xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35 
36 #ifdef CONFIG_RCU_BOOST
37 
38 #include "../locking/rtmutex_common.h"
39 
40 /*
41  * Control variables for per-CPU and per-rcu_node kthreads.  These
42  * handle all flavors of RCU.
43  */
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48 
49 #else /* #ifdef CONFIG_RCU_BOOST */
50 
51 /*
52  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53  * all uses are in dead code.  Provide a definition to keep the compiler
54  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55  * This probably needs to be excluded from -rt builds.
56  */
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59 
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61 
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66 
67 /*
68  * Check the RCU kernel configuration parameters and print informative
69  * messages about anything out of the ordinary.
70  */
71 static void __init rcu_bootup_announce_oddness(void)
72 {
73 	if (IS_ENABLED(CONFIG_RCU_TRACE))
74 		pr_info("\tRCU event tracing is enabled.\n");
75 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
78 		       RCU_FANOUT);
79 	if (rcu_fanout_exact)
80 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 	if (IS_ENABLED(CONFIG_PROVE_RCU))
84 		pr_info("\tRCU lockdep checking is enabled.\n");
85 	if (RCU_NUM_LVLS >= 4)
86 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 	if (RCU_FANOUT_LEAF != 16)
88 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 			RCU_FANOUT_LEAF);
90 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 	if (nr_cpu_ids != NR_CPUS)
93 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
96 #endif
97 	if (blimit != DEFAULT_RCU_BLIMIT)
98 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
99 	if (qhimark != DEFAULT_RCU_QHIMARK)
100 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
101 	if (qlowmark != DEFAULT_RCU_QLOMARK)
102 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
103 	if (jiffies_till_first_fqs != ULONG_MAX)
104 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
105 	if (jiffies_till_next_fqs != ULONG_MAX)
106 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
107 	if (rcu_kick_kthreads)
108 		pr_info("\tKick kthreads if too-long grace period.\n");
109 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
110 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111 	if (gp_preinit_delay)
112 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
113 	if (gp_init_delay)
114 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
115 	if (gp_cleanup_delay)
116 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
117 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
118 		pr_info("\tRCU debug extended QS entry/exit.\n");
119 	rcupdate_announce_bootup_oddness();
120 }
121 
122 #ifdef CONFIG_PREEMPT_RCU
123 
124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
127 
128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
129 			       bool wake);
130 
131 /*
132  * Tell them what RCU they are running.
133  */
134 static void __init rcu_bootup_announce(void)
135 {
136 	pr_info("Preemptible hierarchical RCU implementation.\n");
137 	rcu_bootup_announce_oddness();
138 }
139 
140 /* Flags for rcu_preempt_ctxt_queue() decision table. */
141 #define RCU_GP_TASKS	0x8
142 #define RCU_EXP_TASKS	0x4
143 #define RCU_GP_BLKD	0x2
144 #define RCU_EXP_BLKD	0x1
145 
146 /*
147  * Queues a task preempted within an RCU-preempt read-side critical
148  * section into the appropriate location within the ->blkd_tasks list,
149  * depending on the states of any ongoing normal and expedited grace
150  * periods.  The ->gp_tasks pointer indicates which element the normal
151  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152  * indicates which element the expedited grace period is waiting on (again,
153  * NULL if none).  If a grace period is waiting on a given element in the
154  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
155  * adding a task to the tail of the list blocks any grace period that is
156  * already waiting on one of the elements.  In contrast, adding a task
157  * to the head of the list won't block any grace period that is already
158  * waiting on one of the elements.
159  *
160  * This queuing is imprecise, and can sometimes make an ongoing grace
161  * period wait for a task that is not strictly speaking blocking it.
162  * Given the choice, we needlessly block a normal grace period rather than
163  * blocking an expedited grace period.
164  *
165  * Note that an endless sequence of expedited grace periods still cannot
166  * indefinitely postpone a normal grace period.  Eventually, all of the
167  * fixed number of preempted tasks blocking the normal grace period that are
168  * not also blocking the expedited grace period will resume and complete
169  * their RCU read-side critical sections.  At that point, the ->gp_tasks
170  * pointer will equal the ->exp_tasks pointer, at which point the end of
171  * the corresponding expedited grace period will also be the end of the
172  * normal grace period.
173  */
174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
175 	__releases(rnp->lock) /* But leaves rrupts disabled. */
176 {
177 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
178 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
179 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
180 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
181 	struct task_struct *t = current;
182 
183 	lockdep_assert_held(&rnp->lock);
184 	WARN_ON_ONCE(rdp->mynode != rnp);
185 	WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
186 
187 	/*
188 	 * Decide where to queue the newly blocked task.  In theory,
189 	 * this could be an if-statement.  In practice, when I tried
190 	 * that, it was quite messy.
191 	 */
192 	switch (blkd_state) {
193 	case 0:
194 	case                RCU_EXP_TASKS:
195 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
196 	case RCU_GP_TASKS:
197 	case RCU_GP_TASKS + RCU_EXP_TASKS:
198 
199 		/*
200 		 * Blocking neither GP, or first task blocking the normal
201 		 * GP but not blocking the already-waiting expedited GP.
202 		 * Queue at the head of the list to avoid unnecessarily
203 		 * blocking the already-waiting GPs.
204 		 */
205 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 		break;
207 
208 	case                                              RCU_EXP_BLKD:
209 	case                                RCU_GP_BLKD:
210 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
211 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
212 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
213 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
214 
215 		/*
216 		 * First task arriving that blocks either GP, or first task
217 		 * arriving that blocks the expedited GP (with the normal
218 		 * GP already waiting), or a task arriving that blocks
219 		 * both GPs with both GPs already waiting.  Queue at the
220 		 * tail of the list to avoid any GP waiting on any of the
221 		 * already queued tasks that are not blocking it.
222 		 */
223 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
224 		break;
225 
226 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
227 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
228 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
229 
230 		/*
231 		 * Second or subsequent task blocking the expedited GP.
232 		 * The task either does not block the normal GP, or is the
233 		 * first task blocking the normal GP.  Queue just after
234 		 * the first task blocking the expedited GP.
235 		 */
236 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
237 		break;
238 
239 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
240 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
241 
242 		/*
243 		 * Second or subsequent task blocking the normal GP.
244 		 * The task does not block the expedited GP. Queue just
245 		 * after the first task blocking the normal GP.
246 		 */
247 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
248 		break;
249 
250 	default:
251 
252 		/* Yet another exercise in excessive paranoia. */
253 		WARN_ON_ONCE(1);
254 		break;
255 	}
256 
257 	/*
258 	 * We have now queued the task.  If it was the first one to
259 	 * block either grace period, update the ->gp_tasks and/or
260 	 * ->exp_tasks pointers, respectively, to reference the newly
261 	 * blocked tasks.
262 	 */
263 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
264 		rnp->gp_tasks = &t->rcu_node_entry;
265 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
266 		rnp->exp_tasks = &t->rcu_node_entry;
267 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
268 		     !(rnp->qsmask & rdp->grpmask));
269 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
270 		     !(rnp->expmask & rdp->grpmask));
271 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
272 
273 	/*
274 	 * Report the quiescent state for the expedited GP.  This expedited
275 	 * GP should not be able to end until we report, so there should be
276 	 * no need to check for a subsequent expedited GP.  (Though we are
277 	 * still in a quiescent state in any case.)
278 	 */
279 	if (blkd_state & RCU_EXP_BLKD &&
280 	    t->rcu_read_unlock_special.b.exp_need_qs) {
281 		t->rcu_read_unlock_special.b.exp_need_qs = false;
282 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
283 	} else {
284 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
285 	}
286 }
287 
288 /*
289  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
290  * that this just means that the task currently running on the CPU is
291  * not in a quiescent state.  There might be any number of tasks blocked
292  * while in an RCU read-side critical section.
293  *
294  * As with the other rcu_*_qs() functions, callers to this function
295  * must disable preemption.
296  */
297 static void rcu_preempt_qs(void)
298 {
299 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
301 		trace_rcu_grace_period(TPS("rcu_preempt"),
302 				       __this_cpu_read(rcu_data_p->gpnum),
303 				       TPS("cpuqs"));
304 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
305 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
306 		current->rcu_read_unlock_special.b.need_qs = false;
307 	}
308 }
309 
310 /*
311  * We have entered the scheduler, and the current task might soon be
312  * context-switched away from.  If this task is in an RCU read-side
313  * critical section, we will no longer be able to rely on the CPU to
314  * record that fact, so we enqueue the task on the blkd_tasks list.
315  * The task will dequeue itself when it exits the outermost enclosing
316  * RCU read-side critical section.  Therefore, the current grace period
317  * cannot be permitted to complete until the blkd_tasks list entries
318  * predating the current grace period drain, in other words, until
319  * rnp->gp_tasks becomes NULL.
320  *
321  * Caller must disable interrupts.
322  */
323 static void rcu_preempt_note_context_switch(bool preempt)
324 {
325 	struct task_struct *t = current;
326 	struct rcu_data *rdp;
327 	struct rcu_node *rnp;
328 
329 	lockdep_assert_irqs_disabled();
330 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
331 	if (t->rcu_read_lock_nesting > 0 &&
332 	    !t->rcu_read_unlock_special.b.blocked) {
333 
334 		/* Possibly blocking in an RCU read-side critical section. */
335 		rdp = this_cpu_ptr(rcu_state_p->rda);
336 		rnp = rdp->mynode;
337 		raw_spin_lock_rcu_node(rnp);
338 		t->rcu_read_unlock_special.b.blocked = true;
339 		t->rcu_blocked_node = rnp;
340 
341 		/*
342 		 * Verify the CPU's sanity, trace the preemption, and
343 		 * then queue the task as required based on the states
344 		 * of any ongoing and expedited grace periods.
345 		 */
346 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
347 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348 		trace_rcu_preempt_task(rdp->rsp->name,
349 				       t->pid,
350 				       (rnp->qsmask & rdp->grpmask)
351 				       ? rnp->gpnum
352 				       : rnp->gpnum + 1);
353 		rcu_preempt_ctxt_queue(rnp, rdp);
354 	} else if (t->rcu_read_lock_nesting < 0 &&
355 		   t->rcu_read_unlock_special.s) {
356 
357 		/*
358 		 * Complete exit from RCU read-side critical section on
359 		 * behalf of preempted instance of __rcu_read_unlock().
360 		 */
361 		rcu_read_unlock_special(t);
362 	}
363 
364 	/*
365 	 * Either we were not in an RCU read-side critical section to
366 	 * begin with, or we have now recorded that critical section
367 	 * globally.  Either way, we can now note a quiescent state
368 	 * for this CPU.  Again, if we were in an RCU read-side critical
369 	 * section, and if that critical section was blocking the current
370 	 * grace period, then the fact that the task has been enqueued
371 	 * means that we continue to block the current grace period.
372 	 */
373 	rcu_preempt_qs();
374 }
375 
376 /*
377  * Check for preempted RCU readers blocking the current grace period
378  * for the specified rcu_node structure.  If the caller needs a reliable
379  * answer, it must hold the rcu_node's ->lock.
380  */
381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382 {
383 	return rnp->gp_tasks != NULL;
384 }
385 
386 /*
387  * Advance a ->blkd_tasks-list pointer to the next entry, instead
388  * returning NULL if at the end of the list.
389  */
390 static struct list_head *rcu_next_node_entry(struct task_struct *t,
391 					     struct rcu_node *rnp)
392 {
393 	struct list_head *np;
394 
395 	np = t->rcu_node_entry.next;
396 	if (np == &rnp->blkd_tasks)
397 		np = NULL;
398 	return np;
399 }
400 
401 /*
402  * Return true if the specified rcu_node structure has tasks that were
403  * preempted within an RCU read-side critical section.
404  */
405 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
406 {
407 	return !list_empty(&rnp->blkd_tasks);
408 }
409 
410 /*
411  * Handle special cases during rcu_read_unlock(), such as needing to
412  * notify RCU core processing or task having blocked during the RCU
413  * read-side critical section.
414  */
415 void rcu_read_unlock_special(struct task_struct *t)
416 {
417 	bool empty_exp;
418 	bool empty_norm;
419 	bool empty_exp_now;
420 	unsigned long flags;
421 	struct list_head *np;
422 	bool drop_boost_mutex = false;
423 	struct rcu_data *rdp;
424 	struct rcu_node *rnp;
425 	union rcu_special special;
426 
427 	/* NMI handlers cannot block and cannot safely manipulate state. */
428 	if (in_nmi())
429 		return;
430 
431 	local_irq_save(flags);
432 
433 	/*
434 	 * If RCU core is waiting for this CPU to exit its critical section,
435 	 * report the fact that it has exited.  Because irqs are disabled,
436 	 * t->rcu_read_unlock_special cannot change.
437 	 */
438 	special = t->rcu_read_unlock_special;
439 	if (special.b.need_qs) {
440 		rcu_preempt_qs();
441 		t->rcu_read_unlock_special.b.need_qs = false;
442 		if (!t->rcu_read_unlock_special.s) {
443 			local_irq_restore(flags);
444 			return;
445 		}
446 	}
447 
448 	/*
449 	 * Respond to a request for an expedited grace period, but only if
450 	 * we were not preempted, meaning that we were running on the same
451 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
452 	 * would have been cleared at the time of the first preemption,
453 	 * and the quiescent state would be reported when we were dequeued.
454 	 */
455 	if (special.b.exp_need_qs) {
456 		WARN_ON_ONCE(special.b.blocked);
457 		t->rcu_read_unlock_special.b.exp_need_qs = false;
458 		rdp = this_cpu_ptr(rcu_state_p->rda);
459 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
460 		if (!t->rcu_read_unlock_special.s) {
461 			local_irq_restore(flags);
462 			return;
463 		}
464 	}
465 
466 	/* Hardware IRQ handlers cannot block, complain if they get here. */
467 	if (in_irq() || in_serving_softirq()) {
468 		lockdep_rcu_suspicious(__FILE__, __LINE__,
469 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
470 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
471 			 t->rcu_read_unlock_special.s,
472 			 t->rcu_read_unlock_special.b.blocked,
473 			 t->rcu_read_unlock_special.b.exp_need_qs,
474 			 t->rcu_read_unlock_special.b.need_qs);
475 		local_irq_restore(flags);
476 		return;
477 	}
478 
479 	/* Clean up if blocked during RCU read-side critical section. */
480 	if (special.b.blocked) {
481 		t->rcu_read_unlock_special.b.blocked = false;
482 
483 		/*
484 		 * Remove this task from the list it blocked on.  The task
485 		 * now remains queued on the rcu_node corresponding to the
486 		 * CPU it first blocked on, so there is no longer any need
487 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
488 		 */
489 		rnp = t->rcu_blocked_node;
490 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
493 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494 		empty_exp = sync_rcu_preempt_exp_done(rnp);
495 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
496 		np = rcu_next_node_entry(t, rnp);
497 		list_del_init(&t->rcu_node_entry);
498 		t->rcu_blocked_node = NULL;
499 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
500 						rnp->gpnum, t->pid);
501 		if (&t->rcu_node_entry == rnp->gp_tasks)
502 			rnp->gp_tasks = np;
503 		if (&t->rcu_node_entry == rnp->exp_tasks)
504 			rnp->exp_tasks = np;
505 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
506 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
507 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
508 			if (&t->rcu_node_entry == rnp->boost_tasks)
509 				rnp->boost_tasks = np;
510 		}
511 
512 		/*
513 		 * If this was the last task on the current list, and if
514 		 * we aren't waiting on any CPUs, report the quiescent state.
515 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
516 		 * so we must take a snapshot of the expedited state.
517 		 */
518 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
519 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
520 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
521 							 rnp->gpnum,
522 							 0, rnp->qsmask,
523 							 rnp->level,
524 							 rnp->grplo,
525 							 rnp->grphi,
526 							 !!rnp->gp_tasks);
527 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
528 		} else {
529 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
530 		}
531 
532 		/* Unboost if we were boosted. */
533 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
534 			rt_mutex_futex_unlock(&rnp->boost_mtx);
535 
536 		/*
537 		 * If this was the last task on the expedited lists,
538 		 * then we need to report up the rcu_node hierarchy.
539 		 */
540 		if (!empty_exp && empty_exp_now)
541 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
542 	} else {
543 		local_irq_restore(flags);
544 	}
545 }
546 
547 /*
548  * Dump detailed information for all tasks blocking the current RCU
549  * grace period on the specified rcu_node structure.
550  */
551 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
552 {
553 	unsigned long flags;
554 	struct task_struct *t;
555 
556 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
557 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
558 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
559 		return;
560 	}
561 	t = list_entry(rnp->gp_tasks->prev,
562 		       struct task_struct, rcu_node_entry);
563 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
564 		sched_show_task(t);
565 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
566 }
567 
568 /*
569  * Dump detailed information for all tasks blocking the current RCU
570  * grace period.
571  */
572 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
573 {
574 	struct rcu_node *rnp = rcu_get_root(rsp);
575 
576 	rcu_print_detail_task_stall_rnp(rnp);
577 	rcu_for_each_leaf_node(rsp, rnp)
578 		rcu_print_detail_task_stall_rnp(rnp);
579 }
580 
581 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
582 {
583 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
584 	       rnp->level, rnp->grplo, rnp->grphi);
585 }
586 
587 static void rcu_print_task_stall_end(void)
588 {
589 	pr_cont("\n");
590 }
591 
592 /*
593  * Scan the current list of tasks blocked within RCU read-side critical
594  * sections, printing out the tid of each.
595  */
596 static int rcu_print_task_stall(struct rcu_node *rnp)
597 {
598 	struct task_struct *t;
599 	int ndetected = 0;
600 
601 	if (!rcu_preempt_blocked_readers_cgp(rnp))
602 		return 0;
603 	rcu_print_task_stall_begin(rnp);
604 	t = list_entry(rnp->gp_tasks->prev,
605 		       struct task_struct, rcu_node_entry);
606 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
607 		pr_cont(" P%d", t->pid);
608 		ndetected++;
609 	}
610 	rcu_print_task_stall_end();
611 	return ndetected;
612 }
613 
614 /*
615  * Scan the current list of tasks blocked within RCU read-side critical
616  * sections, printing out the tid of each that is blocking the current
617  * expedited grace period.
618  */
619 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
620 {
621 	struct task_struct *t;
622 	int ndetected = 0;
623 
624 	if (!rnp->exp_tasks)
625 		return 0;
626 	t = list_entry(rnp->exp_tasks->prev,
627 		       struct task_struct, rcu_node_entry);
628 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
629 		pr_cont(" P%d", t->pid);
630 		ndetected++;
631 	}
632 	return ndetected;
633 }
634 
635 /*
636  * Check that the list of blocked tasks for the newly completed grace
637  * period is in fact empty.  It is a serious bug to complete a grace
638  * period that still has RCU readers blocked!  This function must be
639  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
640  * must be held by the caller.
641  *
642  * Also, if there are blocked tasks on the list, they automatically
643  * block the newly created grace period, so set up ->gp_tasks accordingly.
644  */
645 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
646 {
647 	struct task_struct *t;
648 
649 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
650 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
651 	if (rcu_preempt_has_tasks(rnp)) {
652 		rnp->gp_tasks = rnp->blkd_tasks.next;
653 		t = container_of(rnp->gp_tasks, struct task_struct,
654 				 rcu_node_entry);
655 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
656 						rnp->gpnum, t->pid);
657 	}
658 	WARN_ON_ONCE(rnp->qsmask);
659 }
660 
661 /*
662  * Check for a quiescent state from the current CPU.  When a task blocks,
663  * the task is recorded in the corresponding CPU's rcu_node structure,
664  * which is checked elsewhere.
665  *
666  * Caller must disable hard irqs.
667  */
668 static void rcu_preempt_check_callbacks(void)
669 {
670 	struct task_struct *t = current;
671 
672 	if (t->rcu_read_lock_nesting == 0) {
673 		rcu_preempt_qs();
674 		return;
675 	}
676 	if (t->rcu_read_lock_nesting > 0 &&
677 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
678 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
679 		t->rcu_read_unlock_special.b.need_qs = true;
680 }
681 
682 #ifdef CONFIG_RCU_BOOST
683 
684 static void rcu_preempt_do_callbacks(void)
685 {
686 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
687 }
688 
689 #endif /* #ifdef CONFIG_RCU_BOOST */
690 
691 /**
692  * call_rcu() - Queue an RCU callback for invocation after a grace period.
693  * @head: structure to be used for queueing the RCU updates.
694  * @func: actual callback function to be invoked after the grace period
695  *
696  * The callback function will be invoked some time after a full grace
697  * period elapses, in other words after all pre-existing RCU read-side
698  * critical sections have completed.  However, the callback function
699  * might well execute concurrently with RCU read-side critical sections
700  * that started after call_rcu() was invoked.  RCU read-side critical
701  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
702  * and may be nested.
703  *
704  * Note that all CPUs must agree that the grace period extended beyond
705  * all pre-existing RCU read-side critical section.  On systems with more
706  * than one CPU, this means that when "func()" is invoked, each CPU is
707  * guaranteed to have executed a full memory barrier since the end of its
708  * last RCU read-side critical section whose beginning preceded the call
709  * to call_rcu().  It also means that each CPU executing an RCU read-side
710  * critical section that continues beyond the start of "func()" must have
711  * executed a memory barrier after the call_rcu() but before the beginning
712  * of that RCU read-side critical section.  Note that these guarantees
713  * include CPUs that are offline, idle, or executing in user mode, as
714  * well as CPUs that are executing in the kernel.
715  *
716  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
717  * resulting RCU callback function "func()", then both CPU A and CPU B are
718  * guaranteed to execute a full memory barrier during the time interval
719  * between the call to call_rcu() and the invocation of "func()" -- even
720  * if CPU A and CPU B are the same CPU (but again only if the system has
721  * more than one CPU).
722  */
723 void call_rcu(struct rcu_head *head, rcu_callback_t func)
724 {
725 	__call_rcu(head, func, rcu_state_p, -1, 0);
726 }
727 EXPORT_SYMBOL_GPL(call_rcu);
728 
729 /**
730  * synchronize_rcu - wait until a grace period has elapsed.
731  *
732  * Control will return to the caller some time after a full grace
733  * period has elapsed, in other words after all currently executing RCU
734  * read-side critical sections have completed.  Note, however, that
735  * upon return from synchronize_rcu(), the caller might well be executing
736  * concurrently with new RCU read-side critical sections that began while
737  * synchronize_rcu() was waiting.  RCU read-side critical sections are
738  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
739  *
740  * See the description of synchronize_sched() for more detailed
741  * information on memory-ordering guarantees.  However, please note
742  * that -only- the memory-ordering guarantees apply.  For example,
743  * synchronize_rcu() is -not- guaranteed to wait on things like code
744  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
745  * guaranteed to wait on RCU read-side critical sections, that is, sections
746  * of code protected by rcu_read_lock().
747  */
748 void synchronize_rcu(void)
749 {
750 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
751 			 lock_is_held(&rcu_lock_map) ||
752 			 lock_is_held(&rcu_sched_lock_map),
753 			 "Illegal synchronize_rcu() in RCU read-side critical section");
754 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
755 		return;
756 	if (rcu_gp_is_expedited())
757 		synchronize_rcu_expedited();
758 	else
759 		wait_rcu_gp(call_rcu);
760 }
761 EXPORT_SYMBOL_GPL(synchronize_rcu);
762 
763 /**
764  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
765  *
766  * Note that this primitive does not necessarily wait for an RCU grace period
767  * to complete.  For example, if there are no RCU callbacks queued anywhere
768  * in the system, then rcu_barrier() is within its rights to return
769  * immediately, without waiting for anything, much less an RCU grace period.
770  */
771 void rcu_barrier(void)
772 {
773 	_rcu_barrier(rcu_state_p);
774 }
775 EXPORT_SYMBOL_GPL(rcu_barrier);
776 
777 /*
778  * Initialize preemptible RCU's state structures.
779  */
780 static void __init __rcu_init_preempt(void)
781 {
782 	rcu_init_one(rcu_state_p);
783 }
784 
785 /*
786  * Check for a task exiting while in a preemptible-RCU read-side
787  * critical section, clean up if so.  No need to issue warnings,
788  * as debug_check_no_locks_held() already does this if lockdep
789  * is enabled.
790  */
791 void exit_rcu(void)
792 {
793 	struct task_struct *t = current;
794 
795 	if (likely(list_empty(&current->rcu_node_entry)))
796 		return;
797 	t->rcu_read_lock_nesting = 1;
798 	barrier();
799 	t->rcu_read_unlock_special.b.blocked = true;
800 	__rcu_read_unlock();
801 }
802 
803 #else /* #ifdef CONFIG_PREEMPT_RCU */
804 
805 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
806 
807 /*
808  * Tell them what RCU they are running.
809  */
810 static void __init rcu_bootup_announce(void)
811 {
812 	pr_info("Hierarchical RCU implementation.\n");
813 	rcu_bootup_announce_oddness();
814 }
815 
816 /*
817  * Because preemptible RCU does not exist, we never have to check for
818  * CPUs being in quiescent states.
819  */
820 static void rcu_preempt_note_context_switch(bool preempt)
821 {
822 }
823 
824 /*
825  * Because preemptible RCU does not exist, there are never any preempted
826  * RCU readers.
827  */
828 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
829 {
830 	return 0;
831 }
832 
833 /*
834  * Because there is no preemptible RCU, there can be no readers blocked.
835  */
836 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
837 {
838 	return false;
839 }
840 
841 /*
842  * Because preemptible RCU does not exist, we never have to check for
843  * tasks blocked within RCU read-side critical sections.
844  */
845 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
846 {
847 }
848 
849 /*
850  * Because preemptible RCU does not exist, we never have to check for
851  * tasks blocked within RCU read-side critical sections.
852  */
853 static int rcu_print_task_stall(struct rcu_node *rnp)
854 {
855 	return 0;
856 }
857 
858 /*
859  * Because preemptible RCU does not exist, we never have to check for
860  * tasks blocked within RCU read-side critical sections that are
861  * blocking the current expedited grace period.
862  */
863 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
864 {
865 	return 0;
866 }
867 
868 /*
869  * Because there is no preemptible RCU, there can be no readers blocked,
870  * so there is no need to check for blocked tasks.  So check only for
871  * bogus qsmask values.
872  */
873 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
874 {
875 	WARN_ON_ONCE(rnp->qsmask);
876 }
877 
878 /*
879  * Because preemptible RCU does not exist, it never has any callbacks
880  * to check.
881  */
882 static void rcu_preempt_check_callbacks(void)
883 {
884 }
885 
886 /*
887  * Because preemptible RCU does not exist, rcu_barrier() is just
888  * another name for rcu_barrier_sched().
889  */
890 void rcu_barrier(void)
891 {
892 	rcu_barrier_sched();
893 }
894 EXPORT_SYMBOL_GPL(rcu_barrier);
895 
896 /*
897  * Because preemptible RCU does not exist, it need not be initialized.
898  */
899 static void __init __rcu_init_preempt(void)
900 {
901 }
902 
903 /*
904  * Because preemptible RCU does not exist, tasks cannot possibly exit
905  * while in preemptible RCU read-side critical sections.
906  */
907 void exit_rcu(void)
908 {
909 }
910 
911 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
912 
913 #ifdef CONFIG_RCU_BOOST
914 
915 static void rcu_wake_cond(struct task_struct *t, int status)
916 {
917 	/*
918 	 * If the thread is yielding, only wake it when this
919 	 * is invoked from idle
920 	 */
921 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
922 		wake_up_process(t);
923 }
924 
925 /*
926  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
927  * or ->boost_tasks, advancing the pointer to the next task in the
928  * ->blkd_tasks list.
929  *
930  * Note that irqs must be enabled: boosting the task can block.
931  * Returns 1 if there are more tasks needing to be boosted.
932  */
933 static int rcu_boost(struct rcu_node *rnp)
934 {
935 	unsigned long flags;
936 	struct task_struct *t;
937 	struct list_head *tb;
938 
939 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
940 	    READ_ONCE(rnp->boost_tasks) == NULL)
941 		return 0;  /* Nothing left to boost. */
942 
943 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
944 
945 	/*
946 	 * Recheck under the lock: all tasks in need of boosting
947 	 * might exit their RCU read-side critical sections on their own.
948 	 */
949 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
950 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
951 		return 0;
952 	}
953 
954 	/*
955 	 * Preferentially boost tasks blocking expedited grace periods.
956 	 * This cannot starve the normal grace periods because a second
957 	 * expedited grace period must boost all blocked tasks, including
958 	 * those blocking the pre-existing normal grace period.
959 	 */
960 	if (rnp->exp_tasks != NULL) {
961 		tb = rnp->exp_tasks;
962 		rnp->n_exp_boosts++;
963 	} else {
964 		tb = rnp->boost_tasks;
965 		rnp->n_normal_boosts++;
966 	}
967 	rnp->n_tasks_boosted++;
968 
969 	/*
970 	 * We boost task t by manufacturing an rt_mutex that appears to
971 	 * be held by task t.  We leave a pointer to that rt_mutex where
972 	 * task t can find it, and task t will release the mutex when it
973 	 * exits its outermost RCU read-side critical section.  Then
974 	 * simply acquiring this artificial rt_mutex will boost task
975 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
976 	 *
977 	 * Note that task t must acquire rnp->lock to remove itself from
978 	 * the ->blkd_tasks list, which it will do from exit() if from
979 	 * nowhere else.  We therefore are guaranteed that task t will
980 	 * stay around at least until we drop rnp->lock.  Note that
981 	 * rnp->lock also resolves races between our priority boosting
982 	 * and task t's exiting its outermost RCU read-side critical
983 	 * section.
984 	 */
985 	t = container_of(tb, struct task_struct, rcu_node_entry);
986 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
987 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
988 	/* Lock only for side effect: boosts task t's priority. */
989 	rt_mutex_lock(&rnp->boost_mtx);
990 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
991 
992 	return READ_ONCE(rnp->exp_tasks) != NULL ||
993 	       READ_ONCE(rnp->boost_tasks) != NULL;
994 }
995 
996 /*
997  * Priority-boosting kthread, one per leaf rcu_node.
998  */
999 static int rcu_boost_kthread(void *arg)
1000 {
1001 	struct rcu_node *rnp = (struct rcu_node *)arg;
1002 	int spincnt = 0;
1003 	int more2boost;
1004 
1005 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1006 	for (;;) {
1007 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1008 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1009 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1010 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1011 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1012 		more2boost = rcu_boost(rnp);
1013 		if (more2boost)
1014 			spincnt++;
1015 		else
1016 			spincnt = 0;
1017 		if (spincnt > 10) {
1018 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1019 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1020 			schedule_timeout_interruptible(2);
1021 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1022 			spincnt = 0;
1023 		}
1024 	}
1025 	/* NOTREACHED */
1026 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Check to see if it is time to start boosting RCU readers that are
1032  * blocking the current grace period, and, if so, tell the per-rcu_node
1033  * kthread to start boosting them.  If there is an expedited grace
1034  * period in progress, it is always time to boost.
1035  *
1036  * The caller must hold rnp->lock, which this function releases.
1037  * The ->boost_kthread_task is immortal, so we don't need to worry
1038  * about it going away.
1039  */
1040 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1041 	__releases(rnp->lock)
1042 {
1043 	struct task_struct *t;
1044 
1045 	lockdep_assert_held(&rnp->lock);
1046 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1047 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1048 		return;
1049 	}
1050 	if (rnp->exp_tasks != NULL ||
1051 	    (rnp->gp_tasks != NULL &&
1052 	     rnp->boost_tasks == NULL &&
1053 	     rnp->qsmask == 0 &&
1054 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1055 		if (rnp->exp_tasks == NULL)
1056 			rnp->boost_tasks = rnp->gp_tasks;
1057 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1058 		t = rnp->boost_kthread_task;
1059 		if (t)
1060 			rcu_wake_cond(t, rnp->boost_kthread_status);
1061 	} else {
1062 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1063 	}
1064 }
1065 
1066 /*
1067  * Wake up the per-CPU kthread to invoke RCU callbacks.
1068  */
1069 static void invoke_rcu_callbacks_kthread(void)
1070 {
1071 	unsigned long flags;
1072 
1073 	local_irq_save(flags);
1074 	__this_cpu_write(rcu_cpu_has_work, 1);
1075 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1076 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1077 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1078 			      __this_cpu_read(rcu_cpu_kthread_status));
1079 	}
1080 	local_irq_restore(flags);
1081 }
1082 
1083 /*
1084  * Is the current CPU running the RCU-callbacks kthread?
1085  * Caller must have preemption disabled.
1086  */
1087 static bool rcu_is_callbacks_kthread(void)
1088 {
1089 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1090 }
1091 
1092 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1093 
1094 /*
1095  * Do priority-boost accounting for the start of a new grace period.
1096  */
1097 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1098 {
1099 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1100 }
1101 
1102 /*
1103  * Create an RCU-boost kthread for the specified node if one does not
1104  * already exist.  We only create this kthread for preemptible RCU.
1105  * Returns zero if all is well, a negated errno otherwise.
1106  */
1107 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1108 				       struct rcu_node *rnp)
1109 {
1110 	int rnp_index = rnp - &rsp->node[0];
1111 	unsigned long flags;
1112 	struct sched_param sp;
1113 	struct task_struct *t;
1114 
1115 	if (rcu_state_p != rsp)
1116 		return 0;
1117 
1118 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1119 		return 0;
1120 
1121 	rsp->boost = 1;
1122 	if (rnp->boost_kthread_task != NULL)
1123 		return 0;
1124 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1125 			   "rcub/%d", rnp_index);
1126 	if (IS_ERR(t))
1127 		return PTR_ERR(t);
1128 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1129 	rnp->boost_kthread_task = t;
1130 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1131 	sp.sched_priority = kthread_prio;
1132 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1133 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1134 	return 0;
1135 }
1136 
1137 static void rcu_kthread_do_work(void)
1138 {
1139 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1140 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1141 	rcu_preempt_do_callbacks();
1142 }
1143 
1144 static void rcu_cpu_kthread_setup(unsigned int cpu)
1145 {
1146 	struct sched_param sp;
1147 
1148 	sp.sched_priority = kthread_prio;
1149 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1150 }
1151 
1152 static void rcu_cpu_kthread_park(unsigned int cpu)
1153 {
1154 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1155 }
1156 
1157 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1158 {
1159 	return __this_cpu_read(rcu_cpu_has_work);
1160 }
1161 
1162 /*
1163  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1164  * RCU softirq used in flavors and configurations of RCU that do not
1165  * support RCU priority boosting.
1166  */
1167 static void rcu_cpu_kthread(unsigned int cpu)
1168 {
1169 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1170 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1171 	int spincnt;
1172 
1173 	for (spincnt = 0; spincnt < 10; spincnt++) {
1174 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1175 		local_bh_disable();
1176 		*statusp = RCU_KTHREAD_RUNNING;
1177 		this_cpu_inc(rcu_cpu_kthread_loops);
1178 		local_irq_disable();
1179 		work = *workp;
1180 		*workp = 0;
1181 		local_irq_enable();
1182 		if (work)
1183 			rcu_kthread_do_work();
1184 		local_bh_enable();
1185 		if (*workp == 0) {
1186 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1187 			*statusp = RCU_KTHREAD_WAITING;
1188 			return;
1189 		}
1190 	}
1191 	*statusp = RCU_KTHREAD_YIELDING;
1192 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1193 	schedule_timeout_interruptible(2);
1194 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1195 	*statusp = RCU_KTHREAD_WAITING;
1196 }
1197 
1198 /*
1199  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1200  * served by the rcu_node in question.  The CPU hotplug lock is still
1201  * held, so the value of rnp->qsmaskinit will be stable.
1202  *
1203  * We don't include outgoingcpu in the affinity set, use -1 if there is
1204  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1205  * this function allows the kthread to execute on any CPU.
1206  */
1207 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1208 {
1209 	struct task_struct *t = rnp->boost_kthread_task;
1210 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1211 	cpumask_var_t cm;
1212 	int cpu;
1213 
1214 	if (!t)
1215 		return;
1216 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1217 		return;
1218 	for_each_leaf_node_possible_cpu(rnp, cpu)
1219 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1220 		    cpu != outgoingcpu)
1221 			cpumask_set_cpu(cpu, cm);
1222 	if (cpumask_weight(cm) == 0)
1223 		cpumask_setall(cm);
1224 	set_cpus_allowed_ptr(t, cm);
1225 	free_cpumask_var(cm);
1226 }
1227 
1228 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1229 	.store			= &rcu_cpu_kthread_task,
1230 	.thread_should_run	= rcu_cpu_kthread_should_run,
1231 	.thread_fn		= rcu_cpu_kthread,
1232 	.thread_comm		= "rcuc/%u",
1233 	.setup			= rcu_cpu_kthread_setup,
1234 	.park			= rcu_cpu_kthread_park,
1235 };
1236 
1237 /*
1238  * Spawn boost kthreads -- called as soon as the scheduler is running.
1239  */
1240 static void __init rcu_spawn_boost_kthreads(void)
1241 {
1242 	struct rcu_node *rnp;
1243 	int cpu;
1244 
1245 	for_each_possible_cpu(cpu)
1246 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1247 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1248 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1249 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1250 }
1251 
1252 static void rcu_prepare_kthreads(int cpu)
1253 {
1254 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1255 	struct rcu_node *rnp = rdp->mynode;
1256 
1257 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1258 	if (rcu_scheduler_fully_active)
1259 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1260 }
1261 
1262 #else /* #ifdef CONFIG_RCU_BOOST */
1263 
1264 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1265 	__releases(rnp->lock)
1266 {
1267 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1268 }
1269 
1270 static void invoke_rcu_callbacks_kthread(void)
1271 {
1272 	WARN_ON_ONCE(1);
1273 }
1274 
1275 static bool rcu_is_callbacks_kthread(void)
1276 {
1277 	return false;
1278 }
1279 
1280 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1281 {
1282 }
1283 
1284 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1285 {
1286 }
1287 
1288 static void __init rcu_spawn_boost_kthreads(void)
1289 {
1290 }
1291 
1292 static void rcu_prepare_kthreads(int cpu)
1293 {
1294 }
1295 
1296 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1297 
1298 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1299 
1300 /*
1301  * Check to see if any future RCU-related work will need to be done
1302  * by the current CPU, even if none need be done immediately, returning
1303  * 1 if so.  This function is part of the RCU implementation; it is -not-
1304  * an exported member of the RCU API.
1305  *
1306  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1307  * any flavor of RCU.
1308  */
1309 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1310 {
1311 	*nextevt = KTIME_MAX;
1312 	return rcu_cpu_has_callbacks(NULL);
1313 }
1314 
1315 /*
1316  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1317  * after it.
1318  */
1319 static void rcu_cleanup_after_idle(void)
1320 {
1321 }
1322 
1323 /*
1324  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1325  * is nothing.
1326  */
1327 static void rcu_prepare_for_idle(void)
1328 {
1329 }
1330 
1331 /*
1332  * Don't bother keeping a running count of the number of RCU callbacks
1333  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1334  */
1335 static void rcu_idle_count_callbacks_posted(void)
1336 {
1337 }
1338 
1339 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1340 
1341 /*
1342  * This code is invoked when a CPU goes idle, at which point we want
1343  * to have the CPU do everything required for RCU so that it can enter
1344  * the energy-efficient dyntick-idle mode.  This is handled by a
1345  * state machine implemented by rcu_prepare_for_idle() below.
1346  *
1347  * The following three proprocessor symbols control this state machine:
1348  *
1349  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1350  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1351  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1352  *	benchmarkers who might otherwise be tempted to set this to a large
1353  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1354  *	system.  And if you are -that- concerned about energy efficiency,
1355  *	just power the system down and be done with it!
1356  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1357  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1358  *	callbacks pending.  Setting this too high can OOM your system.
1359  *
1360  * The values below work well in practice.  If future workloads require
1361  * adjustment, they can be converted into kernel config parameters, though
1362  * making the state machine smarter might be a better option.
1363  */
1364 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1365 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1366 
1367 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1368 module_param(rcu_idle_gp_delay, int, 0644);
1369 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1370 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1371 
1372 /*
1373  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1374  * only if it has been awhile since the last time we did so.  Afterwards,
1375  * if there are any callbacks ready for immediate invocation, return true.
1376  */
1377 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1378 {
1379 	bool cbs_ready = false;
1380 	struct rcu_data *rdp;
1381 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1382 	struct rcu_node *rnp;
1383 	struct rcu_state *rsp;
1384 
1385 	/* Exit early if we advanced recently. */
1386 	if (jiffies == rdtp->last_advance_all)
1387 		return false;
1388 	rdtp->last_advance_all = jiffies;
1389 
1390 	for_each_rcu_flavor(rsp) {
1391 		rdp = this_cpu_ptr(rsp->rda);
1392 		rnp = rdp->mynode;
1393 
1394 		/*
1395 		 * Don't bother checking unless a grace period has
1396 		 * completed since we last checked and there are
1397 		 * callbacks not yet ready to invoke.
1398 		 */
1399 		if ((rdp->completed != rnp->completed ||
1400 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1401 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1402 			note_gp_changes(rsp, rdp);
1403 
1404 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1405 			cbs_ready = true;
1406 	}
1407 	return cbs_ready;
1408 }
1409 
1410 /*
1411  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1412  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1413  * caller to set the timeout based on whether or not there are non-lazy
1414  * callbacks.
1415  *
1416  * The caller must have disabled interrupts.
1417  */
1418 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1419 {
1420 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421 	unsigned long dj;
1422 
1423 	lockdep_assert_irqs_disabled();
1424 
1425 	/* Snapshot to detect later posting of non-lazy callback. */
1426 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1427 
1428 	/* If no callbacks, RCU doesn't need the CPU. */
1429 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1430 		*nextevt = KTIME_MAX;
1431 		return 0;
1432 	}
1433 
1434 	/* Attempt to advance callbacks. */
1435 	if (rcu_try_advance_all_cbs()) {
1436 		/* Some ready to invoke, so initiate later invocation. */
1437 		invoke_rcu_core();
1438 		return 1;
1439 	}
1440 	rdtp->last_accelerate = jiffies;
1441 
1442 	/* Request timer delay depending on laziness, and round. */
1443 	if (!rdtp->all_lazy) {
1444 		dj = round_up(rcu_idle_gp_delay + jiffies,
1445 			       rcu_idle_gp_delay) - jiffies;
1446 	} else {
1447 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1448 	}
1449 	*nextevt = basemono + dj * TICK_NSEC;
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Prepare a CPU for idle from an RCU perspective.  The first major task
1455  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1456  * The second major task is to check to see if a non-lazy callback has
1457  * arrived at a CPU that previously had only lazy callbacks.  The third
1458  * major task is to accelerate (that is, assign grace-period numbers to)
1459  * any recently arrived callbacks.
1460  *
1461  * The caller must have disabled interrupts.
1462  */
1463 static void rcu_prepare_for_idle(void)
1464 {
1465 	bool needwake;
1466 	struct rcu_data *rdp;
1467 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1468 	struct rcu_node *rnp;
1469 	struct rcu_state *rsp;
1470 	int tne;
1471 
1472 	lockdep_assert_irqs_disabled();
1473 	if (rcu_is_nocb_cpu(smp_processor_id()))
1474 		return;
1475 
1476 	/* Handle nohz enablement switches conservatively. */
1477 	tne = READ_ONCE(tick_nohz_active);
1478 	if (tne != rdtp->tick_nohz_enabled_snap) {
1479 		if (rcu_cpu_has_callbacks(NULL))
1480 			invoke_rcu_core(); /* force nohz to see update. */
1481 		rdtp->tick_nohz_enabled_snap = tne;
1482 		return;
1483 	}
1484 	if (!tne)
1485 		return;
1486 
1487 	/*
1488 	 * If a non-lazy callback arrived at a CPU having only lazy
1489 	 * callbacks, invoke RCU core for the side-effect of recalculating
1490 	 * idle duration on re-entry to idle.
1491 	 */
1492 	if (rdtp->all_lazy &&
1493 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1494 		rdtp->all_lazy = false;
1495 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1496 		invoke_rcu_core();
1497 		return;
1498 	}
1499 
1500 	/*
1501 	 * If we have not yet accelerated this jiffy, accelerate all
1502 	 * callbacks on this CPU.
1503 	 */
1504 	if (rdtp->last_accelerate == jiffies)
1505 		return;
1506 	rdtp->last_accelerate = jiffies;
1507 	for_each_rcu_flavor(rsp) {
1508 		rdp = this_cpu_ptr(rsp->rda);
1509 		if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1510 			continue;
1511 		rnp = rdp->mynode;
1512 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1513 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1514 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1515 		if (needwake)
1516 			rcu_gp_kthread_wake(rsp);
1517 	}
1518 }
1519 
1520 /*
1521  * Clean up for exit from idle.  Attempt to advance callbacks based on
1522  * any grace periods that elapsed while the CPU was idle, and if any
1523  * callbacks are now ready to invoke, initiate invocation.
1524  */
1525 static void rcu_cleanup_after_idle(void)
1526 {
1527 	lockdep_assert_irqs_disabled();
1528 	if (rcu_is_nocb_cpu(smp_processor_id()))
1529 		return;
1530 	if (rcu_try_advance_all_cbs())
1531 		invoke_rcu_core();
1532 }
1533 
1534 /*
1535  * Keep a running count of the number of non-lazy callbacks posted
1536  * on this CPU.  This running counter (which is never decremented) allows
1537  * rcu_prepare_for_idle() to detect when something out of the idle loop
1538  * posts a callback, even if an equal number of callbacks are invoked.
1539  * Of course, callbacks should only be posted from within a trace event
1540  * designed to be called from idle or from within RCU_NONIDLE().
1541  */
1542 static void rcu_idle_count_callbacks_posted(void)
1543 {
1544 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1545 }
1546 
1547 /*
1548  * Data for flushing lazy RCU callbacks at OOM time.
1549  */
1550 static atomic_t oom_callback_count;
1551 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1552 
1553 /*
1554  * RCU OOM callback -- decrement the outstanding count and deliver the
1555  * wake-up if we are the last one.
1556  */
1557 static void rcu_oom_callback(struct rcu_head *rhp)
1558 {
1559 	if (atomic_dec_and_test(&oom_callback_count))
1560 		wake_up(&oom_callback_wq);
1561 }
1562 
1563 /*
1564  * Post an rcu_oom_notify callback on the current CPU if it has at
1565  * least one lazy callback.  This will unnecessarily post callbacks
1566  * to CPUs that already have a non-lazy callback at the end of their
1567  * callback list, but this is an infrequent operation, so accept some
1568  * extra overhead to keep things simple.
1569  */
1570 static void rcu_oom_notify_cpu(void *unused)
1571 {
1572 	struct rcu_state *rsp;
1573 	struct rcu_data *rdp;
1574 
1575 	for_each_rcu_flavor(rsp) {
1576 		rdp = raw_cpu_ptr(rsp->rda);
1577 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1578 			atomic_inc(&oom_callback_count);
1579 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1580 		}
1581 	}
1582 }
1583 
1584 /*
1585  * If low on memory, ensure that each CPU has a non-lazy callback.
1586  * This will wake up CPUs that have only lazy callbacks, in turn
1587  * ensuring that they free up the corresponding memory in a timely manner.
1588  * Because an uncertain amount of memory will be freed in some uncertain
1589  * timeframe, we do not claim to have freed anything.
1590  */
1591 static int rcu_oom_notify(struct notifier_block *self,
1592 			  unsigned long notused, void *nfreed)
1593 {
1594 	int cpu;
1595 
1596 	/* Wait for callbacks from earlier instance to complete. */
1597 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1598 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1599 
1600 	/*
1601 	 * Prevent premature wakeup: ensure that all increments happen
1602 	 * before there is a chance of the counter reaching zero.
1603 	 */
1604 	atomic_set(&oom_callback_count, 1);
1605 
1606 	for_each_online_cpu(cpu) {
1607 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1608 		cond_resched_rcu_qs();
1609 	}
1610 
1611 	/* Unconditionally decrement: no need to wake ourselves up. */
1612 	atomic_dec(&oom_callback_count);
1613 
1614 	return NOTIFY_OK;
1615 }
1616 
1617 static struct notifier_block rcu_oom_nb = {
1618 	.notifier_call = rcu_oom_notify
1619 };
1620 
1621 static int __init rcu_register_oom_notifier(void)
1622 {
1623 	register_oom_notifier(&rcu_oom_nb);
1624 	return 0;
1625 }
1626 early_initcall(rcu_register_oom_notifier);
1627 
1628 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1629 
1630 #ifdef CONFIG_RCU_FAST_NO_HZ
1631 
1632 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1633 {
1634 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1635 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1636 
1637 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1638 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1639 		ulong2long(nlpd),
1640 		rdtp->all_lazy ? 'L' : '.',
1641 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1642 }
1643 
1644 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1645 
1646 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1647 {
1648 	*cp = '\0';
1649 }
1650 
1651 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1652 
1653 /* Initiate the stall-info list. */
1654 static void print_cpu_stall_info_begin(void)
1655 {
1656 	pr_cont("\n");
1657 }
1658 
1659 /*
1660  * Print out diagnostic information for the specified stalled CPU.
1661  *
1662  * If the specified CPU is aware of the current RCU grace period
1663  * (flavor specified by rsp), then print the number of scheduling
1664  * clock interrupts the CPU has taken during the time that it has
1665  * been aware.  Otherwise, print the number of RCU grace periods
1666  * that this CPU is ignorant of, for example, "1" if the CPU was
1667  * aware of the previous grace period.
1668  *
1669  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1670  */
1671 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1672 {
1673 	unsigned long delta;
1674 	char fast_no_hz[72];
1675 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1676 	struct rcu_dynticks *rdtp = rdp->dynticks;
1677 	char *ticks_title;
1678 	unsigned long ticks_value;
1679 
1680 	if (rsp->gpnum == rdp->gpnum) {
1681 		ticks_title = "ticks this GP";
1682 		ticks_value = rdp->ticks_this_gp;
1683 	} else {
1684 		ticks_title = "GPs behind";
1685 		ticks_value = rsp->gpnum - rdp->gpnum;
1686 	}
1687 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1688 	delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1689 	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1690 	       cpu,
1691 	       "O."[!!cpu_online(cpu)],
1692 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1693 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1694 	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1695 			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1696 				"!."[!delta],
1697 	       ticks_value, ticks_title,
1698 	       rcu_dynticks_snap(rdtp) & 0xfff,
1699 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1700 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1701 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1702 	       fast_no_hz);
1703 }
1704 
1705 /* Terminate the stall-info list. */
1706 static void print_cpu_stall_info_end(void)
1707 {
1708 	pr_err("\t");
1709 }
1710 
1711 /* Zero ->ticks_this_gp for all flavors of RCU. */
1712 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1713 {
1714 	rdp->ticks_this_gp = 0;
1715 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1716 }
1717 
1718 /* Increment ->ticks_this_gp for all flavors of RCU. */
1719 static void increment_cpu_stall_ticks(void)
1720 {
1721 	struct rcu_state *rsp;
1722 
1723 	for_each_rcu_flavor(rsp)
1724 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1725 }
1726 
1727 #ifdef CONFIG_RCU_NOCB_CPU
1728 
1729 /*
1730  * Offload callback processing from the boot-time-specified set of CPUs
1731  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1732  * kthread created that pulls the callbacks from the corresponding CPU,
1733  * waits for a grace period to elapse, and invokes the callbacks.
1734  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1735  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1736  * has been specified, in which case each kthread actively polls its
1737  * CPU.  (Which isn't so great for energy efficiency, but which does
1738  * reduce RCU's overhead on that CPU.)
1739  *
1740  * This is intended to be used in conjunction with Frederic Weisbecker's
1741  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1742  * running CPU-bound user-mode computations.
1743  *
1744  * Offloading of callback processing could also in theory be used as
1745  * an energy-efficiency measure because CPUs with no RCU callbacks
1746  * queued are more aggressive about entering dyntick-idle mode.
1747  */
1748 
1749 
1750 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1751 static int __init rcu_nocb_setup(char *str)
1752 {
1753 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1754 	cpulist_parse(str, rcu_nocb_mask);
1755 	return 1;
1756 }
1757 __setup("rcu_nocbs=", rcu_nocb_setup);
1758 
1759 static int __init parse_rcu_nocb_poll(char *arg)
1760 {
1761 	rcu_nocb_poll = true;
1762 	return 0;
1763 }
1764 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1765 
1766 /*
1767  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1768  * grace period.
1769  */
1770 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1771 {
1772 	swake_up_all(sq);
1773 }
1774 
1775 /*
1776  * Set the root rcu_node structure's ->need_future_gp field
1777  * based on the sum of those of all rcu_node structures.  This does
1778  * double-count the root rcu_node structure's requests, but this
1779  * is necessary to handle the possibility of a rcu_nocb_kthread()
1780  * having awakened during the time that the rcu_node structures
1781  * were being updated for the end of the previous grace period.
1782  */
1783 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1784 {
1785 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1786 }
1787 
1788 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1789 {
1790 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1791 }
1792 
1793 static void rcu_init_one_nocb(struct rcu_node *rnp)
1794 {
1795 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1796 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1797 }
1798 
1799 /* Is the specified CPU a no-CBs CPU? */
1800 bool rcu_is_nocb_cpu(int cpu)
1801 {
1802 	if (cpumask_available(rcu_nocb_mask))
1803 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1804 	return false;
1805 }
1806 
1807 /*
1808  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1809  * and this function releases it.
1810  */
1811 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1812 			       unsigned long flags)
1813 	__releases(rdp->nocb_lock)
1814 {
1815 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1816 
1817 	lockdep_assert_held(&rdp->nocb_lock);
1818 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1819 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1820 		return;
1821 	}
1822 	if (rdp_leader->nocb_leader_sleep || force) {
1823 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1824 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1825 		del_timer(&rdp->nocb_timer);
1826 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1827 		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1828 		swake_up(&rdp_leader->nocb_wq);
1829 	} else {
1830 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1831 	}
1832 }
1833 
1834 /*
1835  * Kick the leader kthread for this NOCB group, but caller has not
1836  * acquired locks.
1837  */
1838 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1839 {
1840 	unsigned long flags;
1841 
1842 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1843 	__wake_nocb_leader(rdp, force, flags);
1844 }
1845 
1846 /*
1847  * Arrange to wake the leader kthread for this NOCB group at some
1848  * future time when it is safe to do so.
1849  */
1850 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1851 				   const char *reason)
1852 {
1853 	unsigned long flags;
1854 
1855 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1856 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1857 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1858 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1859 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1860 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1861 }
1862 
1863 /*
1864  * Does the specified CPU need an RCU callback for the specified flavor
1865  * of rcu_barrier()?
1866  */
1867 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1868 {
1869 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1870 	unsigned long ret;
1871 #ifdef CONFIG_PROVE_RCU
1872 	struct rcu_head *rhp;
1873 #endif /* #ifdef CONFIG_PROVE_RCU */
1874 
1875 	/*
1876 	 * Check count of all no-CBs callbacks awaiting invocation.
1877 	 * There needs to be a barrier before this function is called,
1878 	 * but associated with a prior determination that no more
1879 	 * callbacks would be posted.  In the worst case, the first
1880 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1881 	 * necessarily rely on this, not a substitute for the caller
1882 	 * getting the concurrency design right!).  There must also be
1883 	 * a barrier between the following load an posting of a callback
1884 	 * (if a callback is in fact needed).  This is associated with an
1885 	 * atomic_inc() in the caller.
1886 	 */
1887 	ret = atomic_long_read(&rdp->nocb_q_count);
1888 
1889 #ifdef CONFIG_PROVE_RCU
1890 	rhp = READ_ONCE(rdp->nocb_head);
1891 	if (!rhp)
1892 		rhp = READ_ONCE(rdp->nocb_gp_head);
1893 	if (!rhp)
1894 		rhp = READ_ONCE(rdp->nocb_follower_head);
1895 
1896 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1897 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1898 	    rcu_scheduler_fully_active) {
1899 		/* RCU callback enqueued before CPU first came online??? */
1900 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1901 		       cpu, rhp->func);
1902 		WARN_ON_ONCE(1);
1903 	}
1904 #endif /* #ifdef CONFIG_PROVE_RCU */
1905 
1906 	return !!ret;
1907 }
1908 
1909 /*
1910  * Enqueue the specified string of rcu_head structures onto the specified
1911  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1912  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1913  * counts are supplied by rhcount and rhcount_lazy.
1914  *
1915  * If warranted, also wake up the kthread servicing this CPUs queues.
1916  */
1917 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1918 				    struct rcu_head *rhp,
1919 				    struct rcu_head **rhtp,
1920 				    int rhcount, int rhcount_lazy,
1921 				    unsigned long flags)
1922 {
1923 	int len;
1924 	struct rcu_head **old_rhpp;
1925 	struct task_struct *t;
1926 
1927 	/* Enqueue the callback on the nocb list and update counts. */
1928 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1929 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1930 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1931 	WRITE_ONCE(*old_rhpp, rhp);
1932 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1933 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1934 
1935 	/* If we are not being polled and there is a kthread, awaken it ... */
1936 	t = READ_ONCE(rdp->nocb_kthread);
1937 	if (rcu_nocb_poll || !t) {
1938 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1939 				    TPS("WakeNotPoll"));
1940 		return;
1941 	}
1942 	len = atomic_long_read(&rdp->nocb_q_count);
1943 	if (old_rhpp == &rdp->nocb_head) {
1944 		if (!irqs_disabled_flags(flags)) {
1945 			/* ... if queue was empty ... */
1946 			wake_nocb_leader(rdp, false);
1947 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1948 					    TPS("WakeEmpty"));
1949 		} else {
1950 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1951 					       TPS("WakeEmptyIsDeferred"));
1952 		}
1953 		rdp->qlen_last_fqs_check = 0;
1954 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1955 		/* ... or if many callbacks queued. */
1956 		if (!irqs_disabled_flags(flags)) {
1957 			wake_nocb_leader(rdp, true);
1958 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1959 					    TPS("WakeOvf"));
1960 		} else {
1961 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1962 					       TPS("WakeOvfIsDeferred"));
1963 		}
1964 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1965 	} else {
1966 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1967 	}
1968 	return;
1969 }
1970 
1971 /*
1972  * This is a helper for __call_rcu(), which invokes this when the normal
1973  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1974  * function returns failure back to __call_rcu(), which can complain
1975  * appropriately.
1976  *
1977  * Otherwise, this function queues the callback where the corresponding
1978  * "rcuo" kthread can find it.
1979  */
1980 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1981 			    bool lazy, unsigned long flags)
1982 {
1983 
1984 	if (!rcu_is_nocb_cpu(rdp->cpu))
1985 		return false;
1986 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1987 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1988 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1989 					 (unsigned long)rhp->func,
1990 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1991 					 -atomic_long_read(&rdp->nocb_q_count));
1992 	else
1993 		trace_rcu_callback(rdp->rsp->name, rhp,
1994 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1995 				   -atomic_long_read(&rdp->nocb_q_count));
1996 
1997 	/*
1998 	 * If called from an extended quiescent state with interrupts
1999 	 * disabled, invoke the RCU core in order to allow the idle-entry
2000 	 * deferred-wakeup check to function.
2001 	 */
2002 	if (irqs_disabled_flags(flags) &&
2003 	    !rcu_is_watching() &&
2004 	    cpu_online(smp_processor_id()))
2005 		invoke_rcu_core();
2006 
2007 	return true;
2008 }
2009 
2010 /*
2011  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2012  * not a no-CBs CPU.
2013  */
2014 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2015 						     struct rcu_data *rdp,
2016 						     unsigned long flags)
2017 {
2018 	lockdep_assert_irqs_disabled();
2019 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2020 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2021 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2022 				rcu_segcblist_tail(&rdp->cblist),
2023 				rcu_segcblist_n_cbs(&rdp->cblist),
2024 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2025 	rcu_segcblist_init(&rdp->cblist);
2026 	rcu_segcblist_disable(&rdp->cblist);
2027 	return true;
2028 }
2029 
2030 /*
2031  * If necessary, kick off a new grace period, and either way wait
2032  * for a subsequent grace period to complete.
2033  */
2034 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2035 {
2036 	unsigned long c;
2037 	bool d;
2038 	unsigned long flags;
2039 	bool needwake;
2040 	struct rcu_node *rnp = rdp->mynode;
2041 
2042 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2043 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2044 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2045 	if (needwake)
2046 		rcu_gp_kthread_wake(rdp->rsp);
2047 
2048 	/*
2049 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2050 	 * up the load average.
2051 	 */
2052 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2053 	for (;;) {
2054 		swait_event_interruptible(
2055 			rnp->nocb_gp_wq[c & 0x1],
2056 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2057 		if (likely(d))
2058 			break;
2059 		WARN_ON(signal_pending(current));
2060 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2061 	}
2062 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2063 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2064 }
2065 
2066 /*
2067  * Leaders come here to wait for additional callbacks to show up.
2068  * This function does not return until callbacks appear.
2069  */
2070 static void nocb_leader_wait(struct rcu_data *my_rdp)
2071 {
2072 	bool firsttime = true;
2073 	unsigned long flags;
2074 	bool gotcbs;
2075 	struct rcu_data *rdp;
2076 	struct rcu_head **tail;
2077 
2078 wait_again:
2079 
2080 	/* Wait for callbacks to appear. */
2081 	if (!rcu_nocb_poll) {
2082 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2083 		swait_event_interruptible(my_rdp->nocb_wq,
2084 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2085 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2086 		my_rdp->nocb_leader_sleep = true;
2087 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2088 		del_timer(&my_rdp->nocb_timer);
2089 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2090 	} else if (firsttime) {
2091 		firsttime = false; /* Don't drown trace log with "Poll"! */
2092 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2093 	}
2094 
2095 	/*
2096 	 * Each pass through the following loop checks a follower for CBs.
2097 	 * We are our own first follower.  Any CBs found are moved to
2098 	 * nocb_gp_head, where they await a grace period.
2099 	 */
2100 	gotcbs = false;
2101 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2102 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2103 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2104 		if (!rdp->nocb_gp_head)
2105 			continue;  /* No CBs here, try next follower. */
2106 
2107 		/* Move callbacks to wait-for-GP list, which is empty. */
2108 		WRITE_ONCE(rdp->nocb_head, NULL);
2109 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2110 		gotcbs = true;
2111 	}
2112 
2113 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2114 	if (unlikely(!gotcbs)) {
2115 		WARN_ON(signal_pending(current));
2116 		if (rcu_nocb_poll) {
2117 			schedule_timeout_interruptible(1);
2118 		} else {
2119 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2120 					    TPS("WokeEmpty"));
2121 		}
2122 		goto wait_again;
2123 	}
2124 
2125 	/* Wait for one grace period. */
2126 	rcu_nocb_wait_gp(my_rdp);
2127 
2128 	/* Each pass through the following loop wakes a follower, if needed. */
2129 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2130 		if (!rcu_nocb_poll &&
2131 		    READ_ONCE(rdp->nocb_head) &&
2132 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2133 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2134 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2135 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2136 		}
2137 		if (!rdp->nocb_gp_head)
2138 			continue; /* No CBs, so no need to wake follower. */
2139 
2140 		/* Append callbacks to follower's "done" list. */
2141 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2142 		tail = rdp->nocb_follower_tail;
2143 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2144 		*tail = rdp->nocb_gp_head;
2145 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2146 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2147 			/* List was empty, so wake up the follower.  */
2148 			swake_up(&rdp->nocb_wq);
2149 		}
2150 	}
2151 
2152 	/* If we (the leader) don't have CBs, go wait some more. */
2153 	if (!my_rdp->nocb_follower_head)
2154 		goto wait_again;
2155 }
2156 
2157 /*
2158  * Followers come here to wait for additional callbacks to show up.
2159  * This function does not return until callbacks appear.
2160  */
2161 static void nocb_follower_wait(struct rcu_data *rdp)
2162 {
2163 	for (;;) {
2164 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2165 		swait_event_interruptible(rdp->nocb_wq,
2166 					 READ_ONCE(rdp->nocb_follower_head));
2167 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2168 			/* ^^^ Ensure CB invocation follows _head test. */
2169 			return;
2170 		}
2171 		WARN_ON(signal_pending(current));
2172 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2173 	}
2174 }
2175 
2176 /*
2177  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2178  * callbacks queued by the corresponding no-CBs CPU, however, there is
2179  * an optional leader-follower relationship so that the grace-period
2180  * kthreads don't have to do quite so many wakeups.
2181  */
2182 static int rcu_nocb_kthread(void *arg)
2183 {
2184 	int c, cl;
2185 	unsigned long flags;
2186 	struct rcu_head *list;
2187 	struct rcu_head *next;
2188 	struct rcu_head **tail;
2189 	struct rcu_data *rdp = arg;
2190 
2191 	/* Each pass through this loop invokes one batch of callbacks */
2192 	for (;;) {
2193 		/* Wait for callbacks. */
2194 		if (rdp->nocb_leader == rdp)
2195 			nocb_leader_wait(rdp);
2196 		else
2197 			nocb_follower_wait(rdp);
2198 
2199 		/* Pull the ready-to-invoke callbacks onto local list. */
2200 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2201 		list = rdp->nocb_follower_head;
2202 		rdp->nocb_follower_head = NULL;
2203 		tail = rdp->nocb_follower_tail;
2204 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2205 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2206 		BUG_ON(!list);
2207 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2208 
2209 		/* Each pass through the following loop invokes a callback. */
2210 		trace_rcu_batch_start(rdp->rsp->name,
2211 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2212 				      atomic_long_read(&rdp->nocb_q_count), -1);
2213 		c = cl = 0;
2214 		while (list) {
2215 			next = list->next;
2216 			/* Wait for enqueuing to complete, if needed. */
2217 			while (next == NULL && &list->next != tail) {
2218 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2219 						    TPS("WaitQueue"));
2220 				schedule_timeout_interruptible(1);
2221 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2222 						    TPS("WokeQueue"));
2223 				next = list->next;
2224 			}
2225 			debug_rcu_head_unqueue(list);
2226 			local_bh_disable();
2227 			if (__rcu_reclaim(rdp->rsp->name, list))
2228 				cl++;
2229 			c++;
2230 			local_bh_enable();
2231 			cond_resched_rcu_qs();
2232 			list = next;
2233 		}
2234 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2235 		smp_mb__before_atomic();  /* _add after CB invocation. */
2236 		atomic_long_add(-c, &rdp->nocb_q_count);
2237 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2238 		rdp->n_nocbs_invoked += c;
2239 	}
2240 	return 0;
2241 }
2242 
2243 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2244 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2245 {
2246 	return READ_ONCE(rdp->nocb_defer_wakeup);
2247 }
2248 
2249 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2250 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2251 {
2252 	unsigned long flags;
2253 	int ndw;
2254 
2255 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2256 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2257 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2258 		return;
2259 	}
2260 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2261 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2262 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2263 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2264 }
2265 
2266 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2267 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2268 {
2269 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2270 
2271 	do_nocb_deferred_wakeup_common(rdp);
2272 }
2273 
2274 /*
2275  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2276  * This means we do an inexact common-case check.  Note that if
2277  * we miss, ->nocb_timer will eventually clean things up.
2278  */
2279 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2280 {
2281 	if (rcu_nocb_need_deferred_wakeup(rdp))
2282 		do_nocb_deferred_wakeup_common(rdp);
2283 }
2284 
2285 void __init rcu_init_nohz(void)
2286 {
2287 	int cpu;
2288 	bool need_rcu_nocb_mask = true;
2289 	struct rcu_state *rsp;
2290 
2291 #if defined(CONFIG_NO_HZ_FULL)
2292 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2293 		need_rcu_nocb_mask = true;
2294 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2295 
2296 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2297 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2298 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2299 			return;
2300 		}
2301 	}
2302 	if (!cpumask_available(rcu_nocb_mask))
2303 		return;
2304 
2305 #if defined(CONFIG_NO_HZ_FULL)
2306 	if (tick_nohz_full_running)
2307 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2308 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2309 
2310 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2311 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2312 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2313 			    rcu_nocb_mask);
2314 	}
2315 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2316 		cpumask_pr_args(rcu_nocb_mask));
2317 	if (rcu_nocb_poll)
2318 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2319 
2320 	for_each_rcu_flavor(rsp) {
2321 		for_each_cpu(cpu, rcu_nocb_mask)
2322 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2323 		rcu_organize_nocb_kthreads(rsp);
2324 	}
2325 }
2326 
2327 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2328 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2329 {
2330 	rdp->nocb_tail = &rdp->nocb_head;
2331 	init_swait_queue_head(&rdp->nocb_wq);
2332 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2333 	raw_spin_lock_init(&rdp->nocb_lock);
2334 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2335 }
2336 
2337 /*
2338  * If the specified CPU is a no-CBs CPU that does not already have its
2339  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2340  * brought online out of order, this can require re-organizing the
2341  * leader-follower relationships.
2342  */
2343 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2344 {
2345 	struct rcu_data *rdp;
2346 	struct rcu_data *rdp_last;
2347 	struct rcu_data *rdp_old_leader;
2348 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2349 	struct task_struct *t;
2350 
2351 	/*
2352 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2353 	 * then nothing to do.
2354 	 */
2355 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2356 		return;
2357 
2358 	/* If we didn't spawn the leader first, reorganize! */
2359 	rdp_old_leader = rdp_spawn->nocb_leader;
2360 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2361 		rdp_last = NULL;
2362 		rdp = rdp_old_leader;
2363 		do {
2364 			rdp->nocb_leader = rdp_spawn;
2365 			if (rdp_last && rdp != rdp_spawn)
2366 				rdp_last->nocb_next_follower = rdp;
2367 			if (rdp == rdp_spawn) {
2368 				rdp = rdp->nocb_next_follower;
2369 			} else {
2370 				rdp_last = rdp;
2371 				rdp = rdp->nocb_next_follower;
2372 				rdp_last->nocb_next_follower = NULL;
2373 			}
2374 		} while (rdp);
2375 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2376 	}
2377 
2378 	/* Spawn the kthread for this CPU and RCU flavor. */
2379 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2380 			"rcuo%c/%d", rsp->abbr, cpu);
2381 	BUG_ON(IS_ERR(t));
2382 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2383 }
2384 
2385 /*
2386  * If the specified CPU is a no-CBs CPU that does not already have its
2387  * rcuo kthreads, spawn them.
2388  */
2389 static void rcu_spawn_all_nocb_kthreads(int cpu)
2390 {
2391 	struct rcu_state *rsp;
2392 
2393 	if (rcu_scheduler_fully_active)
2394 		for_each_rcu_flavor(rsp)
2395 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2396 }
2397 
2398 /*
2399  * Once the scheduler is running, spawn rcuo kthreads for all online
2400  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2401  * non-boot CPUs come online -- if this changes, we will need to add
2402  * some mutual exclusion.
2403  */
2404 static void __init rcu_spawn_nocb_kthreads(void)
2405 {
2406 	int cpu;
2407 
2408 	for_each_online_cpu(cpu)
2409 		rcu_spawn_all_nocb_kthreads(cpu);
2410 }
2411 
2412 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2413 static int rcu_nocb_leader_stride = -1;
2414 module_param(rcu_nocb_leader_stride, int, 0444);
2415 
2416 /*
2417  * Initialize leader-follower relationships for all no-CBs CPU.
2418  */
2419 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2420 {
2421 	int cpu;
2422 	int ls = rcu_nocb_leader_stride;
2423 	int nl = 0;  /* Next leader. */
2424 	struct rcu_data *rdp;
2425 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2426 	struct rcu_data *rdp_prev = NULL;
2427 
2428 	if (!cpumask_available(rcu_nocb_mask))
2429 		return;
2430 	if (ls == -1) {
2431 		ls = int_sqrt(nr_cpu_ids);
2432 		rcu_nocb_leader_stride = ls;
2433 	}
2434 
2435 	/*
2436 	 * Each pass through this loop sets up one rcu_data structure.
2437 	 * Should the corresponding CPU come online in the future, then
2438 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2439 	 */
2440 	for_each_cpu(cpu, rcu_nocb_mask) {
2441 		rdp = per_cpu_ptr(rsp->rda, cpu);
2442 		if (rdp->cpu >= nl) {
2443 			/* New leader, set up for followers & next leader. */
2444 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2445 			rdp->nocb_leader = rdp;
2446 			rdp_leader = rdp;
2447 		} else {
2448 			/* Another follower, link to previous leader. */
2449 			rdp->nocb_leader = rdp_leader;
2450 			rdp_prev->nocb_next_follower = rdp;
2451 		}
2452 		rdp_prev = rdp;
2453 	}
2454 }
2455 
2456 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2457 static bool init_nocb_callback_list(struct rcu_data *rdp)
2458 {
2459 	if (!rcu_is_nocb_cpu(rdp->cpu))
2460 		return false;
2461 
2462 	/* If there are early-boot callbacks, move them to nocb lists. */
2463 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2464 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2465 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2466 		atomic_long_set(&rdp->nocb_q_count,
2467 				rcu_segcblist_n_cbs(&rdp->cblist));
2468 		atomic_long_set(&rdp->nocb_q_count_lazy,
2469 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2470 		rcu_segcblist_init(&rdp->cblist);
2471 	}
2472 	rcu_segcblist_disable(&rdp->cblist);
2473 	return true;
2474 }
2475 
2476 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2477 
2478 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2479 {
2480 	WARN_ON_ONCE(1); /* Should be dead code. */
2481 	return false;
2482 }
2483 
2484 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2485 {
2486 }
2487 
2488 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2489 {
2490 }
2491 
2492 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2493 {
2494 	return NULL;
2495 }
2496 
2497 static void rcu_init_one_nocb(struct rcu_node *rnp)
2498 {
2499 }
2500 
2501 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2502 			    bool lazy, unsigned long flags)
2503 {
2504 	return false;
2505 }
2506 
2507 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2508 						     struct rcu_data *rdp,
2509 						     unsigned long flags)
2510 {
2511 	return false;
2512 }
2513 
2514 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2515 {
2516 }
2517 
2518 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2519 {
2520 	return false;
2521 }
2522 
2523 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2524 {
2525 }
2526 
2527 static void rcu_spawn_all_nocb_kthreads(int cpu)
2528 {
2529 }
2530 
2531 static void __init rcu_spawn_nocb_kthreads(void)
2532 {
2533 }
2534 
2535 static bool init_nocb_callback_list(struct rcu_data *rdp)
2536 {
2537 	return false;
2538 }
2539 
2540 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2541 
2542 /*
2543  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2544  * arbitrarily long period of time with the scheduling-clock tick turned
2545  * off.  RCU will be paying attention to this CPU because it is in the
2546  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2547  * machine because the scheduling-clock tick has been disabled.  Therefore,
2548  * if an adaptive-ticks CPU is failing to respond to the current grace
2549  * period and has not be idle from an RCU perspective, kick it.
2550  */
2551 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2552 {
2553 #ifdef CONFIG_NO_HZ_FULL
2554 	if (tick_nohz_full_cpu(cpu))
2555 		smp_send_reschedule(cpu);
2556 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2557 }
2558 
2559 /*
2560  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2561  * grace-period kthread will do force_quiescent_state() processing?
2562  * The idea is to avoid waking up RCU core processing on such a
2563  * CPU unless the grace period has extended for too long.
2564  *
2565  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2566  * CONFIG_RCU_NOCB_CPU CPUs.
2567  */
2568 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2569 {
2570 #ifdef CONFIG_NO_HZ_FULL
2571 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2572 	    (!rcu_gp_in_progress(rsp) ||
2573 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2574 		return true;
2575 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2576 	return false;
2577 }
2578 
2579 /*
2580  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2581  * timekeeping CPU.
2582  */
2583 static void rcu_bind_gp_kthread(void)
2584 {
2585 	int __maybe_unused cpu;
2586 
2587 	if (!tick_nohz_full_enabled())
2588 		return;
2589 	housekeeping_affine(current, HK_FLAG_RCU);
2590 }
2591 
2592 /* Record the current task on dyntick-idle entry. */
2593 static void rcu_dynticks_task_enter(void)
2594 {
2595 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2596 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2597 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2598 }
2599 
2600 /* Record no current task on dyntick-idle exit. */
2601 static void rcu_dynticks_task_exit(void)
2602 {
2603 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2604 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2605 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2606 }
2607