xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 78beef62)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20 
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 	if (IS_ENABLED(CONFIG_RCU_TRACE))
28 		pr_info("\tRCU event tracing is enabled.\n");
29 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 			RCU_FANOUT);
33 	if (rcu_fanout_exact)
34 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 	if (IS_ENABLED(CONFIG_PROVE_RCU))
38 		pr_info("\tRCU lockdep checking is enabled.\n");
39 	if (RCU_NUM_LVLS >= 4)
40 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 	if (RCU_FANOUT_LEAF != 16)
42 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 			RCU_FANOUT_LEAF);
44 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 			rcu_fanout_leaf);
47 	if (nr_cpu_ids != NR_CPUS)
48 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 	if (blimit != DEFAULT_RCU_BLIMIT)
54 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 	if (qhimark != DEFAULT_RCU_QHIMARK)
56 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 	if (qlowmark != DEFAULT_RCU_QLOMARK)
58 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 	if (jiffies_till_first_fqs != ULONG_MAX)
60 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 	if (jiffies_till_next_fqs != ULONG_MAX)
62 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63 	if (jiffies_till_sched_qs != ULONG_MAX)
64 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65 	if (rcu_kick_kthreads)
66 		pr_info("\tKick kthreads if too-long grace period.\n");
67 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69 	if (gp_preinit_delay)
70 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71 	if (gp_init_delay)
72 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73 	if (gp_cleanup_delay)
74 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75 	if (!use_softirq)
76 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 		pr_info("\tRCU debug extended QS entry/exit.\n");
79 	rcupdate_announce_bootup_oddness();
80 }
81 
82 #ifdef CONFIG_PREEMPT_RCU
83 
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86 
87 /*
88  * Tell them what RCU they are running.
89  */
90 static void __init rcu_bootup_announce(void)
91 {
92 	pr_info("Preemptible hierarchical RCU implementation.\n");
93 	rcu_bootup_announce_oddness();
94 }
95 
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS	0x8
98 #define RCU_EXP_TASKS	0x4
99 #define RCU_GP_BLKD	0x2
100 #define RCU_EXP_BLKD	0x1
101 
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 	__releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 	struct task_struct *t = current;
138 
139 	raw_lockdep_assert_held_rcu_node(rnp);
140 	WARN_ON_ONCE(rdp->mynode != rnp);
141 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142 	/* RCU better not be waiting on newly onlined CPUs! */
143 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 		     rdp->grpmask);
145 
146 	/*
147 	 * Decide where to queue the newly blocked task.  In theory,
148 	 * this could be an if-statement.  In practice, when I tried
149 	 * that, it was quite messy.
150 	 */
151 	switch (blkd_state) {
152 	case 0:
153 	case                RCU_EXP_TASKS:
154 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
155 	case RCU_GP_TASKS:
156 	case RCU_GP_TASKS + RCU_EXP_TASKS:
157 
158 		/*
159 		 * Blocking neither GP, or first task blocking the normal
160 		 * GP but not blocking the already-waiting expedited GP.
161 		 * Queue at the head of the list to avoid unnecessarily
162 		 * blocking the already-waiting GPs.
163 		 */
164 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 		break;
166 
167 	case                                              RCU_EXP_BLKD:
168 	case                                RCU_GP_BLKD:
169 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173 
174 		/*
175 		 * First task arriving that blocks either GP, or first task
176 		 * arriving that blocks the expedited GP (with the normal
177 		 * GP already waiting), or a task arriving that blocks
178 		 * both GPs with both GPs already waiting.  Queue at the
179 		 * tail of the list to avoid any GP waiting on any of the
180 		 * already queued tasks that are not blocking it.
181 		 */
182 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 		break;
184 
185 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188 
189 		/*
190 		 * Second or subsequent task blocking the expedited GP.
191 		 * The task either does not block the normal GP, or is the
192 		 * first task blocking the normal GP.  Queue just after
193 		 * the first task blocking the expedited GP.
194 		 */
195 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 		break;
197 
198 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the normal GP.
203 		 * The task does not block the expedited GP. Queue just
204 		 * after the first task blocking the normal GP.
205 		 */
206 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 		break;
208 
209 	default:
210 
211 		/* Yet another exercise in excessive paranoia. */
212 		WARN_ON_ONCE(1);
213 		break;
214 	}
215 
216 	/*
217 	 * We have now queued the task.  If it was the first one to
218 	 * block either grace period, update the ->gp_tasks and/or
219 	 * ->exp_tasks pointers, respectively, to reference the newly
220 	 * blocked tasks.
221 	 */
222 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223 		rnp->gp_tasks = &t->rcu_node_entry;
224 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225 	}
226 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 		rnp->exp_tasks = &t->rcu_node_entry;
228 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 		     !(rnp->qsmask & rdp->grpmask));
230 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 		     !(rnp->expmask & rdp->grpmask));
232 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233 
234 	/*
235 	 * Report the quiescent state for the expedited GP.  This expedited
236 	 * GP should not be able to end until we report, so there should be
237 	 * no need to check for a subsequent expedited GP.  (Though we are
238 	 * still in a quiescent state in any case.)
239 	 */
240 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241 		rcu_report_exp_rdp(rdp);
242 	else
243 		WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245 
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
259 static void rcu_qs(void)
260 {
261 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263 		trace_rcu_grace_period(TPS("rcu_preempt"),
264 				       __this_cpu_read(rcu_data.gp_seq),
265 				       TPS("cpuqs"));
266 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269 	}
270 }
271 
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
285 void rcu_note_context_switch(bool preempt)
286 {
287 	struct task_struct *t = current;
288 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289 	struct rcu_node *rnp;
290 
291 	trace_rcu_utilization(TPS("Start context switch"));
292 	lockdep_assert_irqs_disabled();
293 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
294 	if (t->rcu_read_lock_nesting > 0 &&
295 	    !t->rcu_read_unlock_special.b.blocked) {
296 
297 		/* Possibly blocking in an RCU read-side critical section. */
298 		rnp = rdp->mynode;
299 		raw_spin_lock_rcu_node(rnp);
300 		t->rcu_read_unlock_special.b.blocked = true;
301 		t->rcu_blocked_node = rnp;
302 
303 		/*
304 		 * Verify the CPU's sanity, trace the preemption, and
305 		 * then queue the task as required based on the states
306 		 * of any ongoing and expedited grace periods.
307 		 */
308 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310 		trace_rcu_preempt_task(rcu_state.name,
311 				       t->pid,
312 				       (rnp->qsmask & rdp->grpmask)
313 				       ? rnp->gp_seq
314 				       : rcu_seq_snap(&rnp->gp_seq));
315 		rcu_preempt_ctxt_queue(rnp, rdp);
316 	} else {
317 		rcu_preempt_deferred_qs(t);
318 	}
319 
320 	/*
321 	 * Either we were not in an RCU read-side critical section to
322 	 * begin with, or we have now recorded that critical section
323 	 * globally.  Either way, we can now note a quiescent state
324 	 * for this CPU.  Again, if we were in an RCU read-side critical
325 	 * section, and if that critical section was blocking the current
326 	 * grace period, then the fact that the task has been enqueued
327 	 * means that we continue to block the current grace period.
328 	 */
329 	rcu_qs();
330 	if (rdp->exp_deferred_qs)
331 		rcu_report_exp_rdp(rdp);
332 	trace_rcu_utilization(TPS("End context switch"));
333 }
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
335 
336 /*
337  * Check for preempted RCU readers blocking the current grace period
338  * for the specified rcu_node structure.  If the caller needs a reliable
339  * answer, it must hold the rcu_node's ->lock.
340  */
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
342 {
343 	return rnp->gp_tasks != NULL;
344 }
345 
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
350 
351 /*
352  * Preemptible RCU implementation for rcu_read_lock().
353  * Just increment ->rcu_read_lock_nesting, shared state will be updated
354  * if we block.
355  */
356 void __rcu_read_lock(void)
357 {
358 	current->rcu_read_lock_nesting++;
359 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360 		WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
361 	barrier();  /* critical section after entry code. */
362 }
363 EXPORT_SYMBOL_GPL(__rcu_read_lock);
364 
365 /*
366  * Preemptible RCU implementation for rcu_read_unlock().
367  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
368  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369  * invoke rcu_read_unlock_special() to clean up after a context switch
370  * in an RCU read-side critical section and other special cases.
371  */
372 void __rcu_read_unlock(void)
373 {
374 	struct task_struct *t = current;
375 
376 	if (t->rcu_read_lock_nesting != 1) {
377 		--t->rcu_read_lock_nesting;
378 	} else {
379 		barrier();  /* critical section before exit code. */
380 		t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
381 		barrier();  /* assign before ->rcu_read_unlock_special load */
382 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383 			rcu_read_unlock_special(t);
384 		barrier();  /* ->rcu_read_unlock_special load before assign */
385 		t->rcu_read_lock_nesting = 0;
386 	}
387 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388 		int rrln = t->rcu_read_lock_nesting;
389 
390 		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
391 	}
392 }
393 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394 
395 /*
396  * Advance a ->blkd_tasks-list pointer to the next entry, instead
397  * returning NULL if at the end of the list.
398  */
399 static struct list_head *rcu_next_node_entry(struct task_struct *t,
400 					     struct rcu_node *rnp)
401 {
402 	struct list_head *np;
403 
404 	np = t->rcu_node_entry.next;
405 	if (np == &rnp->blkd_tasks)
406 		np = NULL;
407 	return np;
408 }
409 
410 /*
411  * Return true if the specified rcu_node structure has tasks that were
412  * preempted within an RCU read-side critical section.
413  */
414 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415 {
416 	return !list_empty(&rnp->blkd_tasks);
417 }
418 
419 /*
420  * Report deferred quiescent states.  The deferral time can
421  * be quite short, for example, in the case of the call from
422  * rcu_read_unlock_special().
423  */
424 static void
425 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
426 {
427 	bool empty_exp;
428 	bool empty_norm;
429 	bool empty_exp_now;
430 	struct list_head *np;
431 	bool drop_boost_mutex = false;
432 	struct rcu_data *rdp;
433 	struct rcu_node *rnp;
434 	union rcu_special special;
435 
436 	/*
437 	 * If RCU core is waiting for this CPU to exit its critical section,
438 	 * report the fact that it has exited.  Because irqs are disabled,
439 	 * t->rcu_read_unlock_special cannot change.
440 	 */
441 	special = t->rcu_read_unlock_special;
442 	rdp = this_cpu_ptr(&rcu_data);
443 	if (!special.s && !rdp->exp_deferred_qs) {
444 		local_irq_restore(flags);
445 		return;
446 	}
447 	t->rcu_read_unlock_special.b.deferred_qs = false;
448 	if (special.b.need_qs) {
449 		rcu_qs();
450 		t->rcu_read_unlock_special.b.need_qs = false;
451 		if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
452 			local_irq_restore(flags);
453 			return;
454 		}
455 	}
456 
457 	/*
458 	 * Respond to a request by an expedited grace period for a
459 	 * quiescent state from this CPU.  Note that requests from
460 	 * tasks are handled when removing the task from the
461 	 * blocked-tasks list below.
462 	 */
463 	if (rdp->exp_deferred_qs) {
464 		rcu_report_exp_rdp(rdp);
465 		if (!t->rcu_read_unlock_special.s) {
466 			local_irq_restore(flags);
467 			return;
468 		}
469 	}
470 
471 	/* Clean up if blocked during RCU read-side critical section. */
472 	if (special.b.blocked) {
473 		t->rcu_read_unlock_special.b.blocked = false;
474 
475 		/*
476 		 * Remove this task from the list it blocked on.  The task
477 		 * now remains queued on the rcu_node corresponding to the
478 		 * CPU it first blocked on, so there is no longer any need
479 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
480 		 */
481 		rnp = t->rcu_blocked_node;
482 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
484 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
485 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
487 			     (!empty_norm || rnp->qsmask));
488 		empty_exp = sync_rcu_preempt_exp_done(rnp);
489 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
490 		np = rcu_next_node_entry(t, rnp);
491 		list_del_init(&t->rcu_node_entry);
492 		t->rcu_blocked_node = NULL;
493 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
494 						rnp->gp_seq, t->pid);
495 		if (&t->rcu_node_entry == rnp->gp_tasks)
496 			rnp->gp_tasks = np;
497 		if (&t->rcu_node_entry == rnp->exp_tasks)
498 			rnp->exp_tasks = np;
499 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
500 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502 			if (&t->rcu_node_entry == rnp->boost_tasks)
503 				rnp->boost_tasks = np;
504 		}
505 
506 		/*
507 		 * If this was the last task on the current list, and if
508 		 * we aren't waiting on any CPUs, report the quiescent state.
509 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510 		 * so we must take a snapshot of the expedited state.
511 		 */
512 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
513 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
514 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
515 							 rnp->gp_seq,
516 							 0, rnp->qsmask,
517 							 rnp->level,
518 							 rnp->grplo,
519 							 rnp->grphi,
520 							 !!rnp->gp_tasks);
521 			rcu_report_unblock_qs_rnp(rnp, flags);
522 		} else {
523 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
524 		}
525 
526 		/* Unboost if we were boosted. */
527 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
528 			rt_mutex_futex_unlock(&rnp->boost_mtx);
529 
530 		/*
531 		 * If this was the last task on the expedited lists,
532 		 * then we need to report up the rcu_node hierarchy.
533 		 */
534 		if (!empty_exp && empty_exp_now)
535 			rcu_report_exp_rnp(rnp, true);
536 	} else {
537 		local_irq_restore(flags);
538 	}
539 }
540 
541 /*
542  * Is a deferred quiescent-state pending, and are we also not in
543  * an RCU read-side critical section?  It is the caller's responsibility
544  * to ensure it is otherwise safe to report any deferred quiescent
545  * states.  The reason for this is that it is safe to report a
546  * quiescent state during context switch even though preemption
547  * is disabled.  This function cannot be expected to understand these
548  * nuances, so the caller must handle them.
549  */
550 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
551 {
552 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
553 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
554 	       t->rcu_read_lock_nesting <= 0;
555 }
556 
557 /*
558  * Report a deferred quiescent state if needed and safe to do so.
559  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
560  * not being in an RCU read-side critical section.  The caller must
561  * evaluate safety in terms of interrupt, softirq, and preemption
562  * disabling.
563  */
564 static void rcu_preempt_deferred_qs(struct task_struct *t)
565 {
566 	unsigned long flags;
567 	bool couldrecurse = t->rcu_read_lock_nesting >= 0;
568 
569 	if (!rcu_preempt_need_deferred_qs(t))
570 		return;
571 	if (couldrecurse)
572 		t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
573 	local_irq_save(flags);
574 	rcu_preempt_deferred_qs_irqrestore(t, flags);
575 	if (couldrecurse)
576 		t->rcu_read_lock_nesting += RCU_NEST_BIAS;
577 }
578 
579 /*
580  * Minimal handler to give the scheduler a chance to re-evaluate.
581  */
582 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
583 {
584 	struct rcu_data *rdp;
585 
586 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
587 	rdp->defer_qs_iw_pending = false;
588 }
589 
590 /*
591  * Handle special cases during rcu_read_unlock(), such as needing to
592  * notify RCU core processing or task having blocked during the RCU
593  * read-side critical section.
594  */
595 static void rcu_read_unlock_special(struct task_struct *t)
596 {
597 	unsigned long flags;
598 	bool preempt_bh_were_disabled =
599 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
600 	bool irqs_were_disabled;
601 
602 	/* NMI handlers cannot block and cannot safely manipulate state. */
603 	if (in_nmi())
604 		return;
605 
606 	local_irq_save(flags);
607 	irqs_were_disabled = irqs_disabled_flags(flags);
608 	if (preempt_bh_were_disabled || irqs_were_disabled) {
609 		bool exp;
610 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611 		struct rcu_node *rnp = rdp->mynode;
612 
613 		t->rcu_read_unlock_special.b.exp_hint = false;
614 		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
615 		      (rdp->grpmask & rnp->expmask) ||
616 		      tick_nohz_full_cpu(rdp->cpu);
617 		// Need to defer quiescent state until everything is enabled.
618 		if (irqs_were_disabled && use_softirq &&
619 		    (in_interrupt() ||
620 		     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
621 			// Using softirq, safe to awaken, and we get
622 			// no help from enabling irqs, unlike bh/preempt.
623 			raise_softirq_irqoff(RCU_SOFTIRQ);
624 		} else {
625 			// Enabling BH or preempt does reschedule, so...
626 			// Also if no expediting or NO_HZ_FULL, slow is OK.
627 			set_tsk_need_resched(current);
628 			set_preempt_need_resched();
629 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
630 			    !rdp->defer_qs_iw_pending && exp) {
631 				// Get scheduler to re-evaluate and call hooks.
632 				// If !IRQ_WORK, FQS scan will eventually IPI.
633 				init_irq_work(&rdp->defer_qs_iw,
634 					      rcu_preempt_deferred_qs_handler);
635 				rdp->defer_qs_iw_pending = true;
636 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
637 			}
638 		}
639 		t->rcu_read_unlock_special.b.deferred_qs = true;
640 		local_irq_restore(flags);
641 		return;
642 	}
643 	WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
644 	rcu_preempt_deferred_qs_irqrestore(t, flags);
645 }
646 
647 /*
648  * Check that the list of blocked tasks for the newly completed grace
649  * period is in fact empty.  It is a serious bug to complete a grace
650  * period that still has RCU readers blocked!  This function must be
651  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
652  * must be held by the caller.
653  *
654  * Also, if there are blocked tasks on the list, they automatically
655  * block the newly created grace period, so set up ->gp_tasks accordingly.
656  */
657 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
658 {
659 	struct task_struct *t;
660 
661 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
662 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
663 		dump_blkd_tasks(rnp, 10);
664 	if (rcu_preempt_has_tasks(rnp) &&
665 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
666 		rnp->gp_tasks = rnp->blkd_tasks.next;
667 		t = container_of(rnp->gp_tasks, struct task_struct,
668 				 rcu_node_entry);
669 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
670 						rnp->gp_seq, t->pid);
671 	}
672 	WARN_ON_ONCE(rnp->qsmask);
673 }
674 
675 /*
676  * Check for a quiescent state from the current CPU, including voluntary
677  * context switches for Tasks RCU.  When a task blocks, the task is
678  * recorded in the corresponding CPU's rcu_node structure, which is checked
679  * elsewhere, hence this function need only check for quiescent states
680  * related to the current CPU, not to those related to tasks.
681  */
682 static void rcu_flavor_sched_clock_irq(int user)
683 {
684 	struct task_struct *t = current;
685 
686 	if (user || rcu_is_cpu_rrupt_from_idle()) {
687 		rcu_note_voluntary_context_switch(current);
688 	}
689 	if (t->rcu_read_lock_nesting > 0 ||
690 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
691 		/* No QS, force context switch if deferred. */
692 		if (rcu_preempt_need_deferred_qs(t)) {
693 			set_tsk_need_resched(t);
694 			set_preempt_need_resched();
695 		}
696 	} else if (rcu_preempt_need_deferred_qs(t)) {
697 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
698 		return;
699 	} else if (!t->rcu_read_lock_nesting) {
700 		rcu_qs(); /* Report immediate QS. */
701 		return;
702 	}
703 
704 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
705 	if (t->rcu_read_lock_nesting > 0 &&
706 	    __this_cpu_read(rcu_data.core_needs_qs) &&
707 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
708 	    !t->rcu_read_unlock_special.b.need_qs &&
709 	    time_after(jiffies, rcu_state.gp_start + HZ))
710 		t->rcu_read_unlock_special.b.need_qs = true;
711 }
712 
713 /*
714  * Check for a task exiting while in a preemptible-RCU read-side
715  * critical section, clean up if so.  No need to issue warnings, as
716  * debug_check_no_locks_held() already does this if lockdep is enabled.
717  * Besides, if this function does anything other than just immediately
718  * return, there was a bug of some sort.  Spewing warnings from this
719  * function is like as not to simply obscure important prior warnings.
720  */
721 void exit_rcu(void)
722 {
723 	struct task_struct *t = current;
724 
725 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
726 		t->rcu_read_lock_nesting = 1;
727 		barrier();
728 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
729 	} else if (unlikely(t->rcu_read_lock_nesting)) {
730 		t->rcu_read_lock_nesting = 1;
731 	} else {
732 		return;
733 	}
734 	__rcu_read_unlock();
735 	rcu_preempt_deferred_qs(current);
736 }
737 
738 /*
739  * Dump the blocked-tasks state, but limit the list dump to the
740  * specified number of elements.
741  */
742 static void
743 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
744 {
745 	int cpu;
746 	int i;
747 	struct list_head *lhp;
748 	bool onl;
749 	struct rcu_data *rdp;
750 	struct rcu_node *rnp1;
751 
752 	raw_lockdep_assert_held_rcu_node(rnp);
753 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
754 		__func__, rnp->grplo, rnp->grphi, rnp->level,
755 		(long)rnp->gp_seq, (long)rnp->completedqs);
756 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
757 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
758 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
759 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
760 		__func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
761 	pr_info("%s: ->blkd_tasks", __func__);
762 	i = 0;
763 	list_for_each(lhp, &rnp->blkd_tasks) {
764 		pr_cont(" %p", lhp);
765 		if (++i >= ncheck)
766 			break;
767 	}
768 	pr_cont("\n");
769 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
770 		rdp = per_cpu_ptr(&rcu_data, cpu);
771 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
772 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
773 			cpu, ".o"[onl],
774 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
775 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
776 	}
777 }
778 
779 #else /* #ifdef CONFIG_PREEMPT_RCU */
780 
781 /*
782  * Tell them what RCU they are running.
783  */
784 static void __init rcu_bootup_announce(void)
785 {
786 	pr_info("Hierarchical RCU implementation.\n");
787 	rcu_bootup_announce_oddness();
788 }
789 
790 /*
791  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
792  * how many quiescent states passed, just if there was at least one since
793  * the start of the grace period, this just sets a flag.  The caller must
794  * have disabled preemption.
795  */
796 static void rcu_qs(void)
797 {
798 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
799 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
800 		return;
801 	trace_rcu_grace_period(TPS("rcu_sched"),
802 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
803 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
804 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
805 		return;
806 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
807 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
808 }
809 
810 /*
811  * Register an urgently needed quiescent state.  If there is an
812  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
813  * dyntick-idle quiescent state visible to other CPUs, which will in
814  * some cases serve for expedited as well as normal grace periods.
815  * Either way, register a lightweight quiescent state.
816  */
817 void rcu_all_qs(void)
818 {
819 	unsigned long flags;
820 
821 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
822 		return;
823 	preempt_disable();
824 	/* Load rcu_urgent_qs before other flags. */
825 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
826 		preempt_enable();
827 		return;
828 	}
829 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
830 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
831 		local_irq_save(flags);
832 		rcu_momentary_dyntick_idle();
833 		local_irq_restore(flags);
834 	}
835 	rcu_qs();
836 	preempt_enable();
837 }
838 EXPORT_SYMBOL_GPL(rcu_all_qs);
839 
840 /*
841  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
842  */
843 void rcu_note_context_switch(bool preempt)
844 {
845 	trace_rcu_utilization(TPS("Start context switch"));
846 	rcu_qs();
847 	/* Load rcu_urgent_qs before other flags. */
848 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
849 		goto out;
850 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
851 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
852 		rcu_momentary_dyntick_idle();
853 	if (!preempt)
854 		rcu_tasks_qs(current);
855 out:
856 	trace_rcu_utilization(TPS("End context switch"));
857 }
858 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
859 
860 /*
861  * Because preemptible RCU does not exist, there are never any preempted
862  * RCU readers.
863  */
864 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
865 {
866 	return 0;
867 }
868 
869 /*
870  * Because there is no preemptible RCU, there can be no readers blocked.
871  */
872 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
873 {
874 	return false;
875 }
876 
877 /*
878  * Because there is no preemptible RCU, there can be no deferred quiescent
879  * states.
880  */
881 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
882 {
883 	return false;
884 }
885 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
886 
887 /*
888  * Because there is no preemptible RCU, there can be no readers blocked,
889  * so there is no need to check for blocked tasks.  So check only for
890  * bogus qsmask values.
891  */
892 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
893 {
894 	WARN_ON_ONCE(rnp->qsmask);
895 }
896 
897 /*
898  * Check to see if this CPU is in a non-context-switch quiescent state,
899  * namely user mode and idle loop.
900  */
901 static void rcu_flavor_sched_clock_irq(int user)
902 {
903 	if (user || rcu_is_cpu_rrupt_from_idle()) {
904 
905 		/*
906 		 * Get here if this CPU took its interrupt from user
907 		 * mode or from the idle loop, and if this is not a
908 		 * nested interrupt.  In this case, the CPU is in
909 		 * a quiescent state, so note it.
910 		 *
911 		 * No memory barrier is required here because rcu_qs()
912 		 * references only CPU-local variables that other CPUs
913 		 * neither access nor modify, at least not while the
914 		 * corresponding CPU is online.
915 		 */
916 
917 		rcu_qs();
918 	}
919 }
920 
921 /*
922  * Because preemptible RCU does not exist, tasks cannot possibly exit
923  * while in preemptible RCU read-side critical sections.
924  */
925 void exit_rcu(void)
926 {
927 }
928 
929 /*
930  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
931  */
932 static void
933 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
934 {
935 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
936 }
937 
938 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
939 
940 /*
941  * If boosting, set rcuc kthreads to realtime priority.
942  */
943 static void rcu_cpu_kthread_setup(unsigned int cpu)
944 {
945 #ifdef CONFIG_RCU_BOOST
946 	struct sched_param sp;
947 
948 	sp.sched_priority = kthread_prio;
949 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
950 #endif /* #ifdef CONFIG_RCU_BOOST */
951 }
952 
953 #ifdef CONFIG_RCU_BOOST
954 
955 /*
956  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
957  * or ->boost_tasks, advancing the pointer to the next task in the
958  * ->blkd_tasks list.
959  *
960  * Note that irqs must be enabled: boosting the task can block.
961  * Returns 1 if there are more tasks needing to be boosted.
962  */
963 static int rcu_boost(struct rcu_node *rnp)
964 {
965 	unsigned long flags;
966 	struct task_struct *t;
967 	struct list_head *tb;
968 
969 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
970 	    READ_ONCE(rnp->boost_tasks) == NULL)
971 		return 0;  /* Nothing left to boost. */
972 
973 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
974 
975 	/*
976 	 * Recheck under the lock: all tasks in need of boosting
977 	 * might exit their RCU read-side critical sections on their own.
978 	 */
979 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
980 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
981 		return 0;
982 	}
983 
984 	/*
985 	 * Preferentially boost tasks blocking expedited grace periods.
986 	 * This cannot starve the normal grace periods because a second
987 	 * expedited grace period must boost all blocked tasks, including
988 	 * those blocking the pre-existing normal grace period.
989 	 */
990 	if (rnp->exp_tasks != NULL)
991 		tb = rnp->exp_tasks;
992 	else
993 		tb = rnp->boost_tasks;
994 
995 	/*
996 	 * We boost task t by manufacturing an rt_mutex that appears to
997 	 * be held by task t.  We leave a pointer to that rt_mutex where
998 	 * task t can find it, and task t will release the mutex when it
999 	 * exits its outermost RCU read-side critical section.  Then
1000 	 * simply acquiring this artificial rt_mutex will boost task
1001 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1002 	 *
1003 	 * Note that task t must acquire rnp->lock to remove itself from
1004 	 * the ->blkd_tasks list, which it will do from exit() if from
1005 	 * nowhere else.  We therefore are guaranteed that task t will
1006 	 * stay around at least until we drop rnp->lock.  Note that
1007 	 * rnp->lock also resolves races between our priority boosting
1008 	 * and task t's exiting its outermost RCU read-side critical
1009 	 * section.
1010 	 */
1011 	t = container_of(tb, struct task_struct, rcu_node_entry);
1012 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1013 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014 	/* Lock only for side effect: boosts task t's priority. */
1015 	rt_mutex_lock(&rnp->boost_mtx);
1016 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1017 
1018 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1019 	       READ_ONCE(rnp->boost_tasks) != NULL;
1020 }
1021 
1022 /*
1023  * Priority-boosting kthread, one per leaf rcu_node.
1024  */
1025 static int rcu_boost_kthread(void *arg)
1026 {
1027 	struct rcu_node *rnp = (struct rcu_node *)arg;
1028 	int spincnt = 0;
1029 	int more2boost;
1030 
1031 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1032 	for (;;) {
1033 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1034 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1035 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1036 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1037 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1038 		more2boost = rcu_boost(rnp);
1039 		if (more2boost)
1040 			spincnt++;
1041 		else
1042 			spincnt = 0;
1043 		if (spincnt > 10) {
1044 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1045 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1046 			schedule_timeout_interruptible(2);
1047 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1048 			spincnt = 0;
1049 		}
1050 	}
1051 	/* NOTREACHED */
1052 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1053 	return 0;
1054 }
1055 
1056 /*
1057  * Check to see if it is time to start boosting RCU readers that are
1058  * blocking the current grace period, and, if so, tell the per-rcu_node
1059  * kthread to start boosting them.  If there is an expedited grace
1060  * period in progress, it is always time to boost.
1061  *
1062  * The caller must hold rnp->lock, which this function releases.
1063  * The ->boost_kthread_task is immortal, so we don't need to worry
1064  * about it going away.
1065  */
1066 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1067 	__releases(rnp->lock)
1068 {
1069 	raw_lockdep_assert_held_rcu_node(rnp);
1070 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1071 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072 		return;
1073 	}
1074 	if (rnp->exp_tasks != NULL ||
1075 	    (rnp->gp_tasks != NULL &&
1076 	     rnp->boost_tasks == NULL &&
1077 	     rnp->qsmask == 0 &&
1078 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1079 		if (rnp->exp_tasks == NULL)
1080 			rnp->boost_tasks = rnp->gp_tasks;
1081 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082 		rcu_wake_cond(rnp->boost_kthread_task,
1083 			      rnp->boost_kthread_status);
1084 	} else {
1085 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086 	}
1087 }
1088 
1089 /*
1090  * Is the current CPU running the RCU-callbacks kthread?
1091  * Caller must have preemption disabled.
1092  */
1093 static bool rcu_is_callbacks_kthread(void)
1094 {
1095 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1096 }
1097 
1098 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1099 
1100 /*
1101  * Do priority-boost accounting for the start of a new grace period.
1102  */
1103 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1104 {
1105 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1106 }
1107 
1108 /*
1109  * Create an RCU-boost kthread for the specified node if one does not
1110  * already exist.  We only create this kthread for preemptible RCU.
1111  * Returns zero if all is well, a negated errno otherwise.
1112  */
1113 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1114 {
1115 	int rnp_index = rnp - rcu_get_root();
1116 	unsigned long flags;
1117 	struct sched_param sp;
1118 	struct task_struct *t;
1119 
1120 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1121 		return;
1122 
1123 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1124 		return;
1125 
1126 	rcu_state.boost = 1;
1127 
1128 	if (rnp->boost_kthread_task != NULL)
1129 		return;
1130 
1131 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1132 			   "rcub/%d", rnp_index);
1133 	if (WARN_ON_ONCE(IS_ERR(t)))
1134 		return;
1135 
1136 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1137 	rnp->boost_kthread_task = t;
1138 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1139 	sp.sched_priority = kthread_prio;
1140 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1141 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1142 }
1143 
1144 /*
1145  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1146  * served by the rcu_node in question.  The CPU hotplug lock is still
1147  * held, so the value of rnp->qsmaskinit will be stable.
1148  *
1149  * We don't include outgoingcpu in the affinity set, use -1 if there is
1150  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1151  * this function allows the kthread to execute on any CPU.
1152  */
1153 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1154 {
1155 	struct task_struct *t = rnp->boost_kthread_task;
1156 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1157 	cpumask_var_t cm;
1158 	int cpu;
1159 
1160 	if (!t)
1161 		return;
1162 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1163 		return;
1164 	for_each_leaf_node_possible_cpu(rnp, cpu)
1165 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1166 		    cpu != outgoingcpu)
1167 			cpumask_set_cpu(cpu, cm);
1168 	if (cpumask_weight(cm) == 0)
1169 		cpumask_setall(cm);
1170 	set_cpus_allowed_ptr(t, cm);
1171 	free_cpumask_var(cm);
1172 }
1173 
1174 /*
1175  * Spawn boost kthreads -- called as soon as the scheduler is running.
1176  */
1177 static void __init rcu_spawn_boost_kthreads(void)
1178 {
1179 	struct rcu_node *rnp;
1180 
1181 	rcu_for_each_leaf_node(rnp)
1182 		rcu_spawn_one_boost_kthread(rnp);
1183 }
1184 
1185 static void rcu_prepare_kthreads(int cpu)
1186 {
1187 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1188 	struct rcu_node *rnp = rdp->mynode;
1189 
1190 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1191 	if (rcu_scheduler_fully_active)
1192 		rcu_spawn_one_boost_kthread(rnp);
1193 }
1194 
1195 #else /* #ifdef CONFIG_RCU_BOOST */
1196 
1197 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1198 	__releases(rnp->lock)
1199 {
1200 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1201 }
1202 
1203 static bool rcu_is_callbacks_kthread(void)
1204 {
1205 	return false;
1206 }
1207 
1208 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1209 {
1210 }
1211 
1212 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1213 {
1214 }
1215 
1216 static void __init rcu_spawn_boost_kthreads(void)
1217 {
1218 }
1219 
1220 static void rcu_prepare_kthreads(int cpu)
1221 {
1222 }
1223 
1224 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1225 
1226 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1227 
1228 /*
1229  * Check to see if any future non-offloaded RCU-related work will need
1230  * to be done by the current CPU, even if none need be done immediately,
1231  * returning 1 if so.  This function is part of the RCU implementation;
1232  * it is -not- an exported member of the RCU API.
1233  *
1234  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1235  * CPU has RCU callbacks queued.
1236  */
1237 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1238 {
1239 	*nextevt = KTIME_MAX;
1240 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1241 	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1242 }
1243 
1244 /*
1245  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1246  * after it.
1247  */
1248 static void rcu_cleanup_after_idle(void)
1249 {
1250 }
1251 
1252 /*
1253  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1254  * is nothing.
1255  */
1256 static void rcu_prepare_for_idle(void)
1257 {
1258 }
1259 
1260 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1261 
1262 /*
1263  * This code is invoked when a CPU goes idle, at which point we want
1264  * to have the CPU do everything required for RCU so that it can enter
1265  * the energy-efficient dyntick-idle mode.  This is handled by a
1266  * state machine implemented by rcu_prepare_for_idle() below.
1267  *
1268  * The following three proprocessor symbols control this state machine:
1269  *
1270  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1271  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1272  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1273  *	benchmarkers who might otherwise be tempted to set this to a large
1274  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1275  *	system.  And if you are -that- concerned about energy efficiency,
1276  *	just power the system down and be done with it!
1277  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1278  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1279  *	callbacks pending.  Setting this too high can OOM your system.
1280  *
1281  * The values below work well in practice.  If future workloads require
1282  * adjustment, they can be converted into kernel config parameters, though
1283  * making the state machine smarter might be a better option.
1284  */
1285 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1286 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1287 
1288 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1289 module_param(rcu_idle_gp_delay, int, 0644);
1290 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1291 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1292 
1293 /*
1294  * Try to advance callbacks on the current CPU, but only if it has been
1295  * awhile since the last time we did so.  Afterwards, if there are any
1296  * callbacks ready for immediate invocation, return true.
1297  */
1298 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1299 {
1300 	bool cbs_ready = false;
1301 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1302 	struct rcu_node *rnp;
1303 
1304 	/* Exit early if we advanced recently. */
1305 	if (jiffies == rdp->last_advance_all)
1306 		return false;
1307 	rdp->last_advance_all = jiffies;
1308 
1309 	rnp = rdp->mynode;
1310 
1311 	/*
1312 	 * Don't bother checking unless a grace period has
1313 	 * completed since we last checked and there are
1314 	 * callbacks not yet ready to invoke.
1315 	 */
1316 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1317 				  rcu_seq_current(&rnp->gp_seq)) ||
1318 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1319 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1320 		note_gp_changes(rdp);
1321 
1322 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1323 		cbs_ready = true;
1324 	return cbs_ready;
1325 }
1326 
1327 /*
1328  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1329  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1330  * caller to set the timeout based on whether or not there are non-lazy
1331  * callbacks.
1332  *
1333  * The caller must have disabled interrupts.
1334  */
1335 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1336 {
1337 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1338 	unsigned long dj;
1339 
1340 	lockdep_assert_irqs_disabled();
1341 
1342 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1343 	if (rcu_segcblist_empty(&rdp->cblist) ||
1344 	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1345 		*nextevt = KTIME_MAX;
1346 		return 0;
1347 	}
1348 
1349 	/* Attempt to advance callbacks. */
1350 	if (rcu_try_advance_all_cbs()) {
1351 		/* Some ready to invoke, so initiate later invocation. */
1352 		invoke_rcu_core();
1353 		return 1;
1354 	}
1355 	rdp->last_accelerate = jiffies;
1356 
1357 	/* Request timer delay depending on laziness, and round. */
1358 	rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1359 	if (rdp->all_lazy) {
1360 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1361 	} else {
1362 		dj = round_up(rcu_idle_gp_delay + jiffies,
1363 			       rcu_idle_gp_delay) - jiffies;
1364 	}
1365 	*nextevt = basemono + dj * TICK_NSEC;
1366 	return 0;
1367 }
1368 
1369 /*
1370  * Prepare a CPU for idle from an RCU perspective.  The first major task
1371  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1372  * The second major task is to check to see if a non-lazy callback has
1373  * arrived at a CPU that previously had only lazy callbacks.  The third
1374  * major task is to accelerate (that is, assign grace-period numbers to)
1375  * any recently arrived callbacks.
1376  *
1377  * The caller must have disabled interrupts.
1378  */
1379 static void rcu_prepare_for_idle(void)
1380 {
1381 	bool needwake;
1382 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1383 	struct rcu_node *rnp;
1384 	int tne;
1385 
1386 	lockdep_assert_irqs_disabled();
1387 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1388 		return;
1389 
1390 	/* Handle nohz enablement switches conservatively. */
1391 	tne = READ_ONCE(tick_nohz_active);
1392 	if (tne != rdp->tick_nohz_enabled_snap) {
1393 		if (!rcu_segcblist_empty(&rdp->cblist))
1394 			invoke_rcu_core(); /* force nohz to see update. */
1395 		rdp->tick_nohz_enabled_snap = tne;
1396 		return;
1397 	}
1398 	if (!tne)
1399 		return;
1400 
1401 	/*
1402 	 * If a non-lazy callback arrived at a CPU having only lazy
1403 	 * callbacks, invoke RCU core for the side-effect of recalculating
1404 	 * idle duration on re-entry to idle.
1405 	 */
1406 	if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1407 		rdp->all_lazy = false;
1408 		invoke_rcu_core();
1409 		return;
1410 	}
1411 
1412 	/*
1413 	 * If we have not yet accelerated this jiffy, accelerate all
1414 	 * callbacks on this CPU.
1415 	 */
1416 	if (rdp->last_accelerate == jiffies)
1417 		return;
1418 	rdp->last_accelerate = jiffies;
1419 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1420 		rnp = rdp->mynode;
1421 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1422 		needwake = rcu_accelerate_cbs(rnp, rdp);
1423 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1424 		if (needwake)
1425 			rcu_gp_kthread_wake();
1426 	}
1427 }
1428 
1429 /*
1430  * Clean up for exit from idle.  Attempt to advance callbacks based on
1431  * any grace periods that elapsed while the CPU was idle, and if any
1432  * callbacks are now ready to invoke, initiate invocation.
1433  */
1434 static void rcu_cleanup_after_idle(void)
1435 {
1436 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437 
1438 	lockdep_assert_irqs_disabled();
1439 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1440 		return;
1441 	if (rcu_try_advance_all_cbs())
1442 		invoke_rcu_core();
1443 }
1444 
1445 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1446 
1447 #ifdef CONFIG_RCU_NOCB_CPU
1448 
1449 /*
1450  * Offload callback processing from the boot-time-specified set of CPUs
1451  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1452  * created that pull the callbacks from the corresponding CPU, wait for
1453  * a grace period to elapse, and invoke the callbacks.  These kthreads
1454  * are organized into GP kthreads, which manage incoming callbacks, wait for
1455  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1456  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1457  * do a wake_up() on their GP kthread when they insert a callback into any
1458  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1459  * in which case each kthread actively polls its CPU.  (Which isn't so great
1460  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1461  *
1462  * This is intended to be used in conjunction with Frederic Weisbecker's
1463  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1464  * running CPU-bound user-mode computations.
1465  *
1466  * Offloading of callbacks can also be used as an energy-efficiency
1467  * measure because CPUs with no RCU callbacks queued are more aggressive
1468  * about entering dyntick-idle mode.
1469  */
1470 
1471 
1472 /*
1473  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1474  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1475  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1476  * given, a warning is emitted and all CPUs are offloaded.
1477  */
1478 static int __init rcu_nocb_setup(char *str)
1479 {
1480 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1481 	if (!strcasecmp(str, "all"))
1482 		cpumask_setall(rcu_nocb_mask);
1483 	else
1484 		if (cpulist_parse(str, rcu_nocb_mask)) {
1485 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1486 			cpumask_setall(rcu_nocb_mask);
1487 		}
1488 	return 1;
1489 }
1490 __setup("rcu_nocbs=", rcu_nocb_setup);
1491 
1492 static int __init parse_rcu_nocb_poll(char *arg)
1493 {
1494 	rcu_nocb_poll = true;
1495 	return 0;
1496 }
1497 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1498 
1499 /*
1500  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1501  * After all, the main point of bypassing is to avoid lock contention
1502  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1503  */
1504 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1505 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1506 
1507 /*
1508  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1509  * lock isn't immediately available, increment ->nocb_lock_contended to
1510  * flag the contention.
1511  */
1512 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1513 {
1514 	lockdep_assert_irqs_disabled();
1515 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1516 		return;
1517 	atomic_inc(&rdp->nocb_lock_contended);
1518 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1519 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1520 	raw_spin_lock(&rdp->nocb_bypass_lock);
1521 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1522 	atomic_dec(&rdp->nocb_lock_contended);
1523 }
1524 
1525 /*
1526  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1527  * not contended.  Please note that this is extremely special-purpose,
1528  * relying on the fact that at most two kthreads and one CPU contend for
1529  * this lock, and also that the two kthreads are guaranteed to have frequent
1530  * grace-period-duration time intervals between successive acquisitions
1531  * of the lock.  This allows us to use an extremely simple throttling
1532  * mechanism, and further to apply it only to the CPU doing floods of
1533  * call_rcu() invocations.  Don't try this at home!
1534  */
1535 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1536 {
1537 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1538 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1539 		cpu_relax();
1540 }
1541 
1542 /*
1543  * Conditionally acquire the specified rcu_data structure's
1544  * ->nocb_bypass_lock.
1545  */
1546 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1547 {
1548 	lockdep_assert_irqs_disabled();
1549 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1550 }
1551 
1552 /*
1553  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1554  */
1555 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1556 {
1557 	lockdep_assert_irqs_disabled();
1558 	raw_spin_unlock(&rdp->nocb_bypass_lock);
1559 }
1560 
1561 /*
1562  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1563  * if it corresponds to a no-CBs CPU.
1564  */
1565 static void rcu_nocb_lock(struct rcu_data *rdp)
1566 {
1567 	lockdep_assert_irqs_disabled();
1568 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1569 		return;
1570 	raw_spin_lock(&rdp->nocb_lock);
1571 }
1572 
1573 /*
1574  * Release the specified rcu_data structure's ->nocb_lock, but only
1575  * if it corresponds to a no-CBs CPU.
1576  */
1577 static void rcu_nocb_unlock(struct rcu_data *rdp)
1578 {
1579 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1580 		lockdep_assert_irqs_disabled();
1581 		raw_spin_unlock(&rdp->nocb_lock);
1582 	}
1583 }
1584 
1585 /*
1586  * Release the specified rcu_data structure's ->nocb_lock and restore
1587  * interrupts, but only if it corresponds to a no-CBs CPU.
1588  */
1589 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1590 				       unsigned long flags)
1591 {
1592 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1593 		lockdep_assert_irqs_disabled();
1594 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1595 	} else {
1596 		local_irq_restore(flags);
1597 	}
1598 }
1599 
1600 /* Lockdep check that ->cblist may be safely accessed. */
1601 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1602 {
1603 	lockdep_assert_irqs_disabled();
1604 	if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1605 	    cpu_online(rdp->cpu))
1606 		lockdep_assert_held(&rdp->nocb_lock);
1607 }
1608 
1609 /*
1610  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1611  * grace period.
1612  */
1613 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1614 {
1615 	swake_up_all(sq);
1616 }
1617 
1618 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1619 {
1620 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1621 }
1622 
1623 static void rcu_init_one_nocb(struct rcu_node *rnp)
1624 {
1625 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1626 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1627 }
1628 
1629 /* Is the specified CPU a no-CBs CPU? */
1630 bool rcu_is_nocb_cpu(int cpu)
1631 {
1632 	if (cpumask_available(rcu_nocb_mask))
1633 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1634 	return false;
1635 }
1636 
1637 /*
1638  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1639  * and this function releases it.
1640  */
1641 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1642 			   unsigned long flags)
1643 	__releases(rdp->nocb_lock)
1644 {
1645 	bool needwake = false;
1646 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1647 
1648 	lockdep_assert_held(&rdp->nocb_lock);
1649 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1650 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1651 				    TPS("AlreadyAwake"));
1652 		rcu_nocb_unlock_irqrestore(rdp, flags);
1653 		return;
1654 	}
1655 	del_timer(&rdp->nocb_timer);
1656 	rcu_nocb_unlock_irqrestore(rdp, flags);
1657 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1658 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1659 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1660 		needwake = true;
1661 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1662 	}
1663 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1664 	if (needwake)
1665 		wake_up_process(rdp_gp->nocb_gp_kthread);
1666 }
1667 
1668 /*
1669  * Arrange to wake the GP kthread for this NOCB group at some future
1670  * time when it is safe to do so.
1671  */
1672 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1673 			       const char *reason)
1674 {
1675 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1676 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1677 	if (rdp->nocb_defer_wakeup < waketype)
1678 		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1679 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1680 }
1681 
1682 /*
1683  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1684  * However, if there is a callback to be enqueued and if ->nocb_bypass
1685  * proves to be initially empty, just return false because the no-CB GP
1686  * kthread may need to be awakened in this case.
1687  *
1688  * Note that this function always returns true if rhp is NULL.
1689  */
1690 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1691 				     unsigned long j)
1692 {
1693 	struct rcu_cblist rcl;
1694 
1695 	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1696 	rcu_lockdep_assert_cblist_protected(rdp);
1697 	lockdep_assert_held(&rdp->nocb_bypass_lock);
1698 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1699 		raw_spin_unlock(&rdp->nocb_bypass_lock);
1700 		return false;
1701 	}
1702 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1703 	if (rhp)
1704 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1705 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1706 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1707 	WRITE_ONCE(rdp->nocb_bypass_first, j);
1708 	rcu_nocb_bypass_unlock(rdp);
1709 	return true;
1710 }
1711 
1712 /*
1713  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1714  * However, if there is a callback to be enqueued and if ->nocb_bypass
1715  * proves to be initially empty, just return false because the no-CB GP
1716  * kthread may need to be awakened in this case.
1717  *
1718  * Note that this function always returns true if rhp is NULL.
1719  */
1720 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1721 				  unsigned long j)
1722 {
1723 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1724 		return true;
1725 	rcu_lockdep_assert_cblist_protected(rdp);
1726 	rcu_nocb_bypass_lock(rdp);
1727 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1728 }
1729 
1730 /*
1731  * If the ->nocb_bypass_lock is immediately available, flush the
1732  * ->nocb_bypass queue into ->cblist.
1733  */
1734 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1735 {
1736 	rcu_lockdep_assert_cblist_protected(rdp);
1737 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1738 	    !rcu_nocb_bypass_trylock(rdp))
1739 		return;
1740 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1741 }
1742 
1743 /*
1744  * See whether it is appropriate to use the ->nocb_bypass list in order
1745  * to control contention on ->nocb_lock.  A limited number of direct
1746  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1747  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1748  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1749  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1750  * used if ->cblist is empty, because otherwise callbacks can be stranded
1751  * on ->nocb_bypass because we cannot count on the current CPU ever again
1752  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1753  * non-empty, the corresponding no-CBs grace-period kthread must not be
1754  * in an indefinite sleep state.
1755  *
1756  * Finally, it is not permitted to use the bypass during early boot,
1757  * as doing so would confuse the auto-initialization code.  Besides
1758  * which, there is no point in worrying about lock contention while
1759  * there is only one CPU in operation.
1760  */
1761 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1762 				bool *was_alldone, unsigned long flags)
1763 {
1764 	unsigned long c;
1765 	unsigned long cur_gp_seq;
1766 	unsigned long j = jiffies;
1767 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1768 
1769 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1770 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1771 		return false; /* Not offloaded, no bypassing. */
1772 	}
1773 	lockdep_assert_irqs_disabled();
1774 
1775 	// Don't use ->nocb_bypass during early boot.
1776 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1777 		rcu_nocb_lock(rdp);
1778 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1779 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780 		return false;
1781 	}
1782 
1783 	// If we have advanced to a new jiffy, reset counts to allow
1784 	// moving back from ->nocb_bypass to ->cblist.
1785 	if (j == rdp->nocb_nobypass_last) {
1786 		c = rdp->nocb_nobypass_count + 1;
1787 	} else {
1788 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1789 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1790 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1791 				 nocb_nobypass_lim_per_jiffy))
1792 			c = 0;
1793 		else if (c > nocb_nobypass_lim_per_jiffy)
1794 			c = nocb_nobypass_lim_per_jiffy;
1795 	}
1796 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1797 
1798 	// If there hasn't yet been all that many ->cblist enqueues
1799 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1800 	// ->nocb_bypass first.
1801 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1802 		rcu_nocb_lock(rdp);
1803 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1804 		if (*was_alldone)
1805 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1806 					    TPS("FirstQ"));
1807 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1808 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1809 		return false; // Caller must enqueue the callback.
1810 	}
1811 
1812 	// If ->nocb_bypass has been used too long or is too full,
1813 	// flush ->nocb_bypass to ->cblist.
1814 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1815 	    ncbs >= qhimark) {
1816 		rcu_nocb_lock(rdp);
1817 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1818 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1819 			if (*was_alldone)
1820 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1821 						    TPS("FirstQ"));
1822 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1823 			return false; // Caller must enqueue the callback.
1824 		}
1825 		if (j != rdp->nocb_gp_adv_time &&
1826 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1827 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1828 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1829 			rdp->nocb_gp_adv_time = j;
1830 		}
1831 		rcu_nocb_unlock_irqrestore(rdp, flags);
1832 		return true; // Callback already enqueued.
1833 	}
1834 
1835 	// We need to use the bypass.
1836 	rcu_nocb_wait_contended(rdp);
1837 	rcu_nocb_bypass_lock(rdp);
1838 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1839 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1840 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1841 	if (!ncbs) {
1842 		WRITE_ONCE(rdp->nocb_bypass_first, j);
1843 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1844 	}
1845 	rcu_nocb_bypass_unlock(rdp);
1846 	smp_mb(); /* Order enqueue before wake. */
1847 	if (ncbs) {
1848 		local_irq_restore(flags);
1849 	} else {
1850 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1851 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1852 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1853 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1854 					    TPS("FirstBQwake"));
1855 			__call_rcu_nocb_wake(rdp, true, flags);
1856 		} else {
1857 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1858 					    TPS("FirstBQnoWake"));
1859 			rcu_nocb_unlock_irqrestore(rdp, flags);
1860 		}
1861 	}
1862 	return true; // Callback already enqueued.
1863 }
1864 
1865 /*
1866  * Awaken the no-CBs grace-period kthead if needed, either due to it
1867  * legitimately being asleep or due to overload conditions.
1868  *
1869  * If warranted, also wake up the kthread servicing this CPUs queues.
1870  */
1871 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1872 				 unsigned long flags)
1873 				 __releases(rdp->nocb_lock)
1874 {
1875 	unsigned long cur_gp_seq;
1876 	unsigned long j;
1877 	long len;
1878 	struct task_struct *t;
1879 
1880 	// If we are being polled or there is no kthread, just leave.
1881 	t = READ_ONCE(rdp->nocb_gp_kthread);
1882 	if (rcu_nocb_poll || !t) {
1883 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1884 				    TPS("WakeNotPoll"));
1885 		rcu_nocb_unlock_irqrestore(rdp, flags);
1886 		return;
1887 	}
1888 	// Need to actually to a wakeup.
1889 	len = rcu_segcblist_n_cbs(&rdp->cblist);
1890 	if (was_alldone) {
1891 		rdp->qlen_last_fqs_check = len;
1892 		if (!irqs_disabled_flags(flags)) {
1893 			/* ... if queue was empty ... */
1894 			wake_nocb_gp(rdp, false, flags);
1895 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1896 					    TPS("WakeEmpty"));
1897 		} else {
1898 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1899 					   TPS("WakeEmptyIsDeferred"));
1900 			rcu_nocb_unlock_irqrestore(rdp, flags);
1901 		}
1902 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1903 		/* ... or if many callbacks queued. */
1904 		rdp->qlen_last_fqs_check = len;
1905 		j = jiffies;
1906 		if (j != rdp->nocb_gp_adv_time &&
1907 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1908 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1909 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1910 			rdp->nocb_gp_adv_time = j;
1911 		}
1912 		smp_mb(); /* Enqueue before timer_pending(). */
1913 		if ((rdp->nocb_cb_sleep ||
1914 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1915 		    !timer_pending(&rdp->nocb_bypass_timer))
1916 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1917 					   TPS("WakeOvfIsDeferred"));
1918 		rcu_nocb_unlock_irqrestore(rdp, flags);
1919 	} else {
1920 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1921 		rcu_nocb_unlock_irqrestore(rdp, flags);
1922 	}
1923 	return;
1924 }
1925 
1926 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1927 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1928 {
1929 	unsigned long flags;
1930 	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1931 
1932 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1933 	rcu_nocb_lock_irqsave(rdp, flags);
1934 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1935 	__call_rcu_nocb_wake(rdp, true, flags);
1936 }
1937 
1938 /*
1939  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1940  * or for grace periods to end.
1941  */
1942 static void nocb_gp_wait(struct rcu_data *my_rdp)
1943 {
1944 	bool bypass = false;
1945 	long bypass_ncbs;
1946 	int __maybe_unused cpu = my_rdp->cpu;
1947 	unsigned long cur_gp_seq;
1948 	unsigned long flags;
1949 	bool gotcbs;
1950 	unsigned long j = jiffies;
1951 	bool needwait_gp = false; // This prevents actual uninitialized use.
1952 	bool needwake;
1953 	bool needwake_gp;
1954 	struct rcu_data *rdp;
1955 	struct rcu_node *rnp;
1956 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1957 
1958 	/*
1959 	 * Each pass through the following loop checks for CBs and for the
1960 	 * nearest grace period (if any) to wait for next.  The CB kthreads
1961 	 * and the global grace-period kthread are awakened if needed.
1962 	 */
1963 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1964 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1965 		rcu_nocb_lock_irqsave(rdp, flags);
1966 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1967 		if (bypass_ncbs &&
1968 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1969 		     bypass_ncbs > 2 * qhimark)) {
1970 			// Bypass full or old, so flush it.
1971 			(void)rcu_nocb_try_flush_bypass(rdp, j);
1972 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1973 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1974 			rcu_nocb_unlock_irqrestore(rdp, flags);
1975 			continue; /* No callbacks here, try next. */
1976 		}
1977 		if (bypass_ncbs) {
1978 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1979 					    TPS("Bypass"));
1980 			bypass = true;
1981 		}
1982 		rnp = rdp->mynode;
1983 		if (bypass) {  // Avoid race with first bypass CB.
1984 			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1985 				   RCU_NOCB_WAKE_NOT);
1986 			del_timer(&my_rdp->nocb_timer);
1987 		}
1988 		// Advance callbacks if helpful and low contention.
1989 		needwake_gp = false;
1990 		if (!rcu_segcblist_restempty(&rdp->cblist,
1991 					     RCU_NEXT_READY_TAIL) ||
1992 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1993 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1994 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1995 			needwake_gp = rcu_advance_cbs(rnp, rdp);
1996 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1997 		}
1998 		// Need to wait on some grace period?
1999 		WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2000 						      RCU_NEXT_READY_TAIL));
2001 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2002 			if (!needwait_gp ||
2003 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2004 				wait_gp_seq = cur_gp_seq;
2005 			needwait_gp = true;
2006 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2007 					    TPS("NeedWaitGP"));
2008 		}
2009 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2010 			needwake = rdp->nocb_cb_sleep;
2011 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
2012 			smp_mb(); /* CB invocation -after- GP end. */
2013 		} else {
2014 			needwake = false;
2015 		}
2016 		rcu_nocb_unlock_irqrestore(rdp, flags);
2017 		if (needwake) {
2018 			swake_up_one(&rdp->nocb_cb_wq);
2019 			gotcbs = true;
2020 		}
2021 		if (needwake_gp)
2022 			rcu_gp_kthread_wake();
2023 	}
2024 
2025 	my_rdp->nocb_gp_bypass = bypass;
2026 	my_rdp->nocb_gp_gp = needwait_gp;
2027 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2028 	if (bypass && !rcu_nocb_poll) {
2029 		// At least one child with non-empty ->nocb_bypass, so set
2030 		// timer in order to avoid stranding its callbacks.
2031 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2032 		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2033 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2034 	}
2035 	if (rcu_nocb_poll) {
2036 		/* Polling, so trace if first poll in the series. */
2037 		if (gotcbs)
2038 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2039 		schedule_timeout_interruptible(1);
2040 	} else if (!needwait_gp) {
2041 		/* Wait for callbacks to appear. */
2042 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2043 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2044 				!READ_ONCE(my_rdp->nocb_gp_sleep));
2045 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2046 	} else {
2047 		rnp = my_rdp->mynode;
2048 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2049 		swait_event_interruptible_exclusive(
2050 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2051 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2052 			!READ_ONCE(my_rdp->nocb_gp_sleep));
2053 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2054 	}
2055 	if (!rcu_nocb_poll) {
2056 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2057 		if (bypass)
2058 			del_timer(&my_rdp->nocb_bypass_timer);
2059 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2060 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2061 	}
2062 	my_rdp->nocb_gp_seq = -1;
2063 	WARN_ON(signal_pending(current));
2064 }
2065 
2066 /*
2067  * No-CBs grace-period-wait kthread.  There is one of these per group
2068  * of CPUs, but only once at least one CPU in that group has come online
2069  * at least once since boot.  This kthread checks for newly posted
2070  * callbacks from any of the CPUs it is responsible for, waits for a
2071  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2072  * that then have callback-invocation work to do.
2073  */
2074 static int rcu_nocb_gp_kthread(void *arg)
2075 {
2076 	struct rcu_data *rdp = arg;
2077 
2078 	for (;;) {
2079 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2080 		nocb_gp_wait(rdp);
2081 		cond_resched_tasks_rcu_qs();
2082 	}
2083 	return 0;
2084 }
2085 
2086 /*
2087  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2088  * then, if there are no more, wait for more to appear.
2089  */
2090 static void nocb_cb_wait(struct rcu_data *rdp)
2091 {
2092 	unsigned long cur_gp_seq;
2093 	unsigned long flags;
2094 	bool needwake_gp = false;
2095 	struct rcu_node *rnp = rdp->mynode;
2096 
2097 	local_irq_save(flags);
2098 	rcu_momentary_dyntick_idle();
2099 	local_irq_restore(flags);
2100 	local_bh_disable();
2101 	rcu_do_batch(rdp);
2102 	local_bh_enable();
2103 	lockdep_assert_irqs_enabled();
2104 	rcu_nocb_lock_irqsave(rdp, flags);
2105 	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2106 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2107 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2108 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2109 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2110 	}
2111 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2112 		rcu_nocb_unlock_irqrestore(rdp, flags);
2113 		if (needwake_gp)
2114 			rcu_gp_kthread_wake();
2115 		return;
2116 	}
2117 
2118 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2119 	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2120 	rcu_nocb_unlock_irqrestore(rdp, flags);
2121 	if (needwake_gp)
2122 		rcu_gp_kthread_wake();
2123 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2124 				 !READ_ONCE(rdp->nocb_cb_sleep));
2125 	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2126 		/* ^^^ Ensure CB invocation follows _sleep test. */
2127 		return;
2128 	}
2129 	WARN_ON(signal_pending(current));
2130 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2131 }
2132 
2133 /*
2134  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2135  * nocb_cb_wait() to do the dirty work.
2136  */
2137 static int rcu_nocb_cb_kthread(void *arg)
2138 {
2139 	struct rcu_data *rdp = arg;
2140 
2141 	// Each pass through this loop does one callback batch, and,
2142 	// if there are no more ready callbacks, waits for them.
2143 	for (;;) {
2144 		nocb_cb_wait(rdp);
2145 		cond_resched_tasks_rcu_qs();
2146 	}
2147 	return 0;
2148 }
2149 
2150 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2151 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2152 {
2153 	return READ_ONCE(rdp->nocb_defer_wakeup);
2154 }
2155 
2156 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2157 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2158 {
2159 	unsigned long flags;
2160 	int ndw;
2161 
2162 	rcu_nocb_lock_irqsave(rdp, flags);
2163 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2164 		rcu_nocb_unlock_irqrestore(rdp, flags);
2165 		return;
2166 	}
2167 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2168 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2169 	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2170 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2171 }
2172 
2173 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2174 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2175 {
2176 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2177 
2178 	do_nocb_deferred_wakeup_common(rdp);
2179 }
2180 
2181 /*
2182  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2183  * This means we do an inexact common-case check.  Note that if
2184  * we miss, ->nocb_timer will eventually clean things up.
2185  */
2186 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2187 {
2188 	if (rcu_nocb_need_deferred_wakeup(rdp))
2189 		do_nocb_deferred_wakeup_common(rdp);
2190 }
2191 
2192 void __init rcu_init_nohz(void)
2193 {
2194 	int cpu;
2195 	bool need_rcu_nocb_mask = false;
2196 	struct rcu_data *rdp;
2197 
2198 #if defined(CONFIG_NO_HZ_FULL)
2199 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2200 		need_rcu_nocb_mask = true;
2201 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2202 
2203 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2204 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2205 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2206 			return;
2207 		}
2208 	}
2209 	if (!cpumask_available(rcu_nocb_mask))
2210 		return;
2211 
2212 #if defined(CONFIG_NO_HZ_FULL)
2213 	if (tick_nohz_full_running)
2214 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2215 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2216 
2217 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2218 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2219 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2220 			    rcu_nocb_mask);
2221 	}
2222 	if (cpumask_empty(rcu_nocb_mask))
2223 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2224 	else
2225 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2226 			cpumask_pr_args(rcu_nocb_mask));
2227 	if (rcu_nocb_poll)
2228 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2229 
2230 	for_each_cpu(cpu, rcu_nocb_mask) {
2231 		rdp = per_cpu_ptr(&rcu_data, cpu);
2232 		if (rcu_segcblist_empty(&rdp->cblist))
2233 			rcu_segcblist_init(&rdp->cblist);
2234 		rcu_segcblist_offload(&rdp->cblist);
2235 	}
2236 	rcu_organize_nocb_kthreads();
2237 }
2238 
2239 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2240 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2241 {
2242 	init_swait_queue_head(&rdp->nocb_cb_wq);
2243 	init_swait_queue_head(&rdp->nocb_gp_wq);
2244 	raw_spin_lock_init(&rdp->nocb_lock);
2245 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2246 	raw_spin_lock_init(&rdp->nocb_gp_lock);
2247 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2248 	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2249 	rcu_cblist_init(&rdp->nocb_bypass);
2250 }
2251 
2252 /*
2253  * If the specified CPU is a no-CBs CPU that does not already have its
2254  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2255  * for this CPU's group has not yet been created, spawn it as well.
2256  */
2257 static void rcu_spawn_one_nocb_kthread(int cpu)
2258 {
2259 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2260 	struct rcu_data *rdp_gp;
2261 	struct task_struct *t;
2262 
2263 	/*
2264 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2265 	 * then nothing to do.
2266 	 */
2267 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2268 		return;
2269 
2270 	/* If we didn't spawn the GP kthread first, reorganize! */
2271 	rdp_gp = rdp->nocb_gp_rdp;
2272 	if (!rdp_gp->nocb_gp_kthread) {
2273 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2274 				"rcuog/%d", rdp_gp->cpu);
2275 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2276 			return;
2277 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2278 	}
2279 
2280 	/* Spawn the kthread for this CPU. */
2281 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2282 			"rcuo%c/%d", rcu_state.abbr, cpu);
2283 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2284 		return;
2285 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2286 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2287 }
2288 
2289 /*
2290  * If the specified CPU is a no-CBs CPU that does not already have its
2291  * rcuo kthread, spawn it.
2292  */
2293 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2294 {
2295 	if (rcu_scheduler_fully_active)
2296 		rcu_spawn_one_nocb_kthread(cpu);
2297 }
2298 
2299 /*
2300  * Once the scheduler is running, spawn rcuo kthreads for all online
2301  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2302  * non-boot CPUs come online -- if this changes, we will need to add
2303  * some mutual exclusion.
2304  */
2305 static void __init rcu_spawn_nocb_kthreads(void)
2306 {
2307 	int cpu;
2308 
2309 	for_each_online_cpu(cpu)
2310 		rcu_spawn_cpu_nocb_kthread(cpu);
2311 }
2312 
2313 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2314 static int rcu_nocb_gp_stride = -1;
2315 module_param(rcu_nocb_gp_stride, int, 0444);
2316 
2317 /*
2318  * Initialize GP-CB relationships for all no-CBs CPU.
2319  */
2320 static void __init rcu_organize_nocb_kthreads(void)
2321 {
2322 	int cpu;
2323 	bool firsttime = true;
2324 	int ls = rcu_nocb_gp_stride;
2325 	int nl = 0;  /* Next GP kthread. */
2326 	struct rcu_data *rdp;
2327 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328 	struct rcu_data *rdp_prev = NULL;
2329 
2330 	if (!cpumask_available(rcu_nocb_mask))
2331 		return;
2332 	if (ls == -1) {
2333 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334 		rcu_nocb_gp_stride = ls;
2335 	}
2336 
2337 	/*
2338 	 * Each pass through this loop sets up one rcu_data structure.
2339 	 * Should the corresponding CPU come online in the future, then
2340 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341 	 */
2342 	for_each_cpu(cpu, rcu_nocb_mask) {
2343 		rdp = per_cpu_ptr(&rcu_data, cpu);
2344 		if (rdp->cpu >= nl) {
2345 			/* New GP kthread, set up for CBs & next GP. */
2346 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2347 			rdp->nocb_gp_rdp = rdp;
2348 			rdp_gp = rdp;
2349 			if (!firsttime && dump_tree)
2350 				pr_cont("\n");
2351 			firsttime = false;
2352 			pr_alert("%s: No-CB GP kthread CPU %d:", __func__, cpu);
2353 		} else {
2354 			/* Another CB kthread, link to previous GP kthread. */
2355 			rdp->nocb_gp_rdp = rdp_gp;
2356 			rdp_prev->nocb_next_cb_rdp = rdp;
2357 			pr_alert(" %d", cpu);
2358 		}
2359 		rdp_prev = rdp;
2360 	}
2361 }
2362 
2363 /*
2364  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2365  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2366  */
2367 void rcu_bind_current_to_nocb(void)
2368 {
2369 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2370 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2371 }
2372 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2373 
2374 /*
2375  * Dump out nocb grace-period kthread state for the specified rcu_data
2376  * structure.
2377  */
2378 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2379 {
2380 	struct rcu_node *rnp = rdp->mynode;
2381 
2382 	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2383 		rdp->cpu,
2384 		"kK"[!!rdp->nocb_gp_kthread],
2385 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2386 		"dD"[!!rdp->nocb_defer_wakeup],
2387 		"tT"[timer_pending(&rdp->nocb_timer)],
2388 		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2389 		"sS"[!!rdp->nocb_gp_sleep],
2390 		".W"[swait_active(&rdp->nocb_gp_wq)],
2391 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2392 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2393 		".B"[!!rdp->nocb_gp_bypass],
2394 		".G"[!!rdp->nocb_gp_gp],
2395 		(long)rdp->nocb_gp_seq,
2396 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2397 }
2398 
2399 /* Dump out nocb kthread state for the specified rcu_data structure. */
2400 static void show_rcu_nocb_state(struct rcu_data *rdp)
2401 {
2402 	struct rcu_segcblist *rsclp = &rdp->cblist;
2403 	bool waslocked;
2404 	bool wastimer;
2405 	bool wassleep;
2406 
2407 	if (rdp->nocb_gp_rdp == rdp)
2408 		show_rcu_nocb_gp_state(rdp);
2409 
2410 	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2411 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2412 		"kK"[!!rdp->nocb_cb_kthread],
2413 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2414 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2415 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2416 		"sS"[!!rdp->nocb_cb_sleep],
2417 		".W"[swait_active(&rdp->nocb_cb_wq)],
2418 		jiffies - rdp->nocb_bypass_first,
2419 		jiffies - rdp->nocb_nobypass_last,
2420 		rdp->nocb_nobypass_count,
2421 		".D"[rcu_segcblist_ready_cbs(rsclp)],
2422 		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2423 		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2424 		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2425 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2426 		rcu_segcblist_n_cbs(&rdp->cblist));
2427 
2428 	/* It is OK for GP kthreads to have GP state. */
2429 	if (rdp->nocb_gp_rdp == rdp)
2430 		return;
2431 
2432 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2433 	wastimer = timer_pending(&rdp->nocb_timer);
2434 	wassleep = swait_active(&rdp->nocb_gp_wq);
2435 	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2436 	    !waslocked && !wastimer && !wassleep)
2437 		return;  /* Nothing untowards. */
2438 
2439 	pr_info("   !!! %c%c%c%c %c\n",
2440 		"lL"[waslocked],
2441 		"dD"[!!rdp->nocb_defer_wakeup],
2442 		"tT"[wastimer],
2443 		"sS"[!!rdp->nocb_gp_sleep],
2444 		".W"[wassleep]);
2445 }
2446 
2447 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2448 
2449 /* No ->nocb_lock to acquire.  */
2450 static void rcu_nocb_lock(struct rcu_data *rdp)
2451 {
2452 }
2453 
2454 /* No ->nocb_lock to release.  */
2455 static void rcu_nocb_unlock(struct rcu_data *rdp)
2456 {
2457 }
2458 
2459 /* No ->nocb_lock to release.  */
2460 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2461 				       unsigned long flags)
2462 {
2463 	local_irq_restore(flags);
2464 }
2465 
2466 /* Lockdep check that ->cblist may be safely accessed. */
2467 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2468 {
2469 	lockdep_assert_irqs_disabled();
2470 }
2471 
2472 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2473 {
2474 }
2475 
2476 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2477 {
2478 	return NULL;
2479 }
2480 
2481 static void rcu_init_one_nocb(struct rcu_node *rnp)
2482 {
2483 }
2484 
2485 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2486 				  unsigned long j)
2487 {
2488 	return true;
2489 }
2490 
2491 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2492 				bool *was_alldone, unsigned long flags)
2493 {
2494 	return false;
2495 }
2496 
2497 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2498 				 unsigned long flags)
2499 {
2500 	WARN_ON_ONCE(1);  /* Should be dead code! */
2501 }
2502 
2503 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2504 {
2505 }
2506 
2507 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2508 {
2509 	return false;
2510 }
2511 
2512 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2513 {
2514 }
2515 
2516 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2517 {
2518 }
2519 
2520 static void __init rcu_spawn_nocb_kthreads(void)
2521 {
2522 }
2523 
2524 static void show_rcu_nocb_state(struct rcu_data *rdp)
2525 {
2526 }
2527 
2528 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2529 
2530 /*
2531  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2532  * grace-period kthread will do force_quiescent_state() processing?
2533  * The idea is to avoid waking up RCU core processing on such a
2534  * CPU unless the grace period has extended for too long.
2535  *
2536  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2537  * CONFIG_RCU_NOCB_CPU CPUs.
2538  */
2539 static bool rcu_nohz_full_cpu(void)
2540 {
2541 #ifdef CONFIG_NO_HZ_FULL
2542 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2543 	    (!rcu_gp_in_progress() ||
2544 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2545 		return true;
2546 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2547 	return false;
2548 }
2549 
2550 /*
2551  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2552  */
2553 static void rcu_bind_gp_kthread(void)
2554 {
2555 	if (!tick_nohz_full_enabled())
2556 		return;
2557 	housekeeping_affine(current, HK_FLAG_RCU);
2558 }
2559 
2560 /* Record the current task on dyntick-idle entry. */
2561 static void rcu_dynticks_task_enter(void)
2562 {
2563 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2564 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2565 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2566 }
2567 
2568 /* Record no current task on dyntick-idle exit. */
2569 static void rcu_dynticks_task_exit(void)
2570 {
2571 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2572 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2573 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2574 }
2575