xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 6b2e54f7)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35 
36 #ifdef CONFIG_RCU_BOOST
37 
38 #include "../locking/rtmutex_common.h"
39 
40 /*
41  * Control variables for per-CPU and per-rcu_node kthreads.  These
42  * handle all flavors of RCU.
43  */
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48 
49 #else /* #ifdef CONFIG_RCU_BOOST */
50 
51 /*
52  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53  * all uses are in dead code.  Provide a definition to keep the compiler
54  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55  * This probably needs to be excluded from -rt builds.
56  */
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59 
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61 
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66 
67 /*
68  * Check the RCU kernel configuration parameters and print informative
69  * messages about anything out of the ordinary.
70  */
71 static void __init rcu_bootup_announce_oddness(void)
72 {
73 	if (IS_ENABLED(CONFIG_RCU_TRACE))
74 		pr_info("\tRCU event tracing is enabled.\n");
75 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
78 		       RCU_FANOUT);
79 	if (rcu_fanout_exact)
80 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 	if (IS_ENABLED(CONFIG_PROVE_RCU))
84 		pr_info("\tRCU lockdep checking is enabled.\n");
85 	if (RCU_NUM_LVLS >= 4)
86 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 	if (RCU_FANOUT_LEAF != 16)
88 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 			RCU_FANOUT_LEAF);
90 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 	if (nr_cpu_ids != NR_CPUS)
93 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
96 #endif
97 	if (blimit != DEFAULT_RCU_BLIMIT)
98 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
99 	if (qhimark != DEFAULT_RCU_QHIMARK)
100 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
101 	if (qlowmark != DEFAULT_RCU_QLOMARK)
102 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
103 	if (jiffies_till_first_fqs != ULONG_MAX)
104 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
105 	if (jiffies_till_next_fqs != ULONG_MAX)
106 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
107 	if (rcu_kick_kthreads)
108 		pr_info("\tKick kthreads if too-long grace period.\n");
109 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
110 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111 	if (gp_preinit_delay)
112 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
113 	if (gp_init_delay)
114 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
115 	if (gp_cleanup_delay)
116 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
117 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
118 		pr_info("\tRCU debug extended QS entry/exit.\n");
119 	rcupdate_announce_bootup_oddness();
120 }
121 
122 #ifdef CONFIG_PREEMPT_RCU
123 
124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
127 
128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
129 			       bool wake);
130 
131 /*
132  * Tell them what RCU they are running.
133  */
134 static void __init rcu_bootup_announce(void)
135 {
136 	pr_info("Preemptible hierarchical RCU implementation.\n");
137 	rcu_bootup_announce_oddness();
138 }
139 
140 /* Flags for rcu_preempt_ctxt_queue() decision table. */
141 #define RCU_GP_TASKS	0x8
142 #define RCU_EXP_TASKS	0x4
143 #define RCU_GP_BLKD	0x2
144 #define RCU_EXP_BLKD	0x1
145 
146 /*
147  * Queues a task preempted within an RCU-preempt read-side critical
148  * section into the appropriate location within the ->blkd_tasks list,
149  * depending on the states of any ongoing normal and expedited grace
150  * periods.  The ->gp_tasks pointer indicates which element the normal
151  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152  * indicates which element the expedited grace period is waiting on (again,
153  * NULL if none).  If a grace period is waiting on a given element in the
154  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
155  * adding a task to the tail of the list blocks any grace period that is
156  * already waiting on one of the elements.  In contrast, adding a task
157  * to the head of the list won't block any grace period that is already
158  * waiting on one of the elements.
159  *
160  * This queuing is imprecise, and can sometimes make an ongoing grace
161  * period wait for a task that is not strictly speaking blocking it.
162  * Given the choice, we needlessly block a normal grace period rather than
163  * blocking an expedited grace period.
164  *
165  * Note that an endless sequence of expedited grace periods still cannot
166  * indefinitely postpone a normal grace period.  Eventually, all of the
167  * fixed number of preempted tasks blocking the normal grace period that are
168  * not also blocking the expedited grace period will resume and complete
169  * their RCU read-side critical sections.  At that point, the ->gp_tasks
170  * pointer will equal the ->exp_tasks pointer, at which point the end of
171  * the corresponding expedited grace period will also be the end of the
172  * normal grace period.
173  */
174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
175 	__releases(rnp->lock) /* But leaves rrupts disabled. */
176 {
177 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
178 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
179 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
180 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
181 	struct task_struct *t = current;
182 
183 	raw_lockdep_assert_held_rcu_node(rnp);
184 	WARN_ON_ONCE(rdp->mynode != rnp);
185 	WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
186 
187 	/*
188 	 * Decide where to queue the newly blocked task.  In theory,
189 	 * this could be an if-statement.  In practice, when I tried
190 	 * that, it was quite messy.
191 	 */
192 	switch (blkd_state) {
193 	case 0:
194 	case                RCU_EXP_TASKS:
195 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
196 	case RCU_GP_TASKS:
197 	case RCU_GP_TASKS + RCU_EXP_TASKS:
198 
199 		/*
200 		 * Blocking neither GP, or first task blocking the normal
201 		 * GP but not blocking the already-waiting expedited GP.
202 		 * Queue at the head of the list to avoid unnecessarily
203 		 * blocking the already-waiting GPs.
204 		 */
205 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 		break;
207 
208 	case                                              RCU_EXP_BLKD:
209 	case                                RCU_GP_BLKD:
210 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
211 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
212 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
213 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
214 
215 		/*
216 		 * First task arriving that blocks either GP, or first task
217 		 * arriving that blocks the expedited GP (with the normal
218 		 * GP already waiting), or a task arriving that blocks
219 		 * both GPs with both GPs already waiting.  Queue at the
220 		 * tail of the list to avoid any GP waiting on any of the
221 		 * already queued tasks that are not blocking it.
222 		 */
223 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
224 		break;
225 
226 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
227 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
228 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
229 
230 		/*
231 		 * Second or subsequent task blocking the expedited GP.
232 		 * The task either does not block the normal GP, or is the
233 		 * first task blocking the normal GP.  Queue just after
234 		 * the first task blocking the expedited GP.
235 		 */
236 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
237 		break;
238 
239 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
240 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
241 
242 		/*
243 		 * Second or subsequent task blocking the normal GP.
244 		 * The task does not block the expedited GP. Queue just
245 		 * after the first task blocking the normal GP.
246 		 */
247 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
248 		break;
249 
250 	default:
251 
252 		/* Yet another exercise in excessive paranoia. */
253 		WARN_ON_ONCE(1);
254 		break;
255 	}
256 
257 	/*
258 	 * We have now queued the task.  If it was the first one to
259 	 * block either grace period, update the ->gp_tasks and/or
260 	 * ->exp_tasks pointers, respectively, to reference the newly
261 	 * blocked tasks.
262 	 */
263 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
264 		rnp->gp_tasks = &t->rcu_node_entry;
265 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
266 		rnp->exp_tasks = &t->rcu_node_entry;
267 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
268 		     !(rnp->qsmask & rdp->grpmask));
269 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
270 		     !(rnp->expmask & rdp->grpmask));
271 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
272 
273 	/*
274 	 * Report the quiescent state for the expedited GP.  This expedited
275 	 * GP should not be able to end until we report, so there should be
276 	 * no need to check for a subsequent expedited GP.  (Though we are
277 	 * still in a quiescent state in any case.)
278 	 */
279 	if (blkd_state & RCU_EXP_BLKD &&
280 	    t->rcu_read_unlock_special.b.exp_need_qs) {
281 		t->rcu_read_unlock_special.b.exp_need_qs = false;
282 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
283 	} else {
284 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
285 	}
286 }
287 
288 /*
289  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
290  * that this just means that the task currently running on the CPU is
291  * not in a quiescent state.  There might be any number of tasks blocked
292  * while in an RCU read-side critical section.
293  *
294  * As with the other rcu_*_qs() functions, callers to this function
295  * must disable preemption.
296  */
297 static void rcu_preempt_qs(void)
298 {
299 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
301 		trace_rcu_grace_period(TPS("rcu_preempt"),
302 				       __this_cpu_read(rcu_data_p->gpnum),
303 				       TPS("cpuqs"));
304 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
305 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
306 		current->rcu_read_unlock_special.b.need_qs = false;
307 	}
308 }
309 
310 /*
311  * We have entered the scheduler, and the current task might soon be
312  * context-switched away from.  If this task is in an RCU read-side
313  * critical section, we will no longer be able to rely on the CPU to
314  * record that fact, so we enqueue the task on the blkd_tasks list.
315  * The task will dequeue itself when it exits the outermost enclosing
316  * RCU read-side critical section.  Therefore, the current grace period
317  * cannot be permitted to complete until the blkd_tasks list entries
318  * predating the current grace period drain, in other words, until
319  * rnp->gp_tasks becomes NULL.
320  *
321  * Caller must disable interrupts.
322  */
323 static void rcu_preempt_note_context_switch(bool preempt)
324 {
325 	struct task_struct *t = current;
326 	struct rcu_data *rdp;
327 	struct rcu_node *rnp;
328 
329 	lockdep_assert_irqs_disabled();
330 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
331 	if (t->rcu_read_lock_nesting > 0 &&
332 	    !t->rcu_read_unlock_special.b.blocked) {
333 
334 		/* Possibly blocking in an RCU read-side critical section. */
335 		rdp = this_cpu_ptr(rcu_state_p->rda);
336 		rnp = rdp->mynode;
337 		raw_spin_lock_rcu_node(rnp);
338 		t->rcu_read_unlock_special.b.blocked = true;
339 		t->rcu_blocked_node = rnp;
340 
341 		/*
342 		 * Verify the CPU's sanity, trace the preemption, and
343 		 * then queue the task as required based on the states
344 		 * of any ongoing and expedited grace periods.
345 		 */
346 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
347 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348 		trace_rcu_preempt_task(rdp->rsp->name,
349 				       t->pid,
350 				       (rnp->qsmask & rdp->grpmask)
351 				       ? rnp->gpnum
352 				       : rnp->gpnum + 1);
353 		rcu_preempt_ctxt_queue(rnp, rdp);
354 	} else if (t->rcu_read_lock_nesting < 0 &&
355 		   t->rcu_read_unlock_special.s) {
356 
357 		/*
358 		 * Complete exit from RCU read-side critical section on
359 		 * behalf of preempted instance of __rcu_read_unlock().
360 		 */
361 		rcu_read_unlock_special(t);
362 	}
363 
364 	/*
365 	 * Either we were not in an RCU read-side critical section to
366 	 * begin with, or we have now recorded that critical section
367 	 * globally.  Either way, we can now note a quiescent state
368 	 * for this CPU.  Again, if we were in an RCU read-side critical
369 	 * section, and if that critical section was blocking the current
370 	 * grace period, then the fact that the task has been enqueued
371 	 * means that we continue to block the current grace period.
372 	 */
373 	rcu_preempt_qs();
374 }
375 
376 /*
377  * Check for preempted RCU readers blocking the current grace period
378  * for the specified rcu_node structure.  If the caller needs a reliable
379  * answer, it must hold the rcu_node's ->lock.
380  */
381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382 {
383 	return rnp->gp_tasks != NULL;
384 }
385 
386 /*
387  * Advance a ->blkd_tasks-list pointer to the next entry, instead
388  * returning NULL if at the end of the list.
389  */
390 static struct list_head *rcu_next_node_entry(struct task_struct *t,
391 					     struct rcu_node *rnp)
392 {
393 	struct list_head *np;
394 
395 	np = t->rcu_node_entry.next;
396 	if (np == &rnp->blkd_tasks)
397 		np = NULL;
398 	return np;
399 }
400 
401 /*
402  * Return true if the specified rcu_node structure has tasks that were
403  * preempted within an RCU read-side critical section.
404  */
405 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
406 {
407 	return !list_empty(&rnp->blkd_tasks);
408 }
409 
410 /*
411  * Handle special cases during rcu_read_unlock(), such as needing to
412  * notify RCU core processing or task having blocked during the RCU
413  * read-side critical section.
414  */
415 void rcu_read_unlock_special(struct task_struct *t)
416 {
417 	bool empty_exp;
418 	bool empty_norm;
419 	bool empty_exp_now;
420 	unsigned long flags;
421 	struct list_head *np;
422 	bool drop_boost_mutex = false;
423 	struct rcu_data *rdp;
424 	struct rcu_node *rnp;
425 	union rcu_special special;
426 
427 	/* NMI handlers cannot block and cannot safely manipulate state. */
428 	if (in_nmi())
429 		return;
430 
431 	local_irq_save(flags);
432 
433 	/*
434 	 * If RCU core is waiting for this CPU to exit its critical section,
435 	 * report the fact that it has exited.  Because irqs are disabled,
436 	 * t->rcu_read_unlock_special cannot change.
437 	 */
438 	special = t->rcu_read_unlock_special;
439 	if (special.b.need_qs) {
440 		rcu_preempt_qs();
441 		t->rcu_read_unlock_special.b.need_qs = false;
442 		if (!t->rcu_read_unlock_special.s) {
443 			local_irq_restore(flags);
444 			return;
445 		}
446 	}
447 
448 	/*
449 	 * Respond to a request for an expedited grace period, but only if
450 	 * we were not preempted, meaning that we were running on the same
451 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
452 	 * would have been cleared at the time of the first preemption,
453 	 * and the quiescent state would be reported when we were dequeued.
454 	 */
455 	if (special.b.exp_need_qs) {
456 		WARN_ON_ONCE(special.b.blocked);
457 		t->rcu_read_unlock_special.b.exp_need_qs = false;
458 		rdp = this_cpu_ptr(rcu_state_p->rda);
459 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
460 		if (!t->rcu_read_unlock_special.s) {
461 			local_irq_restore(flags);
462 			return;
463 		}
464 	}
465 
466 	/* Hardware IRQ handlers cannot block, complain if they get here. */
467 	if (in_irq() || in_serving_softirq()) {
468 		lockdep_rcu_suspicious(__FILE__, __LINE__,
469 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
470 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
471 			 t->rcu_read_unlock_special.s,
472 			 t->rcu_read_unlock_special.b.blocked,
473 			 t->rcu_read_unlock_special.b.exp_need_qs,
474 			 t->rcu_read_unlock_special.b.need_qs);
475 		local_irq_restore(flags);
476 		return;
477 	}
478 
479 	/* Clean up if blocked during RCU read-side critical section. */
480 	if (special.b.blocked) {
481 		t->rcu_read_unlock_special.b.blocked = false;
482 
483 		/*
484 		 * Remove this task from the list it blocked on.  The task
485 		 * now remains queued on the rcu_node corresponding to the
486 		 * CPU it first blocked on, so there is no longer any need
487 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
488 		 */
489 		rnp = t->rcu_blocked_node;
490 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
493 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494 		empty_exp = sync_rcu_preempt_exp_done(rnp);
495 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
496 		np = rcu_next_node_entry(t, rnp);
497 		list_del_init(&t->rcu_node_entry);
498 		t->rcu_blocked_node = NULL;
499 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
500 						rnp->gpnum, t->pid);
501 		if (&t->rcu_node_entry == rnp->gp_tasks)
502 			rnp->gp_tasks = np;
503 		if (&t->rcu_node_entry == rnp->exp_tasks)
504 			rnp->exp_tasks = np;
505 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
506 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
507 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
508 			if (&t->rcu_node_entry == rnp->boost_tasks)
509 				rnp->boost_tasks = np;
510 		}
511 
512 		/*
513 		 * If this was the last task on the current list, and if
514 		 * we aren't waiting on any CPUs, report the quiescent state.
515 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
516 		 * so we must take a snapshot of the expedited state.
517 		 */
518 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
519 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
520 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
521 							 rnp->gpnum,
522 							 0, rnp->qsmask,
523 							 rnp->level,
524 							 rnp->grplo,
525 							 rnp->grphi,
526 							 !!rnp->gp_tasks);
527 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
528 		} else {
529 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
530 		}
531 
532 		/* Unboost if we were boosted. */
533 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
534 			rt_mutex_futex_unlock(&rnp->boost_mtx);
535 
536 		/*
537 		 * If this was the last task on the expedited lists,
538 		 * then we need to report up the rcu_node hierarchy.
539 		 */
540 		if (!empty_exp && empty_exp_now)
541 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
542 	} else {
543 		local_irq_restore(flags);
544 	}
545 }
546 
547 /*
548  * Dump detailed information for all tasks blocking the current RCU
549  * grace period on the specified rcu_node structure.
550  */
551 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
552 {
553 	unsigned long flags;
554 	struct task_struct *t;
555 
556 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
557 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
558 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
559 		return;
560 	}
561 	t = list_entry(rnp->gp_tasks->prev,
562 		       struct task_struct, rcu_node_entry);
563 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
564 		/*
565 		 * We could be printing a lot while holding a spinlock.
566 		 * Avoid triggering hard lockup.
567 		 */
568 		touch_nmi_watchdog();
569 		sched_show_task(t);
570 	}
571 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
572 }
573 
574 /*
575  * Dump detailed information for all tasks blocking the current RCU
576  * grace period.
577  */
578 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
579 {
580 	struct rcu_node *rnp = rcu_get_root(rsp);
581 
582 	rcu_print_detail_task_stall_rnp(rnp);
583 	rcu_for_each_leaf_node(rsp, rnp)
584 		rcu_print_detail_task_stall_rnp(rnp);
585 }
586 
587 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
588 {
589 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
590 	       rnp->level, rnp->grplo, rnp->grphi);
591 }
592 
593 static void rcu_print_task_stall_end(void)
594 {
595 	pr_cont("\n");
596 }
597 
598 /*
599  * Scan the current list of tasks blocked within RCU read-side critical
600  * sections, printing out the tid of each.
601  */
602 static int rcu_print_task_stall(struct rcu_node *rnp)
603 {
604 	struct task_struct *t;
605 	int ndetected = 0;
606 
607 	if (!rcu_preempt_blocked_readers_cgp(rnp))
608 		return 0;
609 	rcu_print_task_stall_begin(rnp);
610 	t = list_entry(rnp->gp_tasks->prev,
611 		       struct task_struct, rcu_node_entry);
612 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
613 		pr_cont(" P%d", t->pid);
614 		ndetected++;
615 	}
616 	rcu_print_task_stall_end();
617 	return ndetected;
618 }
619 
620 /*
621  * Scan the current list of tasks blocked within RCU read-side critical
622  * sections, printing out the tid of each that is blocking the current
623  * expedited grace period.
624  */
625 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
626 {
627 	struct task_struct *t;
628 	int ndetected = 0;
629 
630 	if (!rnp->exp_tasks)
631 		return 0;
632 	t = list_entry(rnp->exp_tasks->prev,
633 		       struct task_struct, rcu_node_entry);
634 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
635 		pr_cont(" P%d", t->pid);
636 		ndetected++;
637 	}
638 	return ndetected;
639 }
640 
641 /*
642  * Check that the list of blocked tasks for the newly completed grace
643  * period is in fact empty.  It is a serious bug to complete a grace
644  * period that still has RCU readers blocked!  This function must be
645  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
646  * must be held by the caller.
647  *
648  * Also, if there are blocked tasks on the list, they automatically
649  * block the newly created grace period, so set up ->gp_tasks accordingly.
650  */
651 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
652 {
653 	struct task_struct *t;
654 
655 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
656 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
657 	if (rcu_preempt_has_tasks(rnp)) {
658 		rnp->gp_tasks = rnp->blkd_tasks.next;
659 		t = container_of(rnp->gp_tasks, struct task_struct,
660 				 rcu_node_entry);
661 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
662 						rnp->gpnum, t->pid);
663 	}
664 	WARN_ON_ONCE(rnp->qsmask);
665 }
666 
667 /*
668  * Check for a quiescent state from the current CPU.  When a task blocks,
669  * the task is recorded in the corresponding CPU's rcu_node structure,
670  * which is checked elsewhere.
671  *
672  * Caller must disable hard irqs.
673  */
674 static void rcu_preempt_check_callbacks(void)
675 {
676 	struct task_struct *t = current;
677 
678 	if (t->rcu_read_lock_nesting == 0) {
679 		rcu_preempt_qs();
680 		return;
681 	}
682 	if (t->rcu_read_lock_nesting > 0 &&
683 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
684 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
685 		t->rcu_read_unlock_special.b.need_qs = true;
686 }
687 
688 #ifdef CONFIG_RCU_BOOST
689 
690 static void rcu_preempt_do_callbacks(void)
691 {
692 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
693 }
694 
695 #endif /* #ifdef CONFIG_RCU_BOOST */
696 
697 /**
698  * call_rcu() - Queue an RCU callback for invocation after a grace period.
699  * @head: structure to be used for queueing the RCU updates.
700  * @func: actual callback function to be invoked after the grace period
701  *
702  * The callback function will be invoked some time after a full grace
703  * period elapses, in other words after all pre-existing RCU read-side
704  * critical sections have completed.  However, the callback function
705  * might well execute concurrently with RCU read-side critical sections
706  * that started after call_rcu() was invoked.  RCU read-side critical
707  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
708  * and may be nested.
709  *
710  * Note that all CPUs must agree that the grace period extended beyond
711  * all pre-existing RCU read-side critical section.  On systems with more
712  * than one CPU, this means that when "func()" is invoked, each CPU is
713  * guaranteed to have executed a full memory barrier since the end of its
714  * last RCU read-side critical section whose beginning preceded the call
715  * to call_rcu().  It also means that each CPU executing an RCU read-side
716  * critical section that continues beyond the start of "func()" must have
717  * executed a memory barrier after the call_rcu() but before the beginning
718  * of that RCU read-side critical section.  Note that these guarantees
719  * include CPUs that are offline, idle, or executing in user mode, as
720  * well as CPUs that are executing in the kernel.
721  *
722  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
723  * resulting RCU callback function "func()", then both CPU A and CPU B are
724  * guaranteed to execute a full memory barrier during the time interval
725  * between the call to call_rcu() and the invocation of "func()" -- even
726  * if CPU A and CPU B are the same CPU (but again only if the system has
727  * more than one CPU).
728  */
729 void call_rcu(struct rcu_head *head, rcu_callback_t func)
730 {
731 	__call_rcu(head, func, rcu_state_p, -1, 0);
732 }
733 EXPORT_SYMBOL_GPL(call_rcu);
734 
735 /**
736  * synchronize_rcu - wait until a grace period has elapsed.
737  *
738  * Control will return to the caller some time after a full grace
739  * period has elapsed, in other words after all currently executing RCU
740  * read-side critical sections have completed.  Note, however, that
741  * upon return from synchronize_rcu(), the caller might well be executing
742  * concurrently with new RCU read-side critical sections that began while
743  * synchronize_rcu() was waiting.  RCU read-side critical sections are
744  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
745  *
746  * See the description of synchronize_sched() for more detailed
747  * information on memory-ordering guarantees.  However, please note
748  * that -only- the memory-ordering guarantees apply.  For example,
749  * synchronize_rcu() is -not- guaranteed to wait on things like code
750  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
751  * guaranteed to wait on RCU read-side critical sections, that is, sections
752  * of code protected by rcu_read_lock().
753  */
754 void synchronize_rcu(void)
755 {
756 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
757 			 lock_is_held(&rcu_lock_map) ||
758 			 lock_is_held(&rcu_sched_lock_map),
759 			 "Illegal synchronize_rcu() in RCU read-side critical section");
760 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
761 		return;
762 	if (rcu_gp_is_expedited())
763 		synchronize_rcu_expedited();
764 	else
765 		wait_rcu_gp(call_rcu);
766 }
767 EXPORT_SYMBOL_GPL(synchronize_rcu);
768 
769 /**
770  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
771  *
772  * Note that this primitive does not necessarily wait for an RCU grace period
773  * to complete.  For example, if there are no RCU callbacks queued anywhere
774  * in the system, then rcu_barrier() is within its rights to return
775  * immediately, without waiting for anything, much less an RCU grace period.
776  */
777 void rcu_barrier(void)
778 {
779 	_rcu_barrier(rcu_state_p);
780 }
781 EXPORT_SYMBOL_GPL(rcu_barrier);
782 
783 /*
784  * Initialize preemptible RCU's state structures.
785  */
786 static void __init __rcu_init_preempt(void)
787 {
788 	rcu_init_one(rcu_state_p);
789 }
790 
791 /*
792  * Check for a task exiting while in a preemptible-RCU read-side
793  * critical section, clean up if so.  No need to issue warnings,
794  * as debug_check_no_locks_held() already does this if lockdep
795  * is enabled.
796  */
797 void exit_rcu(void)
798 {
799 	struct task_struct *t = current;
800 
801 	if (likely(list_empty(&current->rcu_node_entry)))
802 		return;
803 	t->rcu_read_lock_nesting = 1;
804 	barrier();
805 	t->rcu_read_unlock_special.b.blocked = true;
806 	__rcu_read_unlock();
807 }
808 
809 #else /* #ifdef CONFIG_PREEMPT_RCU */
810 
811 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
812 
813 /*
814  * Tell them what RCU they are running.
815  */
816 static void __init rcu_bootup_announce(void)
817 {
818 	pr_info("Hierarchical RCU implementation.\n");
819 	rcu_bootup_announce_oddness();
820 }
821 
822 /*
823  * Because preemptible RCU does not exist, we never have to check for
824  * CPUs being in quiescent states.
825  */
826 static void rcu_preempt_note_context_switch(bool preempt)
827 {
828 }
829 
830 /*
831  * Because preemptible RCU does not exist, there are never any preempted
832  * RCU readers.
833  */
834 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
835 {
836 	return 0;
837 }
838 
839 /*
840  * Because there is no preemptible RCU, there can be no readers blocked.
841  */
842 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
843 {
844 	return false;
845 }
846 
847 /*
848  * Because preemptible RCU does not exist, we never have to check for
849  * tasks blocked within RCU read-side critical sections.
850  */
851 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
852 {
853 }
854 
855 /*
856  * Because preemptible RCU does not exist, we never have to check for
857  * tasks blocked within RCU read-side critical sections.
858  */
859 static int rcu_print_task_stall(struct rcu_node *rnp)
860 {
861 	return 0;
862 }
863 
864 /*
865  * Because preemptible RCU does not exist, we never have to check for
866  * tasks blocked within RCU read-side critical sections that are
867  * blocking the current expedited grace period.
868  */
869 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
870 {
871 	return 0;
872 }
873 
874 /*
875  * Because there is no preemptible RCU, there can be no readers blocked,
876  * so there is no need to check for blocked tasks.  So check only for
877  * bogus qsmask values.
878  */
879 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
880 {
881 	WARN_ON_ONCE(rnp->qsmask);
882 }
883 
884 /*
885  * Because preemptible RCU does not exist, it never has any callbacks
886  * to check.
887  */
888 static void rcu_preempt_check_callbacks(void)
889 {
890 }
891 
892 /*
893  * Because preemptible RCU does not exist, rcu_barrier() is just
894  * another name for rcu_barrier_sched().
895  */
896 void rcu_barrier(void)
897 {
898 	rcu_barrier_sched();
899 }
900 EXPORT_SYMBOL_GPL(rcu_barrier);
901 
902 /*
903  * Because preemptible RCU does not exist, it need not be initialized.
904  */
905 static void __init __rcu_init_preempt(void)
906 {
907 }
908 
909 /*
910  * Because preemptible RCU does not exist, tasks cannot possibly exit
911  * while in preemptible RCU read-side critical sections.
912  */
913 void exit_rcu(void)
914 {
915 }
916 
917 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
918 
919 #ifdef CONFIG_RCU_BOOST
920 
921 static void rcu_wake_cond(struct task_struct *t, int status)
922 {
923 	/*
924 	 * If the thread is yielding, only wake it when this
925 	 * is invoked from idle
926 	 */
927 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
928 		wake_up_process(t);
929 }
930 
931 /*
932  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
933  * or ->boost_tasks, advancing the pointer to the next task in the
934  * ->blkd_tasks list.
935  *
936  * Note that irqs must be enabled: boosting the task can block.
937  * Returns 1 if there are more tasks needing to be boosted.
938  */
939 static int rcu_boost(struct rcu_node *rnp)
940 {
941 	unsigned long flags;
942 	struct task_struct *t;
943 	struct list_head *tb;
944 
945 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
946 	    READ_ONCE(rnp->boost_tasks) == NULL)
947 		return 0;  /* Nothing left to boost. */
948 
949 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
950 
951 	/*
952 	 * Recheck under the lock: all tasks in need of boosting
953 	 * might exit their RCU read-side critical sections on their own.
954 	 */
955 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
956 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
957 		return 0;
958 	}
959 
960 	/*
961 	 * Preferentially boost tasks blocking expedited grace periods.
962 	 * This cannot starve the normal grace periods because a second
963 	 * expedited grace period must boost all blocked tasks, including
964 	 * those blocking the pre-existing normal grace period.
965 	 */
966 	if (rnp->exp_tasks != NULL)
967 		tb = rnp->exp_tasks;
968 	else
969 		tb = rnp->boost_tasks;
970 
971 	/*
972 	 * We boost task t by manufacturing an rt_mutex that appears to
973 	 * be held by task t.  We leave a pointer to that rt_mutex where
974 	 * task t can find it, and task t will release the mutex when it
975 	 * exits its outermost RCU read-side critical section.  Then
976 	 * simply acquiring this artificial rt_mutex will boost task
977 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
978 	 *
979 	 * Note that task t must acquire rnp->lock to remove itself from
980 	 * the ->blkd_tasks list, which it will do from exit() if from
981 	 * nowhere else.  We therefore are guaranteed that task t will
982 	 * stay around at least until we drop rnp->lock.  Note that
983 	 * rnp->lock also resolves races between our priority boosting
984 	 * and task t's exiting its outermost RCU read-side critical
985 	 * section.
986 	 */
987 	t = container_of(tb, struct task_struct, rcu_node_entry);
988 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
989 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
990 	/* Lock only for side effect: boosts task t's priority. */
991 	rt_mutex_lock(&rnp->boost_mtx);
992 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
993 
994 	return READ_ONCE(rnp->exp_tasks) != NULL ||
995 	       READ_ONCE(rnp->boost_tasks) != NULL;
996 }
997 
998 /*
999  * Priority-boosting kthread, one per leaf rcu_node.
1000  */
1001 static int rcu_boost_kthread(void *arg)
1002 {
1003 	struct rcu_node *rnp = (struct rcu_node *)arg;
1004 	int spincnt = 0;
1005 	int more2boost;
1006 
1007 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1008 	for (;;) {
1009 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1010 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1011 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1012 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1013 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1014 		more2boost = rcu_boost(rnp);
1015 		if (more2boost)
1016 			spincnt++;
1017 		else
1018 			spincnt = 0;
1019 		if (spincnt > 10) {
1020 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1021 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1022 			schedule_timeout_interruptible(2);
1023 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1024 			spincnt = 0;
1025 		}
1026 	}
1027 	/* NOTREACHED */
1028 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1029 	return 0;
1030 }
1031 
1032 /*
1033  * Check to see if it is time to start boosting RCU readers that are
1034  * blocking the current grace period, and, if so, tell the per-rcu_node
1035  * kthread to start boosting them.  If there is an expedited grace
1036  * period in progress, it is always time to boost.
1037  *
1038  * The caller must hold rnp->lock, which this function releases.
1039  * The ->boost_kthread_task is immortal, so we don't need to worry
1040  * about it going away.
1041  */
1042 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1043 	__releases(rnp->lock)
1044 {
1045 	struct task_struct *t;
1046 
1047 	raw_lockdep_assert_held_rcu_node(rnp);
1048 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1049 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050 		return;
1051 	}
1052 	if (rnp->exp_tasks != NULL ||
1053 	    (rnp->gp_tasks != NULL &&
1054 	     rnp->boost_tasks == NULL &&
1055 	     rnp->qsmask == 0 &&
1056 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1057 		if (rnp->exp_tasks == NULL)
1058 			rnp->boost_tasks = rnp->gp_tasks;
1059 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1060 		t = rnp->boost_kthread_task;
1061 		if (t)
1062 			rcu_wake_cond(t, rnp->boost_kthread_status);
1063 	} else {
1064 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1065 	}
1066 }
1067 
1068 /*
1069  * Wake up the per-CPU kthread to invoke RCU callbacks.
1070  */
1071 static void invoke_rcu_callbacks_kthread(void)
1072 {
1073 	unsigned long flags;
1074 
1075 	local_irq_save(flags);
1076 	__this_cpu_write(rcu_cpu_has_work, 1);
1077 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1078 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1079 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1080 			      __this_cpu_read(rcu_cpu_kthread_status));
1081 	}
1082 	local_irq_restore(flags);
1083 }
1084 
1085 /*
1086  * Is the current CPU running the RCU-callbacks kthread?
1087  * Caller must have preemption disabled.
1088  */
1089 static bool rcu_is_callbacks_kthread(void)
1090 {
1091 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1092 }
1093 
1094 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1095 
1096 /*
1097  * Do priority-boost accounting for the start of a new grace period.
1098  */
1099 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1100 {
1101 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1102 }
1103 
1104 /*
1105  * Create an RCU-boost kthread for the specified node if one does not
1106  * already exist.  We only create this kthread for preemptible RCU.
1107  * Returns zero if all is well, a negated errno otherwise.
1108  */
1109 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1110 				       struct rcu_node *rnp)
1111 {
1112 	int rnp_index = rnp - &rsp->node[0];
1113 	unsigned long flags;
1114 	struct sched_param sp;
1115 	struct task_struct *t;
1116 
1117 	if (rcu_state_p != rsp)
1118 		return 0;
1119 
1120 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1121 		return 0;
1122 
1123 	rsp->boost = 1;
1124 	if (rnp->boost_kthread_task != NULL)
1125 		return 0;
1126 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1127 			   "rcub/%d", rnp_index);
1128 	if (IS_ERR(t))
1129 		return PTR_ERR(t);
1130 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1131 	rnp->boost_kthread_task = t;
1132 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1133 	sp.sched_priority = kthread_prio;
1134 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1135 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1136 	return 0;
1137 }
1138 
1139 static void rcu_kthread_do_work(void)
1140 {
1141 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1142 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1143 	rcu_preempt_do_callbacks();
1144 }
1145 
1146 static void rcu_cpu_kthread_setup(unsigned int cpu)
1147 {
1148 	struct sched_param sp;
1149 
1150 	sp.sched_priority = kthread_prio;
1151 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1152 }
1153 
1154 static void rcu_cpu_kthread_park(unsigned int cpu)
1155 {
1156 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1157 }
1158 
1159 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1160 {
1161 	return __this_cpu_read(rcu_cpu_has_work);
1162 }
1163 
1164 /*
1165  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1166  * RCU softirq used in flavors and configurations of RCU that do not
1167  * support RCU priority boosting.
1168  */
1169 static void rcu_cpu_kthread(unsigned int cpu)
1170 {
1171 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1172 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1173 	int spincnt;
1174 
1175 	for (spincnt = 0; spincnt < 10; spincnt++) {
1176 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1177 		local_bh_disable();
1178 		*statusp = RCU_KTHREAD_RUNNING;
1179 		this_cpu_inc(rcu_cpu_kthread_loops);
1180 		local_irq_disable();
1181 		work = *workp;
1182 		*workp = 0;
1183 		local_irq_enable();
1184 		if (work)
1185 			rcu_kthread_do_work();
1186 		local_bh_enable();
1187 		if (*workp == 0) {
1188 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1189 			*statusp = RCU_KTHREAD_WAITING;
1190 			return;
1191 		}
1192 	}
1193 	*statusp = RCU_KTHREAD_YIELDING;
1194 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1195 	schedule_timeout_interruptible(2);
1196 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1197 	*statusp = RCU_KTHREAD_WAITING;
1198 }
1199 
1200 /*
1201  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1202  * served by the rcu_node in question.  The CPU hotplug lock is still
1203  * held, so the value of rnp->qsmaskinit will be stable.
1204  *
1205  * We don't include outgoingcpu in the affinity set, use -1 if there is
1206  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1207  * this function allows the kthread to execute on any CPU.
1208  */
1209 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1210 {
1211 	struct task_struct *t = rnp->boost_kthread_task;
1212 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1213 	cpumask_var_t cm;
1214 	int cpu;
1215 
1216 	if (!t)
1217 		return;
1218 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1219 		return;
1220 	for_each_leaf_node_possible_cpu(rnp, cpu)
1221 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1222 		    cpu != outgoingcpu)
1223 			cpumask_set_cpu(cpu, cm);
1224 	if (cpumask_weight(cm) == 0)
1225 		cpumask_setall(cm);
1226 	set_cpus_allowed_ptr(t, cm);
1227 	free_cpumask_var(cm);
1228 }
1229 
1230 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1231 	.store			= &rcu_cpu_kthread_task,
1232 	.thread_should_run	= rcu_cpu_kthread_should_run,
1233 	.thread_fn		= rcu_cpu_kthread,
1234 	.thread_comm		= "rcuc/%u",
1235 	.setup			= rcu_cpu_kthread_setup,
1236 	.park			= rcu_cpu_kthread_park,
1237 };
1238 
1239 /*
1240  * Spawn boost kthreads -- called as soon as the scheduler is running.
1241  */
1242 static void __init rcu_spawn_boost_kthreads(void)
1243 {
1244 	struct rcu_node *rnp;
1245 	int cpu;
1246 
1247 	for_each_possible_cpu(cpu)
1248 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1249 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1250 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1251 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1252 }
1253 
1254 static void rcu_prepare_kthreads(int cpu)
1255 {
1256 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1257 	struct rcu_node *rnp = rdp->mynode;
1258 
1259 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1260 	if (rcu_scheduler_fully_active)
1261 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1262 }
1263 
1264 #else /* #ifdef CONFIG_RCU_BOOST */
1265 
1266 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1267 	__releases(rnp->lock)
1268 {
1269 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1270 }
1271 
1272 static void invoke_rcu_callbacks_kthread(void)
1273 {
1274 	WARN_ON_ONCE(1);
1275 }
1276 
1277 static bool rcu_is_callbacks_kthread(void)
1278 {
1279 	return false;
1280 }
1281 
1282 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1283 {
1284 }
1285 
1286 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1287 {
1288 }
1289 
1290 static void __init rcu_spawn_boost_kthreads(void)
1291 {
1292 }
1293 
1294 static void rcu_prepare_kthreads(int cpu)
1295 {
1296 }
1297 
1298 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1299 
1300 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1301 
1302 /*
1303  * Check to see if any future RCU-related work will need to be done
1304  * by the current CPU, even if none need be done immediately, returning
1305  * 1 if so.  This function is part of the RCU implementation; it is -not-
1306  * an exported member of the RCU API.
1307  *
1308  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1309  * any flavor of RCU.
1310  */
1311 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1312 {
1313 	*nextevt = KTIME_MAX;
1314 	return rcu_cpu_has_callbacks(NULL);
1315 }
1316 
1317 /*
1318  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1319  * after it.
1320  */
1321 static void rcu_cleanup_after_idle(void)
1322 {
1323 }
1324 
1325 /*
1326  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1327  * is nothing.
1328  */
1329 static void rcu_prepare_for_idle(void)
1330 {
1331 }
1332 
1333 /*
1334  * Don't bother keeping a running count of the number of RCU callbacks
1335  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1336  */
1337 static void rcu_idle_count_callbacks_posted(void)
1338 {
1339 }
1340 
1341 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1342 
1343 /*
1344  * This code is invoked when a CPU goes idle, at which point we want
1345  * to have the CPU do everything required for RCU so that it can enter
1346  * the energy-efficient dyntick-idle mode.  This is handled by a
1347  * state machine implemented by rcu_prepare_for_idle() below.
1348  *
1349  * The following three proprocessor symbols control this state machine:
1350  *
1351  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1352  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1353  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1354  *	benchmarkers who might otherwise be tempted to set this to a large
1355  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1356  *	system.  And if you are -that- concerned about energy efficiency,
1357  *	just power the system down and be done with it!
1358  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1359  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1360  *	callbacks pending.  Setting this too high can OOM your system.
1361  *
1362  * The values below work well in practice.  If future workloads require
1363  * adjustment, they can be converted into kernel config parameters, though
1364  * making the state machine smarter might be a better option.
1365  */
1366 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1367 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1368 
1369 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1370 module_param(rcu_idle_gp_delay, int, 0644);
1371 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1372 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1373 
1374 /*
1375  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1376  * only if it has been awhile since the last time we did so.  Afterwards,
1377  * if there are any callbacks ready for immediate invocation, return true.
1378  */
1379 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1380 {
1381 	bool cbs_ready = false;
1382 	struct rcu_data *rdp;
1383 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1384 	struct rcu_node *rnp;
1385 	struct rcu_state *rsp;
1386 
1387 	/* Exit early if we advanced recently. */
1388 	if (jiffies == rdtp->last_advance_all)
1389 		return false;
1390 	rdtp->last_advance_all = jiffies;
1391 
1392 	for_each_rcu_flavor(rsp) {
1393 		rdp = this_cpu_ptr(rsp->rda);
1394 		rnp = rdp->mynode;
1395 
1396 		/*
1397 		 * Don't bother checking unless a grace period has
1398 		 * completed since we last checked and there are
1399 		 * callbacks not yet ready to invoke.
1400 		 */
1401 		if ((rdp->completed != rnp->completed ||
1402 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1403 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1404 			note_gp_changes(rsp, rdp);
1405 
1406 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1407 			cbs_ready = true;
1408 	}
1409 	return cbs_ready;
1410 }
1411 
1412 /*
1413  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1414  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1415  * caller to set the timeout based on whether or not there are non-lazy
1416  * callbacks.
1417  *
1418  * The caller must have disabled interrupts.
1419  */
1420 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1421 {
1422 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423 	unsigned long dj;
1424 
1425 	lockdep_assert_irqs_disabled();
1426 
1427 	/* Snapshot to detect later posting of non-lazy callback. */
1428 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1429 
1430 	/* If no callbacks, RCU doesn't need the CPU. */
1431 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1432 		*nextevt = KTIME_MAX;
1433 		return 0;
1434 	}
1435 
1436 	/* Attempt to advance callbacks. */
1437 	if (rcu_try_advance_all_cbs()) {
1438 		/* Some ready to invoke, so initiate later invocation. */
1439 		invoke_rcu_core();
1440 		return 1;
1441 	}
1442 	rdtp->last_accelerate = jiffies;
1443 
1444 	/* Request timer delay depending on laziness, and round. */
1445 	if (!rdtp->all_lazy) {
1446 		dj = round_up(rcu_idle_gp_delay + jiffies,
1447 			       rcu_idle_gp_delay) - jiffies;
1448 	} else {
1449 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1450 	}
1451 	*nextevt = basemono + dj * TICK_NSEC;
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Prepare a CPU for idle from an RCU perspective.  The first major task
1457  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1458  * The second major task is to check to see if a non-lazy callback has
1459  * arrived at a CPU that previously had only lazy callbacks.  The third
1460  * major task is to accelerate (that is, assign grace-period numbers to)
1461  * any recently arrived callbacks.
1462  *
1463  * The caller must have disabled interrupts.
1464  */
1465 static void rcu_prepare_for_idle(void)
1466 {
1467 	bool needwake;
1468 	struct rcu_data *rdp;
1469 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1470 	struct rcu_node *rnp;
1471 	struct rcu_state *rsp;
1472 	int tne;
1473 
1474 	lockdep_assert_irqs_disabled();
1475 	if (rcu_is_nocb_cpu(smp_processor_id()))
1476 		return;
1477 
1478 	/* Handle nohz enablement switches conservatively. */
1479 	tne = READ_ONCE(tick_nohz_active);
1480 	if (tne != rdtp->tick_nohz_enabled_snap) {
1481 		if (rcu_cpu_has_callbacks(NULL))
1482 			invoke_rcu_core(); /* force nohz to see update. */
1483 		rdtp->tick_nohz_enabled_snap = tne;
1484 		return;
1485 	}
1486 	if (!tne)
1487 		return;
1488 
1489 	/*
1490 	 * If a non-lazy callback arrived at a CPU having only lazy
1491 	 * callbacks, invoke RCU core for the side-effect of recalculating
1492 	 * idle duration on re-entry to idle.
1493 	 */
1494 	if (rdtp->all_lazy &&
1495 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1496 		rdtp->all_lazy = false;
1497 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1498 		invoke_rcu_core();
1499 		return;
1500 	}
1501 
1502 	/*
1503 	 * If we have not yet accelerated this jiffy, accelerate all
1504 	 * callbacks on this CPU.
1505 	 */
1506 	if (rdtp->last_accelerate == jiffies)
1507 		return;
1508 	rdtp->last_accelerate = jiffies;
1509 	for_each_rcu_flavor(rsp) {
1510 		rdp = this_cpu_ptr(rsp->rda);
1511 		if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1512 			continue;
1513 		rnp = rdp->mynode;
1514 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1515 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1516 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1517 		if (needwake)
1518 			rcu_gp_kthread_wake(rsp);
1519 	}
1520 }
1521 
1522 /*
1523  * Clean up for exit from idle.  Attempt to advance callbacks based on
1524  * any grace periods that elapsed while the CPU was idle, and if any
1525  * callbacks are now ready to invoke, initiate invocation.
1526  */
1527 static void rcu_cleanup_after_idle(void)
1528 {
1529 	lockdep_assert_irqs_disabled();
1530 	if (rcu_is_nocb_cpu(smp_processor_id()))
1531 		return;
1532 	if (rcu_try_advance_all_cbs())
1533 		invoke_rcu_core();
1534 }
1535 
1536 /*
1537  * Keep a running count of the number of non-lazy callbacks posted
1538  * on this CPU.  This running counter (which is never decremented) allows
1539  * rcu_prepare_for_idle() to detect when something out of the idle loop
1540  * posts a callback, even if an equal number of callbacks are invoked.
1541  * Of course, callbacks should only be posted from within a trace event
1542  * designed to be called from idle or from within RCU_NONIDLE().
1543  */
1544 static void rcu_idle_count_callbacks_posted(void)
1545 {
1546 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1547 }
1548 
1549 /*
1550  * Data for flushing lazy RCU callbacks at OOM time.
1551  */
1552 static atomic_t oom_callback_count;
1553 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1554 
1555 /*
1556  * RCU OOM callback -- decrement the outstanding count and deliver the
1557  * wake-up if we are the last one.
1558  */
1559 static void rcu_oom_callback(struct rcu_head *rhp)
1560 {
1561 	if (atomic_dec_and_test(&oom_callback_count))
1562 		wake_up(&oom_callback_wq);
1563 }
1564 
1565 /*
1566  * Post an rcu_oom_notify callback on the current CPU if it has at
1567  * least one lazy callback.  This will unnecessarily post callbacks
1568  * to CPUs that already have a non-lazy callback at the end of their
1569  * callback list, but this is an infrequent operation, so accept some
1570  * extra overhead to keep things simple.
1571  */
1572 static void rcu_oom_notify_cpu(void *unused)
1573 {
1574 	struct rcu_state *rsp;
1575 	struct rcu_data *rdp;
1576 
1577 	for_each_rcu_flavor(rsp) {
1578 		rdp = raw_cpu_ptr(rsp->rda);
1579 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1580 			atomic_inc(&oom_callback_count);
1581 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1582 		}
1583 	}
1584 }
1585 
1586 /*
1587  * If low on memory, ensure that each CPU has a non-lazy callback.
1588  * This will wake up CPUs that have only lazy callbacks, in turn
1589  * ensuring that they free up the corresponding memory in a timely manner.
1590  * Because an uncertain amount of memory will be freed in some uncertain
1591  * timeframe, we do not claim to have freed anything.
1592  */
1593 static int rcu_oom_notify(struct notifier_block *self,
1594 			  unsigned long notused, void *nfreed)
1595 {
1596 	int cpu;
1597 
1598 	/* Wait for callbacks from earlier instance to complete. */
1599 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1600 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1601 
1602 	/*
1603 	 * Prevent premature wakeup: ensure that all increments happen
1604 	 * before there is a chance of the counter reaching zero.
1605 	 */
1606 	atomic_set(&oom_callback_count, 1);
1607 
1608 	for_each_online_cpu(cpu) {
1609 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1610 		cond_resched_rcu_qs();
1611 	}
1612 
1613 	/* Unconditionally decrement: no need to wake ourselves up. */
1614 	atomic_dec(&oom_callback_count);
1615 
1616 	return NOTIFY_OK;
1617 }
1618 
1619 static struct notifier_block rcu_oom_nb = {
1620 	.notifier_call = rcu_oom_notify
1621 };
1622 
1623 static int __init rcu_register_oom_notifier(void)
1624 {
1625 	register_oom_notifier(&rcu_oom_nb);
1626 	return 0;
1627 }
1628 early_initcall(rcu_register_oom_notifier);
1629 
1630 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1631 
1632 #ifdef CONFIG_RCU_FAST_NO_HZ
1633 
1634 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1635 {
1636 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1637 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1638 
1639 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1640 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1641 		ulong2long(nlpd),
1642 		rdtp->all_lazy ? 'L' : '.',
1643 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1644 }
1645 
1646 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1647 
1648 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1649 {
1650 	*cp = '\0';
1651 }
1652 
1653 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1654 
1655 /* Initiate the stall-info list. */
1656 static void print_cpu_stall_info_begin(void)
1657 {
1658 	pr_cont("\n");
1659 }
1660 
1661 /*
1662  * Print out diagnostic information for the specified stalled CPU.
1663  *
1664  * If the specified CPU is aware of the current RCU grace period
1665  * (flavor specified by rsp), then print the number of scheduling
1666  * clock interrupts the CPU has taken during the time that it has
1667  * been aware.  Otherwise, print the number of RCU grace periods
1668  * that this CPU is ignorant of, for example, "1" if the CPU was
1669  * aware of the previous grace period.
1670  *
1671  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1672  */
1673 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1674 {
1675 	unsigned long delta;
1676 	char fast_no_hz[72];
1677 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1678 	struct rcu_dynticks *rdtp = rdp->dynticks;
1679 	char *ticks_title;
1680 	unsigned long ticks_value;
1681 
1682 	/*
1683 	 * We could be printing a lot while holding a spinlock.  Avoid
1684 	 * triggering hard lockup.
1685 	 */
1686 	touch_nmi_watchdog();
1687 
1688 	if (rsp->gpnum == rdp->gpnum) {
1689 		ticks_title = "ticks this GP";
1690 		ticks_value = rdp->ticks_this_gp;
1691 	} else {
1692 		ticks_title = "GPs behind";
1693 		ticks_value = rsp->gpnum - rdp->gpnum;
1694 	}
1695 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1696 	delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1697 	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1698 	       cpu,
1699 	       "O."[!!cpu_online(cpu)],
1700 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1701 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1702 	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1703 			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1704 				"!."[!delta],
1705 	       ticks_value, ticks_title,
1706 	       rcu_dynticks_snap(rdtp) & 0xfff,
1707 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1708 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1709 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1710 	       fast_no_hz);
1711 }
1712 
1713 /* Terminate the stall-info list. */
1714 static void print_cpu_stall_info_end(void)
1715 {
1716 	pr_err("\t");
1717 }
1718 
1719 /* Zero ->ticks_this_gp for all flavors of RCU. */
1720 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1721 {
1722 	rdp->ticks_this_gp = 0;
1723 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1724 }
1725 
1726 /* Increment ->ticks_this_gp for all flavors of RCU. */
1727 static void increment_cpu_stall_ticks(void)
1728 {
1729 	struct rcu_state *rsp;
1730 
1731 	for_each_rcu_flavor(rsp)
1732 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1733 }
1734 
1735 #ifdef CONFIG_RCU_NOCB_CPU
1736 
1737 /*
1738  * Offload callback processing from the boot-time-specified set of CPUs
1739  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1740  * kthread created that pulls the callbacks from the corresponding CPU,
1741  * waits for a grace period to elapse, and invokes the callbacks.
1742  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1743  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1744  * has been specified, in which case each kthread actively polls its
1745  * CPU.  (Which isn't so great for energy efficiency, but which does
1746  * reduce RCU's overhead on that CPU.)
1747  *
1748  * This is intended to be used in conjunction with Frederic Weisbecker's
1749  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1750  * running CPU-bound user-mode computations.
1751  *
1752  * Offloading of callback processing could also in theory be used as
1753  * an energy-efficiency measure because CPUs with no RCU callbacks
1754  * queued are more aggressive about entering dyntick-idle mode.
1755  */
1756 
1757 
1758 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1759 static int __init rcu_nocb_setup(char *str)
1760 {
1761 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1762 	cpulist_parse(str, rcu_nocb_mask);
1763 	return 1;
1764 }
1765 __setup("rcu_nocbs=", rcu_nocb_setup);
1766 
1767 static int __init parse_rcu_nocb_poll(char *arg)
1768 {
1769 	rcu_nocb_poll = true;
1770 	return 0;
1771 }
1772 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1773 
1774 /*
1775  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1776  * grace period.
1777  */
1778 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1779 {
1780 	swake_up_all(sq);
1781 }
1782 
1783 /*
1784  * Set the root rcu_node structure's ->need_future_gp field
1785  * based on the sum of those of all rcu_node structures.  This does
1786  * double-count the root rcu_node structure's requests, but this
1787  * is necessary to handle the possibility of a rcu_nocb_kthread()
1788  * having awakened during the time that the rcu_node structures
1789  * were being updated for the end of the previous grace period.
1790  */
1791 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1792 {
1793 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1794 }
1795 
1796 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1797 {
1798 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1799 }
1800 
1801 static void rcu_init_one_nocb(struct rcu_node *rnp)
1802 {
1803 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1804 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1805 }
1806 
1807 /* Is the specified CPU a no-CBs CPU? */
1808 bool rcu_is_nocb_cpu(int cpu)
1809 {
1810 	if (cpumask_available(rcu_nocb_mask))
1811 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1812 	return false;
1813 }
1814 
1815 /*
1816  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1817  * and this function releases it.
1818  */
1819 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1820 			       unsigned long flags)
1821 	__releases(rdp->nocb_lock)
1822 {
1823 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1824 
1825 	lockdep_assert_held(&rdp->nocb_lock);
1826 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1827 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1828 		return;
1829 	}
1830 	if (rdp_leader->nocb_leader_sleep || force) {
1831 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1832 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1833 		del_timer(&rdp->nocb_timer);
1834 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1835 		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1836 		swake_up(&rdp_leader->nocb_wq);
1837 	} else {
1838 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1839 	}
1840 }
1841 
1842 /*
1843  * Kick the leader kthread for this NOCB group, but caller has not
1844  * acquired locks.
1845  */
1846 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1847 {
1848 	unsigned long flags;
1849 
1850 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1851 	__wake_nocb_leader(rdp, force, flags);
1852 }
1853 
1854 /*
1855  * Arrange to wake the leader kthread for this NOCB group at some
1856  * future time when it is safe to do so.
1857  */
1858 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1859 				   const char *reason)
1860 {
1861 	unsigned long flags;
1862 
1863 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1864 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1865 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1866 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1867 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1868 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1869 }
1870 
1871 /*
1872  * Does the specified CPU need an RCU callback for the specified flavor
1873  * of rcu_barrier()?
1874  */
1875 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1876 {
1877 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1878 	unsigned long ret;
1879 #ifdef CONFIG_PROVE_RCU
1880 	struct rcu_head *rhp;
1881 #endif /* #ifdef CONFIG_PROVE_RCU */
1882 
1883 	/*
1884 	 * Check count of all no-CBs callbacks awaiting invocation.
1885 	 * There needs to be a barrier before this function is called,
1886 	 * but associated with a prior determination that no more
1887 	 * callbacks would be posted.  In the worst case, the first
1888 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1889 	 * necessarily rely on this, not a substitute for the caller
1890 	 * getting the concurrency design right!).  There must also be
1891 	 * a barrier between the following load an posting of a callback
1892 	 * (if a callback is in fact needed).  This is associated with an
1893 	 * atomic_inc() in the caller.
1894 	 */
1895 	ret = atomic_long_read(&rdp->nocb_q_count);
1896 
1897 #ifdef CONFIG_PROVE_RCU
1898 	rhp = READ_ONCE(rdp->nocb_head);
1899 	if (!rhp)
1900 		rhp = READ_ONCE(rdp->nocb_gp_head);
1901 	if (!rhp)
1902 		rhp = READ_ONCE(rdp->nocb_follower_head);
1903 
1904 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1905 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1906 	    rcu_scheduler_fully_active) {
1907 		/* RCU callback enqueued before CPU first came online??? */
1908 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1909 		       cpu, rhp->func);
1910 		WARN_ON_ONCE(1);
1911 	}
1912 #endif /* #ifdef CONFIG_PROVE_RCU */
1913 
1914 	return !!ret;
1915 }
1916 
1917 /*
1918  * Enqueue the specified string of rcu_head structures onto the specified
1919  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1920  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1921  * counts are supplied by rhcount and rhcount_lazy.
1922  *
1923  * If warranted, also wake up the kthread servicing this CPUs queues.
1924  */
1925 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1926 				    struct rcu_head *rhp,
1927 				    struct rcu_head **rhtp,
1928 				    int rhcount, int rhcount_lazy,
1929 				    unsigned long flags)
1930 {
1931 	int len;
1932 	struct rcu_head **old_rhpp;
1933 	struct task_struct *t;
1934 
1935 	/* Enqueue the callback on the nocb list and update counts. */
1936 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1937 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1938 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1939 	WRITE_ONCE(*old_rhpp, rhp);
1940 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1941 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1942 
1943 	/* If we are not being polled and there is a kthread, awaken it ... */
1944 	t = READ_ONCE(rdp->nocb_kthread);
1945 	if (rcu_nocb_poll || !t) {
1946 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1947 				    TPS("WakeNotPoll"));
1948 		return;
1949 	}
1950 	len = atomic_long_read(&rdp->nocb_q_count);
1951 	if (old_rhpp == &rdp->nocb_head) {
1952 		if (!irqs_disabled_flags(flags)) {
1953 			/* ... if queue was empty ... */
1954 			wake_nocb_leader(rdp, false);
1955 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1956 					    TPS("WakeEmpty"));
1957 		} else {
1958 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1959 					       TPS("WakeEmptyIsDeferred"));
1960 		}
1961 		rdp->qlen_last_fqs_check = 0;
1962 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1963 		/* ... or if many callbacks queued. */
1964 		if (!irqs_disabled_flags(flags)) {
1965 			wake_nocb_leader(rdp, true);
1966 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1967 					    TPS("WakeOvf"));
1968 		} else {
1969 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1970 					       TPS("WakeOvfIsDeferred"));
1971 		}
1972 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1973 	} else {
1974 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1975 	}
1976 	return;
1977 }
1978 
1979 /*
1980  * This is a helper for __call_rcu(), which invokes this when the normal
1981  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1982  * function returns failure back to __call_rcu(), which can complain
1983  * appropriately.
1984  *
1985  * Otherwise, this function queues the callback where the corresponding
1986  * "rcuo" kthread can find it.
1987  */
1988 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1989 			    bool lazy, unsigned long flags)
1990 {
1991 
1992 	if (!rcu_is_nocb_cpu(rdp->cpu))
1993 		return false;
1994 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1995 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1996 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1997 					 (unsigned long)rhp->func,
1998 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1999 					 -atomic_long_read(&rdp->nocb_q_count));
2000 	else
2001 		trace_rcu_callback(rdp->rsp->name, rhp,
2002 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2003 				   -atomic_long_read(&rdp->nocb_q_count));
2004 
2005 	/*
2006 	 * If called from an extended quiescent state with interrupts
2007 	 * disabled, invoke the RCU core in order to allow the idle-entry
2008 	 * deferred-wakeup check to function.
2009 	 */
2010 	if (irqs_disabled_flags(flags) &&
2011 	    !rcu_is_watching() &&
2012 	    cpu_online(smp_processor_id()))
2013 		invoke_rcu_core();
2014 
2015 	return true;
2016 }
2017 
2018 /*
2019  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2020  * not a no-CBs CPU.
2021  */
2022 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2023 						     struct rcu_data *rdp,
2024 						     unsigned long flags)
2025 {
2026 	lockdep_assert_irqs_disabled();
2027 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2028 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2029 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2030 				rcu_segcblist_tail(&rdp->cblist),
2031 				rcu_segcblist_n_cbs(&rdp->cblist),
2032 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2033 	rcu_segcblist_init(&rdp->cblist);
2034 	rcu_segcblist_disable(&rdp->cblist);
2035 	return true;
2036 }
2037 
2038 /*
2039  * If necessary, kick off a new grace period, and either way wait
2040  * for a subsequent grace period to complete.
2041  */
2042 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2043 {
2044 	unsigned long c;
2045 	bool d;
2046 	unsigned long flags;
2047 	bool needwake;
2048 	struct rcu_node *rnp = rdp->mynode;
2049 
2050 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2051 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2052 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2053 	if (needwake)
2054 		rcu_gp_kthread_wake(rdp->rsp);
2055 
2056 	/*
2057 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2058 	 * up the load average.
2059 	 */
2060 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2061 	for (;;) {
2062 		swait_event_interruptible(
2063 			rnp->nocb_gp_wq[c & 0x1],
2064 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2065 		if (likely(d))
2066 			break;
2067 		WARN_ON(signal_pending(current));
2068 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2069 	}
2070 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2071 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2072 }
2073 
2074 /*
2075  * Leaders come here to wait for additional callbacks to show up.
2076  * This function does not return until callbacks appear.
2077  */
2078 static void nocb_leader_wait(struct rcu_data *my_rdp)
2079 {
2080 	bool firsttime = true;
2081 	unsigned long flags;
2082 	bool gotcbs;
2083 	struct rcu_data *rdp;
2084 	struct rcu_head **tail;
2085 
2086 wait_again:
2087 
2088 	/* Wait for callbacks to appear. */
2089 	if (!rcu_nocb_poll) {
2090 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2091 		swait_event_interruptible(my_rdp->nocb_wq,
2092 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2093 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2094 		my_rdp->nocb_leader_sleep = true;
2095 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2096 		del_timer(&my_rdp->nocb_timer);
2097 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2098 	} else if (firsttime) {
2099 		firsttime = false; /* Don't drown trace log with "Poll"! */
2100 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2101 	}
2102 
2103 	/*
2104 	 * Each pass through the following loop checks a follower for CBs.
2105 	 * We are our own first follower.  Any CBs found are moved to
2106 	 * nocb_gp_head, where they await a grace period.
2107 	 */
2108 	gotcbs = false;
2109 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2110 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2111 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2112 		if (!rdp->nocb_gp_head)
2113 			continue;  /* No CBs here, try next follower. */
2114 
2115 		/* Move callbacks to wait-for-GP list, which is empty. */
2116 		WRITE_ONCE(rdp->nocb_head, NULL);
2117 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2118 		gotcbs = true;
2119 	}
2120 
2121 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2122 	if (unlikely(!gotcbs)) {
2123 		WARN_ON(signal_pending(current));
2124 		if (rcu_nocb_poll) {
2125 			schedule_timeout_interruptible(1);
2126 		} else {
2127 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2128 					    TPS("WokeEmpty"));
2129 		}
2130 		goto wait_again;
2131 	}
2132 
2133 	/* Wait for one grace period. */
2134 	rcu_nocb_wait_gp(my_rdp);
2135 
2136 	/* Each pass through the following loop wakes a follower, if needed. */
2137 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2138 		if (!rcu_nocb_poll &&
2139 		    READ_ONCE(rdp->nocb_head) &&
2140 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2141 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2142 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2143 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2144 		}
2145 		if (!rdp->nocb_gp_head)
2146 			continue; /* No CBs, so no need to wake follower. */
2147 
2148 		/* Append callbacks to follower's "done" list. */
2149 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2150 		tail = rdp->nocb_follower_tail;
2151 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2152 		*tail = rdp->nocb_gp_head;
2153 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2154 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2155 			/* List was empty, so wake up the follower.  */
2156 			swake_up(&rdp->nocb_wq);
2157 		}
2158 	}
2159 
2160 	/* If we (the leader) don't have CBs, go wait some more. */
2161 	if (!my_rdp->nocb_follower_head)
2162 		goto wait_again;
2163 }
2164 
2165 /*
2166  * Followers come here to wait for additional callbacks to show up.
2167  * This function does not return until callbacks appear.
2168  */
2169 static void nocb_follower_wait(struct rcu_data *rdp)
2170 {
2171 	for (;;) {
2172 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2173 		swait_event_interruptible(rdp->nocb_wq,
2174 					 READ_ONCE(rdp->nocb_follower_head));
2175 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2176 			/* ^^^ Ensure CB invocation follows _head test. */
2177 			return;
2178 		}
2179 		WARN_ON(signal_pending(current));
2180 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2181 	}
2182 }
2183 
2184 /*
2185  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2186  * callbacks queued by the corresponding no-CBs CPU, however, there is
2187  * an optional leader-follower relationship so that the grace-period
2188  * kthreads don't have to do quite so many wakeups.
2189  */
2190 static int rcu_nocb_kthread(void *arg)
2191 {
2192 	int c, cl;
2193 	unsigned long flags;
2194 	struct rcu_head *list;
2195 	struct rcu_head *next;
2196 	struct rcu_head **tail;
2197 	struct rcu_data *rdp = arg;
2198 
2199 	/* Each pass through this loop invokes one batch of callbacks */
2200 	for (;;) {
2201 		/* Wait for callbacks. */
2202 		if (rdp->nocb_leader == rdp)
2203 			nocb_leader_wait(rdp);
2204 		else
2205 			nocb_follower_wait(rdp);
2206 
2207 		/* Pull the ready-to-invoke callbacks onto local list. */
2208 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2209 		list = rdp->nocb_follower_head;
2210 		rdp->nocb_follower_head = NULL;
2211 		tail = rdp->nocb_follower_tail;
2212 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2213 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2214 		BUG_ON(!list);
2215 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2216 
2217 		/* Each pass through the following loop invokes a callback. */
2218 		trace_rcu_batch_start(rdp->rsp->name,
2219 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2220 				      atomic_long_read(&rdp->nocb_q_count), -1);
2221 		c = cl = 0;
2222 		while (list) {
2223 			next = list->next;
2224 			/* Wait for enqueuing to complete, if needed. */
2225 			while (next == NULL && &list->next != tail) {
2226 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2227 						    TPS("WaitQueue"));
2228 				schedule_timeout_interruptible(1);
2229 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2230 						    TPS("WokeQueue"));
2231 				next = list->next;
2232 			}
2233 			debug_rcu_head_unqueue(list);
2234 			local_bh_disable();
2235 			if (__rcu_reclaim(rdp->rsp->name, list))
2236 				cl++;
2237 			c++;
2238 			local_bh_enable();
2239 			cond_resched_rcu_qs();
2240 			list = next;
2241 		}
2242 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2243 		smp_mb__before_atomic();  /* _add after CB invocation. */
2244 		atomic_long_add(-c, &rdp->nocb_q_count);
2245 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2246 	}
2247 	return 0;
2248 }
2249 
2250 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2251 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2252 {
2253 	return READ_ONCE(rdp->nocb_defer_wakeup);
2254 }
2255 
2256 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2257 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2258 {
2259 	unsigned long flags;
2260 	int ndw;
2261 
2262 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2263 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2264 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2265 		return;
2266 	}
2267 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2268 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2269 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2270 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2271 }
2272 
2273 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2274 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2275 {
2276 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2277 
2278 	do_nocb_deferred_wakeup_common(rdp);
2279 }
2280 
2281 /*
2282  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2283  * This means we do an inexact common-case check.  Note that if
2284  * we miss, ->nocb_timer will eventually clean things up.
2285  */
2286 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2287 {
2288 	if (rcu_nocb_need_deferred_wakeup(rdp))
2289 		do_nocb_deferred_wakeup_common(rdp);
2290 }
2291 
2292 void __init rcu_init_nohz(void)
2293 {
2294 	int cpu;
2295 	bool need_rcu_nocb_mask = true;
2296 	struct rcu_state *rsp;
2297 
2298 #if defined(CONFIG_NO_HZ_FULL)
2299 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2300 		need_rcu_nocb_mask = true;
2301 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2302 
2303 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2304 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2305 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2306 			return;
2307 		}
2308 	}
2309 	if (!cpumask_available(rcu_nocb_mask))
2310 		return;
2311 
2312 #if defined(CONFIG_NO_HZ_FULL)
2313 	if (tick_nohz_full_running)
2314 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2315 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2316 
2317 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2318 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2319 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2320 			    rcu_nocb_mask);
2321 	}
2322 	if (cpumask_empty(rcu_nocb_mask))
2323 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2324 	else
2325 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2326 			cpumask_pr_args(rcu_nocb_mask));
2327 	if (rcu_nocb_poll)
2328 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2329 
2330 	for_each_rcu_flavor(rsp) {
2331 		for_each_cpu(cpu, rcu_nocb_mask)
2332 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2333 		rcu_organize_nocb_kthreads(rsp);
2334 	}
2335 }
2336 
2337 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2338 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2339 {
2340 	rdp->nocb_tail = &rdp->nocb_head;
2341 	init_swait_queue_head(&rdp->nocb_wq);
2342 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2343 	raw_spin_lock_init(&rdp->nocb_lock);
2344 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2345 }
2346 
2347 /*
2348  * If the specified CPU is a no-CBs CPU that does not already have its
2349  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2350  * brought online out of order, this can require re-organizing the
2351  * leader-follower relationships.
2352  */
2353 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2354 {
2355 	struct rcu_data *rdp;
2356 	struct rcu_data *rdp_last;
2357 	struct rcu_data *rdp_old_leader;
2358 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2359 	struct task_struct *t;
2360 
2361 	/*
2362 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2363 	 * then nothing to do.
2364 	 */
2365 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2366 		return;
2367 
2368 	/* If we didn't spawn the leader first, reorganize! */
2369 	rdp_old_leader = rdp_spawn->nocb_leader;
2370 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2371 		rdp_last = NULL;
2372 		rdp = rdp_old_leader;
2373 		do {
2374 			rdp->nocb_leader = rdp_spawn;
2375 			if (rdp_last && rdp != rdp_spawn)
2376 				rdp_last->nocb_next_follower = rdp;
2377 			if (rdp == rdp_spawn) {
2378 				rdp = rdp->nocb_next_follower;
2379 			} else {
2380 				rdp_last = rdp;
2381 				rdp = rdp->nocb_next_follower;
2382 				rdp_last->nocb_next_follower = NULL;
2383 			}
2384 		} while (rdp);
2385 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2386 	}
2387 
2388 	/* Spawn the kthread for this CPU and RCU flavor. */
2389 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2390 			"rcuo%c/%d", rsp->abbr, cpu);
2391 	BUG_ON(IS_ERR(t));
2392 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2393 }
2394 
2395 /*
2396  * If the specified CPU is a no-CBs CPU that does not already have its
2397  * rcuo kthreads, spawn them.
2398  */
2399 static void rcu_spawn_all_nocb_kthreads(int cpu)
2400 {
2401 	struct rcu_state *rsp;
2402 
2403 	if (rcu_scheduler_fully_active)
2404 		for_each_rcu_flavor(rsp)
2405 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2406 }
2407 
2408 /*
2409  * Once the scheduler is running, spawn rcuo kthreads for all online
2410  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2411  * non-boot CPUs come online -- if this changes, we will need to add
2412  * some mutual exclusion.
2413  */
2414 static void __init rcu_spawn_nocb_kthreads(void)
2415 {
2416 	int cpu;
2417 
2418 	for_each_online_cpu(cpu)
2419 		rcu_spawn_all_nocb_kthreads(cpu);
2420 }
2421 
2422 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2423 static int rcu_nocb_leader_stride = -1;
2424 module_param(rcu_nocb_leader_stride, int, 0444);
2425 
2426 /*
2427  * Initialize leader-follower relationships for all no-CBs CPU.
2428  */
2429 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2430 {
2431 	int cpu;
2432 	int ls = rcu_nocb_leader_stride;
2433 	int nl = 0;  /* Next leader. */
2434 	struct rcu_data *rdp;
2435 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2436 	struct rcu_data *rdp_prev = NULL;
2437 
2438 	if (!cpumask_available(rcu_nocb_mask))
2439 		return;
2440 	if (ls == -1) {
2441 		ls = int_sqrt(nr_cpu_ids);
2442 		rcu_nocb_leader_stride = ls;
2443 	}
2444 
2445 	/*
2446 	 * Each pass through this loop sets up one rcu_data structure.
2447 	 * Should the corresponding CPU come online in the future, then
2448 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2449 	 */
2450 	for_each_cpu(cpu, rcu_nocb_mask) {
2451 		rdp = per_cpu_ptr(rsp->rda, cpu);
2452 		if (rdp->cpu >= nl) {
2453 			/* New leader, set up for followers & next leader. */
2454 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2455 			rdp->nocb_leader = rdp;
2456 			rdp_leader = rdp;
2457 		} else {
2458 			/* Another follower, link to previous leader. */
2459 			rdp->nocb_leader = rdp_leader;
2460 			rdp_prev->nocb_next_follower = rdp;
2461 		}
2462 		rdp_prev = rdp;
2463 	}
2464 }
2465 
2466 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2467 static bool init_nocb_callback_list(struct rcu_data *rdp)
2468 {
2469 	if (!rcu_is_nocb_cpu(rdp->cpu))
2470 		return false;
2471 
2472 	/* If there are early-boot callbacks, move them to nocb lists. */
2473 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2474 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2475 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2476 		atomic_long_set(&rdp->nocb_q_count,
2477 				rcu_segcblist_n_cbs(&rdp->cblist));
2478 		atomic_long_set(&rdp->nocb_q_count_lazy,
2479 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2480 		rcu_segcblist_init(&rdp->cblist);
2481 	}
2482 	rcu_segcblist_disable(&rdp->cblist);
2483 	return true;
2484 }
2485 
2486 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2487 
2488 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2489 {
2490 	WARN_ON_ONCE(1); /* Should be dead code. */
2491 	return false;
2492 }
2493 
2494 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2495 {
2496 }
2497 
2498 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2499 {
2500 }
2501 
2502 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2503 {
2504 	return NULL;
2505 }
2506 
2507 static void rcu_init_one_nocb(struct rcu_node *rnp)
2508 {
2509 }
2510 
2511 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2512 			    bool lazy, unsigned long flags)
2513 {
2514 	return false;
2515 }
2516 
2517 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2518 						     struct rcu_data *rdp,
2519 						     unsigned long flags)
2520 {
2521 	return false;
2522 }
2523 
2524 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2525 {
2526 }
2527 
2528 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2529 {
2530 	return false;
2531 }
2532 
2533 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2534 {
2535 }
2536 
2537 static void rcu_spawn_all_nocb_kthreads(int cpu)
2538 {
2539 }
2540 
2541 static void __init rcu_spawn_nocb_kthreads(void)
2542 {
2543 }
2544 
2545 static bool init_nocb_callback_list(struct rcu_data *rdp)
2546 {
2547 	return false;
2548 }
2549 
2550 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2551 
2552 /*
2553  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2554  * arbitrarily long period of time with the scheduling-clock tick turned
2555  * off.  RCU will be paying attention to this CPU because it is in the
2556  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2557  * machine because the scheduling-clock tick has been disabled.  Therefore,
2558  * if an adaptive-ticks CPU is failing to respond to the current grace
2559  * period and has not be idle from an RCU perspective, kick it.
2560  */
2561 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2562 {
2563 #ifdef CONFIG_NO_HZ_FULL
2564 	if (tick_nohz_full_cpu(cpu))
2565 		smp_send_reschedule(cpu);
2566 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2567 }
2568 
2569 /*
2570  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2571  * grace-period kthread will do force_quiescent_state() processing?
2572  * The idea is to avoid waking up RCU core processing on such a
2573  * CPU unless the grace period has extended for too long.
2574  *
2575  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2576  * CONFIG_RCU_NOCB_CPU CPUs.
2577  */
2578 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2579 {
2580 #ifdef CONFIG_NO_HZ_FULL
2581 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2582 	    (!rcu_gp_in_progress(rsp) ||
2583 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2584 		return true;
2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2586 	return false;
2587 }
2588 
2589 /*
2590  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2591  * timekeeping CPU.
2592  */
2593 static void rcu_bind_gp_kthread(void)
2594 {
2595 	int __maybe_unused cpu;
2596 
2597 	if (!tick_nohz_full_enabled())
2598 		return;
2599 	housekeeping_affine(current, HK_FLAG_RCU);
2600 }
2601 
2602 /* Record the current task on dyntick-idle entry. */
2603 static void rcu_dynticks_task_enter(void)
2604 {
2605 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2606 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2607 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2608 }
2609 
2610 /* Record no current task on dyntick-idle exit. */
2611 static void rcu_dynticks_task_exit(void)
2612 {
2613 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2614 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2615 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2616 }
2617