xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 6b5fc336)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
34 
35 #ifdef CONFIG_RCU_BOOST
36 
37 #include "../locking/rtmutex_common.h"
38 
39 /*
40  * Control variables for per-CPU and per-rcu_node kthreads.  These
41  * handle all flavors of RCU.
42  */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47 
48 #else /* #ifdef CONFIG_RCU_BOOST */
49 
50 /*
51  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52  * all uses are in dead code.  Provide a definition to keep the compiler
53  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54  * This probably needs to be excluded from -rt builds.
55  */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57 
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
59 
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65 
66 /*
67  * Check the RCU kernel configuration parameters and print informative
68  * messages about anything out of the ordinary.
69  */
70 static void __init rcu_bootup_announce_oddness(void)
71 {
72 	if (IS_ENABLED(CONFIG_RCU_TRACE))
73 		pr_info("\tRCU event tracing is enabled.\n");
74 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77 		       RCU_FANOUT);
78 	if (rcu_fanout_exact)
79 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 	if (IS_ENABLED(CONFIG_PROVE_RCU))
83 		pr_info("\tRCU lockdep checking is enabled.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 	if (nr_cpu_ids != NR_CPUS)
92 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 #ifdef CONFIG_RCU_BOOST
94 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
95 #endif
96 	if (blimit != DEFAULT_RCU_BLIMIT)
97 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
98 	if (qhimark != DEFAULT_RCU_QHIMARK)
99 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
100 	if (qlowmark != DEFAULT_RCU_QLOMARK)
101 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
102 	if (jiffies_till_first_fqs != ULONG_MAX)
103 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
104 	if (jiffies_till_next_fqs != ULONG_MAX)
105 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
106 	if (rcu_kick_kthreads)
107 		pr_info("\tKick kthreads if too-long grace period.\n");
108 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
109 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
110 	if (gp_preinit_delay)
111 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
112 	if (gp_init_delay)
113 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
114 	if (gp_cleanup_delay)
115 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
116 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
117 		pr_info("\tRCU debug extended QS entry/exit.\n");
118 	rcupdate_announce_bootup_oddness();
119 }
120 
121 #ifdef CONFIG_PREEMPT_RCU
122 
123 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
124 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
125 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
126 
127 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
128 			       bool wake);
129 
130 /*
131  * Tell them what RCU they are running.
132  */
133 static void __init rcu_bootup_announce(void)
134 {
135 	pr_info("Preemptible hierarchical RCU implementation.\n");
136 	rcu_bootup_announce_oddness();
137 }
138 
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS	0x8
141 #define RCU_EXP_TASKS	0x4
142 #define RCU_GP_BLKD	0x2
143 #define RCU_EXP_BLKD	0x1
144 
145 /*
146  * Queues a task preempted within an RCU-preempt read-side critical
147  * section into the appropriate location within the ->blkd_tasks list,
148  * depending on the states of any ongoing normal and expedited grace
149  * periods.  The ->gp_tasks pointer indicates which element the normal
150  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151  * indicates which element the expedited grace period is waiting on (again,
152  * NULL if none).  If a grace period is waiting on a given element in the
153  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
154  * adding a task to the tail of the list blocks any grace period that is
155  * already waiting on one of the elements.  In contrast, adding a task
156  * to the head of the list won't block any grace period that is already
157  * waiting on one of the elements.
158  *
159  * This queuing is imprecise, and can sometimes make an ongoing grace
160  * period wait for a task that is not strictly speaking blocking it.
161  * Given the choice, we needlessly block a normal grace period rather than
162  * blocking an expedited grace period.
163  *
164  * Note that an endless sequence of expedited grace periods still cannot
165  * indefinitely postpone a normal grace period.  Eventually, all of the
166  * fixed number of preempted tasks blocking the normal grace period that are
167  * not also blocking the expedited grace period will resume and complete
168  * their RCU read-side critical sections.  At that point, the ->gp_tasks
169  * pointer will equal the ->exp_tasks pointer, at which point the end of
170  * the corresponding expedited grace period will also be the end of the
171  * normal grace period.
172  */
173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
174 	__releases(rnp->lock) /* But leaves rrupts disabled. */
175 {
176 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
177 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
178 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
179 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
180 	struct task_struct *t = current;
181 
182 	lockdep_assert_held(&rnp->lock);
183 
184 	/*
185 	 * Decide where to queue the newly blocked task.  In theory,
186 	 * this could be an if-statement.  In practice, when I tried
187 	 * that, it was quite messy.
188 	 */
189 	switch (blkd_state) {
190 	case 0:
191 	case                RCU_EXP_TASKS:
192 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
193 	case RCU_GP_TASKS:
194 	case RCU_GP_TASKS + RCU_EXP_TASKS:
195 
196 		/*
197 		 * Blocking neither GP, or first task blocking the normal
198 		 * GP but not blocking the already-waiting expedited GP.
199 		 * Queue at the head of the list to avoid unnecessarily
200 		 * blocking the already-waiting GPs.
201 		 */
202 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
203 		break;
204 
205 	case                                              RCU_EXP_BLKD:
206 	case                                RCU_GP_BLKD:
207 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
208 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
209 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
210 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
211 
212 		/*
213 		 * First task arriving that blocks either GP, or first task
214 		 * arriving that blocks the expedited GP (with the normal
215 		 * GP already waiting), or a task arriving that blocks
216 		 * both GPs with both GPs already waiting.  Queue at the
217 		 * tail of the list to avoid any GP waiting on any of the
218 		 * already queued tasks that are not blocking it.
219 		 */
220 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
221 		break;
222 
223 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
224 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
225 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
226 
227 		/*
228 		 * Second or subsequent task blocking the expedited GP.
229 		 * The task either does not block the normal GP, or is the
230 		 * first task blocking the normal GP.  Queue just after
231 		 * the first task blocking the expedited GP.
232 		 */
233 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
234 		break;
235 
236 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
237 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
238 
239 		/*
240 		 * Second or subsequent task blocking the normal GP.
241 		 * The task does not block the expedited GP. Queue just
242 		 * after the first task blocking the normal GP.
243 		 */
244 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
245 		break;
246 
247 	default:
248 
249 		/* Yet another exercise in excessive paranoia. */
250 		WARN_ON_ONCE(1);
251 		break;
252 	}
253 
254 	/*
255 	 * We have now queued the task.  If it was the first one to
256 	 * block either grace period, update the ->gp_tasks and/or
257 	 * ->exp_tasks pointers, respectively, to reference the newly
258 	 * blocked tasks.
259 	 */
260 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
261 		rnp->gp_tasks = &t->rcu_node_entry;
262 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
263 		rnp->exp_tasks = &t->rcu_node_entry;
264 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
265 
266 	/*
267 	 * Report the quiescent state for the expedited GP.  This expedited
268 	 * GP should not be able to end until we report, so there should be
269 	 * no need to check for a subsequent expedited GP.  (Though we are
270 	 * still in a quiescent state in any case.)
271 	 */
272 	if (blkd_state & RCU_EXP_BLKD &&
273 	    t->rcu_read_unlock_special.b.exp_need_qs) {
274 		t->rcu_read_unlock_special.b.exp_need_qs = false;
275 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
276 	} else {
277 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
278 	}
279 }
280 
281 /*
282  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
283  * that this just means that the task currently running on the CPU is
284  * not in a quiescent state.  There might be any number of tasks blocked
285  * while in an RCU read-side critical section.
286  *
287  * As with the other rcu_*_qs() functions, callers to this function
288  * must disable preemption.
289  */
290 static void rcu_preempt_qs(void)
291 {
292 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
293 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
294 		trace_rcu_grace_period(TPS("rcu_preempt"),
295 				       __this_cpu_read(rcu_data_p->gpnum),
296 				       TPS("cpuqs"));
297 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
298 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
299 		current->rcu_read_unlock_special.b.need_qs = false;
300 	}
301 }
302 
303 /*
304  * We have entered the scheduler, and the current task might soon be
305  * context-switched away from.  If this task is in an RCU read-side
306  * critical section, we will no longer be able to rely on the CPU to
307  * record that fact, so we enqueue the task on the blkd_tasks list.
308  * The task will dequeue itself when it exits the outermost enclosing
309  * RCU read-side critical section.  Therefore, the current grace period
310  * cannot be permitted to complete until the blkd_tasks list entries
311  * predating the current grace period drain, in other words, until
312  * rnp->gp_tasks becomes NULL.
313  *
314  * Caller must disable interrupts.
315  */
316 static void rcu_preempt_note_context_switch(bool preempt)
317 {
318 	struct task_struct *t = current;
319 	struct rcu_data *rdp;
320 	struct rcu_node *rnp;
321 
322 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
323 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
324 	if (t->rcu_read_lock_nesting > 0 &&
325 	    !t->rcu_read_unlock_special.b.blocked) {
326 
327 		/* Possibly blocking in an RCU read-side critical section. */
328 		rdp = this_cpu_ptr(rcu_state_p->rda);
329 		rnp = rdp->mynode;
330 		raw_spin_lock_rcu_node(rnp);
331 		t->rcu_read_unlock_special.b.blocked = true;
332 		t->rcu_blocked_node = rnp;
333 
334 		/*
335 		 * Verify the CPU's sanity, trace the preemption, and
336 		 * then queue the task as required based on the states
337 		 * of any ongoing and expedited grace periods.
338 		 */
339 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
340 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
341 		trace_rcu_preempt_task(rdp->rsp->name,
342 				       t->pid,
343 				       (rnp->qsmask & rdp->grpmask)
344 				       ? rnp->gpnum
345 				       : rnp->gpnum + 1);
346 		rcu_preempt_ctxt_queue(rnp, rdp);
347 	} else if (t->rcu_read_lock_nesting < 0 &&
348 		   t->rcu_read_unlock_special.s) {
349 
350 		/*
351 		 * Complete exit from RCU read-side critical section on
352 		 * behalf of preempted instance of __rcu_read_unlock().
353 		 */
354 		rcu_read_unlock_special(t);
355 	}
356 
357 	/*
358 	 * Either we were not in an RCU read-side critical section to
359 	 * begin with, or we have now recorded that critical section
360 	 * globally.  Either way, we can now note a quiescent state
361 	 * for this CPU.  Again, if we were in an RCU read-side critical
362 	 * section, and if that critical section was blocking the current
363 	 * grace period, then the fact that the task has been enqueued
364 	 * means that we continue to block the current grace period.
365 	 */
366 	rcu_preempt_qs();
367 }
368 
369 /*
370  * Check for preempted RCU readers blocking the current grace period
371  * for the specified rcu_node structure.  If the caller needs a reliable
372  * answer, it must hold the rcu_node's ->lock.
373  */
374 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
375 {
376 	return rnp->gp_tasks != NULL;
377 }
378 
379 /*
380  * Advance a ->blkd_tasks-list pointer to the next entry, instead
381  * returning NULL if at the end of the list.
382  */
383 static struct list_head *rcu_next_node_entry(struct task_struct *t,
384 					     struct rcu_node *rnp)
385 {
386 	struct list_head *np;
387 
388 	np = t->rcu_node_entry.next;
389 	if (np == &rnp->blkd_tasks)
390 		np = NULL;
391 	return np;
392 }
393 
394 /*
395  * Return true if the specified rcu_node structure has tasks that were
396  * preempted within an RCU read-side critical section.
397  */
398 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
399 {
400 	return !list_empty(&rnp->blkd_tasks);
401 }
402 
403 /*
404  * Handle special cases during rcu_read_unlock(), such as needing to
405  * notify RCU core processing or task having blocked during the RCU
406  * read-side critical section.
407  */
408 void rcu_read_unlock_special(struct task_struct *t)
409 {
410 	bool empty_exp;
411 	bool empty_norm;
412 	bool empty_exp_now;
413 	unsigned long flags;
414 	struct list_head *np;
415 	bool drop_boost_mutex = false;
416 	struct rcu_data *rdp;
417 	struct rcu_node *rnp;
418 	union rcu_special special;
419 
420 	/* NMI handlers cannot block and cannot safely manipulate state. */
421 	if (in_nmi())
422 		return;
423 
424 	local_irq_save(flags);
425 
426 	/*
427 	 * If RCU core is waiting for this CPU to exit its critical section,
428 	 * report the fact that it has exited.  Because irqs are disabled,
429 	 * t->rcu_read_unlock_special cannot change.
430 	 */
431 	special = t->rcu_read_unlock_special;
432 	if (special.b.need_qs) {
433 		rcu_preempt_qs();
434 		t->rcu_read_unlock_special.b.need_qs = false;
435 		if (!t->rcu_read_unlock_special.s) {
436 			local_irq_restore(flags);
437 			return;
438 		}
439 	}
440 
441 	/*
442 	 * Respond to a request for an expedited grace period, but only if
443 	 * we were not preempted, meaning that we were running on the same
444 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
445 	 * would have been cleared at the time of the first preemption,
446 	 * and the quiescent state would be reported when we were dequeued.
447 	 */
448 	if (special.b.exp_need_qs) {
449 		WARN_ON_ONCE(special.b.blocked);
450 		t->rcu_read_unlock_special.b.exp_need_qs = false;
451 		rdp = this_cpu_ptr(rcu_state_p->rda);
452 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
453 		if (!t->rcu_read_unlock_special.s) {
454 			local_irq_restore(flags);
455 			return;
456 		}
457 	}
458 
459 	/* Hardware IRQ handlers cannot block, complain if they get here. */
460 	if (in_irq() || in_serving_softirq()) {
461 		lockdep_rcu_suspicious(__FILE__, __LINE__,
462 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
463 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
464 			 t->rcu_read_unlock_special.s,
465 			 t->rcu_read_unlock_special.b.blocked,
466 			 t->rcu_read_unlock_special.b.exp_need_qs,
467 			 t->rcu_read_unlock_special.b.need_qs);
468 		local_irq_restore(flags);
469 		return;
470 	}
471 
472 	/* Clean up if blocked during RCU read-side critical section. */
473 	if (special.b.blocked) {
474 		t->rcu_read_unlock_special.b.blocked = false;
475 
476 		/*
477 		 * Remove this task from the list it blocked on.  The task
478 		 * now remains queued on the rcu_node corresponding to the
479 		 * CPU it first blocked on, so there is no longer any need
480 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
481 		 */
482 		rnp = t->rcu_blocked_node;
483 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
484 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
485 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486 		empty_exp = sync_rcu_preempt_exp_done(rnp);
487 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
488 		np = rcu_next_node_entry(t, rnp);
489 		list_del_init(&t->rcu_node_entry);
490 		t->rcu_blocked_node = NULL;
491 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
492 						rnp->gpnum, t->pid);
493 		if (&t->rcu_node_entry == rnp->gp_tasks)
494 			rnp->gp_tasks = np;
495 		if (&t->rcu_node_entry == rnp->exp_tasks)
496 			rnp->exp_tasks = np;
497 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
498 			if (&t->rcu_node_entry == rnp->boost_tasks)
499 				rnp->boost_tasks = np;
500 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502 		}
503 
504 		/*
505 		 * If this was the last task on the current list, and if
506 		 * we aren't waiting on any CPUs, report the quiescent state.
507 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
508 		 * so we must take a snapshot of the expedited state.
509 		 */
510 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
511 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
512 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
513 							 rnp->gpnum,
514 							 0, rnp->qsmask,
515 							 rnp->level,
516 							 rnp->grplo,
517 							 rnp->grphi,
518 							 !!rnp->gp_tasks);
519 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
520 		} else {
521 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 		}
523 
524 		/* Unboost if we were boosted. */
525 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
526 			rt_mutex_unlock(&rnp->boost_mtx);
527 
528 		/*
529 		 * If this was the last task on the expedited lists,
530 		 * then we need to report up the rcu_node hierarchy.
531 		 */
532 		if (!empty_exp && empty_exp_now)
533 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
534 	} else {
535 		local_irq_restore(flags);
536 	}
537 }
538 
539 /*
540  * Dump detailed information for all tasks blocking the current RCU
541  * grace period on the specified rcu_node structure.
542  */
543 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
544 {
545 	unsigned long flags;
546 	struct task_struct *t;
547 
548 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
549 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
550 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
551 		return;
552 	}
553 	t = list_entry(rnp->gp_tasks->prev,
554 		       struct task_struct, rcu_node_entry);
555 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
556 		sched_show_task(t);
557 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
558 }
559 
560 /*
561  * Dump detailed information for all tasks blocking the current RCU
562  * grace period.
563  */
564 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
565 {
566 	struct rcu_node *rnp = rcu_get_root(rsp);
567 
568 	rcu_print_detail_task_stall_rnp(rnp);
569 	rcu_for_each_leaf_node(rsp, rnp)
570 		rcu_print_detail_task_stall_rnp(rnp);
571 }
572 
573 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
574 {
575 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
576 	       rnp->level, rnp->grplo, rnp->grphi);
577 }
578 
579 static void rcu_print_task_stall_end(void)
580 {
581 	pr_cont("\n");
582 }
583 
584 /*
585  * Scan the current list of tasks blocked within RCU read-side critical
586  * sections, printing out the tid of each.
587  */
588 static int rcu_print_task_stall(struct rcu_node *rnp)
589 {
590 	struct task_struct *t;
591 	int ndetected = 0;
592 
593 	if (!rcu_preempt_blocked_readers_cgp(rnp))
594 		return 0;
595 	rcu_print_task_stall_begin(rnp);
596 	t = list_entry(rnp->gp_tasks->prev,
597 		       struct task_struct, rcu_node_entry);
598 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
599 		pr_cont(" P%d", t->pid);
600 		ndetected++;
601 	}
602 	rcu_print_task_stall_end();
603 	return ndetected;
604 }
605 
606 /*
607  * Scan the current list of tasks blocked within RCU read-side critical
608  * sections, printing out the tid of each that is blocking the current
609  * expedited grace period.
610  */
611 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
612 {
613 	struct task_struct *t;
614 	int ndetected = 0;
615 
616 	if (!rnp->exp_tasks)
617 		return 0;
618 	t = list_entry(rnp->exp_tasks->prev,
619 		       struct task_struct, rcu_node_entry);
620 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
621 		pr_cont(" P%d", t->pid);
622 		ndetected++;
623 	}
624 	return ndetected;
625 }
626 
627 /*
628  * Check that the list of blocked tasks for the newly completed grace
629  * period is in fact empty.  It is a serious bug to complete a grace
630  * period that still has RCU readers blocked!  This function must be
631  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
632  * must be held by the caller.
633  *
634  * Also, if there are blocked tasks on the list, they automatically
635  * block the newly created grace period, so set up ->gp_tasks accordingly.
636  */
637 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
638 {
639 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
640 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
641 	if (rcu_preempt_has_tasks(rnp))
642 		rnp->gp_tasks = rnp->blkd_tasks.next;
643 	WARN_ON_ONCE(rnp->qsmask);
644 }
645 
646 /*
647  * Check for a quiescent state from the current CPU.  When a task blocks,
648  * the task is recorded in the corresponding CPU's rcu_node structure,
649  * which is checked elsewhere.
650  *
651  * Caller must disable hard irqs.
652  */
653 static void rcu_preempt_check_callbacks(void)
654 {
655 	struct task_struct *t = current;
656 
657 	if (t->rcu_read_lock_nesting == 0) {
658 		rcu_preempt_qs();
659 		return;
660 	}
661 	if (t->rcu_read_lock_nesting > 0 &&
662 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
663 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
664 		t->rcu_read_unlock_special.b.need_qs = true;
665 }
666 
667 #ifdef CONFIG_RCU_BOOST
668 
669 static void rcu_preempt_do_callbacks(void)
670 {
671 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
672 }
673 
674 #endif /* #ifdef CONFIG_RCU_BOOST */
675 
676 /**
677  * call_rcu() - Queue an RCU callback for invocation after a grace period.
678  * @head: structure to be used for queueing the RCU updates.
679  * @func: actual callback function to be invoked after the grace period
680  *
681  * The callback function will be invoked some time after a full grace
682  * period elapses, in other words after all pre-existing RCU read-side
683  * critical sections have completed.  However, the callback function
684  * might well execute concurrently with RCU read-side critical sections
685  * that started after call_rcu() was invoked.  RCU read-side critical
686  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
687  * and may be nested.
688  *
689  * Note that all CPUs must agree that the grace period extended beyond
690  * all pre-existing RCU read-side critical section.  On systems with more
691  * than one CPU, this means that when "func()" is invoked, each CPU is
692  * guaranteed to have executed a full memory barrier since the end of its
693  * last RCU read-side critical section whose beginning preceded the call
694  * to call_rcu().  It also means that each CPU executing an RCU read-side
695  * critical section that continues beyond the start of "func()" must have
696  * executed a memory barrier after the call_rcu() but before the beginning
697  * of that RCU read-side critical section.  Note that these guarantees
698  * include CPUs that are offline, idle, or executing in user mode, as
699  * well as CPUs that are executing in the kernel.
700  *
701  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
702  * resulting RCU callback function "func()", then both CPU A and CPU B are
703  * guaranteed to execute a full memory barrier during the time interval
704  * between the call to call_rcu() and the invocation of "func()" -- even
705  * if CPU A and CPU B are the same CPU (but again only if the system has
706  * more than one CPU).
707  */
708 void call_rcu(struct rcu_head *head, rcu_callback_t func)
709 {
710 	__call_rcu(head, func, rcu_state_p, -1, 0);
711 }
712 EXPORT_SYMBOL_GPL(call_rcu);
713 
714 /**
715  * synchronize_rcu - wait until a grace period has elapsed.
716  *
717  * Control will return to the caller some time after a full grace
718  * period has elapsed, in other words after all currently executing RCU
719  * read-side critical sections have completed.  Note, however, that
720  * upon return from synchronize_rcu(), the caller might well be executing
721  * concurrently with new RCU read-side critical sections that began while
722  * synchronize_rcu() was waiting.  RCU read-side critical sections are
723  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
724  *
725  * See the description of synchronize_sched() for more detailed
726  * information on memory-ordering guarantees.  However, please note
727  * that -only- the memory-ordering guarantees apply.  For example,
728  * synchronize_rcu() is -not- guaranteed to wait on things like code
729  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
730  * guaranteed to wait on RCU read-side critical sections, that is, sections
731  * of code protected by rcu_read_lock().
732  */
733 void synchronize_rcu(void)
734 {
735 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
736 			 lock_is_held(&rcu_lock_map) ||
737 			 lock_is_held(&rcu_sched_lock_map),
738 			 "Illegal synchronize_rcu() in RCU read-side critical section");
739 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
740 		return;
741 	if (rcu_gp_is_expedited())
742 		synchronize_rcu_expedited();
743 	else
744 		wait_rcu_gp(call_rcu);
745 }
746 EXPORT_SYMBOL_GPL(synchronize_rcu);
747 
748 /**
749  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
750  *
751  * Note that this primitive does not necessarily wait for an RCU grace period
752  * to complete.  For example, if there are no RCU callbacks queued anywhere
753  * in the system, then rcu_barrier() is within its rights to return
754  * immediately, without waiting for anything, much less an RCU grace period.
755  */
756 void rcu_barrier(void)
757 {
758 	_rcu_barrier(rcu_state_p);
759 }
760 EXPORT_SYMBOL_GPL(rcu_barrier);
761 
762 /*
763  * Initialize preemptible RCU's state structures.
764  */
765 static void __init __rcu_init_preempt(void)
766 {
767 	rcu_init_one(rcu_state_p);
768 }
769 
770 /*
771  * Check for a task exiting while in a preemptible-RCU read-side
772  * critical section, clean up if so.  No need to issue warnings,
773  * as debug_check_no_locks_held() already does this if lockdep
774  * is enabled.
775  */
776 void exit_rcu(void)
777 {
778 	struct task_struct *t = current;
779 
780 	if (likely(list_empty(&current->rcu_node_entry)))
781 		return;
782 	t->rcu_read_lock_nesting = 1;
783 	barrier();
784 	t->rcu_read_unlock_special.b.blocked = true;
785 	__rcu_read_unlock();
786 }
787 
788 #else /* #ifdef CONFIG_PREEMPT_RCU */
789 
790 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
791 
792 /*
793  * Tell them what RCU they are running.
794  */
795 static void __init rcu_bootup_announce(void)
796 {
797 	pr_info("Hierarchical RCU implementation.\n");
798 	rcu_bootup_announce_oddness();
799 }
800 
801 /*
802  * Because preemptible RCU does not exist, we never have to check for
803  * CPUs being in quiescent states.
804  */
805 static void rcu_preempt_note_context_switch(bool preempt)
806 {
807 }
808 
809 /*
810  * Because preemptible RCU does not exist, there are never any preempted
811  * RCU readers.
812  */
813 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
814 {
815 	return 0;
816 }
817 
818 /*
819  * Because there is no preemptible RCU, there can be no readers blocked.
820  */
821 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
822 {
823 	return false;
824 }
825 
826 /*
827  * Because preemptible RCU does not exist, we never have to check for
828  * tasks blocked within RCU read-side critical sections.
829  */
830 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
831 {
832 }
833 
834 /*
835  * Because preemptible RCU does not exist, we never have to check for
836  * tasks blocked within RCU read-side critical sections.
837  */
838 static int rcu_print_task_stall(struct rcu_node *rnp)
839 {
840 	return 0;
841 }
842 
843 /*
844  * Because preemptible RCU does not exist, we never have to check for
845  * tasks blocked within RCU read-side critical sections that are
846  * blocking the current expedited grace period.
847  */
848 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
849 {
850 	return 0;
851 }
852 
853 /*
854  * Because there is no preemptible RCU, there can be no readers blocked,
855  * so there is no need to check for blocked tasks.  So check only for
856  * bogus qsmask values.
857  */
858 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
859 {
860 	WARN_ON_ONCE(rnp->qsmask);
861 }
862 
863 /*
864  * Because preemptible RCU does not exist, it never has any callbacks
865  * to check.
866  */
867 static void rcu_preempt_check_callbacks(void)
868 {
869 }
870 
871 /*
872  * Because preemptible RCU does not exist, rcu_barrier() is just
873  * another name for rcu_barrier_sched().
874  */
875 void rcu_barrier(void)
876 {
877 	rcu_barrier_sched();
878 }
879 EXPORT_SYMBOL_GPL(rcu_barrier);
880 
881 /*
882  * Because preemptible RCU does not exist, it need not be initialized.
883  */
884 static void __init __rcu_init_preempt(void)
885 {
886 }
887 
888 /*
889  * Because preemptible RCU does not exist, tasks cannot possibly exit
890  * while in preemptible RCU read-side critical sections.
891  */
892 void exit_rcu(void)
893 {
894 }
895 
896 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
897 
898 #ifdef CONFIG_RCU_BOOST
899 
900 #include "../locking/rtmutex_common.h"
901 
902 static void rcu_wake_cond(struct task_struct *t, int status)
903 {
904 	/*
905 	 * If the thread is yielding, only wake it when this
906 	 * is invoked from idle
907 	 */
908 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
909 		wake_up_process(t);
910 }
911 
912 /*
913  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
914  * or ->boost_tasks, advancing the pointer to the next task in the
915  * ->blkd_tasks list.
916  *
917  * Note that irqs must be enabled: boosting the task can block.
918  * Returns 1 if there are more tasks needing to be boosted.
919  */
920 static int rcu_boost(struct rcu_node *rnp)
921 {
922 	unsigned long flags;
923 	struct task_struct *t;
924 	struct list_head *tb;
925 
926 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
927 	    READ_ONCE(rnp->boost_tasks) == NULL)
928 		return 0;  /* Nothing left to boost. */
929 
930 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
931 
932 	/*
933 	 * Recheck under the lock: all tasks in need of boosting
934 	 * might exit their RCU read-side critical sections on their own.
935 	 */
936 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
937 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
938 		return 0;
939 	}
940 
941 	/*
942 	 * Preferentially boost tasks blocking expedited grace periods.
943 	 * This cannot starve the normal grace periods because a second
944 	 * expedited grace period must boost all blocked tasks, including
945 	 * those blocking the pre-existing normal grace period.
946 	 */
947 	if (rnp->exp_tasks != NULL) {
948 		tb = rnp->exp_tasks;
949 		rnp->n_exp_boosts++;
950 	} else {
951 		tb = rnp->boost_tasks;
952 		rnp->n_normal_boosts++;
953 	}
954 	rnp->n_tasks_boosted++;
955 
956 	/*
957 	 * We boost task t by manufacturing an rt_mutex that appears to
958 	 * be held by task t.  We leave a pointer to that rt_mutex where
959 	 * task t can find it, and task t will release the mutex when it
960 	 * exits its outermost RCU read-side critical section.  Then
961 	 * simply acquiring this artificial rt_mutex will boost task
962 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
963 	 *
964 	 * Note that task t must acquire rnp->lock to remove itself from
965 	 * the ->blkd_tasks list, which it will do from exit() if from
966 	 * nowhere else.  We therefore are guaranteed that task t will
967 	 * stay around at least until we drop rnp->lock.  Note that
968 	 * rnp->lock also resolves races between our priority boosting
969 	 * and task t's exiting its outermost RCU read-side critical
970 	 * section.
971 	 */
972 	t = container_of(tb, struct task_struct, rcu_node_entry);
973 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
974 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
975 	/* Lock only for side effect: boosts task t's priority. */
976 	rt_mutex_lock(&rnp->boost_mtx);
977 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
978 
979 	return READ_ONCE(rnp->exp_tasks) != NULL ||
980 	       READ_ONCE(rnp->boost_tasks) != NULL;
981 }
982 
983 /*
984  * Priority-boosting kthread, one per leaf rcu_node.
985  */
986 static int rcu_boost_kthread(void *arg)
987 {
988 	struct rcu_node *rnp = (struct rcu_node *)arg;
989 	int spincnt = 0;
990 	int more2boost;
991 
992 	trace_rcu_utilization(TPS("Start boost kthread@init"));
993 	for (;;) {
994 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
995 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
996 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
997 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
998 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
999 		more2boost = rcu_boost(rnp);
1000 		if (more2boost)
1001 			spincnt++;
1002 		else
1003 			spincnt = 0;
1004 		if (spincnt > 10) {
1005 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1006 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1007 			schedule_timeout_interruptible(2);
1008 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1009 			spincnt = 0;
1010 		}
1011 	}
1012 	/* NOTREACHED */
1013 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1014 	return 0;
1015 }
1016 
1017 /*
1018  * Check to see if it is time to start boosting RCU readers that are
1019  * blocking the current grace period, and, if so, tell the per-rcu_node
1020  * kthread to start boosting them.  If there is an expedited grace
1021  * period in progress, it is always time to boost.
1022  *
1023  * The caller must hold rnp->lock, which this function releases.
1024  * The ->boost_kthread_task is immortal, so we don't need to worry
1025  * about it going away.
1026  */
1027 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1028 	__releases(rnp->lock)
1029 {
1030 	struct task_struct *t;
1031 
1032 	lockdep_assert_held(&rnp->lock);
1033 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1034 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1035 		return;
1036 	}
1037 	if (rnp->exp_tasks != NULL ||
1038 	    (rnp->gp_tasks != NULL &&
1039 	     rnp->boost_tasks == NULL &&
1040 	     rnp->qsmask == 0 &&
1041 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1042 		if (rnp->exp_tasks == NULL)
1043 			rnp->boost_tasks = rnp->gp_tasks;
1044 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1045 		t = rnp->boost_kthread_task;
1046 		if (t)
1047 			rcu_wake_cond(t, rnp->boost_kthread_status);
1048 	} else {
1049 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050 	}
1051 }
1052 
1053 /*
1054  * Wake up the per-CPU kthread to invoke RCU callbacks.
1055  */
1056 static void invoke_rcu_callbacks_kthread(void)
1057 {
1058 	unsigned long flags;
1059 
1060 	local_irq_save(flags);
1061 	__this_cpu_write(rcu_cpu_has_work, 1);
1062 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1063 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1064 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1065 			      __this_cpu_read(rcu_cpu_kthread_status));
1066 	}
1067 	local_irq_restore(flags);
1068 }
1069 
1070 /*
1071  * Is the current CPU running the RCU-callbacks kthread?
1072  * Caller must have preemption disabled.
1073  */
1074 static bool rcu_is_callbacks_kthread(void)
1075 {
1076 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1077 }
1078 
1079 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1080 
1081 /*
1082  * Do priority-boost accounting for the start of a new grace period.
1083  */
1084 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1085 {
1086 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1087 }
1088 
1089 /*
1090  * Create an RCU-boost kthread for the specified node if one does not
1091  * already exist.  We only create this kthread for preemptible RCU.
1092  * Returns zero if all is well, a negated errno otherwise.
1093  */
1094 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1095 				       struct rcu_node *rnp)
1096 {
1097 	int rnp_index = rnp - &rsp->node[0];
1098 	unsigned long flags;
1099 	struct sched_param sp;
1100 	struct task_struct *t;
1101 
1102 	if (rcu_state_p != rsp)
1103 		return 0;
1104 
1105 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1106 		return 0;
1107 
1108 	rsp->boost = 1;
1109 	if (rnp->boost_kthread_task != NULL)
1110 		return 0;
1111 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1112 			   "rcub/%d", rnp_index);
1113 	if (IS_ERR(t))
1114 		return PTR_ERR(t);
1115 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1116 	rnp->boost_kthread_task = t;
1117 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1118 	sp.sched_priority = kthread_prio;
1119 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1120 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1121 	return 0;
1122 }
1123 
1124 static void rcu_kthread_do_work(void)
1125 {
1126 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1127 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1128 	rcu_preempt_do_callbacks();
1129 }
1130 
1131 static void rcu_cpu_kthread_setup(unsigned int cpu)
1132 {
1133 	struct sched_param sp;
1134 
1135 	sp.sched_priority = kthread_prio;
1136 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1137 }
1138 
1139 static void rcu_cpu_kthread_park(unsigned int cpu)
1140 {
1141 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1142 }
1143 
1144 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1145 {
1146 	return __this_cpu_read(rcu_cpu_has_work);
1147 }
1148 
1149 /*
1150  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1151  * RCU softirq used in flavors and configurations of RCU that do not
1152  * support RCU priority boosting.
1153  */
1154 static void rcu_cpu_kthread(unsigned int cpu)
1155 {
1156 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1157 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1158 	int spincnt;
1159 
1160 	for (spincnt = 0; spincnt < 10; spincnt++) {
1161 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1162 		local_bh_disable();
1163 		*statusp = RCU_KTHREAD_RUNNING;
1164 		this_cpu_inc(rcu_cpu_kthread_loops);
1165 		local_irq_disable();
1166 		work = *workp;
1167 		*workp = 0;
1168 		local_irq_enable();
1169 		if (work)
1170 			rcu_kthread_do_work();
1171 		local_bh_enable();
1172 		if (*workp == 0) {
1173 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1174 			*statusp = RCU_KTHREAD_WAITING;
1175 			return;
1176 		}
1177 	}
1178 	*statusp = RCU_KTHREAD_YIELDING;
1179 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1180 	schedule_timeout_interruptible(2);
1181 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1182 	*statusp = RCU_KTHREAD_WAITING;
1183 }
1184 
1185 /*
1186  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1187  * served by the rcu_node in question.  The CPU hotplug lock is still
1188  * held, so the value of rnp->qsmaskinit will be stable.
1189  *
1190  * We don't include outgoingcpu in the affinity set, use -1 if there is
1191  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1192  * this function allows the kthread to execute on any CPU.
1193  */
1194 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1195 {
1196 	struct task_struct *t = rnp->boost_kthread_task;
1197 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1198 	cpumask_var_t cm;
1199 	int cpu;
1200 
1201 	if (!t)
1202 		return;
1203 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1204 		return;
1205 	for_each_leaf_node_possible_cpu(rnp, cpu)
1206 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1207 		    cpu != outgoingcpu)
1208 			cpumask_set_cpu(cpu, cm);
1209 	if (cpumask_weight(cm) == 0)
1210 		cpumask_setall(cm);
1211 	set_cpus_allowed_ptr(t, cm);
1212 	free_cpumask_var(cm);
1213 }
1214 
1215 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1216 	.store			= &rcu_cpu_kthread_task,
1217 	.thread_should_run	= rcu_cpu_kthread_should_run,
1218 	.thread_fn		= rcu_cpu_kthread,
1219 	.thread_comm		= "rcuc/%u",
1220 	.setup			= rcu_cpu_kthread_setup,
1221 	.park			= rcu_cpu_kthread_park,
1222 };
1223 
1224 /*
1225  * Spawn boost kthreads -- called as soon as the scheduler is running.
1226  */
1227 static void __init rcu_spawn_boost_kthreads(void)
1228 {
1229 	struct rcu_node *rnp;
1230 	int cpu;
1231 
1232 	for_each_possible_cpu(cpu)
1233 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1234 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1235 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1236 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1237 }
1238 
1239 static void rcu_prepare_kthreads(int cpu)
1240 {
1241 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1242 	struct rcu_node *rnp = rdp->mynode;
1243 
1244 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1245 	if (rcu_scheduler_fully_active)
1246 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1247 }
1248 
1249 #else /* #ifdef CONFIG_RCU_BOOST */
1250 
1251 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1252 	__releases(rnp->lock)
1253 {
1254 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1255 }
1256 
1257 static void invoke_rcu_callbacks_kthread(void)
1258 {
1259 	WARN_ON_ONCE(1);
1260 }
1261 
1262 static bool rcu_is_callbacks_kthread(void)
1263 {
1264 	return false;
1265 }
1266 
1267 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1268 {
1269 }
1270 
1271 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1272 {
1273 }
1274 
1275 static void __init rcu_spawn_boost_kthreads(void)
1276 {
1277 }
1278 
1279 static void rcu_prepare_kthreads(int cpu)
1280 {
1281 }
1282 
1283 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1284 
1285 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1286 
1287 /*
1288  * Check to see if any future RCU-related work will need to be done
1289  * by the current CPU, even if none need be done immediately, returning
1290  * 1 if so.  This function is part of the RCU implementation; it is -not-
1291  * an exported member of the RCU API.
1292  *
1293  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1294  * any flavor of RCU.
1295  */
1296 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1297 {
1298 	*nextevt = KTIME_MAX;
1299 	return rcu_cpu_has_callbacks(NULL);
1300 }
1301 
1302 /*
1303  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1304  * after it.
1305  */
1306 static void rcu_cleanup_after_idle(void)
1307 {
1308 }
1309 
1310 /*
1311  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1312  * is nothing.
1313  */
1314 static void rcu_prepare_for_idle(void)
1315 {
1316 }
1317 
1318 /*
1319  * Don't bother keeping a running count of the number of RCU callbacks
1320  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1321  */
1322 static void rcu_idle_count_callbacks_posted(void)
1323 {
1324 }
1325 
1326 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1327 
1328 /*
1329  * This code is invoked when a CPU goes idle, at which point we want
1330  * to have the CPU do everything required for RCU so that it can enter
1331  * the energy-efficient dyntick-idle mode.  This is handled by a
1332  * state machine implemented by rcu_prepare_for_idle() below.
1333  *
1334  * The following three proprocessor symbols control this state machine:
1335  *
1336  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1337  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1338  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1339  *	benchmarkers who might otherwise be tempted to set this to a large
1340  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1341  *	system.  And if you are -that- concerned about energy efficiency,
1342  *	just power the system down and be done with it!
1343  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1344  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1345  *	callbacks pending.  Setting this too high can OOM your system.
1346  *
1347  * The values below work well in practice.  If future workloads require
1348  * adjustment, they can be converted into kernel config parameters, though
1349  * making the state machine smarter might be a better option.
1350  */
1351 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1352 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1353 
1354 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1355 module_param(rcu_idle_gp_delay, int, 0644);
1356 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1357 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1358 
1359 /*
1360  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1361  * only if it has been awhile since the last time we did so.  Afterwards,
1362  * if there are any callbacks ready for immediate invocation, return true.
1363  */
1364 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1365 {
1366 	bool cbs_ready = false;
1367 	struct rcu_data *rdp;
1368 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1369 	struct rcu_node *rnp;
1370 	struct rcu_state *rsp;
1371 
1372 	/* Exit early if we advanced recently. */
1373 	if (jiffies == rdtp->last_advance_all)
1374 		return false;
1375 	rdtp->last_advance_all = jiffies;
1376 
1377 	for_each_rcu_flavor(rsp) {
1378 		rdp = this_cpu_ptr(rsp->rda);
1379 		rnp = rdp->mynode;
1380 
1381 		/*
1382 		 * Don't bother checking unless a grace period has
1383 		 * completed since we last checked and there are
1384 		 * callbacks not yet ready to invoke.
1385 		 */
1386 		if ((rdp->completed != rnp->completed ||
1387 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1388 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1389 			note_gp_changes(rsp, rdp);
1390 
1391 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1392 			cbs_ready = true;
1393 	}
1394 	return cbs_ready;
1395 }
1396 
1397 /*
1398  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1399  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1400  * caller to set the timeout based on whether or not there are non-lazy
1401  * callbacks.
1402  *
1403  * The caller must have disabled interrupts.
1404  */
1405 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1406 {
1407 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1408 	unsigned long dj;
1409 
1410 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
1411 
1412 	/* Snapshot to detect later posting of non-lazy callback. */
1413 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1414 
1415 	/* If no callbacks, RCU doesn't need the CPU. */
1416 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1417 		*nextevt = KTIME_MAX;
1418 		return 0;
1419 	}
1420 
1421 	/* Attempt to advance callbacks. */
1422 	if (rcu_try_advance_all_cbs()) {
1423 		/* Some ready to invoke, so initiate later invocation. */
1424 		invoke_rcu_core();
1425 		return 1;
1426 	}
1427 	rdtp->last_accelerate = jiffies;
1428 
1429 	/* Request timer delay depending on laziness, and round. */
1430 	if (!rdtp->all_lazy) {
1431 		dj = round_up(rcu_idle_gp_delay + jiffies,
1432 			       rcu_idle_gp_delay) - jiffies;
1433 	} else {
1434 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1435 	}
1436 	*nextevt = basemono + dj * TICK_NSEC;
1437 	return 0;
1438 }
1439 
1440 /*
1441  * Prepare a CPU for idle from an RCU perspective.  The first major task
1442  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1443  * The second major task is to check to see if a non-lazy callback has
1444  * arrived at a CPU that previously had only lazy callbacks.  The third
1445  * major task is to accelerate (that is, assign grace-period numbers to)
1446  * any recently arrived callbacks.
1447  *
1448  * The caller must have disabled interrupts.
1449  */
1450 static void rcu_prepare_for_idle(void)
1451 {
1452 	bool needwake;
1453 	struct rcu_data *rdp;
1454 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1455 	struct rcu_node *rnp;
1456 	struct rcu_state *rsp;
1457 	int tne;
1458 
1459 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
1460 	if (rcu_is_nocb_cpu(smp_processor_id()))
1461 		return;
1462 
1463 	/* Handle nohz enablement switches conservatively. */
1464 	tne = READ_ONCE(tick_nohz_active);
1465 	if (tne != rdtp->tick_nohz_enabled_snap) {
1466 		if (rcu_cpu_has_callbacks(NULL))
1467 			invoke_rcu_core(); /* force nohz to see update. */
1468 		rdtp->tick_nohz_enabled_snap = tne;
1469 		return;
1470 	}
1471 	if (!tne)
1472 		return;
1473 
1474 	/*
1475 	 * If a non-lazy callback arrived at a CPU having only lazy
1476 	 * callbacks, invoke RCU core for the side-effect of recalculating
1477 	 * idle duration on re-entry to idle.
1478 	 */
1479 	if (rdtp->all_lazy &&
1480 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1481 		rdtp->all_lazy = false;
1482 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1483 		invoke_rcu_core();
1484 		return;
1485 	}
1486 
1487 	/*
1488 	 * If we have not yet accelerated this jiffy, accelerate all
1489 	 * callbacks on this CPU.
1490 	 */
1491 	if (rdtp->last_accelerate == jiffies)
1492 		return;
1493 	rdtp->last_accelerate = jiffies;
1494 	for_each_rcu_flavor(rsp) {
1495 		rdp = this_cpu_ptr(rsp->rda);
1496 		if (rcu_segcblist_pend_cbs(&rdp->cblist))
1497 			continue;
1498 		rnp = rdp->mynode;
1499 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1500 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1501 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1502 		if (needwake)
1503 			rcu_gp_kthread_wake(rsp);
1504 	}
1505 }
1506 
1507 /*
1508  * Clean up for exit from idle.  Attempt to advance callbacks based on
1509  * any grace periods that elapsed while the CPU was idle, and if any
1510  * callbacks are now ready to invoke, initiate invocation.
1511  */
1512 static void rcu_cleanup_after_idle(void)
1513 {
1514 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
1515 	if (rcu_is_nocb_cpu(smp_processor_id()))
1516 		return;
1517 	if (rcu_try_advance_all_cbs())
1518 		invoke_rcu_core();
1519 }
1520 
1521 /*
1522  * Keep a running count of the number of non-lazy callbacks posted
1523  * on this CPU.  This running counter (which is never decremented) allows
1524  * rcu_prepare_for_idle() to detect when something out of the idle loop
1525  * posts a callback, even if an equal number of callbacks are invoked.
1526  * Of course, callbacks should only be posted from within a trace event
1527  * designed to be called from idle or from within RCU_NONIDLE().
1528  */
1529 static void rcu_idle_count_callbacks_posted(void)
1530 {
1531 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1532 }
1533 
1534 /*
1535  * Data for flushing lazy RCU callbacks at OOM time.
1536  */
1537 static atomic_t oom_callback_count;
1538 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1539 
1540 /*
1541  * RCU OOM callback -- decrement the outstanding count and deliver the
1542  * wake-up if we are the last one.
1543  */
1544 static void rcu_oom_callback(struct rcu_head *rhp)
1545 {
1546 	if (atomic_dec_and_test(&oom_callback_count))
1547 		wake_up(&oom_callback_wq);
1548 }
1549 
1550 /*
1551  * Post an rcu_oom_notify callback on the current CPU if it has at
1552  * least one lazy callback.  This will unnecessarily post callbacks
1553  * to CPUs that already have a non-lazy callback at the end of their
1554  * callback list, but this is an infrequent operation, so accept some
1555  * extra overhead to keep things simple.
1556  */
1557 static void rcu_oom_notify_cpu(void *unused)
1558 {
1559 	struct rcu_state *rsp;
1560 	struct rcu_data *rdp;
1561 
1562 	for_each_rcu_flavor(rsp) {
1563 		rdp = raw_cpu_ptr(rsp->rda);
1564 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1565 			atomic_inc(&oom_callback_count);
1566 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1567 		}
1568 	}
1569 }
1570 
1571 /*
1572  * If low on memory, ensure that each CPU has a non-lazy callback.
1573  * This will wake up CPUs that have only lazy callbacks, in turn
1574  * ensuring that they free up the corresponding memory in a timely manner.
1575  * Because an uncertain amount of memory will be freed in some uncertain
1576  * timeframe, we do not claim to have freed anything.
1577  */
1578 static int rcu_oom_notify(struct notifier_block *self,
1579 			  unsigned long notused, void *nfreed)
1580 {
1581 	int cpu;
1582 
1583 	/* Wait for callbacks from earlier instance to complete. */
1584 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1585 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1586 
1587 	/*
1588 	 * Prevent premature wakeup: ensure that all increments happen
1589 	 * before there is a chance of the counter reaching zero.
1590 	 */
1591 	atomic_set(&oom_callback_count, 1);
1592 
1593 	for_each_online_cpu(cpu) {
1594 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1595 		cond_resched_rcu_qs();
1596 	}
1597 
1598 	/* Unconditionally decrement: no need to wake ourselves up. */
1599 	atomic_dec(&oom_callback_count);
1600 
1601 	return NOTIFY_OK;
1602 }
1603 
1604 static struct notifier_block rcu_oom_nb = {
1605 	.notifier_call = rcu_oom_notify
1606 };
1607 
1608 static int __init rcu_register_oom_notifier(void)
1609 {
1610 	register_oom_notifier(&rcu_oom_nb);
1611 	return 0;
1612 }
1613 early_initcall(rcu_register_oom_notifier);
1614 
1615 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1616 
1617 #ifdef CONFIG_RCU_FAST_NO_HZ
1618 
1619 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1620 {
1621 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1622 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1623 
1624 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1625 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1626 		ulong2long(nlpd),
1627 		rdtp->all_lazy ? 'L' : '.',
1628 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1629 }
1630 
1631 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1632 
1633 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1634 {
1635 	*cp = '\0';
1636 }
1637 
1638 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1639 
1640 /* Initiate the stall-info list. */
1641 static void print_cpu_stall_info_begin(void)
1642 {
1643 	pr_cont("\n");
1644 }
1645 
1646 /*
1647  * Print out diagnostic information for the specified stalled CPU.
1648  *
1649  * If the specified CPU is aware of the current RCU grace period
1650  * (flavor specified by rsp), then print the number of scheduling
1651  * clock interrupts the CPU has taken during the time that it has
1652  * been aware.  Otherwise, print the number of RCU grace periods
1653  * that this CPU is ignorant of, for example, "1" if the CPU was
1654  * aware of the previous grace period.
1655  *
1656  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1657  */
1658 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1659 {
1660 	char fast_no_hz[72];
1661 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1662 	struct rcu_dynticks *rdtp = rdp->dynticks;
1663 	char *ticks_title;
1664 	unsigned long ticks_value;
1665 
1666 	if (rsp->gpnum == rdp->gpnum) {
1667 		ticks_title = "ticks this GP";
1668 		ticks_value = rdp->ticks_this_gp;
1669 	} else {
1670 		ticks_title = "GPs behind";
1671 		ticks_value = rsp->gpnum - rdp->gpnum;
1672 	}
1673 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1674 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1675 	       cpu,
1676 	       "O."[!!cpu_online(cpu)],
1677 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1678 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1679 	       ticks_value, ticks_title,
1680 	       rcu_dynticks_snap(rdtp) & 0xfff,
1681 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1682 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1683 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1684 	       fast_no_hz);
1685 }
1686 
1687 /* Terminate the stall-info list. */
1688 static void print_cpu_stall_info_end(void)
1689 {
1690 	pr_err("\t");
1691 }
1692 
1693 /* Zero ->ticks_this_gp for all flavors of RCU. */
1694 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1695 {
1696 	rdp->ticks_this_gp = 0;
1697 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1698 }
1699 
1700 /* Increment ->ticks_this_gp for all flavors of RCU. */
1701 static void increment_cpu_stall_ticks(void)
1702 {
1703 	struct rcu_state *rsp;
1704 
1705 	for_each_rcu_flavor(rsp)
1706 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1707 }
1708 
1709 #ifdef CONFIG_RCU_NOCB_CPU
1710 
1711 /*
1712  * Offload callback processing from the boot-time-specified set of CPUs
1713  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1714  * kthread created that pulls the callbacks from the corresponding CPU,
1715  * waits for a grace period to elapse, and invokes the callbacks.
1716  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1717  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1718  * has been specified, in which case each kthread actively polls its
1719  * CPU.  (Which isn't so great for energy efficiency, but which does
1720  * reduce RCU's overhead on that CPU.)
1721  *
1722  * This is intended to be used in conjunction with Frederic Weisbecker's
1723  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1724  * running CPU-bound user-mode computations.
1725  *
1726  * Offloading of callback processing could also in theory be used as
1727  * an energy-efficiency measure because CPUs with no RCU callbacks
1728  * queued are more aggressive about entering dyntick-idle mode.
1729  */
1730 
1731 
1732 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1733 static int __init rcu_nocb_setup(char *str)
1734 {
1735 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1736 	have_rcu_nocb_mask = true;
1737 	cpulist_parse(str, rcu_nocb_mask);
1738 	return 1;
1739 }
1740 __setup("rcu_nocbs=", rcu_nocb_setup);
1741 
1742 static int __init parse_rcu_nocb_poll(char *arg)
1743 {
1744 	rcu_nocb_poll = true;
1745 	return 0;
1746 }
1747 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1748 
1749 /*
1750  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1751  * grace period.
1752  */
1753 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1754 {
1755 	swake_up_all(sq);
1756 }
1757 
1758 /*
1759  * Set the root rcu_node structure's ->need_future_gp field
1760  * based on the sum of those of all rcu_node structures.  This does
1761  * double-count the root rcu_node structure's requests, but this
1762  * is necessary to handle the possibility of a rcu_nocb_kthread()
1763  * having awakened during the time that the rcu_node structures
1764  * were being updated for the end of the previous grace period.
1765  */
1766 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1767 {
1768 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1769 }
1770 
1771 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1772 {
1773 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1774 }
1775 
1776 static void rcu_init_one_nocb(struct rcu_node *rnp)
1777 {
1778 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1779 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1780 }
1781 
1782 /* Is the specified CPU a no-CBs CPU? */
1783 bool rcu_is_nocb_cpu(int cpu)
1784 {
1785 	if (have_rcu_nocb_mask)
1786 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1787 	return false;
1788 }
1789 
1790 /*
1791  * Kick the leader kthread for this NOCB group.
1792  */
1793 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1794 {
1795 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1796 
1797 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1798 		return;
1799 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1800 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1801 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1802 		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1803 		swake_up(&rdp_leader->nocb_wq);
1804 	}
1805 }
1806 
1807 /*
1808  * Does the specified CPU need an RCU callback for the specified flavor
1809  * of rcu_barrier()?
1810  */
1811 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1812 {
1813 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1814 	unsigned long ret;
1815 #ifdef CONFIG_PROVE_RCU
1816 	struct rcu_head *rhp;
1817 #endif /* #ifdef CONFIG_PROVE_RCU */
1818 
1819 	/*
1820 	 * Check count of all no-CBs callbacks awaiting invocation.
1821 	 * There needs to be a barrier before this function is called,
1822 	 * but associated with a prior determination that no more
1823 	 * callbacks would be posted.  In the worst case, the first
1824 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1825 	 * necessarily rely on this, not a substitute for the caller
1826 	 * getting the concurrency design right!).  There must also be
1827 	 * a barrier between the following load an posting of a callback
1828 	 * (if a callback is in fact needed).  This is associated with an
1829 	 * atomic_inc() in the caller.
1830 	 */
1831 	ret = atomic_long_read(&rdp->nocb_q_count);
1832 
1833 #ifdef CONFIG_PROVE_RCU
1834 	rhp = READ_ONCE(rdp->nocb_head);
1835 	if (!rhp)
1836 		rhp = READ_ONCE(rdp->nocb_gp_head);
1837 	if (!rhp)
1838 		rhp = READ_ONCE(rdp->nocb_follower_head);
1839 
1840 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1841 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1842 	    rcu_scheduler_fully_active) {
1843 		/* RCU callback enqueued before CPU first came online??? */
1844 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1845 		       cpu, rhp->func);
1846 		WARN_ON_ONCE(1);
1847 	}
1848 #endif /* #ifdef CONFIG_PROVE_RCU */
1849 
1850 	return !!ret;
1851 }
1852 
1853 /*
1854  * Enqueue the specified string of rcu_head structures onto the specified
1855  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1856  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1857  * counts are supplied by rhcount and rhcount_lazy.
1858  *
1859  * If warranted, also wake up the kthread servicing this CPUs queues.
1860  */
1861 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1862 				    struct rcu_head *rhp,
1863 				    struct rcu_head **rhtp,
1864 				    int rhcount, int rhcount_lazy,
1865 				    unsigned long flags)
1866 {
1867 	int len;
1868 	struct rcu_head **old_rhpp;
1869 	struct task_struct *t;
1870 
1871 	/* Enqueue the callback on the nocb list and update counts. */
1872 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1873 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1874 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1875 	WRITE_ONCE(*old_rhpp, rhp);
1876 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1877 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1878 
1879 	/* If we are not being polled and there is a kthread, awaken it ... */
1880 	t = READ_ONCE(rdp->nocb_kthread);
1881 	if (rcu_nocb_poll || !t) {
1882 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1883 				    TPS("WakeNotPoll"));
1884 		return;
1885 	}
1886 	len = atomic_long_read(&rdp->nocb_q_count);
1887 	if (old_rhpp == &rdp->nocb_head) {
1888 		if (!irqs_disabled_flags(flags)) {
1889 			/* ... if queue was empty ... */
1890 			wake_nocb_leader(rdp, false);
1891 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1892 					    TPS("WakeEmpty"));
1893 		} else {
1894 			WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE);
1895 			/* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1896 			smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1897 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1898 					    TPS("WakeEmptyIsDeferred"));
1899 		}
1900 		rdp->qlen_last_fqs_check = 0;
1901 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1902 		/* ... or if many callbacks queued. */
1903 		if (!irqs_disabled_flags(flags)) {
1904 			wake_nocb_leader(rdp, true);
1905 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1906 					    TPS("WakeOvf"));
1907 		} else {
1908 			WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_FORCE);
1909 			/* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1910 			smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1911 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1912 					    TPS("WakeOvfIsDeferred"));
1913 		}
1914 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1915 	} else {
1916 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1917 	}
1918 	return;
1919 }
1920 
1921 /*
1922  * This is a helper for __call_rcu(), which invokes this when the normal
1923  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1924  * function returns failure back to __call_rcu(), which can complain
1925  * appropriately.
1926  *
1927  * Otherwise, this function queues the callback where the corresponding
1928  * "rcuo" kthread can find it.
1929  */
1930 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1931 			    bool lazy, unsigned long flags)
1932 {
1933 
1934 	if (!rcu_is_nocb_cpu(rdp->cpu))
1935 		return false;
1936 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1937 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1938 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1939 					 (unsigned long)rhp->func,
1940 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1941 					 -atomic_long_read(&rdp->nocb_q_count));
1942 	else
1943 		trace_rcu_callback(rdp->rsp->name, rhp,
1944 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1945 				   -atomic_long_read(&rdp->nocb_q_count));
1946 
1947 	/*
1948 	 * If called from an extended quiescent state with interrupts
1949 	 * disabled, invoke the RCU core in order to allow the idle-entry
1950 	 * deferred-wakeup check to function.
1951 	 */
1952 	if (irqs_disabled_flags(flags) &&
1953 	    !rcu_is_watching() &&
1954 	    cpu_online(smp_processor_id()))
1955 		invoke_rcu_core();
1956 
1957 	return true;
1958 }
1959 
1960 /*
1961  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1962  * not a no-CBs CPU.
1963  */
1964 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1965 						     struct rcu_data *rdp,
1966 						     unsigned long flags)
1967 {
1968 	long ql = rsp->orphan_done.len;
1969 	long qll = rsp->orphan_done.len_lazy;
1970 
1971 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1972 	if (!rcu_is_nocb_cpu(smp_processor_id()))
1973 		return false;
1974 
1975 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1976 	if (rsp->orphan_done.head) {
1977 		__call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done),
1978 					rcu_cblist_tail(&rsp->orphan_done),
1979 					ql, qll, flags);
1980 	}
1981 	if (rsp->orphan_pend.head) {
1982 		__call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend),
1983 					rcu_cblist_tail(&rsp->orphan_pend),
1984 					ql, qll, flags);
1985 	}
1986 	rcu_cblist_init(&rsp->orphan_done);
1987 	rcu_cblist_init(&rsp->orphan_pend);
1988 	return true;
1989 }
1990 
1991 /*
1992  * If necessary, kick off a new grace period, and either way wait
1993  * for a subsequent grace period to complete.
1994  */
1995 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1996 {
1997 	unsigned long c;
1998 	bool d;
1999 	unsigned long flags;
2000 	bool needwake;
2001 	struct rcu_node *rnp = rdp->mynode;
2002 
2003 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2004 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2005 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2006 	if (needwake)
2007 		rcu_gp_kthread_wake(rdp->rsp);
2008 
2009 	/*
2010 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2011 	 * up the load average.
2012 	 */
2013 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2014 	for (;;) {
2015 		swait_event_interruptible(
2016 			rnp->nocb_gp_wq[c & 0x1],
2017 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2018 		if (likely(d))
2019 			break;
2020 		WARN_ON(signal_pending(current));
2021 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2022 	}
2023 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2024 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2025 }
2026 
2027 /*
2028  * Leaders come here to wait for additional callbacks to show up.
2029  * This function does not return until callbacks appear.
2030  */
2031 static void nocb_leader_wait(struct rcu_data *my_rdp)
2032 {
2033 	bool firsttime = true;
2034 	bool gotcbs;
2035 	struct rcu_data *rdp;
2036 	struct rcu_head **tail;
2037 
2038 wait_again:
2039 
2040 	/* Wait for callbacks to appear. */
2041 	if (!rcu_nocb_poll) {
2042 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2043 		swait_event_interruptible(my_rdp->nocb_wq,
2044 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2045 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2046 	} else if (firsttime) {
2047 		firsttime = false; /* Don't drown trace log with "Poll"! */
2048 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2049 	}
2050 
2051 	/*
2052 	 * Each pass through the following loop checks a follower for CBs.
2053 	 * We are our own first follower.  Any CBs found are moved to
2054 	 * nocb_gp_head, where they await a grace period.
2055 	 */
2056 	gotcbs = false;
2057 	smp_mb(); /* wakeup before ->nocb_head reads. */
2058 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2059 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2060 		if (!rdp->nocb_gp_head)
2061 			continue;  /* No CBs here, try next follower. */
2062 
2063 		/* Move callbacks to wait-for-GP list, which is empty. */
2064 		WRITE_ONCE(rdp->nocb_head, NULL);
2065 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2066 		gotcbs = true;
2067 	}
2068 
2069 	/*
2070 	 * If there were no callbacks, sleep a bit, rescan after a
2071 	 * memory barrier, and go retry.
2072 	 */
2073 	if (unlikely(!gotcbs)) {
2074 		if (!rcu_nocb_poll)
2075 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2076 					    "WokeEmpty");
2077 		WARN_ON(signal_pending(current));
2078 		schedule_timeout_interruptible(1);
2079 
2080 		/* Rescan in case we were a victim of memory ordering. */
2081 		my_rdp->nocb_leader_sleep = true;
2082 		smp_mb();  /* Ensure _sleep true before scan. */
2083 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2084 			if (READ_ONCE(rdp->nocb_head)) {
2085 				/* Found CB, so short-circuit next wait. */
2086 				my_rdp->nocb_leader_sleep = false;
2087 				break;
2088 			}
2089 		goto wait_again;
2090 	}
2091 
2092 	/* Wait for one grace period. */
2093 	rcu_nocb_wait_gp(my_rdp);
2094 
2095 	/*
2096 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2097 	 * We set it now, but recheck for new callbacks while
2098 	 * traversing our follower list.
2099 	 */
2100 	my_rdp->nocb_leader_sleep = true;
2101 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2102 
2103 	/* Each pass through the following loop wakes a follower, if needed. */
2104 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2105 		if (READ_ONCE(rdp->nocb_head))
2106 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2107 		if (!rdp->nocb_gp_head)
2108 			continue; /* No CBs, so no need to wake follower. */
2109 
2110 		/* Append callbacks to follower's "done" list. */
2111 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2112 		*tail = rdp->nocb_gp_head;
2113 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2114 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2115 			/*
2116 			 * List was empty, wake up the follower.
2117 			 * Memory barriers supplied by atomic_long_add().
2118 			 */
2119 			swake_up(&rdp->nocb_wq);
2120 		}
2121 	}
2122 
2123 	/* If we (the leader) don't have CBs, go wait some more. */
2124 	if (!my_rdp->nocb_follower_head)
2125 		goto wait_again;
2126 }
2127 
2128 /*
2129  * Followers come here to wait for additional callbacks to show up.
2130  * This function does not return until callbacks appear.
2131  */
2132 static void nocb_follower_wait(struct rcu_data *rdp)
2133 {
2134 	bool firsttime = true;
2135 
2136 	for (;;) {
2137 		if (!rcu_nocb_poll) {
2138 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2139 					    "FollowerSleep");
2140 			swait_event_interruptible(rdp->nocb_wq,
2141 						 READ_ONCE(rdp->nocb_follower_head));
2142 		} else if (firsttime) {
2143 			/* Don't drown trace log with "Poll"! */
2144 			firsttime = false;
2145 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2146 		}
2147 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2148 			/* ^^^ Ensure CB invocation follows _head test. */
2149 			return;
2150 		}
2151 		if (!rcu_nocb_poll)
2152 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2153 					    "WokeEmpty");
2154 		WARN_ON(signal_pending(current));
2155 		schedule_timeout_interruptible(1);
2156 	}
2157 }
2158 
2159 /*
2160  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2161  * callbacks queued by the corresponding no-CBs CPU, however, there is
2162  * an optional leader-follower relationship so that the grace-period
2163  * kthreads don't have to do quite so many wakeups.
2164  */
2165 static int rcu_nocb_kthread(void *arg)
2166 {
2167 	int c, cl;
2168 	struct rcu_head *list;
2169 	struct rcu_head *next;
2170 	struct rcu_head **tail;
2171 	struct rcu_data *rdp = arg;
2172 
2173 	/* Each pass through this loop invokes one batch of callbacks */
2174 	for (;;) {
2175 		/* Wait for callbacks. */
2176 		if (rdp->nocb_leader == rdp)
2177 			nocb_leader_wait(rdp);
2178 		else
2179 			nocb_follower_wait(rdp);
2180 
2181 		/* Pull the ready-to-invoke callbacks onto local list. */
2182 		list = READ_ONCE(rdp->nocb_follower_head);
2183 		BUG_ON(!list);
2184 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2185 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2186 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2187 
2188 		/* Each pass through the following loop invokes a callback. */
2189 		trace_rcu_batch_start(rdp->rsp->name,
2190 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2191 				      atomic_long_read(&rdp->nocb_q_count), -1);
2192 		c = cl = 0;
2193 		while (list) {
2194 			next = list->next;
2195 			/* Wait for enqueuing to complete, if needed. */
2196 			while (next == NULL && &list->next != tail) {
2197 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2198 						    TPS("WaitQueue"));
2199 				schedule_timeout_interruptible(1);
2200 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2201 						    TPS("WokeQueue"));
2202 				next = list->next;
2203 			}
2204 			debug_rcu_head_unqueue(list);
2205 			local_bh_disable();
2206 			if (__rcu_reclaim(rdp->rsp->name, list))
2207 				cl++;
2208 			c++;
2209 			local_bh_enable();
2210 			cond_resched_rcu_qs();
2211 			list = next;
2212 		}
2213 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2214 		smp_mb__before_atomic();  /* _add after CB invocation. */
2215 		atomic_long_add(-c, &rdp->nocb_q_count);
2216 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2217 		rdp->n_nocbs_invoked += c;
2218 	}
2219 	return 0;
2220 }
2221 
2222 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2223 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2224 {
2225 	return READ_ONCE(rdp->nocb_defer_wakeup);
2226 }
2227 
2228 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2229 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2230 {
2231 	int ndw;
2232 
2233 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2234 		return;
2235 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2236 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2237 	wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE);
2238 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2239 }
2240 
2241 void __init rcu_init_nohz(void)
2242 {
2243 	int cpu;
2244 	bool need_rcu_nocb_mask = true;
2245 	struct rcu_state *rsp;
2246 
2247 #if defined(CONFIG_NO_HZ_FULL)
2248 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2249 		need_rcu_nocb_mask = true;
2250 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2251 
2252 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2253 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2254 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2255 			return;
2256 		}
2257 		have_rcu_nocb_mask = true;
2258 	}
2259 	if (!have_rcu_nocb_mask)
2260 		return;
2261 
2262 #if defined(CONFIG_NO_HZ_FULL)
2263 	if (tick_nohz_full_running)
2264 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2265 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2266 
2267 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2268 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2269 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2270 			    rcu_nocb_mask);
2271 	}
2272 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2273 		cpumask_pr_args(rcu_nocb_mask));
2274 	if (rcu_nocb_poll)
2275 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2276 
2277 	for_each_rcu_flavor(rsp) {
2278 		for_each_cpu(cpu, rcu_nocb_mask)
2279 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2280 		rcu_organize_nocb_kthreads(rsp);
2281 	}
2282 }
2283 
2284 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2285 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2286 {
2287 	rdp->nocb_tail = &rdp->nocb_head;
2288 	init_swait_queue_head(&rdp->nocb_wq);
2289 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2290 }
2291 
2292 /*
2293  * If the specified CPU is a no-CBs CPU that does not already have its
2294  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2295  * brought online out of order, this can require re-organizing the
2296  * leader-follower relationships.
2297  */
2298 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2299 {
2300 	struct rcu_data *rdp;
2301 	struct rcu_data *rdp_last;
2302 	struct rcu_data *rdp_old_leader;
2303 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2304 	struct task_struct *t;
2305 
2306 	/*
2307 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2308 	 * then nothing to do.
2309 	 */
2310 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2311 		return;
2312 
2313 	/* If we didn't spawn the leader first, reorganize! */
2314 	rdp_old_leader = rdp_spawn->nocb_leader;
2315 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2316 		rdp_last = NULL;
2317 		rdp = rdp_old_leader;
2318 		do {
2319 			rdp->nocb_leader = rdp_spawn;
2320 			if (rdp_last && rdp != rdp_spawn)
2321 				rdp_last->nocb_next_follower = rdp;
2322 			if (rdp == rdp_spawn) {
2323 				rdp = rdp->nocb_next_follower;
2324 			} else {
2325 				rdp_last = rdp;
2326 				rdp = rdp->nocb_next_follower;
2327 				rdp_last->nocb_next_follower = NULL;
2328 			}
2329 		} while (rdp);
2330 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2331 	}
2332 
2333 	/* Spawn the kthread for this CPU and RCU flavor. */
2334 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2335 			"rcuo%c/%d", rsp->abbr, cpu);
2336 	BUG_ON(IS_ERR(t));
2337 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2338 }
2339 
2340 /*
2341  * If the specified CPU is a no-CBs CPU that does not already have its
2342  * rcuo kthreads, spawn them.
2343  */
2344 static void rcu_spawn_all_nocb_kthreads(int cpu)
2345 {
2346 	struct rcu_state *rsp;
2347 
2348 	if (rcu_scheduler_fully_active)
2349 		for_each_rcu_flavor(rsp)
2350 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2351 }
2352 
2353 /*
2354  * Once the scheduler is running, spawn rcuo kthreads for all online
2355  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2356  * non-boot CPUs come online -- if this changes, we will need to add
2357  * some mutual exclusion.
2358  */
2359 static void __init rcu_spawn_nocb_kthreads(void)
2360 {
2361 	int cpu;
2362 
2363 	for_each_online_cpu(cpu)
2364 		rcu_spawn_all_nocb_kthreads(cpu);
2365 }
2366 
2367 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2368 static int rcu_nocb_leader_stride = -1;
2369 module_param(rcu_nocb_leader_stride, int, 0444);
2370 
2371 /*
2372  * Initialize leader-follower relationships for all no-CBs CPU.
2373  */
2374 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2375 {
2376 	int cpu;
2377 	int ls = rcu_nocb_leader_stride;
2378 	int nl = 0;  /* Next leader. */
2379 	struct rcu_data *rdp;
2380 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2381 	struct rcu_data *rdp_prev = NULL;
2382 
2383 	if (!have_rcu_nocb_mask)
2384 		return;
2385 	if (ls == -1) {
2386 		ls = int_sqrt(nr_cpu_ids);
2387 		rcu_nocb_leader_stride = ls;
2388 	}
2389 
2390 	/*
2391 	 * Each pass through this loop sets up one rcu_data structure.
2392 	 * Should the corresponding CPU come online in the future, then
2393 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2394 	 */
2395 	for_each_cpu(cpu, rcu_nocb_mask) {
2396 		rdp = per_cpu_ptr(rsp->rda, cpu);
2397 		if (rdp->cpu >= nl) {
2398 			/* New leader, set up for followers & next leader. */
2399 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2400 			rdp->nocb_leader = rdp;
2401 			rdp_leader = rdp;
2402 		} else {
2403 			/* Another follower, link to previous leader. */
2404 			rdp->nocb_leader = rdp_leader;
2405 			rdp_prev->nocb_next_follower = rdp;
2406 		}
2407 		rdp_prev = rdp;
2408 	}
2409 }
2410 
2411 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2412 static bool init_nocb_callback_list(struct rcu_data *rdp)
2413 {
2414 	if (!rcu_is_nocb_cpu(rdp->cpu))
2415 		return false;
2416 
2417 	/* If there are early-boot callbacks, move them to nocb lists. */
2418 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2419 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2420 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2421 		atomic_long_set(&rdp->nocb_q_count,
2422 				rcu_segcblist_n_cbs(&rdp->cblist));
2423 		atomic_long_set(&rdp->nocb_q_count_lazy,
2424 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2425 		rcu_segcblist_init(&rdp->cblist);
2426 	}
2427 	rcu_segcblist_disable(&rdp->cblist);
2428 	return true;
2429 }
2430 
2431 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2432 
2433 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2434 {
2435 	WARN_ON_ONCE(1); /* Should be dead code. */
2436 	return false;
2437 }
2438 
2439 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2440 {
2441 }
2442 
2443 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2444 {
2445 }
2446 
2447 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2448 {
2449 	return NULL;
2450 }
2451 
2452 static void rcu_init_one_nocb(struct rcu_node *rnp)
2453 {
2454 }
2455 
2456 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2457 			    bool lazy, unsigned long flags)
2458 {
2459 	return false;
2460 }
2461 
2462 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2463 						     struct rcu_data *rdp,
2464 						     unsigned long flags)
2465 {
2466 	return false;
2467 }
2468 
2469 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2470 {
2471 }
2472 
2473 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2474 {
2475 	return false;
2476 }
2477 
2478 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2479 {
2480 }
2481 
2482 static void rcu_spawn_all_nocb_kthreads(int cpu)
2483 {
2484 }
2485 
2486 static void __init rcu_spawn_nocb_kthreads(void)
2487 {
2488 }
2489 
2490 static bool init_nocb_callback_list(struct rcu_data *rdp)
2491 {
2492 	return false;
2493 }
2494 
2495 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2496 
2497 /*
2498  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2499  * arbitrarily long period of time with the scheduling-clock tick turned
2500  * off.  RCU will be paying attention to this CPU because it is in the
2501  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2502  * machine because the scheduling-clock tick has been disabled.  Therefore,
2503  * if an adaptive-ticks CPU is failing to respond to the current grace
2504  * period and has not be idle from an RCU perspective, kick it.
2505  */
2506 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2507 {
2508 #ifdef CONFIG_NO_HZ_FULL
2509 	if (tick_nohz_full_cpu(cpu))
2510 		smp_send_reschedule(cpu);
2511 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2512 }
2513 
2514 /*
2515  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2516  * grace-period kthread will do force_quiescent_state() processing?
2517  * The idea is to avoid waking up RCU core processing on such a
2518  * CPU unless the grace period has extended for too long.
2519  *
2520  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2521  * CONFIG_RCU_NOCB_CPU CPUs.
2522  */
2523 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2524 {
2525 #ifdef CONFIG_NO_HZ_FULL
2526 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2527 	    (!rcu_gp_in_progress(rsp) ||
2528 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2529 		return true;
2530 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2531 	return false;
2532 }
2533 
2534 /*
2535  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2536  * timekeeping CPU.
2537  */
2538 static void rcu_bind_gp_kthread(void)
2539 {
2540 	int __maybe_unused cpu;
2541 
2542 	if (!tick_nohz_full_enabled())
2543 		return;
2544 	housekeeping_affine(current);
2545 }
2546 
2547 /* Record the current task on dyntick-idle entry. */
2548 static void rcu_dynticks_task_enter(void)
2549 {
2550 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2551 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2552 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2553 }
2554 
2555 /* Record no current task on dyntick-idle exit. */
2556 static void rcu_dynticks_task_exit(void)
2557 {
2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2559 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2561 }
2562