xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 8a10bc9d)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #define RCU_KTHREAD_PRIO 1
34 
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #else
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39 #endif
40 
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
45 static char __initdata nocb_buf[NR_CPUS * 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47 
48 /*
49  * Check the RCU kernel configuration parameters and print informative
50  * messages about anything out of the ordinary.  If you like #ifdef, you
51  * will love this function.
52  */
53 static void __init rcu_bootup_announce_oddness(void)
54 {
55 #ifdef CONFIG_RCU_TRACE
56 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 #endif
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 	       CONFIG_RCU_FANOUT);
61 #endif
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 #endif
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 #endif
68 #ifdef CONFIG_PROVE_RCU
69 	pr_info("\tRCU lockdep checking is enabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 	pr_info("\tRCU torture testing starts during boot.\n");
73 #endif
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 #endif
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 #endif
80 #if NUM_RCU_LVL_4 != 0
81 	pr_info("\tFour-level hierarchy is enabled.\n");
82 #endif
83 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85 	if (nr_cpu_ids != NR_CPUS)
86 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 	if (!have_rcu_nocb_mask) {
90 		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 		have_rcu_nocb_mask = true;
92 	}
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 	cpumask_set_cpu(0, rcu_nocb_mask);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 	pr_info("\tOffload RCU callbacks from all CPUs\n");
99 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 	if (have_rcu_nocb_mask) {
103 		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 				    rcu_nocb_mask);
107 		}
108 		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109 		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110 		if (rcu_nocb_poll)
111 			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112 	}
113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 }
115 
116 #ifdef CONFIG_TREE_PREEMPT_RCU
117 
118 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119 static struct rcu_state *rcu_state = &rcu_preempt_state;
120 
121 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122 
123 /*
124  * Tell them what RCU they are running.
125  */
126 static void __init rcu_bootup_announce(void)
127 {
128 	pr_info("Preemptible hierarchical RCU implementation.\n");
129 	rcu_bootup_announce_oddness();
130 }
131 
132 /*
133  * Return the number of RCU-preempt batches processed thus far
134  * for debug and statistics.
135  */
136 long rcu_batches_completed_preempt(void)
137 {
138 	return rcu_preempt_state.completed;
139 }
140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141 
142 /*
143  * Return the number of RCU batches processed thus far for debug & stats.
144  */
145 long rcu_batches_completed(void)
146 {
147 	return rcu_batches_completed_preempt();
148 }
149 EXPORT_SYMBOL_GPL(rcu_batches_completed);
150 
151 /*
152  * Force a quiescent state for preemptible RCU.
153  */
154 void rcu_force_quiescent_state(void)
155 {
156 	force_quiescent_state(&rcu_preempt_state);
157 }
158 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159 
160 /*
161  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162  * that this just means that the task currently running on the CPU is
163  * not in a quiescent state.  There might be any number of tasks blocked
164  * while in an RCU read-side critical section.
165  *
166  * Unlike the other rcu_*_qs() functions, callers to this function
167  * must disable irqs in order to protect the assignment to
168  * ->rcu_read_unlock_special.
169  */
170 static void rcu_preempt_qs(int cpu)
171 {
172 	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173 
174 	if (rdp->passed_quiesce == 0)
175 		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176 	rdp->passed_quiesce = 1;
177 	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178 }
179 
180 /*
181  * We have entered the scheduler, and the current task might soon be
182  * context-switched away from.  If this task is in an RCU read-side
183  * critical section, we will no longer be able to rely on the CPU to
184  * record that fact, so we enqueue the task on the blkd_tasks list.
185  * The task will dequeue itself when it exits the outermost enclosing
186  * RCU read-side critical section.  Therefore, the current grace period
187  * cannot be permitted to complete until the blkd_tasks list entries
188  * predating the current grace period drain, in other words, until
189  * rnp->gp_tasks becomes NULL.
190  *
191  * Caller must disable preemption.
192  */
193 static void rcu_preempt_note_context_switch(int cpu)
194 {
195 	struct task_struct *t = current;
196 	unsigned long flags;
197 	struct rcu_data *rdp;
198 	struct rcu_node *rnp;
199 
200 	if (t->rcu_read_lock_nesting > 0 &&
201 	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202 
203 		/* Possibly blocking in an RCU read-side critical section. */
204 		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205 		rnp = rdp->mynode;
206 		raw_spin_lock_irqsave(&rnp->lock, flags);
207 		smp_mb__after_unlock_lock();
208 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
209 		t->rcu_blocked_node = rnp;
210 
211 		/*
212 		 * If this CPU has already checked in, then this task
213 		 * will hold up the next grace period rather than the
214 		 * current grace period.  Queue the task accordingly.
215 		 * If the task is queued for the current grace period
216 		 * (i.e., this CPU has not yet passed through a quiescent
217 		 * state for the current grace period), then as long
218 		 * as that task remains queued, the current grace period
219 		 * cannot end.  Note that there is some uncertainty as
220 		 * to exactly when the current grace period started.
221 		 * We take a conservative approach, which can result
222 		 * in unnecessarily waiting on tasks that started very
223 		 * slightly after the current grace period began.  C'est
224 		 * la vie!!!
225 		 *
226 		 * But first, note that the current CPU must still be
227 		 * on line!
228 		 */
229 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
230 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
231 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
232 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
233 			rnp->gp_tasks = &t->rcu_node_entry;
234 #ifdef CONFIG_RCU_BOOST
235 			if (rnp->boost_tasks != NULL)
236 				rnp->boost_tasks = rnp->gp_tasks;
237 #endif /* #ifdef CONFIG_RCU_BOOST */
238 		} else {
239 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
240 			if (rnp->qsmask & rdp->grpmask)
241 				rnp->gp_tasks = &t->rcu_node_entry;
242 		}
243 		trace_rcu_preempt_task(rdp->rsp->name,
244 				       t->pid,
245 				       (rnp->qsmask & rdp->grpmask)
246 				       ? rnp->gpnum
247 				       : rnp->gpnum + 1);
248 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
249 	} else if (t->rcu_read_lock_nesting < 0 &&
250 		   t->rcu_read_unlock_special) {
251 
252 		/*
253 		 * Complete exit from RCU read-side critical section on
254 		 * behalf of preempted instance of __rcu_read_unlock().
255 		 */
256 		rcu_read_unlock_special(t);
257 	}
258 
259 	/*
260 	 * Either we were not in an RCU read-side critical section to
261 	 * begin with, or we have now recorded that critical section
262 	 * globally.  Either way, we can now note a quiescent state
263 	 * for this CPU.  Again, if we were in an RCU read-side critical
264 	 * section, and if that critical section was blocking the current
265 	 * grace period, then the fact that the task has been enqueued
266 	 * means that we continue to block the current grace period.
267 	 */
268 	local_irq_save(flags);
269 	rcu_preempt_qs(cpu);
270 	local_irq_restore(flags);
271 }
272 
273 /*
274  * Check for preempted RCU readers blocking the current grace period
275  * for the specified rcu_node structure.  If the caller needs a reliable
276  * answer, it must hold the rcu_node's ->lock.
277  */
278 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
279 {
280 	return rnp->gp_tasks != NULL;
281 }
282 
283 /*
284  * Record a quiescent state for all tasks that were previously queued
285  * on the specified rcu_node structure and that were blocking the current
286  * RCU grace period.  The caller must hold the specified rnp->lock with
287  * irqs disabled, and this lock is released upon return, but irqs remain
288  * disabled.
289  */
290 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
291 	__releases(rnp->lock)
292 {
293 	unsigned long mask;
294 	struct rcu_node *rnp_p;
295 
296 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
297 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
298 		return;  /* Still need more quiescent states! */
299 	}
300 
301 	rnp_p = rnp->parent;
302 	if (rnp_p == NULL) {
303 		/*
304 		 * Either there is only one rcu_node in the tree,
305 		 * or tasks were kicked up to root rcu_node due to
306 		 * CPUs going offline.
307 		 */
308 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
309 		return;
310 	}
311 
312 	/* Report up the rest of the hierarchy. */
313 	mask = rnp->grpmask;
314 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
315 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
316 	smp_mb__after_unlock_lock();
317 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
318 }
319 
320 /*
321  * Advance a ->blkd_tasks-list pointer to the next entry, instead
322  * returning NULL if at the end of the list.
323  */
324 static struct list_head *rcu_next_node_entry(struct task_struct *t,
325 					     struct rcu_node *rnp)
326 {
327 	struct list_head *np;
328 
329 	np = t->rcu_node_entry.next;
330 	if (np == &rnp->blkd_tasks)
331 		np = NULL;
332 	return np;
333 }
334 
335 /*
336  * Handle special cases during rcu_read_unlock(), such as needing to
337  * notify RCU core processing or task having blocked during the RCU
338  * read-side critical section.
339  */
340 void rcu_read_unlock_special(struct task_struct *t)
341 {
342 	int empty;
343 	int empty_exp;
344 	int empty_exp_now;
345 	unsigned long flags;
346 	struct list_head *np;
347 #ifdef CONFIG_RCU_BOOST
348 	struct rt_mutex *rbmp = NULL;
349 #endif /* #ifdef CONFIG_RCU_BOOST */
350 	struct rcu_node *rnp;
351 	int special;
352 
353 	/* NMI handlers cannot block and cannot safely manipulate state. */
354 	if (in_nmi())
355 		return;
356 
357 	local_irq_save(flags);
358 
359 	/*
360 	 * If RCU core is waiting for this CPU to exit critical section,
361 	 * let it know that we have done so.
362 	 */
363 	special = t->rcu_read_unlock_special;
364 	if (special & RCU_READ_UNLOCK_NEED_QS) {
365 		rcu_preempt_qs(smp_processor_id());
366 		if (!t->rcu_read_unlock_special) {
367 			local_irq_restore(flags);
368 			return;
369 		}
370 	}
371 
372 	/* Hardware IRQ handlers cannot block, complain if they get here. */
373 	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
374 		local_irq_restore(flags);
375 		return;
376 	}
377 
378 	/* Clean up if blocked during RCU read-side critical section. */
379 	if (special & RCU_READ_UNLOCK_BLOCKED) {
380 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
381 
382 		/*
383 		 * Remove this task from the list it blocked on.  The
384 		 * task can migrate while we acquire the lock, but at
385 		 * most one time.  So at most two passes through loop.
386 		 */
387 		for (;;) {
388 			rnp = t->rcu_blocked_node;
389 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
390 			smp_mb__after_unlock_lock();
391 			if (rnp == t->rcu_blocked_node)
392 				break;
393 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
394 		}
395 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
396 		empty_exp = !rcu_preempted_readers_exp(rnp);
397 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
398 		np = rcu_next_node_entry(t, rnp);
399 		list_del_init(&t->rcu_node_entry);
400 		t->rcu_blocked_node = NULL;
401 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
402 						rnp->gpnum, t->pid);
403 		if (&t->rcu_node_entry == rnp->gp_tasks)
404 			rnp->gp_tasks = np;
405 		if (&t->rcu_node_entry == rnp->exp_tasks)
406 			rnp->exp_tasks = np;
407 #ifdef CONFIG_RCU_BOOST
408 		if (&t->rcu_node_entry == rnp->boost_tasks)
409 			rnp->boost_tasks = np;
410 		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
411 		if (t->rcu_boost_mutex) {
412 			rbmp = t->rcu_boost_mutex;
413 			t->rcu_boost_mutex = NULL;
414 		}
415 #endif /* #ifdef CONFIG_RCU_BOOST */
416 
417 		/*
418 		 * If this was the last task on the current list, and if
419 		 * we aren't waiting on any CPUs, report the quiescent state.
420 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
421 		 * so we must take a snapshot of the expedited state.
422 		 */
423 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
424 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
425 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
426 							 rnp->gpnum,
427 							 0, rnp->qsmask,
428 							 rnp->level,
429 							 rnp->grplo,
430 							 rnp->grphi,
431 							 !!rnp->gp_tasks);
432 			rcu_report_unblock_qs_rnp(rnp, flags);
433 		} else {
434 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
435 		}
436 
437 #ifdef CONFIG_RCU_BOOST
438 		/* Unboost if we were boosted. */
439 		if (rbmp)
440 			rt_mutex_unlock(rbmp);
441 #endif /* #ifdef CONFIG_RCU_BOOST */
442 
443 		/*
444 		 * If this was the last task on the expedited lists,
445 		 * then we need to report up the rcu_node hierarchy.
446 		 */
447 		if (!empty_exp && empty_exp_now)
448 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
449 	} else {
450 		local_irq_restore(flags);
451 	}
452 }
453 
454 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
455 
456 /*
457  * Dump detailed information for all tasks blocking the current RCU
458  * grace period on the specified rcu_node structure.
459  */
460 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
461 {
462 	unsigned long flags;
463 	struct task_struct *t;
464 
465 	raw_spin_lock_irqsave(&rnp->lock, flags);
466 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
467 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 		return;
469 	}
470 	t = list_entry(rnp->gp_tasks,
471 		       struct task_struct, rcu_node_entry);
472 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
473 		sched_show_task(t);
474 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
475 }
476 
477 /*
478  * Dump detailed information for all tasks blocking the current RCU
479  * grace period.
480  */
481 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
482 {
483 	struct rcu_node *rnp = rcu_get_root(rsp);
484 
485 	rcu_print_detail_task_stall_rnp(rnp);
486 	rcu_for_each_leaf_node(rsp, rnp)
487 		rcu_print_detail_task_stall_rnp(rnp);
488 }
489 
490 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
491 
492 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
493 {
494 }
495 
496 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
497 
498 #ifdef CONFIG_RCU_CPU_STALL_INFO
499 
500 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
501 {
502 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
503 	       rnp->level, rnp->grplo, rnp->grphi);
504 }
505 
506 static void rcu_print_task_stall_end(void)
507 {
508 	pr_cont("\n");
509 }
510 
511 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
512 
513 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
514 {
515 }
516 
517 static void rcu_print_task_stall_end(void)
518 {
519 }
520 
521 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
522 
523 /*
524  * Scan the current list of tasks blocked within RCU read-side critical
525  * sections, printing out the tid of each.
526  */
527 static int rcu_print_task_stall(struct rcu_node *rnp)
528 {
529 	struct task_struct *t;
530 	int ndetected = 0;
531 
532 	if (!rcu_preempt_blocked_readers_cgp(rnp))
533 		return 0;
534 	rcu_print_task_stall_begin(rnp);
535 	t = list_entry(rnp->gp_tasks,
536 		       struct task_struct, rcu_node_entry);
537 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
538 		pr_cont(" P%d", t->pid);
539 		ndetected++;
540 	}
541 	rcu_print_task_stall_end();
542 	return ndetected;
543 }
544 
545 /*
546  * Check that the list of blocked tasks for the newly completed grace
547  * period is in fact empty.  It is a serious bug to complete a grace
548  * period that still has RCU readers blocked!  This function must be
549  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
550  * must be held by the caller.
551  *
552  * Also, if there are blocked tasks on the list, they automatically
553  * block the newly created grace period, so set up ->gp_tasks accordingly.
554  */
555 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
556 {
557 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
558 	if (!list_empty(&rnp->blkd_tasks))
559 		rnp->gp_tasks = rnp->blkd_tasks.next;
560 	WARN_ON_ONCE(rnp->qsmask);
561 }
562 
563 #ifdef CONFIG_HOTPLUG_CPU
564 
565 /*
566  * Handle tasklist migration for case in which all CPUs covered by the
567  * specified rcu_node have gone offline.  Move them up to the root
568  * rcu_node.  The reason for not just moving them to the immediate
569  * parent is to remove the need for rcu_read_unlock_special() to
570  * make more than two attempts to acquire the target rcu_node's lock.
571  * Returns true if there were tasks blocking the current RCU grace
572  * period.
573  *
574  * Returns 1 if there was previously a task blocking the current grace
575  * period on the specified rcu_node structure.
576  *
577  * The caller must hold rnp->lock with irqs disabled.
578  */
579 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
580 				     struct rcu_node *rnp,
581 				     struct rcu_data *rdp)
582 {
583 	struct list_head *lp;
584 	struct list_head *lp_root;
585 	int retval = 0;
586 	struct rcu_node *rnp_root = rcu_get_root(rsp);
587 	struct task_struct *t;
588 
589 	if (rnp == rnp_root) {
590 		WARN_ONCE(1, "Last CPU thought to be offlined?");
591 		return 0;  /* Shouldn't happen: at least one CPU online. */
592 	}
593 
594 	/* If we are on an internal node, complain bitterly. */
595 	WARN_ON_ONCE(rnp != rdp->mynode);
596 
597 	/*
598 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
599 	 * this corner-case operation -- just put this node's tasks
600 	 * at the head of the root node's list, and update the root node's
601 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
602 	 * if non-NULL.  This might result in waiting for more tasks than
603 	 * absolutely necessary, but this is a good performance/complexity
604 	 * tradeoff.
605 	 */
606 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
607 		retval |= RCU_OFL_TASKS_NORM_GP;
608 	if (rcu_preempted_readers_exp(rnp))
609 		retval |= RCU_OFL_TASKS_EXP_GP;
610 	lp = &rnp->blkd_tasks;
611 	lp_root = &rnp_root->blkd_tasks;
612 	while (!list_empty(lp)) {
613 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
614 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
615 		smp_mb__after_unlock_lock();
616 		list_del(&t->rcu_node_entry);
617 		t->rcu_blocked_node = rnp_root;
618 		list_add(&t->rcu_node_entry, lp_root);
619 		if (&t->rcu_node_entry == rnp->gp_tasks)
620 			rnp_root->gp_tasks = rnp->gp_tasks;
621 		if (&t->rcu_node_entry == rnp->exp_tasks)
622 			rnp_root->exp_tasks = rnp->exp_tasks;
623 #ifdef CONFIG_RCU_BOOST
624 		if (&t->rcu_node_entry == rnp->boost_tasks)
625 			rnp_root->boost_tasks = rnp->boost_tasks;
626 #endif /* #ifdef CONFIG_RCU_BOOST */
627 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
628 	}
629 
630 	rnp->gp_tasks = NULL;
631 	rnp->exp_tasks = NULL;
632 #ifdef CONFIG_RCU_BOOST
633 	rnp->boost_tasks = NULL;
634 	/*
635 	 * In case root is being boosted and leaf was not.  Make sure
636 	 * that we boost the tasks blocking the current grace period
637 	 * in this case.
638 	 */
639 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
640 	smp_mb__after_unlock_lock();
641 	if (rnp_root->boost_tasks != NULL &&
642 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
643 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
644 		rnp_root->boost_tasks = rnp_root->gp_tasks;
645 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
646 #endif /* #ifdef CONFIG_RCU_BOOST */
647 
648 	return retval;
649 }
650 
651 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
652 
653 /*
654  * Check for a quiescent state from the current CPU.  When a task blocks,
655  * the task is recorded in the corresponding CPU's rcu_node structure,
656  * which is checked elsewhere.
657  *
658  * Caller must disable hard irqs.
659  */
660 static void rcu_preempt_check_callbacks(int cpu)
661 {
662 	struct task_struct *t = current;
663 
664 	if (t->rcu_read_lock_nesting == 0) {
665 		rcu_preempt_qs(cpu);
666 		return;
667 	}
668 	if (t->rcu_read_lock_nesting > 0 &&
669 	    per_cpu(rcu_preempt_data, cpu).qs_pending)
670 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
671 }
672 
673 #ifdef CONFIG_RCU_BOOST
674 
675 static void rcu_preempt_do_callbacks(void)
676 {
677 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
678 }
679 
680 #endif /* #ifdef CONFIG_RCU_BOOST */
681 
682 /*
683  * Queue a preemptible-RCU callback for invocation after a grace period.
684  */
685 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
686 {
687 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
688 }
689 EXPORT_SYMBOL_GPL(call_rcu);
690 
691 /*
692  * Queue an RCU callback for lazy invocation after a grace period.
693  * This will likely be later named something like "call_rcu_lazy()",
694  * but this change will require some way of tagging the lazy RCU
695  * callbacks in the list of pending callbacks.  Until then, this
696  * function may only be called from __kfree_rcu().
697  */
698 void kfree_call_rcu(struct rcu_head *head,
699 		    void (*func)(struct rcu_head *rcu))
700 {
701 	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
702 }
703 EXPORT_SYMBOL_GPL(kfree_call_rcu);
704 
705 /**
706  * synchronize_rcu - wait until a grace period has elapsed.
707  *
708  * Control will return to the caller some time after a full grace
709  * period has elapsed, in other words after all currently executing RCU
710  * read-side critical sections have completed.  Note, however, that
711  * upon return from synchronize_rcu(), the caller might well be executing
712  * concurrently with new RCU read-side critical sections that began while
713  * synchronize_rcu() was waiting.  RCU read-side critical sections are
714  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
715  *
716  * See the description of synchronize_sched() for more detailed information
717  * on memory ordering guarantees.
718  */
719 void synchronize_rcu(void)
720 {
721 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
722 			   !lock_is_held(&rcu_lock_map) &&
723 			   !lock_is_held(&rcu_sched_lock_map),
724 			   "Illegal synchronize_rcu() in RCU read-side critical section");
725 	if (!rcu_scheduler_active)
726 		return;
727 	if (rcu_expedited)
728 		synchronize_rcu_expedited();
729 	else
730 		wait_rcu_gp(call_rcu);
731 }
732 EXPORT_SYMBOL_GPL(synchronize_rcu);
733 
734 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
735 static unsigned long sync_rcu_preempt_exp_count;
736 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
737 
738 /*
739  * Return non-zero if there are any tasks in RCU read-side critical
740  * sections blocking the current preemptible-RCU expedited grace period.
741  * If there is no preemptible-RCU expedited grace period currently in
742  * progress, returns zero unconditionally.
743  */
744 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
745 {
746 	return rnp->exp_tasks != NULL;
747 }
748 
749 /*
750  * return non-zero if there is no RCU expedited grace period in progress
751  * for the specified rcu_node structure, in other words, if all CPUs and
752  * tasks covered by the specified rcu_node structure have done their bit
753  * for the current expedited grace period.  Works only for preemptible
754  * RCU -- other RCU implementation use other means.
755  *
756  * Caller must hold sync_rcu_preempt_exp_mutex.
757  */
758 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
759 {
760 	return !rcu_preempted_readers_exp(rnp) &&
761 	       ACCESS_ONCE(rnp->expmask) == 0;
762 }
763 
764 /*
765  * Report the exit from RCU read-side critical section for the last task
766  * that queued itself during or before the current expedited preemptible-RCU
767  * grace period.  This event is reported either to the rcu_node structure on
768  * which the task was queued or to one of that rcu_node structure's ancestors,
769  * recursively up the tree.  (Calm down, calm down, we do the recursion
770  * iteratively!)
771  *
772  * Most callers will set the "wake" flag, but the task initiating the
773  * expedited grace period need not wake itself.
774  *
775  * Caller must hold sync_rcu_preempt_exp_mutex.
776  */
777 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
778 			       bool wake)
779 {
780 	unsigned long flags;
781 	unsigned long mask;
782 
783 	raw_spin_lock_irqsave(&rnp->lock, flags);
784 	smp_mb__after_unlock_lock();
785 	for (;;) {
786 		if (!sync_rcu_preempt_exp_done(rnp)) {
787 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
788 			break;
789 		}
790 		if (rnp->parent == NULL) {
791 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
792 			if (wake) {
793 				smp_mb(); /* EGP done before wake_up(). */
794 				wake_up(&sync_rcu_preempt_exp_wq);
795 			}
796 			break;
797 		}
798 		mask = rnp->grpmask;
799 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
800 		rnp = rnp->parent;
801 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
802 		smp_mb__after_unlock_lock();
803 		rnp->expmask &= ~mask;
804 	}
805 }
806 
807 /*
808  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
809  * grace period for the specified rcu_node structure.  If there are no such
810  * tasks, report it up the rcu_node hierarchy.
811  *
812  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
813  * CPU hotplug operations.
814  */
815 static void
816 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
817 {
818 	unsigned long flags;
819 	int must_wait = 0;
820 
821 	raw_spin_lock_irqsave(&rnp->lock, flags);
822 	smp_mb__after_unlock_lock();
823 	if (list_empty(&rnp->blkd_tasks)) {
824 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
825 	} else {
826 		rnp->exp_tasks = rnp->blkd_tasks.next;
827 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
828 		must_wait = 1;
829 	}
830 	if (!must_wait)
831 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
832 }
833 
834 /**
835  * synchronize_rcu_expedited - Brute-force RCU grace period
836  *
837  * Wait for an RCU-preempt grace period, but expedite it.  The basic
838  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
839  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
840  * significant time on all CPUs and is unfriendly to real-time workloads,
841  * so is thus not recommended for any sort of common-case code.
842  * In fact, if you are using synchronize_rcu_expedited() in a loop,
843  * please restructure your code to batch your updates, and then Use a
844  * single synchronize_rcu() instead.
845  *
846  * Note that it is illegal to call this function while holding any lock
847  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
848  * to call this function from a CPU-hotplug notifier.  Failing to observe
849  * these restriction will result in deadlock.
850  */
851 void synchronize_rcu_expedited(void)
852 {
853 	unsigned long flags;
854 	struct rcu_node *rnp;
855 	struct rcu_state *rsp = &rcu_preempt_state;
856 	unsigned long snap;
857 	int trycount = 0;
858 
859 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
860 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
861 	smp_mb(); /* Above access cannot bleed into critical section. */
862 
863 	/*
864 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
865 	 * operation that finds an rcu_node structure with tasks in the
866 	 * process of being boosted will know that all tasks blocking
867 	 * this expedited grace period will already be in the process of
868 	 * being boosted.  This simplifies the process of moving tasks
869 	 * from leaf to root rcu_node structures.
870 	 */
871 	get_online_cpus();
872 
873 	/*
874 	 * Acquire lock, falling back to synchronize_rcu() if too many
875 	 * lock-acquisition failures.  Of course, if someone does the
876 	 * expedited grace period for us, just leave.
877 	 */
878 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
879 		if (ULONG_CMP_LT(snap,
880 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
881 			put_online_cpus();
882 			goto mb_ret; /* Others did our work for us. */
883 		}
884 		if (trycount++ < 10) {
885 			udelay(trycount * num_online_cpus());
886 		} else {
887 			put_online_cpus();
888 			wait_rcu_gp(call_rcu);
889 			return;
890 		}
891 	}
892 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
893 		put_online_cpus();
894 		goto unlock_mb_ret; /* Others did our work for us. */
895 	}
896 
897 	/* force all RCU readers onto ->blkd_tasks lists. */
898 	synchronize_sched_expedited();
899 
900 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
901 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
902 		raw_spin_lock_irqsave(&rnp->lock, flags);
903 		smp_mb__after_unlock_lock();
904 		rnp->expmask = rnp->qsmaskinit;
905 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
906 	}
907 
908 	/* Snapshot current state of ->blkd_tasks lists. */
909 	rcu_for_each_leaf_node(rsp, rnp)
910 		sync_rcu_preempt_exp_init(rsp, rnp);
911 	if (NUM_RCU_NODES > 1)
912 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
913 
914 	put_online_cpus();
915 
916 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
917 	rnp = rcu_get_root(rsp);
918 	wait_event(sync_rcu_preempt_exp_wq,
919 		   sync_rcu_preempt_exp_done(rnp));
920 
921 	/* Clean up and exit. */
922 	smp_mb(); /* ensure expedited GP seen before counter increment. */
923 	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
924 unlock_mb_ret:
925 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
926 mb_ret:
927 	smp_mb(); /* ensure subsequent action seen after grace period. */
928 }
929 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
930 
931 /**
932  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
933  *
934  * Note that this primitive does not necessarily wait for an RCU grace period
935  * to complete.  For example, if there are no RCU callbacks queued anywhere
936  * in the system, then rcu_barrier() is within its rights to return
937  * immediately, without waiting for anything, much less an RCU grace period.
938  */
939 void rcu_barrier(void)
940 {
941 	_rcu_barrier(&rcu_preempt_state);
942 }
943 EXPORT_SYMBOL_GPL(rcu_barrier);
944 
945 /*
946  * Initialize preemptible RCU's state structures.
947  */
948 static void __init __rcu_init_preempt(void)
949 {
950 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
951 }
952 
953 /*
954  * Check for a task exiting while in a preemptible-RCU read-side
955  * critical section, clean up if so.  No need to issue warnings,
956  * as debug_check_no_locks_held() already does this if lockdep
957  * is enabled.
958  */
959 void exit_rcu(void)
960 {
961 	struct task_struct *t = current;
962 
963 	if (likely(list_empty(&current->rcu_node_entry)))
964 		return;
965 	t->rcu_read_lock_nesting = 1;
966 	barrier();
967 	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
968 	__rcu_read_unlock();
969 }
970 
971 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
972 
973 static struct rcu_state *rcu_state = &rcu_sched_state;
974 
975 /*
976  * Tell them what RCU they are running.
977  */
978 static void __init rcu_bootup_announce(void)
979 {
980 	pr_info("Hierarchical RCU implementation.\n");
981 	rcu_bootup_announce_oddness();
982 }
983 
984 /*
985  * Return the number of RCU batches processed thus far for debug & stats.
986  */
987 long rcu_batches_completed(void)
988 {
989 	return rcu_batches_completed_sched();
990 }
991 EXPORT_SYMBOL_GPL(rcu_batches_completed);
992 
993 /*
994  * Force a quiescent state for RCU, which, because there is no preemptible
995  * RCU, becomes the same as rcu-sched.
996  */
997 void rcu_force_quiescent_state(void)
998 {
999 	rcu_sched_force_quiescent_state();
1000 }
1001 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1002 
1003 /*
1004  * Because preemptible RCU does not exist, we never have to check for
1005  * CPUs being in quiescent states.
1006  */
1007 static void rcu_preempt_note_context_switch(int cpu)
1008 {
1009 }
1010 
1011 /*
1012  * Because preemptible RCU does not exist, there are never any preempted
1013  * RCU readers.
1014  */
1015 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1016 {
1017 	return 0;
1018 }
1019 
1020 #ifdef CONFIG_HOTPLUG_CPU
1021 
1022 /* Because preemptible RCU does not exist, no quieting of tasks. */
1023 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1024 {
1025 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1026 }
1027 
1028 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1029 
1030 /*
1031  * Because preemptible RCU does not exist, we never have to check for
1032  * tasks blocked within RCU read-side critical sections.
1033  */
1034 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1035 {
1036 }
1037 
1038 /*
1039  * Because preemptible RCU does not exist, we never have to check for
1040  * tasks blocked within RCU read-side critical sections.
1041  */
1042 static int rcu_print_task_stall(struct rcu_node *rnp)
1043 {
1044 	return 0;
1045 }
1046 
1047 /*
1048  * Because there is no preemptible RCU, there can be no readers blocked,
1049  * so there is no need to check for blocked tasks.  So check only for
1050  * bogus qsmask values.
1051  */
1052 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1053 {
1054 	WARN_ON_ONCE(rnp->qsmask);
1055 }
1056 
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 
1059 /*
1060  * Because preemptible RCU does not exist, it never needs to migrate
1061  * tasks that were blocked within RCU read-side critical sections, and
1062  * such non-existent tasks cannot possibly have been blocking the current
1063  * grace period.
1064  */
1065 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1066 				     struct rcu_node *rnp,
1067 				     struct rcu_data *rdp)
1068 {
1069 	return 0;
1070 }
1071 
1072 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1073 
1074 /*
1075  * Because preemptible RCU does not exist, it never has any callbacks
1076  * to check.
1077  */
1078 static void rcu_preempt_check_callbacks(int cpu)
1079 {
1080 }
1081 
1082 /*
1083  * Queue an RCU callback for lazy invocation after a grace period.
1084  * This will likely be later named something like "call_rcu_lazy()",
1085  * but this change will require some way of tagging the lazy RCU
1086  * callbacks in the list of pending callbacks.  Until then, this
1087  * function may only be called from __kfree_rcu().
1088  *
1089  * Because there is no preemptible RCU, we use RCU-sched instead.
1090  */
1091 void kfree_call_rcu(struct rcu_head *head,
1092 		    void (*func)(struct rcu_head *rcu))
1093 {
1094 	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1095 }
1096 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1097 
1098 /*
1099  * Wait for an rcu-preempt grace period, but make it happen quickly.
1100  * But because preemptible RCU does not exist, map to rcu-sched.
1101  */
1102 void synchronize_rcu_expedited(void)
1103 {
1104 	synchronize_sched_expedited();
1105 }
1106 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1107 
1108 #ifdef CONFIG_HOTPLUG_CPU
1109 
1110 /*
1111  * Because preemptible RCU does not exist, there is never any need to
1112  * report on tasks preempted in RCU read-side critical sections during
1113  * expedited RCU grace periods.
1114  */
1115 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1116 			       bool wake)
1117 {
1118 }
1119 
1120 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1121 
1122 /*
1123  * Because preemptible RCU does not exist, rcu_barrier() is just
1124  * another name for rcu_barrier_sched().
1125  */
1126 void rcu_barrier(void)
1127 {
1128 	rcu_barrier_sched();
1129 }
1130 EXPORT_SYMBOL_GPL(rcu_barrier);
1131 
1132 /*
1133  * Because preemptible RCU does not exist, it need not be initialized.
1134  */
1135 static void __init __rcu_init_preempt(void)
1136 {
1137 }
1138 
1139 /*
1140  * Because preemptible RCU does not exist, tasks cannot possibly exit
1141  * while in preemptible RCU read-side critical sections.
1142  */
1143 void exit_rcu(void)
1144 {
1145 }
1146 
1147 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1148 
1149 #ifdef CONFIG_RCU_BOOST
1150 
1151 #include "../locking/rtmutex_common.h"
1152 
1153 #ifdef CONFIG_RCU_TRACE
1154 
1155 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1156 {
1157 	if (list_empty(&rnp->blkd_tasks))
1158 		rnp->n_balk_blkd_tasks++;
1159 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1160 		rnp->n_balk_exp_gp_tasks++;
1161 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1162 		rnp->n_balk_boost_tasks++;
1163 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1164 		rnp->n_balk_notblocked++;
1165 	else if (rnp->gp_tasks != NULL &&
1166 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1167 		rnp->n_balk_notyet++;
1168 	else
1169 		rnp->n_balk_nos++;
1170 }
1171 
1172 #else /* #ifdef CONFIG_RCU_TRACE */
1173 
1174 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1175 {
1176 }
1177 
1178 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1179 
1180 static void rcu_wake_cond(struct task_struct *t, int status)
1181 {
1182 	/*
1183 	 * If the thread is yielding, only wake it when this
1184 	 * is invoked from idle
1185 	 */
1186 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1187 		wake_up_process(t);
1188 }
1189 
1190 /*
1191  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1192  * or ->boost_tasks, advancing the pointer to the next task in the
1193  * ->blkd_tasks list.
1194  *
1195  * Note that irqs must be enabled: boosting the task can block.
1196  * Returns 1 if there are more tasks needing to be boosted.
1197  */
1198 static int rcu_boost(struct rcu_node *rnp)
1199 {
1200 	unsigned long flags;
1201 	struct rt_mutex mtx;
1202 	struct task_struct *t;
1203 	struct list_head *tb;
1204 
1205 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1206 		return 0;  /* Nothing left to boost. */
1207 
1208 	raw_spin_lock_irqsave(&rnp->lock, flags);
1209 	smp_mb__after_unlock_lock();
1210 
1211 	/*
1212 	 * Recheck under the lock: all tasks in need of boosting
1213 	 * might exit their RCU read-side critical sections on their own.
1214 	 */
1215 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1216 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1217 		return 0;
1218 	}
1219 
1220 	/*
1221 	 * Preferentially boost tasks blocking expedited grace periods.
1222 	 * This cannot starve the normal grace periods because a second
1223 	 * expedited grace period must boost all blocked tasks, including
1224 	 * those blocking the pre-existing normal grace period.
1225 	 */
1226 	if (rnp->exp_tasks != NULL) {
1227 		tb = rnp->exp_tasks;
1228 		rnp->n_exp_boosts++;
1229 	} else {
1230 		tb = rnp->boost_tasks;
1231 		rnp->n_normal_boosts++;
1232 	}
1233 	rnp->n_tasks_boosted++;
1234 
1235 	/*
1236 	 * We boost task t by manufacturing an rt_mutex that appears to
1237 	 * be held by task t.  We leave a pointer to that rt_mutex where
1238 	 * task t can find it, and task t will release the mutex when it
1239 	 * exits its outermost RCU read-side critical section.  Then
1240 	 * simply acquiring this artificial rt_mutex will boost task
1241 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1242 	 *
1243 	 * Note that task t must acquire rnp->lock to remove itself from
1244 	 * the ->blkd_tasks list, which it will do from exit() if from
1245 	 * nowhere else.  We therefore are guaranteed that task t will
1246 	 * stay around at least until we drop rnp->lock.  Note that
1247 	 * rnp->lock also resolves races between our priority boosting
1248 	 * and task t's exiting its outermost RCU read-side critical
1249 	 * section.
1250 	 */
1251 	t = container_of(tb, struct task_struct, rcu_node_entry);
1252 	rt_mutex_init_proxy_locked(&mtx, t);
1253 	t->rcu_boost_mutex = &mtx;
1254 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1255 	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1256 	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1257 
1258 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1259 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1260 }
1261 
1262 /*
1263  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1264  * root rcu_node.
1265  */
1266 static int rcu_boost_kthread(void *arg)
1267 {
1268 	struct rcu_node *rnp = (struct rcu_node *)arg;
1269 	int spincnt = 0;
1270 	int more2boost;
1271 
1272 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1273 	for (;;) {
1274 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1275 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1276 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1277 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1278 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1279 		more2boost = rcu_boost(rnp);
1280 		if (more2boost)
1281 			spincnt++;
1282 		else
1283 			spincnt = 0;
1284 		if (spincnt > 10) {
1285 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1286 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1287 			schedule_timeout_interruptible(2);
1288 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1289 			spincnt = 0;
1290 		}
1291 	}
1292 	/* NOTREACHED */
1293 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Check to see if it is time to start boosting RCU readers that are
1299  * blocking the current grace period, and, if so, tell the per-rcu_node
1300  * kthread to start boosting them.  If there is an expedited grace
1301  * period in progress, it is always time to boost.
1302  *
1303  * The caller must hold rnp->lock, which this function releases.
1304  * The ->boost_kthread_task is immortal, so we don't need to worry
1305  * about it going away.
1306  */
1307 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308 {
1309 	struct task_struct *t;
1310 
1311 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1312 		rnp->n_balk_exp_gp_tasks++;
1313 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314 		return;
1315 	}
1316 	if (rnp->exp_tasks != NULL ||
1317 	    (rnp->gp_tasks != NULL &&
1318 	     rnp->boost_tasks == NULL &&
1319 	     rnp->qsmask == 0 &&
1320 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1321 		if (rnp->exp_tasks == NULL)
1322 			rnp->boost_tasks = rnp->gp_tasks;
1323 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324 		t = rnp->boost_kthread_task;
1325 		if (t)
1326 			rcu_wake_cond(t, rnp->boost_kthread_status);
1327 	} else {
1328 		rcu_initiate_boost_trace(rnp);
1329 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330 	}
1331 }
1332 
1333 /*
1334  * Wake up the per-CPU kthread to invoke RCU callbacks.
1335  */
1336 static void invoke_rcu_callbacks_kthread(void)
1337 {
1338 	unsigned long flags;
1339 
1340 	local_irq_save(flags);
1341 	__this_cpu_write(rcu_cpu_has_work, 1);
1342 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1343 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1344 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1345 			      __this_cpu_read(rcu_cpu_kthread_status));
1346 	}
1347 	local_irq_restore(flags);
1348 }
1349 
1350 /*
1351  * Is the current CPU running the RCU-callbacks kthread?
1352  * Caller must have preemption disabled.
1353  */
1354 static bool rcu_is_callbacks_kthread(void)
1355 {
1356 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1357 }
1358 
1359 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1360 
1361 /*
1362  * Do priority-boost accounting for the start of a new grace period.
1363  */
1364 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1365 {
1366 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1367 }
1368 
1369 /*
1370  * Create an RCU-boost kthread for the specified node if one does not
1371  * already exist.  We only create this kthread for preemptible RCU.
1372  * Returns zero if all is well, a negated errno otherwise.
1373  */
1374 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1375 						 struct rcu_node *rnp)
1376 {
1377 	int rnp_index = rnp - &rsp->node[0];
1378 	unsigned long flags;
1379 	struct sched_param sp;
1380 	struct task_struct *t;
1381 
1382 	if (&rcu_preempt_state != rsp)
1383 		return 0;
1384 
1385 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1386 		return 0;
1387 
1388 	rsp->boost = 1;
1389 	if (rnp->boost_kthread_task != NULL)
1390 		return 0;
1391 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1392 			   "rcub/%d", rnp_index);
1393 	if (IS_ERR(t))
1394 		return PTR_ERR(t);
1395 	raw_spin_lock_irqsave(&rnp->lock, flags);
1396 	smp_mb__after_unlock_lock();
1397 	rnp->boost_kthread_task = t;
1398 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1399 	sp.sched_priority = RCU_BOOST_PRIO;
1400 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1401 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1402 	return 0;
1403 }
1404 
1405 static void rcu_kthread_do_work(void)
1406 {
1407 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1408 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1409 	rcu_preempt_do_callbacks();
1410 }
1411 
1412 static void rcu_cpu_kthread_setup(unsigned int cpu)
1413 {
1414 	struct sched_param sp;
1415 
1416 	sp.sched_priority = RCU_KTHREAD_PRIO;
1417 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1418 }
1419 
1420 static void rcu_cpu_kthread_park(unsigned int cpu)
1421 {
1422 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1423 }
1424 
1425 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1426 {
1427 	return __this_cpu_read(rcu_cpu_has_work);
1428 }
1429 
1430 /*
1431  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1432  * RCU softirq used in flavors and configurations of RCU that do not
1433  * support RCU priority boosting.
1434  */
1435 static void rcu_cpu_kthread(unsigned int cpu)
1436 {
1437 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1438 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1439 	int spincnt;
1440 
1441 	for (spincnt = 0; spincnt < 10; spincnt++) {
1442 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1443 		local_bh_disable();
1444 		*statusp = RCU_KTHREAD_RUNNING;
1445 		this_cpu_inc(rcu_cpu_kthread_loops);
1446 		local_irq_disable();
1447 		work = *workp;
1448 		*workp = 0;
1449 		local_irq_enable();
1450 		if (work)
1451 			rcu_kthread_do_work();
1452 		local_bh_enable();
1453 		if (*workp == 0) {
1454 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1455 			*statusp = RCU_KTHREAD_WAITING;
1456 			return;
1457 		}
1458 	}
1459 	*statusp = RCU_KTHREAD_YIELDING;
1460 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1461 	schedule_timeout_interruptible(2);
1462 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1463 	*statusp = RCU_KTHREAD_WAITING;
1464 }
1465 
1466 /*
1467  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1468  * served by the rcu_node in question.  The CPU hotplug lock is still
1469  * held, so the value of rnp->qsmaskinit will be stable.
1470  *
1471  * We don't include outgoingcpu in the affinity set, use -1 if there is
1472  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1473  * this function allows the kthread to execute on any CPU.
1474  */
1475 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1476 {
1477 	struct task_struct *t = rnp->boost_kthread_task;
1478 	unsigned long mask = rnp->qsmaskinit;
1479 	cpumask_var_t cm;
1480 	int cpu;
1481 
1482 	if (!t)
1483 		return;
1484 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1485 		return;
1486 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1487 		if ((mask & 0x1) && cpu != outgoingcpu)
1488 			cpumask_set_cpu(cpu, cm);
1489 	if (cpumask_weight(cm) == 0) {
1490 		cpumask_setall(cm);
1491 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1492 			cpumask_clear_cpu(cpu, cm);
1493 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1494 	}
1495 	set_cpus_allowed_ptr(t, cm);
1496 	free_cpumask_var(cm);
1497 }
1498 
1499 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1500 	.store			= &rcu_cpu_kthread_task,
1501 	.thread_should_run	= rcu_cpu_kthread_should_run,
1502 	.thread_fn		= rcu_cpu_kthread,
1503 	.thread_comm		= "rcuc/%u",
1504 	.setup			= rcu_cpu_kthread_setup,
1505 	.park			= rcu_cpu_kthread_park,
1506 };
1507 
1508 /*
1509  * Spawn all kthreads -- called as soon as the scheduler is running.
1510  */
1511 static int __init rcu_spawn_kthreads(void)
1512 {
1513 	struct rcu_node *rnp;
1514 	int cpu;
1515 
1516 	rcu_scheduler_fully_active = 1;
1517 	for_each_possible_cpu(cpu)
1518 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1519 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1520 	rnp = rcu_get_root(rcu_state);
1521 	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1522 	if (NUM_RCU_NODES > 1) {
1523 		rcu_for_each_leaf_node(rcu_state, rnp)
1524 			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1525 	}
1526 	return 0;
1527 }
1528 early_initcall(rcu_spawn_kthreads);
1529 
1530 static void rcu_prepare_kthreads(int cpu)
1531 {
1532 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1533 	struct rcu_node *rnp = rdp->mynode;
1534 
1535 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1536 	if (rcu_scheduler_fully_active)
1537 		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1538 }
1539 
1540 #else /* #ifdef CONFIG_RCU_BOOST */
1541 
1542 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1543 {
1544 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1545 }
1546 
1547 static void invoke_rcu_callbacks_kthread(void)
1548 {
1549 	WARN_ON_ONCE(1);
1550 }
1551 
1552 static bool rcu_is_callbacks_kthread(void)
1553 {
1554 	return false;
1555 }
1556 
1557 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1558 {
1559 }
1560 
1561 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1562 {
1563 }
1564 
1565 static int __init rcu_scheduler_really_started(void)
1566 {
1567 	rcu_scheduler_fully_active = 1;
1568 	return 0;
1569 }
1570 early_initcall(rcu_scheduler_really_started);
1571 
1572 static void rcu_prepare_kthreads(int cpu)
1573 {
1574 }
1575 
1576 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1577 
1578 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1579 
1580 /*
1581  * Check to see if any future RCU-related work will need to be done
1582  * by the current CPU, even if none need be done immediately, returning
1583  * 1 if so.  This function is part of the RCU implementation; it is -not-
1584  * an exported member of the RCU API.
1585  *
1586  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1587  * any flavor of RCU.
1588  */
1589 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1590 {
1591 	*delta_jiffies = ULONG_MAX;
1592 	return rcu_cpu_has_callbacks(cpu, NULL);
1593 }
1594 
1595 /*
1596  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1597  * after it.
1598  */
1599 static void rcu_cleanup_after_idle(int cpu)
1600 {
1601 }
1602 
1603 /*
1604  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1605  * is nothing.
1606  */
1607 static void rcu_prepare_for_idle(int cpu)
1608 {
1609 }
1610 
1611 /*
1612  * Don't bother keeping a running count of the number of RCU callbacks
1613  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1614  */
1615 static void rcu_idle_count_callbacks_posted(void)
1616 {
1617 }
1618 
1619 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1620 
1621 /*
1622  * This code is invoked when a CPU goes idle, at which point we want
1623  * to have the CPU do everything required for RCU so that it can enter
1624  * the energy-efficient dyntick-idle mode.  This is handled by a
1625  * state machine implemented by rcu_prepare_for_idle() below.
1626  *
1627  * The following three proprocessor symbols control this state machine:
1628  *
1629  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1630  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1631  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1632  *	benchmarkers who might otherwise be tempted to set this to a large
1633  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1634  *	system.  And if you are -that- concerned about energy efficiency,
1635  *	just power the system down and be done with it!
1636  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1637  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1638  *	callbacks pending.  Setting this too high can OOM your system.
1639  *
1640  * The values below work well in practice.  If future workloads require
1641  * adjustment, they can be converted into kernel config parameters, though
1642  * making the state machine smarter might be a better option.
1643  */
1644 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1645 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1646 
1647 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1648 module_param(rcu_idle_gp_delay, int, 0644);
1649 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1650 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1651 
1652 extern int tick_nohz_active;
1653 
1654 /*
1655  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1656  * only if it has been awhile since the last time we did so.  Afterwards,
1657  * if there are any callbacks ready for immediate invocation, return true.
1658  */
1659 static bool rcu_try_advance_all_cbs(void)
1660 {
1661 	bool cbs_ready = false;
1662 	struct rcu_data *rdp;
1663 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1664 	struct rcu_node *rnp;
1665 	struct rcu_state *rsp;
1666 
1667 	/* Exit early if we advanced recently. */
1668 	if (jiffies == rdtp->last_advance_all)
1669 		return 0;
1670 	rdtp->last_advance_all = jiffies;
1671 
1672 	for_each_rcu_flavor(rsp) {
1673 		rdp = this_cpu_ptr(rsp->rda);
1674 		rnp = rdp->mynode;
1675 
1676 		/*
1677 		 * Don't bother checking unless a grace period has
1678 		 * completed since we last checked and there are
1679 		 * callbacks not yet ready to invoke.
1680 		 */
1681 		if (rdp->completed != rnp->completed &&
1682 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1683 			note_gp_changes(rsp, rdp);
1684 
1685 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1686 			cbs_ready = true;
1687 	}
1688 	return cbs_ready;
1689 }
1690 
1691 /*
1692  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1693  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1694  * caller to set the timeout based on whether or not there are non-lazy
1695  * callbacks.
1696  *
1697  * The caller must have disabled interrupts.
1698  */
1699 int rcu_needs_cpu(int cpu, unsigned long *dj)
1700 {
1701 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1702 
1703 	/* Snapshot to detect later posting of non-lazy callback. */
1704 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1705 
1706 	/* If no callbacks, RCU doesn't need the CPU. */
1707 	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1708 		*dj = ULONG_MAX;
1709 		return 0;
1710 	}
1711 
1712 	/* Attempt to advance callbacks. */
1713 	if (rcu_try_advance_all_cbs()) {
1714 		/* Some ready to invoke, so initiate later invocation. */
1715 		invoke_rcu_core();
1716 		return 1;
1717 	}
1718 	rdtp->last_accelerate = jiffies;
1719 
1720 	/* Request timer delay depending on laziness, and round. */
1721 	if (!rdtp->all_lazy) {
1722 		*dj = round_up(rcu_idle_gp_delay + jiffies,
1723 			       rcu_idle_gp_delay) - jiffies;
1724 	} else {
1725 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1726 	}
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Prepare a CPU for idle from an RCU perspective.  The first major task
1732  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1733  * The second major task is to check to see if a non-lazy callback has
1734  * arrived at a CPU that previously had only lazy callbacks.  The third
1735  * major task is to accelerate (that is, assign grace-period numbers to)
1736  * any recently arrived callbacks.
1737  *
1738  * The caller must have disabled interrupts.
1739  */
1740 static void rcu_prepare_for_idle(int cpu)
1741 {
1742 	struct rcu_data *rdp;
1743 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1744 	struct rcu_node *rnp;
1745 	struct rcu_state *rsp;
1746 	int tne;
1747 
1748 	/* Handle nohz enablement switches conservatively. */
1749 	tne = ACCESS_ONCE(tick_nohz_active);
1750 	if (tne != rdtp->tick_nohz_enabled_snap) {
1751 		if (rcu_cpu_has_callbacks(cpu, NULL))
1752 			invoke_rcu_core(); /* force nohz to see update. */
1753 		rdtp->tick_nohz_enabled_snap = tne;
1754 		return;
1755 	}
1756 	if (!tne)
1757 		return;
1758 
1759 	/* If this is a no-CBs CPU, no callbacks, just return. */
1760 	if (rcu_is_nocb_cpu(cpu))
1761 		return;
1762 
1763 	/*
1764 	 * If a non-lazy callback arrived at a CPU having only lazy
1765 	 * callbacks, invoke RCU core for the side-effect of recalculating
1766 	 * idle duration on re-entry to idle.
1767 	 */
1768 	if (rdtp->all_lazy &&
1769 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1770 		rdtp->all_lazy = false;
1771 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1772 		invoke_rcu_core();
1773 		return;
1774 	}
1775 
1776 	/*
1777 	 * If we have not yet accelerated this jiffy, accelerate all
1778 	 * callbacks on this CPU.
1779 	 */
1780 	if (rdtp->last_accelerate == jiffies)
1781 		return;
1782 	rdtp->last_accelerate = jiffies;
1783 	for_each_rcu_flavor(rsp) {
1784 		rdp = per_cpu_ptr(rsp->rda, cpu);
1785 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1786 			continue;
1787 		rnp = rdp->mynode;
1788 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1789 		smp_mb__after_unlock_lock();
1790 		rcu_accelerate_cbs(rsp, rnp, rdp);
1791 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1792 	}
1793 }
1794 
1795 /*
1796  * Clean up for exit from idle.  Attempt to advance callbacks based on
1797  * any grace periods that elapsed while the CPU was idle, and if any
1798  * callbacks are now ready to invoke, initiate invocation.
1799  */
1800 static void rcu_cleanup_after_idle(int cpu)
1801 {
1802 
1803 	if (rcu_is_nocb_cpu(cpu))
1804 		return;
1805 	if (rcu_try_advance_all_cbs())
1806 		invoke_rcu_core();
1807 }
1808 
1809 /*
1810  * Keep a running count of the number of non-lazy callbacks posted
1811  * on this CPU.  This running counter (which is never decremented) allows
1812  * rcu_prepare_for_idle() to detect when something out of the idle loop
1813  * posts a callback, even if an equal number of callbacks are invoked.
1814  * Of course, callbacks should only be posted from within a trace event
1815  * designed to be called from idle or from within RCU_NONIDLE().
1816  */
1817 static void rcu_idle_count_callbacks_posted(void)
1818 {
1819 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1820 }
1821 
1822 /*
1823  * Data for flushing lazy RCU callbacks at OOM time.
1824  */
1825 static atomic_t oom_callback_count;
1826 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1827 
1828 /*
1829  * RCU OOM callback -- decrement the outstanding count and deliver the
1830  * wake-up if we are the last one.
1831  */
1832 static void rcu_oom_callback(struct rcu_head *rhp)
1833 {
1834 	if (atomic_dec_and_test(&oom_callback_count))
1835 		wake_up(&oom_callback_wq);
1836 }
1837 
1838 /*
1839  * Post an rcu_oom_notify callback on the current CPU if it has at
1840  * least one lazy callback.  This will unnecessarily post callbacks
1841  * to CPUs that already have a non-lazy callback at the end of their
1842  * callback list, but this is an infrequent operation, so accept some
1843  * extra overhead to keep things simple.
1844  */
1845 static void rcu_oom_notify_cpu(void *unused)
1846 {
1847 	struct rcu_state *rsp;
1848 	struct rcu_data *rdp;
1849 
1850 	for_each_rcu_flavor(rsp) {
1851 		rdp = __this_cpu_ptr(rsp->rda);
1852 		if (rdp->qlen_lazy != 0) {
1853 			atomic_inc(&oom_callback_count);
1854 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1855 		}
1856 	}
1857 }
1858 
1859 /*
1860  * If low on memory, ensure that each CPU has a non-lazy callback.
1861  * This will wake up CPUs that have only lazy callbacks, in turn
1862  * ensuring that they free up the corresponding memory in a timely manner.
1863  * Because an uncertain amount of memory will be freed in some uncertain
1864  * timeframe, we do not claim to have freed anything.
1865  */
1866 static int rcu_oom_notify(struct notifier_block *self,
1867 			  unsigned long notused, void *nfreed)
1868 {
1869 	int cpu;
1870 
1871 	/* Wait for callbacks from earlier instance to complete. */
1872 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1873 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1874 
1875 	/*
1876 	 * Prevent premature wakeup: ensure that all increments happen
1877 	 * before there is a chance of the counter reaching zero.
1878 	 */
1879 	atomic_set(&oom_callback_count, 1);
1880 
1881 	get_online_cpus();
1882 	for_each_online_cpu(cpu) {
1883 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1884 		cond_resched();
1885 	}
1886 	put_online_cpus();
1887 
1888 	/* Unconditionally decrement: no need to wake ourselves up. */
1889 	atomic_dec(&oom_callback_count);
1890 
1891 	return NOTIFY_OK;
1892 }
1893 
1894 static struct notifier_block rcu_oom_nb = {
1895 	.notifier_call = rcu_oom_notify
1896 };
1897 
1898 static int __init rcu_register_oom_notifier(void)
1899 {
1900 	register_oom_notifier(&rcu_oom_nb);
1901 	return 0;
1902 }
1903 early_initcall(rcu_register_oom_notifier);
1904 
1905 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1906 
1907 #ifdef CONFIG_RCU_CPU_STALL_INFO
1908 
1909 #ifdef CONFIG_RCU_FAST_NO_HZ
1910 
1911 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1912 {
1913 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1914 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1915 
1916 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1917 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1918 		ulong2long(nlpd),
1919 		rdtp->all_lazy ? 'L' : '.',
1920 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1921 }
1922 
1923 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1924 
1925 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1926 {
1927 	*cp = '\0';
1928 }
1929 
1930 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1931 
1932 /* Initiate the stall-info list. */
1933 static void print_cpu_stall_info_begin(void)
1934 {
1935 	pr_cont("\n");
1936 }
1937 
1938 /*
1939  * Print out diagnostic information for the specified stalled CPU.
1940  *
1941  * If the specified CPU is aware of the current RCU grace period
1942  * (flavor specified by rsp), then print the number of scheduling
1943  * clock interrupts the CPU has taken during the time that it has
1944  * been aware.  Otherwise, print the number of RCU grace periods
1945  * that this CPU is ignorant of, for example, "1" if the CPU was
1946  * aware of the previous grace period.
1947  *
1948  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1949  */
1950 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1951 {
1952 	char fast_no_hz[72];
1953 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1954 	struct rcu_dynticks *rdtp = rdp->dynticks;
1955 	char *ticks_title;
1956 	unsigned long ticks_value;
1957 
1958 	if (rsp->gpnum == rdp->gpnum) {
1959 		ticks_title = "ticks this GP";
1960 		ticks_value = rdp->ticks_this_gp;
1961 	} else {
1962 		ticks_title = "GPs behind";
1963 		ticks_value = rsp->gpnum - rdp->gpnum;
1964 	}
1965 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1966 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1967 	       cpu, ticks_value, ticks_title,
1968 	       atomic_read(&rdtp->dynticks) & 0xfff,
1969 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1970 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1971 	       fast_no_hz);
1972 }
1973 
1974 /* Terminate the stall-info list. */
1975 static void print_cpu_stall_info_end(void)
1976 {
1977 	pr_err("\t");
1978 }
1979 
1980 /* Zero ->ticks_this_gp for all flavors of RCU. */
1981 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1982 {
1983 	rdp->ticks_this_gp = 0;
1984 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1985 }
1986 
1987 /* Increment ->ticks_this_gp for all flavors of RCU. */
1988 static void increment_cpu_stall_ticks(void)
1989 {
1990 	struct rcu_state *rsp;
1991 
1992 	for_each_rcu_flavor(rsp)
1993 		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1994 }
1995 
1996 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1997 
1998 static void print_cpu_stall_info_begin(void)
1999 {
2000 	pr_cont(" {");
2001 }
2002 
2003 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2004 {
2005 	pr_cont(" %d", cpu);
2006 }
2007 
2008 static void print_cpu_stall_info_end(void)
2009 {
2010 	pr_cont("} ");
2011 }
2012 
2013 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2014 {
2015 }
2016 
2017 static void increment_cpu_stall_ticks(void)
2018 {
2019 }
2020 
2021 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2022 
2023 #ifdef CONFIG_RCU_NOCB_CPU
2024 
2025 /*
2026  * Offload callback processing from the boot-time-specified set of CPUs
2027  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
2028  * kthread created that pulls the callbacks from the corresponding CPU,
2029  * waits for a grace period to elapse, and invokes the callbacks.
2030  * The no-CBs CPUs do a wake_up() on their kthread when they insert
2031  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2032  * has been specified, in which case each kthread actively polls its
2033  * CPU.  (Which isn't so great for energy efficiency, but which does
2034  * reduce RCU's overhead on that CPU.)
2035  *
2036  * This is intended to be used in conjunction with Frederic Weisbecker's
2037  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2038  * running CPU-bound user-mode computations.
2039  *
2040  * Offloading of callback processing could also in theory be used as
2041  * an energy-efficiency measure because CPUs with no RCU callbacks
2042  * queued are more aggressive about entering dyntick-idle mode.
2043  */
2044 
2045 
2046 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2047 static int __init rcu_nocb_setup(char *str)
2048 {
2049 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2050 	have_rcu_nocb_mask = true;
2051 	cpulist_parse(str, rcu_nocb_mask);
2052 	return 1;
2053 }
2054 __setup("rcu_nocbs=", rcu_nocb_setup);
2055 
2056 static int __init parse_rcu_nocb_poll(char *arg)
2057 {
2058 	rcu_nocb_poll = 1;
2059 	return 0;
2060 }
2061 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2062 
2063 /*
2064  * Do any no-CBs CPUs need another grace period?
2065  *
2066  * Interrupts must be disabled.  If the caller does not hold the root
2067  * rnp_node structure's ->lock, the results are advisory only.
2068  */
2069 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2070 {
2071 	struct rcu_node *rnp = rcu_get_root(rsp);
2072 
2073 	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2074 }
2075 
2076 /*
2077  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2078  * grace period.
2079  */
2080 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2081 {
2082 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2083 }
2084 
2085 /*
2086  * Set the root rcu_node structure's ->need_future_gp field
2087  * based on the sum of those of all rcu_node structures.  This does
2088  * double-count the root rcu_node structure's requests, but this
2089  * is necessary to handle the possibility of a rcu_nocb_kthread()
2090  * having awakened during the time that the rcu_node structures
2091  * were being updated for the end of the previous grace period.
2092  */
2093 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2094 {
2095 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2096 }
2097 
2098 static void rcu_init_one_nocb(struct rcu_node *rnp)
2099 {
2100 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2101 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2102 }
2103 
2104 /* Is the specified CPU a no-CPUs CPU? */
2105 bool rcu_is_nocb_cpu(int cpu)
2106 {
2107 	if (have_rcu_nocb_mask)
2108 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2109 	return false;
2110 }
2111 
2112 /*
2113  * Enqueue the specified string of rcu_head structures onto the specified
2114  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2115  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2116  * counts are supplied by rhcount and rhcount_lazy.
2117  *
2118  * If warranted, also wake up the kthread servicing this CPUs queues.
2119  */
2120 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2121 				    struct rcu_head *rhp,
2122 				    struct rcu_head **rhtp,
2123 				    int rhcount, int rhcount_lazy,
2124 				    unsigned long flags)
2125 {
2126 	int len;
2127 	struct rcu_head **old_rhpp;
2128 	struct task_struct *t;
2129 
2130 	/* Enqueue the callback on the nocb list and update counts. */
2131 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2132 	ACCESS_ONCE(*old_rhpp) = rhp;
2133 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2134 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2135 
2136 	/* If we are not being polled and there is a kthread, awaken it ... */
2137 	t = ACCESS_ONCE(rdp->nocb_kthread);
2138 	if (rcu_nocb_poll || !t) {
2139 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2140 				    TPS("WakeNotPoll"));
2141 		return;
2142 	}
2143 	len = atomic_long_read(&rdp->nocb_q_count);
2144 	if (old_rhpp == &rdp->nocb_head) {
2145 		if (!irqs_disabled_flags(flags)) {
2146 			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2147 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2148 					    TPS("WakeEmpty"));
2149 		} else {
2150 			rdp->nocb_defer_wakeup = true;
2151 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2152 					    TPS("WakeEmptyIsDeferred"));
2153 		}
2154 		rdp->qlen_last_fqs_check = 0;
2155 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2156 		wake_up_process(t); /* ... or if many callbacks queued. */
2157 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2158 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2159 	} else {
2160 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2161 	}
2162 	return;
2163 }
2164 
2165 /*
2166  * This is a helper for __call_rcu(), which invokes this when the normal
2167  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2168  * function returns failure back to __call_rcu(), which can complain
2169  * appropriately.
2170  *
2171  * Otherwise, this function queues the callback where the corresponding
2172  * "rcuo" kthread can find it.
2173  */
2174 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2175 			    bool lazy, unsigned long flags)
2176 {
2177 
2178 	if (!rcu_is_nocb_cpu(rdp->cpu))
2179 		return 0;
2180 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2181 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2182 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2183 					 (unsigned long)rhp->func,
2184 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2185 					 -atomic_long_read(&rdp->nocb_q_count));
2186 	else
2187 		trace_rcu_callback(rdp->rsp->name, rhp,
2188 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2189 				   -atomic_long_read(&rdp->nocb_q_count));
2190 	return 1;
2191 }
2192 
2193 /*
2194  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2195  * not a no-CBs CPU.
2196  */
2197 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2198 						     struct rcu_data *rdp,
2199 						     unsigned long flags)
2200 {
2201 	long ql = rsp->qlen;
2202 	long qll = rsp->qlen_lazy;
2203 
2204 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2205 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2206 		return 0;
2207 	rsp->qlen = 0;
2208 	rsp->qlen_lazy = 0;
2209 
2210 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2211 	if (rsp->orphan_donelist != NULL) {
2212 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2213 					rsp->orphan_donetail, ql, qll, flags);
2214 		ql = qll = 0;
2215 		rsp->orphan_donelist = NULL;
2216 		rsp->orphan_donetail = &rsp->orphan_donelist;
2217 	}
2218 	if (rsp->orphan_nxtlist != NULL) {
2219 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2220 					rsp->orphan_nxttail, ql, qll, flags);
2221 		ql = qll = 0;
2222 		rsp->orphan_nxtlist = NULL;
2223 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2224 	}
2225 	return 1;
2226 }
2227 
2228 /*
2229  * If necessary, kick off a new grace period, and either way wait
2230  * for a subsequent grace period to complete.
2231  */
2232 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2233 {
2234 	unsigned long c;
2235 	bool d;
2236 	unsigned long flags;
2237 	struct rcu_node *rnp = rdp->mynode;
2238 
2239 	raw_spin_lock_irqsave(&rnp->lock, flags);
2240 	smp_mb__after_unlock_lock();
2241 	c = rcu_start_future_gp(rnp, rdp);
2242 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2243 
2244 	/*
2245 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2246 	 * up the load average.
2247 	 */
2248 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2249 	for (;;) {
2250 		wait_event_interruptible(
2251 			rnp->nocb_gp_wq[c & 0x1],
2252 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2253 		if (likely(d))
2254 			break;
2255 		flush_signals(current);
2256 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2257 	}
2258 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2259 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2260 }
2261 
2262 /*
2263  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2264  * callbacks queued by the corresponding no-CBs CPU.
2265  */
2266 static int rcu_nocb_kthread(void *arg)
2267 {
2268 	int c, cl;
2269 	bool firsttime = 1;
2270 	struct rcu_head *list;
2271 	struct rcu_head *next;
2272 	struct rcu_head **tail;
2273 	struct rcu_data *rdp = arg;
2274 
2275 	/* Each pass through this loop invokes one batch of callbacks */
2276 	for (;;) {
2277 		/* If not polling, wait for next batch of callbacks. */
2278 		if (!rcu_nocb_poll) {
2279 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2280 					    TPS("Sleep"));
2281 			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2282 			/* Memory barrier provide by xchg() below. */
2283 		} else if (firsttime) {
2284 			firsttime = 0;
2285 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2286 					    TPS("Poll"));
2287 		}
2288 		list = ACCESS_ONCE(rdp->nocb_head);
2289 		if (!list) {
2290 			if (!rcu_nocb_poll)
2291 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2292 						    TPS("WokeEmpty"));
2293 			schedule_timeout_interruptible(1);
2294 			flush_signals(current);
2295 			continue;
2296 		}
2297 		firsttime = 1;
2298 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2299 				    TPS("WokeNonEmpty"));
2300 
2301 		/*
2302 		 * Extract queued callbacks, update counts, and wait
2303 		 * for a grace period to elapse.
2304 		 */
2305 		ACCESS_ONCE(rdp->nocb_head) = NULL;
2306 		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2307 		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2308 		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2309 		ACCESS_ONCE(rdp->nocb_p_count) += c;
2310 		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2311 		rcu_nocb_wait_gp(rdp);
2312 
2313 		/* Each pass through the following loop invokes a callback. */
2314 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2315 		c = cl = 0;
2316 		while (list) {
2317 			next = list->next;
2318 			/* Wait for enqueuing to complete, if needed. */
2319 			while (next == NULL && &list->next != tail) {
2320 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2321 						    TPS("WaitQueue"));
2322 				schedule_timeout_interruptible(1);
2323 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2324 						    TPS("WokeQueue"));
2325 				next = list->next;
2326 			}
2327 			debug_rcu_head_unqueue(list);
2328 			local_bh_disable();
2329 			if (__rcu_reclaim(rdp->rsp->name, list))
2330 				cl++;
2331 			c++;
2332 			local_bh_enable();
2333 			list = next;
2334 		}
2335 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2336 		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2337 		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2338 		rdp->n_nocbs_invoked += c;
2339 	}
2340 	return 0;
2341 }
2342 
2343 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2344 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2345 {
2346 	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2347 }
2348 
2349 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2350 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2351 {
2352 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2353 		return;
2354 	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2355 	wake_up(&rdp->nocb_wq);
2356 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2357 }
2358 
2359 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2360 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2361 {
2362 	rdp->nocb_tail = &rdp->nocb_head;
2363 	init_waitqueue_head(&rdp->nocb_wq);
2364 }
2365 
2366 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2367 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2368 {
2369 	int cpu;
2370 	struct rcu_data *rdp;
2371 	struct task_struct *t;
2372 
2373 	if (rcu_nocb_mask == NULL)
2374 		return;
2375 	for_each_cpu(cpu, rcu_nocb_mask) {
2376 		rdp = per_cpu_ptr(rsp->rda, cpu);
2377 		t = kthread_run(rcu_nocb_kthread, rdp,
2378 				"rcuo%c/%d", rsp->abbr, cpu);
2379 		BUG_ON(IS_ERR(t));
2380 		ACCESS_ONCE(rdp->nocb_kthread) = t;
2381 	}
2382 }
2383 
2384 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2385 static bool init_nocb_callback_list(struct rcu_data *rdp)
2386 {
2387 	if (rcu_nocb_mask == NULL ||
2388 	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2389 		return false;
2390 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2391 	return true;
2392 }
2393 
2394 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2395 
2396 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2397 {
2398 	return 0;
2399 }
2400 
2401 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2402 {
2403 }
2404 
2405 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2406 {
2407 }
2408 
2409 static void rcu_init_one_nocb(struct rcu_node *rnp)
2410 {
2411 }
2412 
2413 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2414 			    bool lazy, unsigned long flags)
2415 {
2416 	return 0;
2417 }
2418 
2419 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2420 						     struct rcu_data *rdp,
2421 						     unsigned long flags)
2422 {
2423 	return 0;
2424 }
2425 
2426 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2427 {
2428 }
2429 
2430 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2431 {
2432 	return false;
2433 }
2434 
2435 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2436 {
2437 }
2438 
2439 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2440 {
2441 }
2442 
2443 static bool init_nocb_callback_list(struct rcu_data *rdp)
2444 {
2445 	return false;
2446 }
2447 
2448 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2449 
2450 /*
2451  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2452  * arbitrarily long period of time with the scheduling-clock tick turned
2453  * off.  RCU will be paying attention to this CPU because it is in the
2454  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2455  * machine because the scheduling-clock tick has been disabled.  Therefore,
2456  * if an adaptive-ticks CPU is failing to respond to the current grace
2457  * period and has not be idle from an RCU perspective, kick it.
2458  */
2459 static void rcu_kick_nohz_cpu(int cpu)
2460 {
2461 #ifdef CONFIG_NO_HZ_FULL
2462 	if (tick_nohz_full_cpu(cpu))
2463 		smp_send_reschedule(cpu);
2464 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2465 }
2466 
2467 
2468 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2469 
2470 /*
2471  * Define RCU flavor that holds sysidle state.  This needs to be the
2472  * most active flavor of RCU.
2473  */
2474 #ifdef CONFIG_PREEMPT_RCU
2475 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2476 #else /* #ifdef CONFIG_PREEMPT_RCU */
2477 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2478 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2479 
2480 static int full_sysidle_state;		/* Current system-idle state. */
2481 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2482 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2483 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2484 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2485 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2486 
2487 /*
2488  * Invoked to note exit from irq or task transition to idle.  Note that
2489  * usermode execution does -not- count as idle here!  After all, we want
2490  * to detect full-system idle states, not RCU quiescent states and grace
2491  * periods.  The caller must have disabled interrupts.
2492  */
2493 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2494 {
2495 	unsigned long j;
2496 
2497 	/* Adjust nesting, check for fully idle. */
2498 	if (irq) {
2499 		rdtp->dynticks_idle_nesting--;
2500 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2501 		if (rdtp->dynticks_idle_nesting != 0)
2502 			return;  /* Still not fully idle. */
2503 	} else {
2504 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2505 		    DYNTICK_TASK_NEST_VALUE) {
2506 			rdtp->dynticks_idle_nesting = 0;
2507 		} else {
2508 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2509 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2510 			return;  /* Still not fully idle. */
2511 		}
2512 	}
2513 
2514 	/* Record start of fully idle period. */
2515 	j = jiffies;
2516 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2517 	smp_mb__before_atomic_inc();
2518 	atomic_inc(&rdtp->dynticks_idle);
2519 	smp_mb__after_atomic_inc();
2520 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2521 }
2522 
2523 /*
2524  * Unconditionally force exit from full system-idle state.  This is
2525  * invoked when a normal CPU exits idle, but must be called separately
2526  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2527  * is that the timekeeping CPU is permitted to take scheduling-clock
2528  * interrupts while the system is in system-idle state, and of course
2529  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2530  * interrupt from any other type of interrupt.
2531  */
2532 void rcu_sysidle_force_exit(void)
2533 {
2534 	int oldstate = ACCESS_ONCE(full_sysidle_state);
2535 	int newoldstate;
2536 
2537 	/*
2538 	 * Each pass through the following loop attempts to exit full
2539 	 * system-idle state.  If contention proves to be a problem,
2540 	 * a trylock-based contention tree could be used here.
2541 	 */
2542 	while (oldstate > RCU_SYSIDLE_SHORT) {
2543 		newoldstate = cmpxchg(&full_sysidle_state,
2544 				      oldstate, RCU_SYSIDLE_NOT);
2545 		if (oldstate == newoldstate &&
2546 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2547 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2548 			return; /* We cleared it, done! */
2549 		}
2550 		oldstate = newoldstate;
2551 	}
2552 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2553 }
2554 
2555 /*
2556  * Invoked to note entry to irq or task transition from idle.  Note that
2557  * usermode execution does -not- count as idle here!  The caller must
2558  * have disabled interrupts.
2559  */
2560 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2561 {
2562 	/* Adjust nesting, check for already non-idle. */
2563 	if (irq) {
2564 		rdtp->dynticks_idle_nesting++;
2565 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2566 		if (rdtp->dynticks_idle_nesting != 1)
2567 			return; /* Already non-idle. */
2568 	} else {
2569 		/*
2570 		 * Allow for irq misnesting.  Yes, it really is possible
2571 		 * to enter an irq handler then never leave it, and maybe
2572 		 * also vice versa.  Handle both possibilities.
2573 		 */
2574 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2575 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2576 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2577 			return; /* Already non-idle. */
2578 		} else {
2579 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2580 		}
2581 	}
2582 
2583 	/* Record end of idle period. */
2584 	smp_mb__before_atomic_inc();
2585 	atomic_inc(&rdtp->dynticks_idle);
2586 	smp_mb__after_atomic_inc();
2587 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2588 
2589 	/*
2590 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2591 	 * during a system-idle state.  This must be the case, because
2592 	 * the timekeeping CPU has to take scheduling-clock interrupts
2593 	 * during the time that the system is transitioning to full
2594 	 * system-idle state.  This means that the timekeeping CPU must
2595 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2596 	 * more than take a scheduling-clock interrupt.
2597 	 */
2598 	if (smp_processor_id() == tick_do_timer_cpu)
2599 		return;
2600 
2601 	/* Update system-idle state: We are clearly no longer fully idle! */
2602 	rcu_sysidle_force_exit();
2603 }
2604 
2605 /*
2606  * Check to see if the current CPU is idle.  Note that usermode execution
2607  * does not count as idle.  The caller must have disabled interrupts.
2608  */
2609 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2610 				  unsigned long *maxj)
2611 {
2612 	int cur;
2613 	unsigned long j;
2614 	struct rcu_dynticks *rdtp = rdp->dynticks;
2615 
2616 	/*
2617 	 * If some other CPU has already reported non-idle, if this is
2618 	 * not the flavor of RCU that tracks sysidle state, or if this
2619 	 * is an offline or the timekeeping CPU, nothing to do.
2620 	 */
2621 	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2622 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2623 		return;
2624 	if (rcu_gp_in_progress(rdp->rsp))
2625 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2626 
2627 	/* Pick up current idle and NMI-nesting counter and check. */
2628 	cur = atomic_read(&rdtp->dynticks_idle);
2629 	if (cur & 0x1) {
2630 		*isidle = false; /* We are not idle! */
2631 		return;
2632 	}
2633 	smp_mb(); /* Read counters before timestamps. */
2634 
2635 	/* Pick up timestamps. */
2636 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2637 	/* If this CPU entered idle more recently, update maxj timestamp. */
2638 	if (ULONG_CMP_LT(*maxj, j))
2639 		*maxj = j;
2640 }
2641 
2642 /*
2643  * Is this the flavor of RCU that is handling full-system idle?
2644  */
2645 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2646 {
2647 	return rsp == rcu_sysidle_state;
2648 }
2649 
2650 /*
2651  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2652  * timekeeping CPU.
2653  */
2654 static void rcu_bind_gp_kthread(void)
2655 {
2656 	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2657 
2658 	if (cpu < 0 || cpu >= nr_cpu_ids)
2659 		return;
2660 	if (raw_smp_processor_id() != cpu)
2661 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2662 }
2663 
2664 /*
2665  * Return a delay in jiffies based on the number of CPUs, rcu_node
2666  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2667  * systems more time to transition to full-idle state in order to
2668  * avoid the cache thrashing that otherwise occur on the state variable.
2669  * Really small systems (less than a couple of tens of CPUs) should
2670  * instead use a single global atomically incremented counter, and later
2671  * versions of this will automatically reconfigure themselves accordingly.
2672  */
2673 static unsigned long rcu_sysidle_delay(void)
2674 {
2675 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2676 		return 0;
2677 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2678 }
2679 
2680 /*
2681  * Advance the full-system-idle state.  This is invoked when all of
2682  * the non-timekeeping CPUs are idle.
2683  */
2684 static void rcu_sysidle(unsigned long j)
2685 {
2686 	/* Check the current state. */
2687 	switch (ACCESS_ONCE(full_sysidle_state)) {
2688 	case RCU_SYSIDLE_NOT:
2689 
2690 		/* First time all are idle, so note a short idle period. */
2691 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2692 		break;
2693 
2694 	case RCU_SYSIDLE_SHORT:
2695 
2696 		/*
2697 		 * Idle for a bit, time to advance to next state?
2698 		 * cmpxchg failure means race with non-idle, let them win.
2699 		 */
2700 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2701 			(void)cmpxchg(&full_sysidle_state,
2702 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2703 		break;
2704 
2705 	case RCU_SYSIDLE_LONG:
2706 
2707 		/*
2708 		 * Do an additional check pass before advancing to full.
2709 		 * cmpxchg failure means race with non-idle, let them win.
2710 		 */
2711 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2712 			(void)cmpxchg(&full_sysidle_state,
2713 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2714 		break;
2715 
2716 	default:
2717 		break;
2718 	}
2719 }
2720 
2721 /*
2722  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2723  * back to the beginning.
2724  */
2725 static void rcu_sysidle_cancel(void)
2726 {
2727 	smp_mb();
2728 	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2729 }
2730 
2731 /*
2732  * Update the sysidle state based on the results of a force-quiescent-state
2733  * scan of the CPUs' dyntick-idle state.
2734  */
2735 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2736 			       unsigned long maxj, bool gpkt)
2737 {
2738 	if (rsp != rcu_sysidle_state)
2739 		return;  /* Wrong flavor, ignore. */
2740 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2741 		return;  /* Running state machine from timekeeping CPU. */
2742 	if (isidle)
2743 		rcu_sysidle(maxj);    /* More idle! */
2744 	else
2745 		rcu_sysidle_cancel(); /* Idle is over. */
2746 }
2747 
2748 /*
2749  * Wrapper for rcu_sysidle_report() when called from the grace-period
2750  * kthread's context.
2751  */
2752 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2753 				  unsigned long maxj)
2754 {
2755 	rcu_sysidle_report(rsp, isidle, maxj, true);
2756 }
2757 
2758 /* Callback and function for forcing an RCU grace period. */
2759 struct rcu_sysidle_head {
2760 	struct rcu_head rh;
2761 	int inuse;
2762 };
2763 
2764 static void rcu_sysidle_cb(struct rcu_head *rhp)
2765 {
2766 	struct rcu_sysidle_head *rshp;
2767 
2768 	/*
2769 	 * The following memory barrier is needed to replace the
2770 	 * memory barriers that would normally be in the memory
2771 	 * allocator.
2772 	 */
2773 	smp_mb();  /* grace period precedes setting inuse. */
2774 
2775 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2776 	ACCESS_ONCE(rshp->inuse) = 0;
2777 }
2778 
2779 /*
2780  * Check to see if the system is fully idle, other than the timekeeping CPU.
2781  * The caller must have disabled interrupts.
2782  */
2783 bool rcu_sys_is_idle(void)
2784 {
2785 	static struct rcu_sysidle_head rsh;
2786 	int rss = ACCESS_ONCE(full_sysidle_state);
2787 
2788 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2789 		return false;
2790 
2791 	/* Handle small-system case by doing a full scan of CPUs. */
2792 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2793 		int oldrss = rss - 1;
2794 
2795 		/*
2796 		 * One pass to advance to each state up to _FULL.
2797 		 * Give up if any pass fails to advance the state.
2798 		 */
2799 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2800 			int cpu;
2801 			bool isidle = true;
2802 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2803 			struct rcu_data *rdp;
2804 
2805 			/* Scan all the CPUs looking for nonidle CPUs. */
2806 			for_each_possible_cpu(cpu) {
2807 				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2808 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2809 				if (!isidle)
2810 					break;
2811 			}
2812 			rcu_sysidle_report(rcu_sysidle_state,
2813 					   isidle, maxj, false);
2814 			oldrss = rss;
2815 			rss = ACCESS_ONCE(full_sysidle_state);
2816 		}
2817 	}
2818 
2819 	/* If this is the first observation of an idle period, record it. */
2820 	if (rss == RCU_SYSIDLE_FULL) {
2821 		rss = cmpxchg(&full_sysidle_state,
2822 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2823 		return rss == RCU_SYSIDLE_FULL;
2824 	}
2825 
2826 	smp_mb(); /* ensure rss load happens before later caller actions. */
2827 
2828 	/* If already fully idle, tell the caller (in case of races). */
2829 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2830 		return true;
2831 
2832 	/*
2833 	 * If we aren't there yet, and a grace period is not in flight,
2834 	 * initiate a grace period.  Either way, tell the caller that
2835 	 * we are not there yet.  We use an xchg() rather than an assignment
2836 	 * to make up for the memory barriers that would otherwise be
2837 	 * provided by the memory allocator.
2838 	 */
2839 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2840 	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2841 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2842 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2843 	return false;
2844 }
2845 
2846 /*
2847  * Initialize dynticks sysidle state for CPUs coming online.
2848  */
2849 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2850 {
2851 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2852 }
2853 
2854 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2855 
2856 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2857 {
2858 }
2859 
2860 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2861 {
2862 }
2863 
2864 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2865 				  unsigned long *maxj)
2866 {
2867 }
2868 
2869 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2870 {
2871 	return false;
2872 }
2873 
2874 static void rcu_bind_gp_kthread(void)
2875 {
2876 }
2877 
2878 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2879 				  unsigned long maxj)
2880 {
2881 }
2882 
2883 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2884 {
2885 }
2886 
2887 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2888 
2889 /*
2890  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2891  * grace-period kthread will do force_quiescent_state() processing?
2892  * The idea is to avoid waking up RCU core processing on such a
2893  * CPU unless the grace period has extended for too long.
2894  *
2895  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2896  * CONFIG_RCU_NOCB_CPUs.
2897  */
2898 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2899 {
2900 #ifdef CONFIG_NO_HZ_FULL
2901 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2902 	    (!rcu_gp_in_progress(rsp) ||
2903 	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
2904 		return 1;
2905 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2906 	return 0;
2907 }
2908