */ 1107 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1108 { 1109 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1110 } 1111 1112 /* 1113 * Create an RCU-boost kthread for the specified node if one does not 1114 * already exist. We only create this kthread for preemptible RCU. 1115 * Returns zero if all is well, a negated errno otherwise. 1116 */ 1117 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1118 struct rcu_node *rnp) 1119 { 1120 int rnp_index = rnp - &rsp->node[0]; 1121 unsigned long flags; 1122 struct sched_param sp; 1123 struct task_struct *t; 1124 1125 if (rcu_state_p != rsp) 1126 return 0; 1127 1128 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1129 return 0; 1130 1131 rsp->boost = 1; 1132 if (rnp->boost_kthread_task != NULL) 1133 return 0; 1134 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1135 "rcub/%d", rnp_index); 1136 if (IS_ERR(t)) 1137 return PTR_ERR(t); 1138 raw_spin_lock_irqsave(&rnp->lock, flags); 1139 smp_mb__after_unlock_lock(); 1140 rnp->boost_kthread_task = t; 1141 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1142 sp.sched_priority = kthread_prio; 1143 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1144 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1145 return 0; 1146 } 1147 1148 static void rcu_kthread_do_work(void) 1149 { 1150 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1151 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1152 rcu_preempt_do_callbacks(); 1153 } 1154 1155 static void rcu_cpu_kthread_setup(unsigned int cpu) 1156 { 1157 struct sched_param sp; 1158 1159 sp.sched_priority = kthread_prio; 1160 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1161 } 1162 1163 static void rcu_cpu_kthread_park(unsigned int cpu) 1164 { 1165 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1166 } 1167 1168 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1169 { 1170 return __this_cpu_read(rcu_cpu_has_work); 1171 } 1172 1173 /* 1174 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1175 * RCU softirq used in flavors and configurations of RCU that do not 1176 * support RCU priority boosting. 1177 */ 1178 static void rcu_cpu_kthread(unsigned int cpu) 1179 { 1180 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1181 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1182 int spincnt; 1183 1184 for (spincnt = 0; spincnt < 10; spincnt++) { 1185 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1186 local_bh_disable(); 1187 *statusp = RCU_KTHREAD_RUNNING; 1188 this_cpu_inc(rcu_cpu_kthread_loops); 1189 local_irq_disable(); 1190 work = *workp; 1191 *workp = 0; 1192 local_irq_enable(); 1193 if (work) 1194 rcu_kthread_do_work(); 1195 local_bh_enable(); 1196 if (*workp == 0) { 1197 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1198 *statusp = RCU_KTHREAD_WAITING; 1199 return; 1200 } 1201 } 1202 *statusp = RCU_KTHREAD_YIELDING; 1203 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1204 schedule_timeout_interruptible(2); 1205 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1206 *statusp = RCU_KTHREAD_WAITING; 1207 } 1208 1209 /* 1210 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1211 * served by the rcu_node in question. The CPU hotplug lock is still 1212 * held, so the value of rnp->qsmaskinit will be stable. 1213 * 1214 * We don't include outgoingcpu in the affinity set, use -1 if there is 1215 * no outgoing CPU. If there are no CPUs left in the affinity set, 1216 * this function allows the kthread to execute on any CPU. 1217 */ 1218 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1219 { 1220 struct task_struct *t = rnp->boost_kthread_task; 1221 unsigned long mask = rcu_rnp_online_cpus(rnp); 1222 cpumask_var_t cm; 1223 int cpu; 1224 1225 if (!t) 1226 return; 1227 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1228 return; 1229 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1230 if ((mask & 0x1) && cpu != outgoingcpu) 1231 cpumask_set_cpu(cpu, cm); 1232 if (cpumask_weight(cm) == 0) 1233 cpumask_setall(cm); 1234 set_cpus_allowed_ptr(t, cm); 1235 free_cpumask_var(cm); 1236 } 1237 1238 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1239 .store = &rcu_cpu_kthread_task, 1240 .thread_should_run = rcu_cpu_kthread_should_run, 1241 .thread_fn = rcu_cpu_kthread, 1242 .thread_comm = "rcuc/%u", 1243 .setup = rcu_cpu_kthread_setup, 1244 .park = rcu_cpu_kthread_park, 1245 }; 1246 1247 /* 1248 * Spawn boost kthreads -- called as soon as the scheduler is running. 1249 */ 1250 static void __init rcu_spawn_boost_kthreads(void) 1251 { 1252 struct rcu_node *rnp; 1253 int cpu; 1254 1255 for_each_possible_cpu(cpu) 1256 per_cpu(rcu_cpu_has_work, cpu) = 0; 1257 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1258 rcu_for_each_leaf_node(rcu_state_p, rnp) 1259 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1260 } 1261 1262 static void rcu_prepare_kthreads(int cpu) 1263 { 1264 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1265 struct rcu_node *rnp = rdp->mynode; 1266 1267 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1268 if (rcu_scheduler_fully_active) 1269 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1270 } 1271 1272 #else /* #ifdef CONFIG_RCU_BOOST */ 1273 1274 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1275 __releases(rnp->lock) 1276 { 1277 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1278 } 1279 1280 static void invoke_rcu_callbacks_kthread(void) 1281 { 1282 WARN_ON_ONCE(1); 1283 } 1284 1285 static bool rcu_is_callbacks_kthread(void) 1286 { 1287 return false; 1288 } 1289 1290 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1291 { 1292 } 1293 1294 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1295 { 1296 } 1297 1298 static void __init rcu_spawn_boost_kthreads(void) 1299 { 1300 } 1301 1302 static void rcu_prepare_kthreads(int cpu) 1303 { 1304 } 1305 1306 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1307 1308 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1309 1310 /* 1311 * Check to see if any future RCU-related work will need to be done 1312 * by the current CPU, even if none need be done immediately, returning 1313 * 1 if so. This function is part of the RCU implementation; it is -not- 1314 * an exported member of the RCU API. 1315 * 1316 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1317 * any flavor of RCU. 1318 */ 1319 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1320 { 1321 *nextevt = KTIME_MAX; 1322 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) 1323 ? 0 : rcu_cpu_has_callbacks(NULL); 1324 } 1325 1326 /* 1327 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1328 * after it. 1329 */ 1330 static void rcu_cleanup_after_idle(void) 1331 { 1332 } 1333 1334 /* 1335 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1336 * is nothing. 1337 */ 1338 static void rcu_prepare_for_idle(void) 1339 { 1340 } 1341 1342 /* 1343 * Don't bother keeping a running count of the number of RCU callbacks 1344 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1345 */ 1346 static void rcu_idle_count_callbacks_posted(void) 1347 { 1348 } 1349 1350 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1351 1352 /* 1353 * This code is invoked when a CPU goes idle, at which point we want 1354 * to have the CPU do everything required for RCU so that it can enter 1355 * the energy-efficient dyntick-idle mode. This is handled by a 1356 * state machine implemented by rcu_prepare_for_idle() below. 1357 * 1358 * The following three proprocessor symbols control this state machine: 1359 * 1360 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1361 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1362 * is sized to be roughly one RCU grace period. Those energy-efficiency 1363 * benchmarkers who might otherwise be tempted to set this to a large 1364 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1365 * system. And if you are -that- concerned about energy efficiency, 1366 * just power the system down and be done with it! 1367 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1368 * permitted to sleep in dyntick-idle mode with only lazy RCU 1369 * callbacks pending. Setting this too high can OOM your system. 1370 * 1371 * The values below work well in practice. If future workloads require 1372 * adjustment, they can be converted into kernel config parameters, though 1373 * making the state machine smarter might be a better option. 1374 */ 1375 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1376 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1377 1378 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1379 module_param(rcu_idle_gp_delay, int, 0644); 1380 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1381 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1382 1383 /* 1384 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1385 * only if it has been awhile since the last time we did so. Afterwards, 1386 * if there are any callbacks ready for immediate invocation, return true. 1387 */ 1388 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1389 { 1390 bool cbs_ready = false; 1391 struct rcu_data *rdp; 1392 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1393 struct rcu_node *rnp; 1394 struct rcu_state *rsp; 1395 1396 /* Exit early if we advanced recently. */ 1397 if (jiffies == rdtp->last_advance_all) 1398 return false; 1399 rdtp->last_advance_all = jiffies; 1400 1401 for_each_rcu_flavor(rsp) { 1402 rdp = this_cpu_ptr(rsp->rda); 1403 rnp = rdp->mynode; 1404 1405 /* 1406 * Don't bother checking unless a grace period has 1407 * completed since we last checked and there are 1408 * callbacks not yet ready to invoke. 1409 */ 1410 if ((rdp->completed != rnp->completed || 1411 unlikely(READ_ONCE(rdp->gpwrap))) && 1412 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1413 note_gp_changes(rsp, rdp); 1414 1415 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1416 cbs_ready = true; 1417 } 1418 return cbs_ready; 1419 } 1420 1421 /* 1422 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1423 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1424 * caller to set the timeout based on whether or not there are non-lazy 1425 * callbacks. 1426 * 1427 * The caller must have disabled interrupts. 1428 */ 1429 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1430 { 1431 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1432 unsigned long dj; 1433 1434 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { 1435 *nextevt = KTIME_MAX; 1436 return 0; 1437 } 1438 1439 /* Snapshot to detect later posting of non-lazy callback. */ 1440 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1441 1442 /* If no callbacks, RCU doesn't need the CPU. */ 1443 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1444 *nextevt = KTIME_MAX; 1445 return 0; 1446 } 1447 1448 /* Attempt to advance callbacks. */ 1449 if (rcu_try_advance_all_cbs()) { 1450 /* Some ready to invoke, so initiate later invocation. */ 1451 invoke_rcu_core(); 1452 return 1; 1453 } 1454 rdtp->last_accelerate = jiffies; 1455 1456 /* Request timer delay depending on laziness, and round. */ 1457 if (!rdtp->all_lazy) { 1458 dj = round_up(rcu_idle_gp_delay + jiffies, 1459 rcu_idle_gp_delay) - jiffies; 1460 } else { 1461 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1462 } 1463 *nextevt = basemono + dj * TICK_NSEC; 1464 return 0; 1465 } 1466 1467 /* 1468 * Prepare a CPU for idle from an RCU perspective. The first major task 1469 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1470 * The second major task is to check to see if a non-lazy callback has 1471 * arrived at a CPU that previously had only lazy callbacks. The third 1472 * major task is to accelerate (that is, assign grace-period numbers to) 1473 * any recently arrived callbacks. 1474 * 1475 * The caller must have disabled interrupts. 1476 */ 1477 static void rcu_prepare_for_idle(void) 1478 { 1479 bool needwake; 1480 struct rcu_data *rdp; 1481 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1482 struct rcu_node *rnp; 1483 struct rcu_state *rsp; 1484 int tne; 1485 1486 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) 1487 return; 1488 1489 /* Handle nohz enablement switches conservatively. */ 1490 tne = READ_ONCE(tick_nohz_active); 1491 if (tne != rdtp->tick_nohz_enabled_snap) { 1492 if (rcu_cpu_has_callbacks(NULL)) 1493 invoke_rcu_core(); /* force nohz to see update. */ 1494 rdtp->tick_nohz_enabled_snap = tne; 1495 return; 1496 } 1497 if (!tne) 1498 return; 1499 1500 /* If this is a no-CBs CPU, no callbacks, just return. */ 1501 if (rcu_is_nocb_cpu(smp_processor_id())) 1502 return; 1503 1504 /* 1505 * If a non-lazy callback arrived at a CPU having only lazy 1506 * callbacks, invoke RCU core for the side-effect of recalculating 1507 * idle duration on re-entry to idle. 1508 */ 1509 if (rdtp->all_lazy && 1510 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1511 rdtp->all_lazy = false; 1512 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1513 invoke_rcu_core(); 1514 return; 1515 } 1516 1517 /* 1518 * If we have not yet accelerated this jiffy, accelerate all 1519 * callbacks on this CPU. 1520 */ 1521 if (rdtp->last_accelerate == jiffies) 1522 return; 1523 rdtp->last_accelerate = jiffies; 1524 for_each_rcu_flavor(rsp) { 1525 rdp = this_cpu_ptr(rsp->rda); 1526 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1527 continue; 1528 rnp = rdp->mynode; 1529 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1530 smp_mb__after_unlock_lock(); 1531 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1532 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1533 if (needwake) 1534 rcu_gp_kthread_wake(rsp); 1535 } 1536 } 1537 1538 /* 1539 * Clean up for exit from idle. Attempt to advance callbacks based on 1540 * any grace periods that elapsed while the CPU was idle, and if any 1541 * callbacks are now ready to invoke, initiate invocation. 1542 */ 1543 static void rcu_cleanup_after_idle(void) 1544 { 1545 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1546 rcu_is_nocb_cpu(smp_processor_id())) 1547 return; 1548 if (rcu_try_advance_all_cbs()) 1549 invoke_rcu_core(); 1550 } 1551 1552 /* 1553 * Keep a running count of the number of non-lazy callbacks posted 1554 * on this CPU. This running counter (which is never decremented) allows 1555 * rcu_prepare_for_idle() to detect when something out of the idle loop 1556 * posts a callback, even if an equal number of callbacks are invoked. 1557 * Of course, callbacks should only be posted from within a trace event 1558 * designed to be called from idle or from within RCU_NONIDLE(). 1559 */ 1560 static void rcu_idle_count_callbacks_posted(void) 1561 { 1562 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1563 } 1564 1565 /* 1566 * Data for flushing lazy RCU callbacks at OOM time. 1567 */ 1568 static atomic_t oom_callback_count; 1569 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1570 1571 /* 1572 * RCU OOM callback -- decrement the outstanding count and deliver the 1573 * wake-up if we are the last one. 1574 */ 1575 static void rcu_oom_callback(struct rcu_head *rhp) 1576 { 1577 if (atomic_dec_and_test(&oom_callback_count)) 1578 wake_up(&oom_callback_wq); 1579 } 1580 1581 /* 1582 * Post an rcu_oom_notify callback on the current CPU if it has at 1583 * least one lazy callback. This will unnecessarily post callbacks 1584 * to CPUs that already have a non-lazy callback at the end of their 1585 * callback list, but this is an infrequent operation, so accept some 1586 * extra overhead to keep things simple. 1587 */ 1588 static void rcu_oom_notify_cpu(void *unused) 1589 { 1590 struct rcu_state *rsp; 1591 struct rcu_data *rdp; 1592 1593 for_each_rcu_flavor(rsp) { 1594 rdp = raw_cpu_ptr(rsp->rda); 1595 if (rdp->qlen_lazy != 0) { 1596 atomic_inc(&oom_callback_count); 1597 rsp->call(&rdp->oom_head, rcu_oom_callback); 1598 } 1599 } 1600 } 1601 1602 /* 1603 * If low on memory, ensure that each CPU has a non-lazy callback. 1604 * This will wake up CPUs that have only lazy callbacks, in turn 1605 * ensuring that they free up the corresponding memory in a timely manner. 1606 * Because an uncertain amount of memory will be freed in some uncertain 1607 * timeframe, we do not claim to have freed anything. 1608 */ 1609 static int rcu_oom_notify(struct notifier_block *self, 1610 unsigned long notused, void *nfreed) 1611 { 1612 int cpu; 1613 1614 /* Wait for callbacks from earlier instance to complete. */ 1615 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1616 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1617 1618 /* 1619 * Prevent premature wakeup: ensure that all increments happen 1620 * before there is a chance of the counter reaching zero. 1621 */ 1622 atomic_set(&oom_callback_count, 1); 1623 1624 for_each_online_cpu(cpu) { 1625 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1626 cond_resched_rcu_qs(); 1627 } 1628 1629 /* Unconditionally decrement: no need to wake ourselves up. */ 1630 atomic_dec(&oom_callback_count); 1631 1632 return NOTIFY_OK; 1633 } 1634 1635 static struct notifier_block rcu_oom_nb = { 1636 .notifier_call = rcu_oom_notify 1637 }; 1638 1639 static int __init rcu_register_oom_notifier(void) 1640 { 1641 register_oom_notifier(&rcu_oom_nb); 1642 return 0; 1643 } 1644 early_initcall(rcu_register_oom_notifier); 1645 1646 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1647 1648 #ifdef CONFIG_RCU_FAST_NO_HZ 1649 1650 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1651 { 1652 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1653 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1654 1655 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1656 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1657 ulong2long(nlpd), 1658 rdtp->all_lazy ? 'L' : '.', 1659 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1660 } 1661 1662 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1663 1664 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1665 { 1666 *cp = '\0'; 1667 } 1668 1669 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1670 1671 /* Initiate the stall-info list. */ 1672 static void print_cpu_stall_info_begin(void) 1673 { 1674 pr_cont("\n"); 1675 } 1676 1677 /* 1678 * Print out diagnostic information for the specified stalled CPU. 1679 * 1680 * If the specified CPU is aware of the current RCU grace period 1681 * (flavor specified by rsp), then print the number of scheduling 1682 * clock interrupts the CPU has taken during the time that it has 1683 * been aware. Otherwise, print the number of RCU grace periods 1684 * that this CPU is ignorant of, for example, "1" if the CPU was 1685 * aware of the previous grace period. 1686 * 1687 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1688 */ 1689 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1690 { 1691 char fast_no_hz[72]; 1692 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1693 struct rcu_dynticks *rdtp = rdp->dynticks; 1694 char *ticks_title; 1695 unsigned long ticks_value; 1696 1697 if (rsp->gpnum == rdp->gpnum) { 1698 ticks_title = "ticks this GP"; 1699 ticks_value = rdp->ticks_this_gp; 1700 } else { 1701 ticks_title = "GPs behind"; 1702 ticks_value = rsp->gpnum - rdp->gpnum; 1703 } 1704 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1705 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1706 cpu, ticks_value, ticks_title, 1707 atomic_read(&rdtp->dynticks) & 0xfff, 1708 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1709 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1710 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1711 fast_no_hz); 1712 } 1713 1714 /* Terminate the stall-info list. */ 1715 static void print_cpu_stall_info_end(void) 1716 { 1717 pr_err("\t"); 1718 } 1719 1720 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1721 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1722 { 1723 rdp->ticks_this_gp = 0; 1724 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1725 } 1726 1727 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1728 static void increment_cpu_stall_ticks(void) 1729 { 1730 struct rcu_state *rsp; 1731 1732 for_each_rcu_flavor(rsp) 1733 raw_cpu_inc(rsp->rda->ticks_this_gp); 1734 } 1735 1736 #ifdef CONFIG_RCU_NOCB_CPU 1737 1738 /* 1739 * Offload callback processing from the boot-time-specified set of CPUs 1740 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1741 * kthread created that pulls the callbacks from the corresponding CPU, 1742 * waits for a grace period to elapse, and invokes the callbacks. 1743 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1744 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1745 * has been specified, in which case each kthread actively polls its 1746 * CPU. (Which isn't so great for energy efficiency, but which does 1747 * reduce RCU's overhead on that CPU.) 1748 * 1749 * This is intended to be used in conjunction with Frederic Weisbecker's 1750 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1751 * running CPU-bound user-mode computations. 1752 * 1753 * Offloading of callback processing could also in theory be used as 1754 * an energy-efficiency measure because CPUs with no RCU callbacks 1755 * queued are more aggressive about entering dyntick-idle mode. 1756 */ 1757 1758 1759 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1760 static int __init rcu_nocb_setup(char *str) 1761 { 1762 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1763 have_rcu_nocb_mask = true; 1764 cpulist_parse(str, rcu_nocb_mask); 1765 return 1; 1766 } 1767 __setup("rcu_nocbs=", rcu_nocb_setup); 1768 1769 static int __init parse_rcu_nocb_poll(char *arg) 1770 { 1771 rcu_nocb_poll = 1; 1772 return 0; 1773 } 1774 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1775 1776 /* 1777 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1778 * grace period. 1779 */ 1780 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1781 { 1782 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); 1783 } 1784 1785 /* 1786 * Set the root rcu_node structure's ->need_future_gp field 1787 * based on the sum of those of all rcu_node structures. This does 1788 * double-count the root rcu_node structure's requests, but this 1789 * is necessary to handle the possibility of a rcu_nocb_kthread() 1790 * having awakened during the time that the rcu_node structures 1791 * were being updated for the end of the previous grace period. 1792 */ 1793 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1794 { 1795 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1796 } 1797 1798 static void rcu_init_one_nocb(struct rcu_node *rnp) 1799 { 1800 init_waitqueue_head(&rnp->nocb_gp_wq[0]); 1801 init_waitqueue_head(&rnp->nocb_gp_wq[1]); 1802 } 1803 1804 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1805 /* Is the specified CPU a no-CBs CPU? */ 1806 bool rcu_is_nocb_cpu(int cpu) 1807 { 1808 if (have_rcu_nocb_mask) 1809 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1810 return false; 1811 } 1812 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1813 1814 /* 1815 * Kick the leader kthread for this NOCB group. 1816 */ 1817 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1818 { 1819 struct rcu_data *rdp_leader = rdp->nocb_leader; 1820 1821 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1822 return; 1823 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1824 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1825 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1826 wake_up(&rdp_leader->nocb_wq); 1827 } 1828 } 1829 1830 /* 1831 * Does the specified CPU need an RCU callback for the specified flavor 1832 * of rcu_barrier()? 1833 */ 1834 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1835 { 1836 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1837 unsigned long ret; 1838 #ifdef CONFIG_PROVE_RCU 1839 struct rcu_head *rhp; 1840 #endif /* #ifdef CONFIG_PROVE_RCU */ 1841 1842 /* 1843 * Check count of all no-CBs callbacks awaiting invocation. 1844 * There needs to be a barrier before this function is called, 1845 * but associated with a prior determination that no more 1846 * callbacks would be posted. In the worst case, the first 1847 * barrier in _rcu_barrier() suffices (but the caller cannot 1848 * necessarily rely on this, not a substitute for the caller 1849 * getting the concurrency design right!). There must also be 1850 * a barrier between the following load an posting of a callback 1851 * (if a callback is in fact needed). This is associated with an 1852 * atomic_inc() in the caller. 1853 */ 1854 ret = atomic_long_read(&rdp->nocb_q_count); 1855 1856 #ifdef CONFIG_PROVE_RCU 1857 rhp = READ_ONCE(rdp->nocb_head); 1858 if (!rhp) 1859 rhp = READ_ONCE(rdp->nocb_gp_head); 1860 if (!rhp) 1861 rhp = READ_ONCE(rdp->nocb_follower_head); 1862 1863 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1864 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1865 rcu_scheduler_fully_active) { 1866 /* RCU callback enqueued before CPU first came online??? */ 1867 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1868 cpu, rhp->func); 1869 WARN_ON_ONCE(1); 1870 } 1871 #endif /* #ifdef CONFIG_PROVE_RCU */ 1872 1873 return !!ret; 1874 } 1875 1876 /* 1877 * Enqueue the specified string of rcu_head structures onto the specified 1878 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1879 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1880 * counts are supplied by rhcount and rhcount_lazy. 1881 * 1882 * If warranted, also wake up the kthread servicing this CPUs queues. 1883 */ 1884 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1885 struct rcu_head *rhp, 1886 struct rcu_head **rhtp, 1887 int rhcount, int rhcount_lazy, 1888 unsigned long flags) 1889 { 1890 int len; 1891 struct rcu_head **old_rhpp; 1892 struct task_struct *t; 1893 1894 /* Enqueue the callback on the nocb list and update counts. */ 1895 atomic_long_add(rhcount, &rdp->nocb_q_count); 1896 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1897 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1898 WRITE_ONCE(*old_rhpp, rhp); 1899 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1900 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1901 1902 /* If we are not being polled and there is a kthread, awaken it ... */ 1903 t = READ_ONCE(rdp->nocb_kthread); 1904 if (rcu_nocb_poll || !t) { 1905 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1906 TPS("WakeNotPoll")); 1907 return; 1908 } 1909 len = atomic_long_read(&rdp->nocb_q_count); 1910 if (old_rhpp == &rdp->nocb_head) { 1911 if (!irqs_disabled_flags(flags)) { 1912 /* ... if queue was empty ... */ 1913 wake_nocb_leader(rdp, false); 1914 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1915 TPS("WakeEmpty")); 1916 } else { 1917 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 1918 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1919 TPS("WakeEmptyIsDeferred")); 1920 } 1921 rdp->qlen_last_fqs_check = 0; 1922 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1923 /* ... or if many callbacks queued. */ 1924 if (!irqs_disabled_flags(flags)) { 1925 wake_nocb_leader(rdp, true); 1926 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1927 TPS("WakeOvf")); 1928 } else { 1929 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 1930 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1931 TPS("WakeOvfIsDeferred")); 1932 } 1933 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1934 } else { 1935 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1936 } 1937 return; 1938 } 1939 1940 /* 1941 * This is a helper for __call_rcu(), which invokes this when the normal 1942 * callback queue is inoperable. If this is not a no-CBs CPU, this 1943 * function returns failure back to __call_rcu(), which can complain 1944 * appropriately. 1945 * 1946 * Otherwise, this function queues the callback where the corresponding 1947 * "rcuo" kthread can find it. 1948 */ 1949 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1950 bool lazy, unsigned long flags) 1951 { 1952 1953 if (!rcu_is_nocb_cpu(rdp->cpu)) 1954 return false; 1955 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1956 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1957 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1958 (unsigned long)rhp->func, 1959 -atomic_long_read(&rdp->nocb_q_count_lazy), 1960 -atomic_long_read(&rdp->nocb_q_count)); 1961 else 1962 trace_rcu_callback(rdp->rsp->name, rhp, 1963 -atomic_long_read(&rdp->nocb_q_count_lazy), 1964 -atomic_long_read(&rdp->nocb_q_count)); 1965 1966 /* 1967 * If called from an extended quiescent state with interrupts 1968 * disabled, invoke the RCU core in order to allow the idle-entry 1969 * deferred-wakeup check to function. 1970 */ 1971 if (irqs_disabled_flags(flags) && 1972 !rcu_is_watching() && 1973 cpu_online(smp_processor_id())) 1974 invoke_rcu_core(); 1975 1976 return true; 1977 } 1978 1979 /* 1980 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 1981 * not a no-CBs CPU. 1982 */ 1983 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 1984 struct rcu_data *rdp, 1985 unsigned long flags) 1986 { 1987 long ql = rsp->qlen; 1988 long qll = rsp->qlen_lazy; 1989 1990 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 1991 if (!rcu_is_nocb_cpu(smp_processor_id())) 1992 return false; 1993 rsp->qlen = 0; 1994 rsp->qlen_lazy = 0; 1995 1996 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 1997 if (rsp->orphan_donelist != NULL) { 1998 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 1999 rsp->orphan_donetail, ql, qll, flags); 2000 ql = qll = 0; 2001 rsp->orphan_donelist = NULL; 2002 rsp->orphan_donetail = &rsp->orphan_donelist; 2003 } 2004 if (rsp->orphan_nxtlist != NULL) { 2005 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2006 rsp->orphan_nxttail, ql, qll, flags); 2007 ql = qll = 0; 2008 rsp->orphan_nxtlist = NULL; 2009 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2010 } 2011 return true; 2012 } 2013 2014 /* 2015 * If necessary, kick off a new grace period, and either way wait 2016 * for a subsequent grace period to complete. 2017 */ 2018 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2019 { 2020 unsigned long c; 2021 bool d; 2022 unsigned long flags; 2023 bool needwake; 2024 struct rcu_node *rnp = rdp->mynode; 2025 2026 raw_spin_lock_irqsave(&rnp->lock, flags); 2027 smp_mb__after_unlock_lock(); 2028 needwake = rcu_start_future_gp(rnp, rdp, &c); 2029 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2030 if (needwake) 2031 rcu_gp_kthread_wake(rdp->rsp); 2032 2033 /* 2034 * Wait for the grace period. Do so interruptibly to avoid messing 2035 * up the load average. 2036 */ 2037 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2038 for (;;) { 2039 wait_event_interruptible( 2040 rnp->nocb_gp_wq[c & 0x1], 2041 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2042 if (likely(d)) 2043 break; 2044 WARN_ON(signal_pending(current)); 2045 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2046 } 2047 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2048 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2049 } 2050 2051 /* 2052 * Leaders come here to wait for additional callbacks to show up. 2053 * This function does not return until callbacks appear. 2054 */ 2055 static void nocb_leader_wait(struct rcu_data *my_rdp) 2056 { 2057 bool firsttime = true; 2058 bool gotcbs; 2059 struct rcu_data *rdp; 2060 struct rcu_head **tail; 2061 2062 wait_again: 2063 2064 /* Wait for callbacks to appear. */ 2065 if (!rcu_nocb_poll) { 2066 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2067 wait_event_interruptible(my_rdp->nocb_wq, 2068 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2069 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2070 } else if (firsttime) { 2071 firsttime = false; /* Don't drown trace log with "Poll"! */ 2072 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2073 } 2074 2075 /* 2076 * Each pass through the following loop checks a follower for CBs. 2077 * We are our own first follower. Any CBs found are moved to 2078 * nocb_gp_head, where they await a grace period. 2079 */ 2080 gotcbs = false; 2081 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2082 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2083 if (!rdp->nocb_gp_head) 2084 continue; /* No CBs here, try next follower. */ 2085 2086 /* Move callbacks to wait-for-GP list, which is empty. */ 2087 WRITE_ONCE(rdp->nocb_head, NULL); 2088 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2089 gotcbs = true; 2090 } 2091 2092 /* 2093 * If there were no callbacks, sleep a bit, rescan after a 2094 * memory barrier, and go retry. 2095 */ 2096 if (unlikely(!gotcbs)) { 2097 if (!rcu_nocb_poll) 2098 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2099 "WokeEmpty"); 2100 WARN_ON(signal_pending(current)); 2101 schedule_timeout_interruptible(1); 2102 2103 /* Rescan in case we were a victim of memory ordering. */ 2104 my_rdp->nocb_leader_sleep = true; 2105 smp_mb(); /* Ensure _sleep true before scan. */ 2106 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2107 if (READ_ONCE(rdp->nocb_head)) { 2108 /* Found CB, so short-circuit next wait. */ 2109 my_rdp->nocb_leader_sleep = false; 2110 break; 2111 } 2112 goto wait_again; 2113 } 2114 2115 /* Wait for one grace period. */ 2116 rcu_nocb_wait_gp(my_rdp); 2117 2118 /* 2119 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2120 * We set it now, but recheck for new callbacks while 2121 * traversing our follower list. 2122 */ 2123 my_rdp->nocb_leader_sleep = true; 2124 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2125 2126 /* Each pass through the following loop wakes a follower, if needed. */ 2127 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2128 if (READ_ONCE(rdp->nocb_head)) 2129 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2130 if (!rdp->nocb_gp_head) 2131 continue; /* No CBs, so no need to wake follower. */ 2132 2133 /* Append callbacks to follower's "done" list. */ 2134 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2135 *tail = rdp->nocb_gp_head; 2136 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2137 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2138 /* 2139 * List was empty, wake up the follower. 2140 * Memory barriers supplied by atomic_long_add(). 2141 */ 2142 wake_up(&rdp->nocb_wq); 2143 } 2144 } 2145 2146 /* If we (the leader) don't have CBs, go wait some more. */ 2147 if (!my_rdp->nocb_follower_head) 2148 goto wait_again; 2149 } 2150 2151 /* 2152 * Followers come here to wait for additional callbacks to show up. 2153 * This function does not return until callbacks appear. 2154 */ 2155 static void nocb_follower_wait(struct rcu_data *rdp) 2156 { 2157 bool firsttime = true; 2158 2159 for (;;) { 2160 if (!rcu_nocb_poll) { 2161 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2162 "FollowerSleep"); 2163 wait_event_interruptible(rdp->nocb_wq, 2164 READ_ONCE(rdp->nocb_follower_head)); 2165 } else if (firsttime) { 2166 /* Don't drown trace log with "Poll"! */ 2167 firsttime = false; 2168 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2169 } 2170 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2171 /* ^^^ Ensure CB invocation follows _head test. */ 2172 return; 2173 } 2174 if (!rcu_nocb_poll) 2175 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2176 "WokeEmpty"); 2177 WARN_ON(signal_pending(current)); 2178 schedule_timeout_interruptible(1); 2179 } 2180 } 2181 2182 /* 2183 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2184 * callbacks queued by the corresponding no-CBs CPU, however, there is 2185 * an optional leader-follower relationship so that the grace-period 2186 * kthreads don't have to do quite so many wakeups. 2187 */ 2188 static int rcu_nocb_kthread(void *arg) 2189 { 2190 int c, cl; 2191 struct rcu_head *list; 2192 struct rcu_head *next; 2193 struct rcu_head **tail; 2194 struct rcu_data *rdp = arg; 2195 2196 /* Each pass through this loop invokes one batch of callbacks */ 2197 for (;;) { 2198 /* Wait for callbacks. */ 2199 if (rdp->nocb_leader == rdp) 2200 nocb_leader_wait(rdp); 2201 else 2202 nocb_follower_wait(rdp); 2203 2204 /* Pull the ready-to-invoke callbacks onto local list. */ 2205 list = READ_ONCE(rdp->nocb_follower_head); 2206 BUG_ON(!list); 2207 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2208 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2209 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2210 2211 /* Each pass through the following loop invokes a callback. */ 2212 trace_rcu_batch_start(rdp->rsp->name, 2213 atomic_long_read(&rdp->nocb_q_count_lazy), 2214 atomic_long_read(&rdp->nocb_q_count), -1); 2215 c = cl = 0; 2216 while (list) { 2217 next = list->next; 2218 /* Wait for enqueuing to complete, if needed. */ 2219 while (next == NULL && &list->next != tail) { 2220 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2221 TPS("WaitQueue")); 2222 schedule_timeout_interruptible(1); 2223 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2224 TPS("WokeQueue")); 2225 next = list->next; 2226 } 2227 debug_rcu_head_unqueue(list); 2228 local_bh_disable(); 2229 if (__rcu_reclaim(rdp->rsp->name, list)) 2230 cl++; 2231 c++; 2232 local_bh_enable(); 2233 list = next; 2234 } 2235 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2236 smp_mb__before_atomic(); /* _add after CB invocation. */ 2237 atomic_long_add(-c, &rdp->nocb_q_count); 2238 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2239 rdp->n_nocbs_invoked += c; 2240 } 2241 return 0; 2242 } 2243 2244 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2245 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2246 { 2247 return READ_ONCE(rdp->nocb_defer_wakeup); 2248 } 2249 2250 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2251 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2252 { 2253 int ndw; 2254 2255 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2256 return; 2257 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2258 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); 2259 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2260 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2261 } 2262 2263 void __init rcu_init_nohz(void) 2264 { 2265 int cpu; 2266 bool need_rcu_nocb_mask = true; 2267 struct rcu_state *rsp; 2268 2269 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2270 need_rcu_nocb_mask = false; 2271 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2272 2273 #if defined(CONFIG_NO_HZ_FULL) 2274 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2275 need_rcu_nocb_mask = true; 2276 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2277 2278 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2279 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2280 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2281 return; 2282 } 2283 have_rcu_nocb_mask = true; 2284 } 2285 if (!have_rcu_nocb_mask) 2286 return; 2287 2288 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2289 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2290 cpumask_set_cpu(0, rcu_nocb_mask); 2291 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2292 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2293 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2294 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2295 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2296 #if defined(CONFIG_NO_HZ_FULL) 2297 if (tick_nohz_full_running) 2298 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2299 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2300 2301 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2302 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2303 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2304 rcu_nocb_mask); 2305 } 2306 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2307 cpumask_pr_args(rcu_nocb_mask)); 2308 if (rcu_nocb_poll) 2309 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2310 2311 for_each_rcu_flavor(rsp) { 2312 for_each_cpu(cpu, rcu_nocb_mask) 2313 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2314 rcu_organize_nocb_kthreads(rsp); 2315 } 2316 } 2317 2318 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2319 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2320 { 2321 rdp->nocb_tail = &rdp->nocb_head; 2322 init_waitqueue_head(&rdp->nocb_wq); 2323 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2324 } 2325 2326 /* 2327 * If the specified CPU is a no-CBs CPU that does not already have its 2328 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2329 * brought online out of order, this can require re-organizing the 2330 * leader-follower relationships. 2331 */ 2332 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2333 { 2334 struct rcu_data *rdp; 2335 struct rcu_data *rdp_last; 2336 struct rcu_data *rdp_old_leader; 2337 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2338 struct task_struct *t; 2339 2340 /* 2341 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2342 * then nothing to do. 2343 */ 2344 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2345 return; 2346 2347 /* If we didn't spawn the leader first, reorganize! */ 2348 rdp_old_leader = rdp_spawn->nocb_leader; 2349 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2350 rdp_last = NULL; 2351 rdp = rdp_old_leader; 2352 do { 2353 rdp->nocb_leader = rdp_spawn; 2354 if (rdp_last && rdp != rdp_spawn) 2355 rdp_last->nocb_next_follower = rdp; 2356 if (rdp == rdp_spawn) { 2357 rdp = rdp->nocb_next_follower; 2358 } else { 2359 rdp_last = rdp; 2360 rdp = rdp->nocb_next_follower; 2361 rdp_last->nocb_next_follower = NULL; 2362 } 2363 } while (rdp); 2364 rdp_spawn->nocb_next_follower = rdp_old_leader; 2365 } 2366 2367 /* Spawn the kthread for this CPU and RCU flavor. */ 2368 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2369 "rcuo%c/%d", rsp->abbr, cpu); 2370 BUG_ON(IS_ERR(t)); 2371 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2372 } 2373 2374 /* 2375 * If the specified CPU is a no-CBs CPU that does not already have its 2376 * rcuo kthreads, spawn them. 2377 */ 2378 static void rcu_spawn_all_nocb_kthreads(int cpu) 2379 { 2380 struct rcu_state *rsp; 2381 2382 if (rcu_scheduler_fully_active) 2383 for_each_rcu_flavor(rsp) 2384 rcu_spawn_one_nocb_kthread(rsp, cpu); 2385 } 2386 2387 /* 2388 * Once the scheduler is running, spawn rcuo kthreads for all online 2389 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2390 * non-boot CPUs come online -- if this changes, we will need to add 2391 * some mutual exclusion. 2392 */ 2393 static void __init rcu_spawn_nocb_kthreads(void) 2394 { 2395 int cpu; 2396 2397 for_each_online_cpu(cpu) 2398 rcu_spawn_all_nocb_kthreads(cpu); 2399 } 2400 2401 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2402 static int rcu_nocb_leader_stride = -1; 2403 module_param(rcu_nocb_leader_stride, int, 0444); 2404 2405 /* 2406 * Initialize leader-follower relationships for all no-CBs CPU. 2407 */ 2408 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2409 { 2410 int cpu; 2411 int ls = rcu_nocb_leader_stride; 2412 int nl = 0; /* Next leader. */ 2413 struct rcu_data *rdp; 2414 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2415 struct rcu_data *rdp_prev = NULL; 2416 2417 if (!have_rcu_nocb_mask) 2418 return; 2419 if (ls == -1) { 2420 ls = int_sqrt(nr_cpu_ids); 2421 rcu_nocb_leader_stride = ls; 2422 } 2423 2424 /* 2425 * Each pass through this loop sets up one rcu_data structure and 2426 * spawns one rcu_nocb_kthread(). 2427 */ 2428 for_each_cpu(cpu, rcu_nocb_mask) { 2429 rdp = per_cpu_ptr(rsp->rda, cpu); 2430 if (rdp->cpu >= nl) { 2431 /* New leader, set up for followers & next leader. */ 2432 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2433 rdp->nocb_leader = rdp; 2434 rdp_leader = rdp; 2435 } else { 2436 /* Another follower, link to previous leader. */ 2437 rdp->nocb_leader = rdp_leader; 2438 rdp_prev->nocb_next_follower = rdp; 2439 } 2440 rdp_prev = rdp; 2441 } 2442 } 2443 2444 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2445 static bool init_nocb_callback_list(struct rcu_data *rdp) 2446 { 2447 if (!rcu_is_nocb_cpu(rdp->cpu)) 2448 return false; 2449 2450 /* If there are early-boot callbacks, move them to nocb lists. */ 2451 if (rdp->nxtlist) { 2452 rdp->nocb_head = rdp->nxtlist; 2453 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; 2454 atomic_long_set(&rdp->nocb_q_count, rdp->qlen); 2455 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); 2456 rdp->nxtlist = NULL; 2457 rdp->qlen = 0; 2458 rdp->qlen_lazy = 0; 2459 } 2460 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2461 return true; 2462 } 2463 2464 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2465 2466 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2467 { 2468 WARN_ON_ONCE(1); /* Should be dead code. */ 2469 return false; 2470 } 2471 2472 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2473 { 2474 } 2475 2476 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2477 { 2478 } 2479 2480 static void rcu_init_one_nocb(struct rcu_node *rnp) 2481 { 2482 } 2483 2484 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2485 bool lazy, unsigned long flags) 2486 { 2487 return false; 2488 } 2489 2490 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2491 struct rcu_data *rdp, 2492 unsigned long flags) 2493 { 2494 return false; 2495 } 2496 2497 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2498 { 2499 } 2500 2501 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2502 { 2503 return false; 2504 } 2505 2506 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2507 { 2508 } 2509 2510 static void rcu_spawn_all_nocb_kthreads(int cpu) 2511 { 2512 } 2513 2514 static void __init rcu_spawn_nocb_kthreads(void) 2515 { 2516 } 2517 2518 static bool init_nocb_callback_list(struct rcu_data *rdp) 2519 { 2520 return false; 2521 } 2522 2523 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2524 2525 /* 2526 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2527 * arbitrarily long period of time with the scheduling-clock tick turned 2528 * off. RCU will be paying attention to this CPU because it is in the 2529 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2530 * machine because the scheduling-clock tick has been disabled. Therefore, 2531 * if an adaptive-ticks CPU is failing to respond to the current grace 2532 * period and has not be idle from an RCU perspective, kick it. 2533 */ 2534 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2535 { 2536 #ifdef CONFIG_NO_HZ_FULL 2537 if (tick_nohz_full_cpu(cpu)) 2538 smp_send_reschedule(cpu); 2539 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2540 } 2541 2542 2543 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2544 2545 static int full_sysidle_state; /* Current system-idle state. */ 2546 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2547 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2548 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2549 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2550 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2551 2552 /* 2553 * Invoked to note exit from irq or task transition to idle. Note that 2554 * usermode execution does -not- count as idle here! After all, we want 2555 * to detect full-system idle states, not RCU quiescent states and grace 2556 * periods. The caller must have disabled interrupts. 2557 */ 2558 static void rcu_sysidle_enter(int irq) 2559 { 2560 unsigned long j; 2561 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2562 2563 /* If there are no nohz_full= CPUs, no need to track this. */ 2564 if (!tick_nohz_full_enabled()) 2565 return; 2566 2567 /* Adjust nesting, check for fully idle. */ 2568 if (irq) { 2569 rdtp->dynticks_idle_nesting--; 2570 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2571 if (rdtp->dynticks_idle_nesting != 0) 2572 return; /* Still not fully idle. */ 2573 } else { 2574 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2575 DYNTICK_TASK_NEST_VALUE) { 2576 rdtp->dynticks_idle_nesting = 0; 2577 } else { 2578 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2579 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2580 return; /* Still not fully idle. */ 2581 } 2582 } 2583 2584 /* Record start of fully idle period. */ 2585 j = jiffies; 2586 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); 2587 smp_mb__before_atomic(); 2588 atomic_inc(&rdtp->dynticks_idle); 2589 smp_mb__after_atomic(); 2590 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2591 } 2592 2593 /* 2594 * Unconditionally force exit from full system-idle state. This is 2595 * invoked when a normal CPU exits idle, but must be called separately 2596 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2597 * is that the timekeeping CPU is permitted to take scheduling-clock 2598 * interrupts while the system is in system-idle state, and of course 2599 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2600 * interrupt from any other type of interrupt. 2601 */ 2602 void rcu_sysidle_force_exit(void) 2603 { 2604 int oldstate = READ_ONCE(full_sysidle_state); 2605 int newoldstate; 2606 2607 /* 2608 * Each pass through the following loop attempts to exit full 2609 * system-idle state. If contention proves to be a problem, 2610 * a trylock-based contention tree could be used here. 2611 */ 2612 while (oldstate > RCU_SYSIDLE_SHORT) { 2613 newoldstate = cmpxchg(&full_sysidle_state, 2614 oldstate, RCU_SYSIDLE_NOT); 2615 if (oldstate == newoldstate && 2616 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2617 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2618 return; /* We cleared it, done! */ 2619 } 2620 oldstate = newoldstate; 2621 } 2622 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2623 } 2624 2625 /* 2626 * Invoked to note entry to irq or task transition from idle. Note that 2627 * usermode execution does -not- count as idle here! The caller must 2628 * have disabled interrupts. 2629 */ 2630 static void rcu_sysidle_exit(int irq) 2631 { 2632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2633 2634 /* If there are no nohz_full= CPUs, no need to track this. */ 2635 if (!tick_nohz_full_enabled()) 2636 return; 2637 2638 /* Adjust nesting, check for already non-idle. */ 2639 if (irq) { 2640 rdtp->dynticks_idle_nesting++; 2641 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2642 if (rdtp->dynticks_idle_nesting != 1) 2643 return; /* Already non-idle. */ 2644 } else { 2645 /* 2646 * Allow for irq misnesting. Yes, it really is possible 2647 * to enter an irq handler then never leave it, and maybe 2648 * also vice versa. Handle both possibilities. 2649 */ 2650 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2651 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2652 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2653 return; /* Already non-idle. */ 2654 } else { 2655 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2656 } 2657 } 2658 2659 /* Record end of idle period. */ 2660 smp_mb__before_atomic(); 2661 atomic_inc(&rdtp->dynticks_idle); 2662 smp_mb__after_atomic(); 2663 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2664 2665 /* 2666 * If we are the timekeeping CPU, we are permitted to be non-idle 2667 * during a system-idle state. This must be the case, because 2668 * the timekeeping CPU has to take scheduling-clock interrupts 2669 * during the time that the system is transitioning to full 2670 * system-idle state. This means that the timekeeping CPU must 2671 * invoke rcu_sysidle_force_exit() directly if it does anything 2672 * more than take a scheduling-clock interrupt. 2673 */ 2674 if (smp_processor_id() == tick_do_timer_cpu) 2675 return; 2676 2677 /* Update system-idle state: We are clearly no longer fully idle! */ 2678 rcu_sysidle_force_exit(); 2679 } 2680 2681 /* 2682 * Check to see if the current CPU is idle. Note that usermode execution 2683 * does not count as idle. The caller must have disabled interrupts, 2684 * and must be running on tick_do_timer_cpu. 2685 */ 2686 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2687 unsigned long *maxj) 2688 { 2689 int cur; 2690 unsigned long j; 2691 struct rcu_dynticks *rdtp = rdp->dynticks; 2692 2693 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2694 if (!tick_nohz_full_enabled()) 2695 return; 2696 2697 /* 2698 * If some other CPU has already reported non-idle, if this is 2699 * not the flavor of RCU that tracks sysidle state, or if this 2700 * is an offline or the timekeeping CPU, nothing to do. 2701 */ 2702 if (!*isidle || rdp->rsp != rcu_state_p || 2703 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2704 return; 2705 /* Verify affinity of current kthread. */ 2706 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2707 2708 /* Pick up current idle and NMI-nesting counter and check. */ 2709 cur = atomic_read(&rdtp->dynticks_idle); 2710 if (cur & 0x1) { 2711 *isidle = false; /* We are not idle! */ 2712 return; 2713 } 2714 smp_mb(); /* Read counters before timestamps. */ 2715 2716 /* Pick up timestamps. */ 2717 j = READ_ONCE(rdtp->dynticks_idle_jiffies); 2718 /* If this CPU entered idle more recently, update maxj timestamp. */ 2719 if (ULONG_CMP_LT(*maxj, j)) 2720 *maxj = j; 2721 } 2722 2723 /* 2724 * Is this the flavor of RCU that is handling full-system idle? 2725 */ 2726 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2727 { 2728 return rsp == rcu_state_p; 2729 } 2730 2731 /* 2732 * Return a delay in jiffies based on the number of CPUs, rcu_node 2733 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2734 * systems more time to transition to full-idle state in order to 2735 * avoid the cache thrashing that otherwise occur on the state variable. 2736 * Really small systems (less than a couple of tens of CPUs) should 2737 * instead use a single global atomically incremented counter, and later 2738 * versions of this will automatically reconfigure themselves accordingly. 2739 */ 2740 static unsigned long rcu_sysidle_delay(void) 2741 { 2742 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2743 return 0; 2744 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2745 } 2746 2747 /* 2748 * Advance the full-system-idle state. This is invoked when all of 2749 * the non-timekeeping CPUs are idle. 2750 */ 2751 static void rcu_sysidle(unsigned long j) 2752 { 2753 /* Check the current state. */ 2754 switch (READ_ONCE(full_sysidle_state)) { 2755 case RCU_SYSIDLE_NOT: 2756 2757 /* First time all are idle, so note a short idle period. */ 2758 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); 2759 break; 2760 2761 case RCU_SYSIDLE_SHORT: 2762 2763 /* 2764 * Idle for a bit, time to advance to next state? 2765 * cmpxchg failure means race with non-idle, let them win. 2766 */ 2767 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2768 (void)cmpxchg(&full_sysidle_state, 2769 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2770 break; 2771 2772 case RCU_SYSIDLE_LONG: 2773 2774 /* 2775 * Do an additional check pass before advancing to full. 2776 * cmpxchg failure means race with non-idle, let them win. 2777 */ 2778 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2779 (void)cmpxchg(&full_sysidle_state, 2780 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2781 break; 2782 2783 default: 2784 break; 2785 } 2786 } 2787 2788 /* 2789 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2790 * back to the beginning. 2791 */ 2792 static void rcu_sysidle_cancel(void) 2793 { 2794 smp_mb(); 2795 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2796 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); 2797 } 2798 2799 /* 2800 * Update the sysidle state based on the results of a force-quiescent-state 2801 * scan of the CPUs' dyntick-idle state. 2802 */ 2803 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2804 unsigned long maxj, bool gpkt) 2805 { 2806 if (rsp != rcu_state_p) 2807 return; /* Wrong flavor, ignore. */ 2808 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2809 return; /* Running state machine from timekeeping CPU. */ 2810 if (isidle) 2811 rcu_sysidle(maxj); /* More idle! */ 2812 else 2813 rcu_sysidle_cancel(); /* Idle is over. */ 2814 } 2815 2816 /* 2817 * Wrapper for rcu_sysidle_report() when called from the grace-period 2818 * kthread's context. 2819 */ 2820 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2821 unsigned long maxj) 2822 { 2823 /* If there are no nohz_full= CPUs, no need to track this. */ 2824 if (!tick_nohz_full_enabled()) 2825 return; 2826 2827 rcu_sysidle_report(rsp, isidle, maxj, true); 2828 } 2829 2830 /* Callback and function for forcing an RCU grace period. */ 2831 struct rcu_sysidle_head { 2832 struct rcu_head rh; 2833 int inuse; 2834 }; 2835 2836 static void rcu_sysidle_cb(struct rcu_head *rhp) 2837 { 2838 struct rcu_sysidle_head *rshp; 2839 2840 /* 2841 * The following memory barrier is needed to replace the 2842 * memory barriers that would normally be in the memory 2843 * allocator. 2844 */ 2845 smp_mb(); /* grace period precedes setting inuse. */ 2846 2847 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2848 WRITE_ONCE(rshp->inuse, 0); 2849 } 2850 2851 /* 2852 * Check to see if the system is fully idle, other than the timekeeping CPU. 2853 * The caller must have disabled interrupts. This is not intended to be 2854 * called unless tick_nohz_full_enabled(). 2855 */ 2856 bool rcu_sys_is_idle(void) 2857 { 2858 static struct rcu_sysidle_head rsh; 2859 int rss = READ_ONCE(full_sysidle_state); 2860 2861 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2862 return false; 2863 2864 /* Handle small-system case by doing a full scan of CPUs. */ 2865 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2866 int oldrss = rss - 1; 2867 2868 /* 2869 * One pass to advance to each state up to _FULL. 2870 * Give up if any pass fails to advance the state. 2871 */ 2872 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2873 int cpu; 2874 bool isidle = true; 2875 unsigned long maxj = jiffies - ULONG_MAX / 4; 2876 struct rcu_data *rdp; 2877 2878 /* Scan all the CPUs looking for nonidle CPUs. */ 2879 for_each_possible_cpu(cpu) { 2880 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2881 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2882 if (!isidle) 2883 break; 2884 } 2885 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2886 oldrss = rss; 2887 rss = READ_ONCE(full_sysidle_state); 2888 } 2889 } 2890 2891 /* If this is the first observation of an idle period, record it. */ 2892 if (rss == RCU_SYSIDLE_FULL) { 2893 rss = cmpxchg(&full_sysidle_state, 2894 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2895 return rss == RCU_SYSIDLE_FULL; 2896 } 2897 2898 smp_mb(); /* ensure rss load happens before later caller actions. */ 2899 2900 /* If already fully idle, tell the caller (in case of races). */ 2901 if (rss == RCU_SYSIDLE_FULL_NOTED) 2902 return true; 2903 2904 /* 2905 * If we aren't there yet, and a grace period is not in flight, 2906 * initiate a grace period. Either way, tell the caller that 2907 * we are not there yet. We use an xchg() rather than an assignment 2908 * to make up for the memory barriers that would otherwise be 2909 * provided by the memory allocator. 2910 */ 2911 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2912 !rcu_gp_in_progress(rcu_state_p) && 2913 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2914 call_rcu(&rsh.rh, rcu_sysidle_cb); 2915 return false; 2916 } 2917 2918 /* 2919 * Initialize dynticks sysidle state for CPUs coming online. 2920 */ 2921 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2922 { 2923 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 2924 } 2925 2926 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2927 2928 static void rcu_sysidle_enter(int irq) 2929 { 2930 } 2931 2932 static void rcu_sysidle_exit(int irq) 2933 { 2934 } 2935 2936 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2937 unsigned long *maxj) 2938 { 2939 } 2940 2941 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2942 { 2943 return false; 2944 } 2945 2946 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2947 unsigned long maxj) 2948 { 2949 } 2950 2951 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2952 { 2953 } 2954 2955 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2956 2957 /* 2958 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2959 * grace-period kthread will do force_quiescent_state() processing? 2960 * The idea is to avoid waking up RCU core processing on such a 2961 * CPU unless the grace period has extended for too long. 2962 * 2963 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2964 * CONFIG_RCU_NOCB_CPU CPUs. 2965 */ 2966 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2967 { 2968 #ifdef CONFIG_NO_HZ_FULL 2969 if (tick_nohz_full_cpu(smp_processor_id()) && 2970 (!rcu_gp_in_progress(rsp) || 2971 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2972 return true; 2973 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2974 return false; 2975 } 2976 2977 /* 2978 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2979 * timekeeping CPU. 2980 */ 2981 static void rcu_bind_gp_kthread(void) 2982 { 2983 int __maybe_unused cpu; 2984 2985 if (!tick_nohz_full_enabled()) 2986 return; 2987 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2988 cpu = tick_do_timer_cpu; 2989 if (cpu >= 0 && cpu < nr_cpu_ids) 2990 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 2991 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2992 housekeeping_affine(current); 2993 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2994 } 2995 2996 /* Record the current task on dyntick-idle entry. */ 2997 static void rcu_dynticks_task_enter(void) 2998 { 2999 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3000 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 3001 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3002 } 3003 3004 /* Record no current task on dyntick-idle exit. */ 3005 static void rcu_dynticks_task_exit(void) 3006 { 3007 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3008 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 3009 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3010 } 3011