xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35 
36 #ifdef CONFIG_RCU_BOOST
37 
38 #include "../locking/rtmutex_common.h"
39 
40 /*
41  * Control variables for per-CPU and per-rcu_node kthreads.  These
42  * handle all flavors of RCU.
43  */
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48 
49 #else /* #ifdef CONFIG_RCU_BOOST */
50 
51 /*
52  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53  * all uses are in dead code.  Provide a definition to keep the compiler
54  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55  * This probably needs to be excluded from -rt builds.
56  */
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59 
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61 
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66 
67 /*
68  * Check the RCU kernel configuration parameters and print informative
69  * messages about anything out of the ordinary.
70  */
71 static void __init rcu_bootup_announce_oddness(void)
72 {
73 	if (IS_ENABLED(CONFIG_RCU_TRACE))
74 		pr_info("\tRCU event tracing is enabled.\n");
75 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
78 			RCU_FANOUT);
79 	if (rcu_fanout_exact)
80 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 	if (IS_ENABLED(CONFIG_PROVE_RCU))
84 		pr_info("\tRCU lockdep checking is enabled.\n");
85 	if (RCU_NUM_LVLS >= 4)
86 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 	if (RCU_FANOUT_LEAF != 16)
88 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 			RCU_FANOUT_LEAF);
90 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
92 			rcu_fanout_leaf);
93 	if (nr_cpu_ids != NR_CPUS)
94 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
95 #ifdef CONFIG_RCU_BOOST
96 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
97 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
98 #endif
99 	if (blimit != DEFAULT_RCU_BLIMIT)
100 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
101 	if (qhimark != DEFAULT_RCU_QHIMARK)
102 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
103 	if (qlowmark != DEFAULT_RCU_QLOMARK)
104 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
105 	if (jiffies_till_first_fqs != ULONG_MAX)
106 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
107 	if (jiffies_till_next_fqs != ULONG_MAX)
108 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
109 	if (rcu_kick_kthreads)
110 		pr_info("\tKick kthreads if too-long grace period.\n");
111 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
112 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
113 	if (gp_preinit_delay)
114 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
115 	if (gp_init_delay)
116 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
117 	if (gp_cleanup_delay)
118 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
119 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
120 		pr_info("\tRCU debug extended QS entry/exit.\n");
121 	rcupdate_announce_bootup_oddness();
122 }
123 
124 #ifdef CONFIG_PREEMPT_RCU
125 
126 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
127 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
128 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
129 
130 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
131 			       bool wake);
132 static void rcu_read_unlock_special(struct task_struct *t);
133 
134 /*
135  * Tell them what RCU they are running.
136  */
137 static void __init rcu_bootup_announce(void)
138 {
139 	pr_info("Preemptible hierarchical RCU implementation.\n");
140 	rcu_bootup_announce_oddness();
141 }
142 
143 /* Flags for rcu_preempt_ctxt_queue() decision table. */
144 #define RCU_GP_TASKS	0x8
145 #define RCU_EXP_TASKS	0x4
146 #define RCU_GP_BLKD	0x2
147 #define RCU_EXP_BLKD	0x1
148 
149 /*
150  * Queues a task preempted within an RCU-preempt read-side critical
151  * section into the appropriate location within the ->blkd_tasks list,
152  * depending on the states of any ongoing normal and expedited grace
153  * periods.  The ->gp_tasks pointer indicates which element the normal
154  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
155  * indicates which element the expedited grace period is waiting on (again,
156  * NULL if none).  If a grace period is waiting on a given element in the
157  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
158  * adding a task to the tail of the list blocks any grace period that is
159  * already waiting on one of the elements.  In contrast, adding a task
160  * to the head of the list won't block any grace period that is already
161  * waiting on one of the elements.
162  *
163  * This queuing is imprecise, and can sometimes make an ongoing grace
164  * period wait for a task that is not strictly speaking blocking it.
165  * Given the choice, we needlessly block a normal grace period rather than
166  * blocking an expedited grace period.
167  *
168  * Note that an endless sequence of expedited grace periods still cannot
169  * indefinitely postpone a normal grace period.  Eventually, all of the
170  * fixed number of preempted tasks blocking the normal grace period that are
171  * not also blocking the expedited grace period will resume and complete
172  * their RCU read-side critical sections.  At that point, the ->gp_tasks
173  * pointer will equal the ->exp_tasks pointer, at which point the end of
174  * the corresponding expedited grace period will also be the end of the
175  * normal grace period.
176  */
177 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
178 	__releases(rnp->lock) /* But leaves rrupts disabled. */
179 {
180 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
181 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
182 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
183 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
184 	struct task_struct *t = current;
185 
186 	raw_lockdep_assert_held_rcu_node(rnp);
187 	WARN_ON_ONCE(rdp->mynode != rnp);
188 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
189 	/* RCU better not be waiting on newly onlined CPUs! */
190 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
191 		     rdp->grpmask);
192 
193 	/*
194 	 * Decide where to queue the newly blocked task.  In theory,
195 	 * this could be an if-statement.  In practice, when I tried
196 	 * that, it was quite messy.
197 	 */
198 	switch (blkd_state) {
199 	case 0:
200 	case                RCU_EXP_TASKS:
201 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
202 	case RCU_GP_TASKS:
203 	case RCU_GP_TASKS + RCU_EXP_TASKS:
204 
205 		/*
206 		 * Blocking neither GP, or first task blocking the normal
207 		 * GP but not blocking the already-waiting expedited GP.
208 		 * Queue at the head of the list to avoid unnecessarily
209 		 * blocking the already-waiting GPs.
210 		 */
211 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
212 		break;
213 
214 	case                                              RCU_EXP_BLKD:
215 	case                                RCU_GP_BLKD:
216 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
217 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
218 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
219 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
220 
221 		/*
222 		 * First task arriving that blocks either GP, or first task
223 		 * arriving that blocks the expedited GP (with the normal
224 		 * GP already waiting), or a task arriving that blocks
225 		 * both GPs with both GPs already waiting.  Queue at the
226 		 * tail of the list to avoid any GP waiting on any of the
227 		 * already queued tasks that are not blocking it.
228 		 */
229 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
230 		break;
231 
232 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
233 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
234 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
235 
236 		/*
237 		 * Second or subsequent task blocking the expedited GP.
238 		 * The task either does not block the normal GP, or is the
239 		 * first task blocking the normal GP.  Queue just after
240 		 * the first task blocking the expedited GP.
241 		 */
242 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
243 		break;
244 
245 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
246 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
247 
248 		/*
249 		 * Second or subsequent task blocking the normal GP.
250 		 * The task does not block the expedited GP. Queue just
251 		 * after the first task blocking the normal GP.
252 		 */
253 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
254 		break;
255 
256 	default:
257 
258 		/* Yet another exercise in excessive paranoia. */
259 		WARN_ON_ONCE(1);
260 		break;
261 	}
262 
263 	/*
264 	 * We have now queued the task.  If it was the first one to
265 	 * block either grace period, update the ->gp_tasks and/or
266 	 * ->exp_tasks pointers, respectively, to reference the newly
267 	 * blocked tasks.
268 	 */
269 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
270 		rnp->gp_tasks = &t->rcu_node_entry;
271 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
272 	}
273 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
274 		rnp->exp_tasks = &t->rcu_node_entry;
275 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
276 		     !(rnp->qsmask & rdp->grpmask));
277 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
278 		     !(rnp->expmask & rdp->grpmask));
279 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
280 
281 	/*
282 	 * Report the quiescent state for the expedited GP.  This expedited
283 	 * GP should not be able to end until we report, so there should be
284 	 * no need to check for a subsequent expedited GP.  (Though we are
285 	 * still in a quiescent state in any case.)
286 	 */
287 	if (blkd_state & RCU_EXP_BLKD &&
288 	    t->rcu_read_unlock_special.b.exp_need_qs) {
289 		t->rcu_read_unlock_special.b.exp_need_qs = false;
290 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
291 	} else {
292 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
293 	}
294 }
295 
296 /*
297  * Record a preemptible-RCU quiescent state for the specified CPU.
298  * Note that this does not necessarily mean that the task currently running
299  * on the CPU is in a quiescent state:  Instead, it means that the current
300  * grace period need not wait on any RCU read-side critical section that
301  * starts later on this CPU.  It also means that if the current task is
302  * in an RCU read-side critical section, it has already added itself to
303  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
304  * current task, there might be any number of other tasks blocked while
305  * in an RCU read-side critical section.
306  *
307  * Callers to this function must disable preemption.
308  */
309 static void rcu_preempt_qs(void)
310 {
311 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
312 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
313 		trace_rcu_grace_period(TPS("rcu_preempt"),
314 				       __this_cpu_read(rcu_data_p->gp_seq),
315 				       TPS("cpuqs"));
316 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
317 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
318 		current->rcu_read_unlock_special.b.need_qs = false;
319 	}
320 }
321 
322 /*
323  * We have entered the scheduler, and the current task might soon be
324  * context-switched away from.  If this task is in an RCU read-side
325  * critical section, we will no longer be able to rely on the CPU to
326  * record that fact, so we enqueue the task on the blkd_tasks list.
327  * The task will dequeue itself when it exits the outermost enclosing
328  * RCU read-side critical section.  Therefore, the current grace period
329  * cannot be permitted to complete until the blkd_tasks list entries
330  * predating the current grace period drain, in other words, until
331  * rnp->gp_tasks becomes NULL.
332  *
333  * Caller must disable interrupts.
334  */
335 static void rcu_preempt_note_context_switch(bool preempt)
336 {
337 	struct task_struct *t = current;
338 	struct rcu_data *rdp;
339 	struct rcu_node *rnp;
340 
341 	lockdep_assert_irqs_disabled();
342 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
343 	if (t->rcu_read_lock_nesting > 0 &&
344 	    !t->rcu_read_unlock_special.b.blocked) {
345 
346 		/* Possibly blocking in an RCU read-side critical section. */
347 		rdp = this_cpu_ptr(rcu_state_p->rda);
348 		rnp = rdp->mynode;
349 		raw_spin_lock_rcu_node(rnp);
350 		t->rcu_read_unlock_special.b.blocked = true;
351 		t->rcu_blocked_node = rnp;
352 
353 		/*
354 		 * Verify the CPU's sanity, trace the preemption, and
355 		 * then queue the task as required based on the states
356 		 * of any ongoing and expedited grace periods.
357 		 */
358 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
359 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
360 		trace_rcu_preempt_task(rdp->rsp->name,
361 				       t->pid,
362 				       (rnp->qsmask & rdp->grpmask)
363 				       ? rnp->gp_seq
364 				       : rcu_seq_snap(&rnp->gp_seq));
365 		rcu_preempt_ctxt_queue(rnp, rdp);
366 	} else if (t->rcu_read_lock_nesting < 0 &&
367 		   t->rcu_read_unlock_special.s) {
368 
369 		/*
370 		 * Complete exit from RCU read-side critical section on
371 		 * behalf of preempted instance of __rcu_read_unlock().
372 		 */
373 		rcu_read_unlock_special(t);
374 	}
375 
376 	/*
377 	 * Either we were not in an RCU read-side critical section to
378 	 * begin with, or we have now recorded that critical section
379 	 * globally.  Either way, we can now note a quiescent state
380 	 * for this CPU.  Again, if we were in an RCU read-side critical
381 	 * section, and if that critical section was blocking the current
382 	 * grace period, then the fact that the task has been enqueued
383 	 * means that we continue to block the current grace period.
384 	 */
385 	rcu_preempt_qs();
386 }
387 
388 /*
389  * Check for preempted RCU readers blocking the current grace period
390  * for the specified rcu_node structure.  If the caller needs a reliable
391  * answer, it must hold the rcu_node's ->lock.
392  */
393 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
394 {
395 	return rnp->gp_tasks != NULL;
396 }
397 
398 /*
399  * Preemptible RCU implementation for rcu_read_lock().
400  * Just increment ->rcu_read_lock_nesting, shared state will be updated
401  * if we block.
402  */
403 void __rcu_read_lock(void)
404 {
405 	current->rcu_read_lock_nesting++;
406 	barrier();  /* critical section after entry code. */
407 }
408 EXPORT_SYMBOL_GPL(__rcu_read_lock);
409 
410 /*
411  * Preemptible RCU implementation for rcu_read_unlock().
412  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
413  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
414  * invoke rcu_read_unlock_special() to clean up after a context switch
415  * in an RCU read-side critical section and other special cases.
416  */
417 void __rcu_read_unlock(void)
418 {
419 	struct task_struct *t = current;
420 
421 	if (t->rcu_read_lock_nesting != 1) {
422 		--t->rcu_read_lock_nesting;
423 	} else {
424 		barrier();  /* critical section before exit code. */
425 		t->rcu_read_lock_nesting = INT_MIN;
426 		barrier();  /* assign before ->rcu_read_unlock_special load */
427 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
428 			rcu_read_unlock_special(t);
429 		barrier();  /* ->rcu_read_unlock_special load before assign */
430 		t->rcu_read_lock_nesting = 0;
431 	}
432 #ifdef CONFIG_PROVE_LOCKING
433 	{
434 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
435 
436 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
437 	}
438 #endif /* #ifdef CONFIG_PROVE_LOCKING */
439 }
440 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
441 
442 /*
443  * Advance a ->blkd_tasks-list pointer to the next entry, instead
444  * returning NULL if at the end of the list.
445  */
446 static struct list_head *rcu_next_node_entry(struct task_struct *t,
447 					     struct rcu_node *rnp)
448 {
449 	struct list_head *np;
450 
451 	np = t->rcu_node_entry.next;
452 	if (np == &rnp->blkd_tasks)
453 		np = NULL;
454 	return np;
455 }
456 
457 /*
458  * Return true if the specified rcu_node structure has tasks that were
459  * preempted within an RCU read-side critical section.
460  */
461 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
462 {
463 	return !list_empty(&rnp->blkd_tasks);
464 }
465 
466 /*
467  * Handle special cases during rcu_read_unlock(), such as needing to
468  * notify RCU core processing or task having blocked during the RCU
469  * read-side critical section.
470  */
471 static void rcu_read_unlock_special(struct task_struct *t)
472 {
473 	bool empty_exp;
474 	bool empty_norm;
475 	bool empty_exp_now;
476 	unsigned long flags;
477 	struct list_head *np;
478 	bool drop_boost_mutex = false;
479 	struct rcu_data *rdp;
480 	struct rcu_node *rnp;
481 	union rcu_special special;
482 
483 	/* NMI handlers cannot block and cannot safely manipulate state. */
484 	if (in_nmi())
485 		return;
486 
487 	local_irq_save(flags);
488 
489 	/*
490 	 * If RCU core is waiting for this CPU to exit its critical section,
491 	 * report the fact that it has exited.  Because irqs are disabled,
492 	 * t->rcu_read_unlock_special cannot change.
493 	 */
494 	special = t->rcu_read_unlock_special;
495 	if (special.b.need_qs) {
496 		rcu_preempt_qs();
497 		t->rcu_read_unlock_special.b.need_qs = false;
498 		if (!t->rcu_read_unlock_special.s) {
499 			local_irq_restore(flags);
500 			return;
501 		}
502 	}
503 
504 	/*
505 	 * Respond to a request for an expedited grace period, but only if
506 	 * we were not preempted, meaning that we were running on the same
507 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
508 	 * would have been cleared at the time of the first preemption,
509 	 * and the quiescent state would be reported when we were dequeued.
510 	 */
511 	if (special.b.exp_need_qs) {
512 		WARN_ON_ONCE(special.b.blocked);
513 		t->rcu_read_unlock_special.b.exp_need_qs = false;
514 		rdp = this_cpu_ptr(rcu_state_p->rda);
515 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
516 		if (!t->rcu_read_unlock_special.s) {
517 			local_irq_restore(flags);
518 			return;
519 		}
520 	}
521 
522 	/* Hardware IRQ handlers cannot block, complain if they get here. */
523 	if (in_irq() || in_serving_softirq()) {
524 		lockdep_rcu_suspicious(__FILE__, __LINE__,
525 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
526 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
527 			 t->rcu_read_unlock_special.s,
528 			 t->rcu_read_unlock_special.b.blocked,
529 			 t->rcu_read_unlock_special.b.exp_need_qs,
530 			 t->rcu_read_unlock_special.b.need_qs);
531 		local_irq_restore(flags);
532 		return;
533 	}
534 
535 	/* Clean up if blocked during RCU read-side critical section. */
536 	if (special.b.blocked) {
537 		t->rcu_read_unlock_special.b.blocked = false;
538 
539 		/*
540 		 * Remove this task from the list it blocked on.  The task
541 		 * now remains queued on the rcu_node corresponding to the
542 		 * CPU it first blocked on, so there is no longer any need
543 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
544 		 */
545 		rnp = t->rcu_blocked_node;
546 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
547 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
548 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
549 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
550 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
551 			     (!empty_norm || rnp->qsmask));
552 		empty_exp = sync_rcu_preempt_exp_done(rnp);
553 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
554 		np = rcu_next_node_entry(t, rnp);
555 		list_del_init(&t->rcu_node_entry);
556 		t->rcu_blocked_node = NULL;
557 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
558 						rnp->gp_seq, t->pid);
559 		if (&t->rcu_node_entry == rnp->gp_tasks)
560 			rnp->gp_tasks = np;
561 		if (&t->rcu_node_entry == rnp->exp_tasks)
562 			rnp->exp_tasks = np;
563 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
564 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
565 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
566 			if (&t->rcu_node_entry == rnp->boost_tasks)
567 				rnp->boost_tasks = np;
568 		}
569 
570 		/*
571 		 * If this was the last task on the current list, and if
572 		 * we aren't waiting on any CPUs, report the quiescent state.
573 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
574 		 * so we must take a snapshot of the expedited state.
575 		 */
576 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
577 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
578 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
579 							 rnp->gp_seq,
580 							 0, rnp->qsmask,
581 							 rnp->level,
582 							 rnp->grplo,
583 							 rnp->grphi,
584 							 !!rnp->gp_tasks);
585 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
586 		} else {
587 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
588 		}
589 
590 		/* Unboost if we were boosted. */
591 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
592 			rt_mutex_futex_unlock(&rnp->boost_mtx);
593 
594 		/*
595 		 * If this was the last task on the expedited lists,
596 		 * then we need to report up the rcu_node hierarchy.
597 		 */
598 		if (!empty_exp && empty_exp_now)
599 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
600 	} else {
601 		local_irq_restore(flags);
602 	}
603 }
604 
605 /*
606  * Dump detailed information for all tasks blocking the current RCU
607  * grace period on the specified rcu_node structure.
608  */
609 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
610 {
611 	unsigned long flags;
612 	struct task_struct *t;
613 
614 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
615 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
616 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
617 		return;
618 	}
619 	t = list_entry(rnp->gp_tasks->prev,
620 		       struct task_struct, rcu_node_entry);
621 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
622 		/*
623 		 * We could be printing a lot while holding a spinlock.
624 		 * Avoid triggering hard lockup.
625 		 */
626 		touch_nmi_watchdog();
627 		sched_show_task(t);
628 	}
629 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
630 }
631 
632 /*
633  * Dump detailed information for all tasks blocking the current RCU
634  * grace period.
635  */
636 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
637 {
638 	struct rcu_node *rnp = rcu_get_root(rsp);
639 
640 	rcu_print_detail_task_stall_rnp(rnp);
641 	rcu_for_each_leaf_node(rsp, rnp)
642 		rcu_print_detail_task_stall_rnp(rnp);
643 }
644 
645 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
646 {
647 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
648 	       rnp->level, rnp->grplo, rnp->grphi);
649 }
650 
651 static void rcu_print_task_stall_end(void)
652 {
653 	pr_cont("\n");
654 }
655 
656 /*
657  * Scan the current list of tasks blocked within RCU read-side critical
658  * sections, printing out the tid of each.
659  */
660 static int rcu_print_task_stall(struct rcu_node *rnp)
661 {
662 	struct task_struct *t;
663 	int ndetected = 0;
664 
665 	if (!rcu_preempt_blocked_readers_cgp(rnp))
666 		return 0;
667 	rcu_print_task_stall_begin(rnp);
668 	t = list_entry(rnp->gp_tasks->prev,
669 		       struct task_struct, rcu_node_entry);
670 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
671 		pr_cont(" P%d", t->pid);
672 		ndetected++;
673 	}
674 	rcu_print_task_stall_end();
675 	return ndetected;
676 }
677 
678 /*
679  * Scan the current list of tasks blocked within RCU read-side critical
680  * sections, printing out the tid of each that is blocking the current
681  * expedited grace period.
682  */
683 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
684 {
685 	struct task_struct *t;
686 	int ndetected = 0;
687 
688 	if (!rnp->exp_tasks)
689 		return 0;
690 	t = list_entry(rnp->exp_tasks->prev,
691 		       struct task_struct, rcu_node_entry);
692 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
693 		pr_cont(" P%d", t->pid);
694 		ndetected++;
695 	}
696 	return ndetected;
697 }
698 
699 /*
700  * Check that the list of blocked tasks for the newly completed grace
701  * period is in fact empty.  It is a serious bug to complete a grace
702  * period that still has RCU readers blocked!  This function must be
703  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
704  * must be held by the caller.
705  *
706  * Also, if there are blocked tasks on the list, they automatically
707  * block the newly created grace period, so set up ->gp_tasks accordingly.
708  */
709 static void
710 rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp)
711 {
712 	struct task_struct *t;
713 
714 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
715 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
716 		dump_blkd_tasks(rsp, rnp, 10);
717 	if (rcu_preempt_has_tasks(rnp) &&
718 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
719 		rnp->gp_tasks = rnp->blkd_tasks.next;
720 		t = container_of(rnp->gp_tasks, struct task_struct,
721 				 rcu_node_entry);
722 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
723 						rnp->gp_seq, t->pid);
724 	}
725 	WARN_ON_ONCE(rnp->qsmask);
726 }
727 
728 /*
729  * Check for a quiescent state from the current CPU.  When a task blocks,
730  * the task is recorded in the corresponding CPU's rcu_node structure,
731  * which is checked elsewhere.
732  *
733  * Caller must disable hard irqs.
734  */
735 static void rcu_preempt_check_callbacks(void)
736 {
737 	struct rcu_state *rsp = &rcu_preempt_state;
738 	struct task_struct *t = current;
739 
740 	if (t->rcu_read_lock_nesting == 0) {
741 		rcu_preempt_qs();
742 		return;
743 	}
744 	if (t->rcu_read_lock_nesting > 0 &&
745 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
746 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm) &&
747 	    !t->rcu_read_unlock_special.b.need_qs &&
748 	    time_after(jiffies, rsp->gp_start + HZ))
749 		t->rcu_read_unlock_special.b.need_qs = true;
750 }
751 
752 /**
753  * call_rcu() - Queue an RCU callback for invocation after a grace period.
754  * @head: structure to be used for queueing the RCU updates.
755  * @func: actual callback function to be invoked after the grace period
756  *
757  * The callback function will be invoked some time after a full grace
758  * period elapses, in other words after all pre-existing RCU read-side
759  * critical sections have completed.  However, the callback function
760  * might well execute concurrently with RCU read-side critical sections
761  * that started after call_rcu() was invoked.  RCU read-side critical
762  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
763  * and may be nested.
764  *
765  * Note that all CPUs must agree that the grace period extended beyond
766  * all pre-existing RCU read-side critical section.  On systems with more
767  * than one CPU, this means that when "func()" is invoked, each CPU is
768  * guaranteed to have executed a full memory barrier since the end of its
769  * last RCU read-side critical section whose beginning preceded the call
770  * to call_rcu().  It also means that each CPU executing an RCU read-side
771  * critical section that continues beyond the start of "func()" must have
772  * executed a memory barrier after the call_rcu() but before the beginning
773  * of that RCU read-side critical section.  Note that these guarantees
774  * include CPUs that are offline, idle, or executing in user mode, as
775  * well as CPUs that are executing in the kernel.
776  *
777  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
778  * resulting RCU callback function "func()", then both CPU A and CPU B are
779  * guaranteed to execute a full memory barrier during the time interval
780  * between the call to call_rcu() and the invocation of "func()" -- even
781  * if CPU A and CPU B are the same CPU (but again only if the system has
782  * more than one CPU).
783  */
784 void call_rcu(struct rcu_head *head, rcu_callback_t func)
785 {
786 	__call_rcu(head, func, rcu_state_p, -1, 0);
787 }
788 EXPORT_SYMBOL_GPL(call_rcu);
789 
790 /**
791  * synchronize_rcu - wait until a grace period has elapsed.
792  *
793  * Control will return to the caller some time after a full grace
794  * period has elapsed, in other words after all currently executing RCU
795  * read-side critical sections have completed.  Note, however, that
796  * upon return from synchronize_rcu(), the caller might well be executing
797  * concurrently with new RCU read-side critical sections that began while
798  * synchronize_rcu() was waiting.  RCU read-side critical sections are
799  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
800  *
801  * See the description of synchronize_sched() for more detailed
802  * information on memory-ordering guarantees.  However, please note
803  * that -only- the memory-ordering guarantees apply.  For example,
804  * synchronize_rcu() is -not- guaranteed to wait on things like code
805  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
806  * guaranteed to wait on RCU read-side critical sections, that is, sections
807  * of code protected by rcu_read_lock().
808  */
809 void synchronize_rcu(void)
810 {
811 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
812 			 lock_is_held(&rcu_lock_map) ||
813 			 lock_is_held(&rcu_sched_lock_map),
814 			 "Illegal synchronize_rcu() in RCU read-side critical section");
815 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
816 		return;
817 	if (rcu_gp_is_expedited())
818 		synchronize_rcu_expedited();
819 	else
820 		wait_rcu_gp(call_rcu);
821 }
822 EXPORT_SYMBOL_GPL(synchronize_rcu);
823 
824 /**
825  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
826  *
827  * Note that this primitive does not necessarily wait for an RCU grace period
828  * to complete.  For example, if there are no RCU callbacks queued anywhere
829  * in the system, then rcu_barrier() is within its rights to return
830  * immediately, without waiting for anything, much less an RCU grace period.
831  */
832 void rcu_barrier(void)
833 {
834 	_rcu_barrier(rcu_state_p);
835 }
836 EXPORT_SYMBOL_GPL(rcu_barrier);
837 
838 /*
839  * Initialize preemptible RCU's state structures.
840  */
841 static void __init __rcu_init_preempt(void)
842 {
843 	rcu_init_one(rcu_state_p);
844 }
845 
846 /*
847  * Check for a task exiting while in a preemptible-RCU read-side
848  * critical section, clean up if so.  No need to issue warnings,
849  * as debug_check_no_locks_held() already does this if lockdep
850  * is enabled.
851  */
852 void exit_rcu(void)
853 {
854 	struct task_struct *t = current;
855 
856 	if (likely(list_empty(&current->rcu_node_entry)))
857 		return;
858 	t->rcu_read_lock_nesting = 1;
859 	barrier();
860 	t->rcu_read_unlock_special.b.blocked = true;
861 	__rcu_read_unlock();
862 }
863 
864 /*
865  * Dump the blocked-tasks state, but limit the list dump to the
866  * specified number of elements.
867  */
868 static void
869 dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck)
870 {
871 	int cpu;
872 	int i;
873 	struct list_head *lhp;
874 	bool onl;
875 	struct rcu_data *rdp;
876 	struct rcu_node *rnp1;
877 
878 	raw_lockdep_assert_held_rcu_node(rnp);
879 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
880 		__func__, rnp->grplo, rnp->grphi, rnp->level,
881 		(long)rnp->gp_seq, (long)rnp->completedqs);
882 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
883 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
884 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
885 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
886 		__func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
887 	pr_info("%s: ->blkd_tasks", __func__);
888 	i = 0;
889 	list_for_each(lhp, &rnp->blkd_tasks) {
890 		pr_cont(" %p", lhp);
891 		if (++i >= 10)
892 			break;
893 	}
894 	pr_cont("\n");
895 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
896 		rdp = per_cpu_ptr(rsp->rda, cpu);
897 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
898 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
899 			cpu, ".o"[onl],
900 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
901 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
902 	}
903 }
904 
905 #else /* #ifdef CONFIG_PREEMPT_RCU */
906 
907 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
908 
909 /*
910  * Tell them what RCU they are running.
911  */
912 static void __init rcu_bootup_announce(void)
913 {
914 	pr_info("Hierarchical RCU implementation.\n");
915 	rcu_bootup_announce_oddness();
916 }
917 
918 /*
919  * Because preemptible RCU does not exist, we never have to check for
920  * CPUs being in quiescent states.
921  */
922 static void rcu_preempt_note_context_switch(bool preempt)
923 {
924 }
925 
926 /*
927  * Because preemptible RCU does not exist, there are never any preempted
928  * RCU readers.
929  */
930 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
931 {
932 	return 0;
933 }
934 
935 /*
936  * Because there is no preemptible RCU, there can be no readers blocked.
937  */
938 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
939 {
940 	return false;
941 }
942 
943 /*
944  * Because preemptible RCU does not exist, we never have to check for
945  * tasks blocked within RCU read-side critical sections.
946  */
947 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
948 {
949 }
950 
951 /*
952  * Because preemptible RCU does not exist, we never have to check for
953  * tasks blocked within RCU read-side critical sections.
954  */
955 static int rcu_print_task_stall(struct rcu_node *rnp)
956 {
957 	return 0;
958 }
959 
960 /*
961  * Because preemptible RCU does not exist, we never have to check for
962  * tasks blocked within RCU read-side critical sections that are
963  * blocking the current expedited grace period.
964  */
965 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
966 {
967 	return 0;
968 }
969 
970 /*
971  * Because there is no preemptible RCU, there can be no readers blocked,
972  * so there is no need to check for blocked tasks.  So check only for
973  * bogus qsmask values.
974  */
975 static void
976 rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp)
977 {
978 	WARN_ON_ONCE(rnp->qsmask);
979 }
980 
981 /*
982  * Because preemptible RCU does not exist, it never has any callbacks
983  * to check.
984  */
985 static void rcu_preempt_check_callbacks(void)
986 {
987 }
988 
989 /*
990  * Because preemptible RCU does not exist, rcu_barrier() is just
991  * another name for rcu_barrier_sched().
992  */
993 void rcu_barrier(void)
994 {
995 	rcu_barrier_sched();
996 }
997 EXPORT_SYMBOL_GPL(rcu_barrier);
998 
999 /*
1000  * Because preemptible RCU does not exist, it need not be initialized.
1001  */
1002 static void __init __rcu_init_preempt(void)
1003 {
1004 }
1005 
1006 /*
1007  * Because preemptible RCU does not exist, tasks cannot possibly exit
1008  * while in preemptible RCU read-side critical sections.
1009  */
1010 void exit_rcu(void)
1011 {
1012 }
1013 
1014 /*
1015  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1016  */
1017 static void
1018 dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck)
1019 {
1020 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1021 }
1022 
1023 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1024 
1025 #ifdef CONFIG_RCU_BOOST
1026 
1027 static void rcu_wake_cond(struct task_struct *t, int status)
1028 {
1029 	/*
1030 	 * If the thread is yielding, only wake it when this
1031 	 * is invoked from idle
1032 	 */
1033 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1034 		wake_up_process(t);
1035 }
1036 
1037 /*
1038  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1039  * or ->boost_tasks, advancing the pointer to the next task in the
1040  * ->blkd_tasks list.
1041  *
1042  * Note that irqs must be enabled: boosting the task can block.
1043  * Returns 1 if there are more tasks needing to be boosted.
1044  */
1045 static int rcu_boost(struct rcu_node *rnp)
1046 {
1047 	unsigned long flags;
1048 	struct task_struct *t;
1049 	struct list_head *tb;
1050 
1051 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1052 	    READ_ONCE(rnp->boost_tasks) == NULL)
1053 		return 0;  /* Nothing left to boost. */
1054 
1055 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1056 
1057 	/*
1058 	 * Recheck under the lock: all tasks in need of boosting
1059 	 * might exit their RCU read-side critical sections on their own.
1060 	 */
1061 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1062 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1063 		return 0;
1064 	}
1065 
1066 	/*
1067 	 * Preferentially boost tasks blocking expedited grace periods.
1068 	 * This cannot starve the normal grace periods because a second
1069 	 * expedited grace period must boost all blocked tasks, including
1070 	 * those blocking the pre-existing normal grace period.
1071 	 */
1072 	if (rnp->exp_tasks != NULL)
1073 		tb = rnp->exp_tasks;
1074 	else
1075 		tb = rnp->boost_tasks;
1076 
1077 	/*
1078 	 * We boost task t by manufacturing an rt_mutex that appears to
1079 	 * be held by task t.  We leave a pointer to that rt_mutex where
1080 	 * task t can find it, and task t will release the mutex when it
1081 	 * exits its outermost RCU read-side critical section.  Then
1082 	 * simply acquiring this artificial rt_mutex will boost task
1083 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1084 	 *
1085 	 * Note that task t must acquire rnp->lock to remove itself from
1086 	 * the ->blkd_tasks list, which it will do from exit() if from
1087 	 * nowhere else.  We therefore are guaranteed that task t will
1088 	 * stay around at least until we drop rnp->lock.  Note that
1089 	 * rnp->lock also resolves races between our priority boosting
1090 	 * and task t's exiting its outermost RCU read-side critical
1091 	 * section.
1092 	 */
1093 	t = container_of(tb, struct task_struct, rcu_node_entry);
1094 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1095 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1096 	/* Lock only for side effect: boosts task t's priority. */
1097 	rt_mutex_lock(&rnp->boost_mtx);
1098 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1099 
1100 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1101 	       READ_ONCE(rnp->boost_tasks) != NULL;
1102 }
1103 
1104 /*
1105  * Priority-boosting kthread, one per leaf rcu_node.
1106  */
1107 static int rcu_boost_kthread(void *arg)
1108 {
1109 	struct rcu_node *rnp = (struct rcu_node *)arg;
1110 	int spincnt = 0;
1111 	int more2boost;
1112 
1113 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1114 	for (;;) {
1115 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1116 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1117 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1118 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1119 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1120 		more2boost = rcu_boost(rnp);
1121 		if (more2boost)
1122 			spincnt++;
1123 		else
1124 			spincnt = 0;
1125 		if (spincnt > 10) {
1126 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1127 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1128 			schedule_timeout_interruptible(2);
1129 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1130 			spincnt = 0;
1131 		}
1132 	}
1133 	/* NOTREACHED */
1134 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Check to see if it is time to start boosting RCU readers that are
1140  * blocking the current grace period, and, if so, tell the per-rcu_node
1141  * kthread to start boosting them.  If there is an expedited grace
1142  * period in progress, it is always time to boost.
1143  *
1144  * The caller must hold rnp->lock, which this function releases.
1145  * The ->boost_kthread_task is immortal, so we don't need to worry
1146  * about it going away.
1147  */
1148 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1149 	__releases(rnp->lock)
1150 {
1151 	struct task_struct *t;
1152 
1153 	raw_lockdep_assert_held_rcu_node(rnp);
1154 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1155 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1156 		return;
1157 	}
1158 	if (rnp->exp_tasks != NULL ||
1159 	    (rnp->gp_tasks != NULL &&
1160 	     rnp->boost_tasks == NULL &&
1161 	     rnp->qsmask == 0 &&
1162 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1163 		if (rnp->exp_tasks == NULL)
1164 			rnp->boost_tasks = rnp->gp_tasks;
1165 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1166 		t = rnp->boost_kthread_task;
1167 		if (t)
1168 			rcu_wake_cond(t, rnp->boost_kthread_status);
1169 	} else {
1170 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1171 	}
1172 }
1173 
1174 /*
1175  * Wake up the per-CPU kthread to invoke RCU callbacks.
1176  */
1177 static void invoke_rcu_callbacks_kthread(void)
1178 {
1179 	unsigned long flags;
1180 
1181 	local_irq_save(flags);
1182 	__this_cpu_write(rcu_cpu_has_work, 1);
1183 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1184 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1185 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1186 			      __this_cpu_read(rcu_cpu_kthread_status));
1187 	}
1188 	local_irq_restore(flags);
1189 }
1190 
1191 /*
1192  * Is the current CPU running the RCU-callbacks kthread?
1193  * Caller must have preemption disabled.
1194  */
1195 static bool rcu_is_callbacks_kthread(void)
1196 {
1197 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1198 }
1199 
1200 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1201 
1202 /*
1203  * Do priority-boost accounting for the start of a new grace period.
1204  */
1205 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1206 {
1207 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1208 }
1209 
1210 /*
1211  * Create an RCU-boost kthread for the specified node if one does not
1212  * already exist.  We only create this kthread for preemptible RCU.
1213  * Returns zero if all is well, a negated errno otherwise.
1214  */
1215 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1216 				       struct rcu_node *rnp)
1217 {
1218 	int rnp_index = rnp - &rsp->node[0];
1219 	unsigned long flags;
1220 	struct sched_param sp;
1221 	struct task_struct *t;
1222 
1223 	if (rcu_state_p != rsp)
1224 		return 0;
1225 
1226 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1227 		return 0;
1228 
1229 	rsp->boost = 1;
1230 	if (rnp->boost_kthread_task != NULL)
1231 		return 0;
1232 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1233 			   "rcub/%d", rnp_index);
1234 	if (IS_ERR(t))
1235 		return PTR_ERR(t);
1236 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1237 	rnp->boost_kthread_task = t;
1238 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1239 	sp.sched_priority = kthread_prio;
1240 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1241 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1242 	return 0;
1243 }
1244 
1245 static void rcu_kthread_do_work(void)
1246 {
1247 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1248 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1249 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
1250 }
1251 
1252 static void rcu_cpu_kthread_setup(unsigned int cpu)
1253 {
1254 	struct sched_param sp;
1255 
1256 	sp.sched_priority = kthread_prio;
1257 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1258 }
1259 
1260 static void rcu_cpu_kthread_park(unsigned int cpu)
1261 {
1262 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1263 }
1264 
1265 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1266 {
1267 	return __this_cpu_read(rcu_cpu_has_work);
1268 }
1269 
1270 /*
1271  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1272  * RCU softirq used in flavors and configurations of RCU that do not
1273  * support RCU priority boosting.
1274  */
1275 static void rcu_cpu_kthread(unsigned int cpu)
1276 {
1277 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1278 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1279 	int spincnt;
1280 
1281 	for (spincnt = 0; spincnt < 10; spincnt++) {
1282 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1283 		local_bh_disable();
1284 		*statusp = RCU_KTHREAD_RUNNING;
1285 		this_cpu_inc(rcu_cpu_kthread_loops);
1286 		local_irq_disable();
1287 		work = *workp;
1288 		*workp = 0;
1289 		local_irq_enable();
1290 		if (work)
1291 			rcu_kthread_do_work();
1292 		local_bh_enable();
1293 		if (*workp == 0) {
1294 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1295 			*statusp = RCU_KTHREAD_WAITING;
1296 			return;
1297 		}
1298 	}
1299 	*statusp = RCU_KTHREAD_YIELDING;
1300 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1301 	schedule_timeout_interruptible(2);
1302 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1303 	*statusp = RCU_KTHREAD_WAITING;
1304 }
1305 
1306 /*
1307  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1308  * served by the rcu_node in question.  The CPU hotplug lock is still
1309  * held, so the value of rnp->qsmaskinit will be stable.
1310  *
1311  * We don't include outgoingcpu in the affinity set, use -1 if there is
1312  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1313  * this function allows the kthread to execute on any CPU.
1314  */
1315 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1316 {
1317 	struct task_struct *t = rnp->boost_kthread_task;
1318 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1319 	cpumask_var_t cm;
1320 	int cpu;
1321 
1322 	if (!t)
1323 		return;
1324 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1325 		return;
1326 	for_each_leaf_node_possible_cpu(rnp, cpu)
1327 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1328 		    cpu != outgoingcpu)
1329 			cpumask_set_cpu(cpu, cm);
1330 	if (cpumask_weight(cm) == 0)
1331 		cpumask_setall(cm);
1332 	set_cpus_allowed_ptr(t, cm);
1333 	free_cpumask_var(cm);
1334 }
1335 
1336 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1337 	.store			= &rcu_cpu_kthread_task,
1338 	.thread_should_run	= rcu_cpu_kthread_should_run,
1339 	.thread_fn		= rcu_cpu_kthread,
1340 	.thread_comm		= "rcuc/%u",
1341 	.setup			= rcu_cpu_kthread_setup,
1342 	.park			= rcu_cpu_kthread_park,
1343 };
1344 
1345 /*
1346  * Spawn boost kthreads -- called as soon as the scheduler is running.
1347  */
1348 static void __init rcu_spawn_boost_kthreads(void)
1349 {
1350 	struct rcu_node *rnp;
1351 	int cpu;
1352 
1353 	for_each_possible_cpu(cpu)
1354 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1355 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1356 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1357 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1358 }
1359 
1360 static void rcu_prepare_kthreads(int cpu)
1361 {
1362 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1363 	struct rcu_node *rnp = rdp->mynode;
1364 
1365 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1366 	if (rcu_scheduler_fully_active)
1367 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1368 }
1369 
1370 #else /* #ifdef CONFIG_RCU_BOOST */
1371 
1372 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1373 	__releases(rnp->lock)
1374 {
1375 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1376 }
1377 
1378 static void invoke_rcu_callbacks_kthread(void)
1379 {
1380 	WARN_ON_ONCE(1);
1381 }
1382 
1383 static bool rcu_is_callbacks_kthread(void)
1384 {
1385 	return false;
1386 }
1387 
1388 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1389 {
1390 }
1391 
1392 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1393 {
1394 }
1395 
1396 static void __init rcu_spawn_boost_kthreads(void)
1397 {
1398 }
1399 
1400 static void rcu_prepare_kthreads(int cpu)
1401 {
1402 }
1403 
1404 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1405 
1406 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1407 
1408 /*
1409  * Check to see if any future RCU-related work will need to be done
1410  * by the current CPU, even if none need be done immediately, returning
1411  * 1 if so.  This function is part of the RCU implementation; it is -not-
1412  * an exported member of the RCU API.
1413  *
1414  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1415  * any flavor of RCU.
1416  */
1417 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1418 {
1419 	*nextevt = KTIME_MAX;
1420 	return rcu_cpu_has_callbacks(NULL);
1421 }
1422 
1423 /*
1424  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1425  * after it.
1426  */
1427 static void rcu_cleanup_after_idle(void)
1428 {
1429 }
1430 
1431 /*
1432  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1433  * is nothing.
1434  */
1435 static void rcu_prepare_for_idle(void)
1436 {
1437 }
1438 
1439 /*
1440  * Don't bother keeping a running count of the number of RCU callbacks
1441  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1442  */
1443 static void rcu_idle_count_callbacks_posted(void)
1444 {
1445 }
1446 
1447 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1448 
1449 /*
1450  * This code is invoked when a CPU goes idle, at which point we want
1451  * to have the CPU do everything required for RCU so that it can enter
1452  * the energy-efficient dyntick-idle mode.  This is handled by a
1453  * state machine implemented by rcu_prepare_for_idle() below.
1454  *
1455  * The following three proprocessor symbols control this state machine:
1456  *
1457  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1458  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1459  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1460  *	benchmarkers who might otherwise be tempted to set this to a large
1461  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1462  *	system.  And if you are -that- concerned about energy efficiency,
1463  *	just power the system down and be done with it!
1464  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1465  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1466  *	callbacks pending.  Setting this too high can OOM your system.
1467  *
1468  * The values below work well in practice.  If future workloads require
1469  * adjustment, they can be converted into kernel config parameters, though
1470  * making the state machine smarter might be a better option.
1471  */
1472 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1473 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1474 
1475 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1476 module_param(rcu_idle_gp_delay, int, 0644);
1477 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1478 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1479 
1480 /*
1481  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1482  * only if it has been awhile since the last time we did so.  Afterwards,
1483  * if there are any callbacks ready for immediate invocation, return true.
1484  */
1485 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1486 {
1487 	bool cbs_ready = false;
1488 	struct rcu_data *rdp;
1489 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1490 	struct rcu_node *rnp;
1491 	struct rcu_state *rsp;
1492 
1493 	/* Exit early if we advanced recently. */
1494 	if (jiffies == rdtp->last_advance_all)
1495 		return false;
1496 	rdtp->last_advance_all = jiffies;
1497 
1498 	for_each_rcu_flavor(rsp) {
1499 		rdp = this_cpu_ptr(rsp->rda);
1500 		rnp = rdp->mynode;
1501 
1502 		/*
1503 		 * Don't bother checking unless a grace period has
1504 		 * completed since we last checked and there are
1505 		 * callbacks not yet ready to invoke.
1506 		 */
1507 		if ((rcu_seq_completed_gp(rdp->gp_seq,
1508 					  rcu_seq_current(&rnp->gp_seq)) ||
1509 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1510 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1511 			note_gp_changes(rsp, rdp);
1512 
1513 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1514 			cbs_ready = true;
1515 	}
1516 	return cbs_ready;
1517 }
1518 
1519 /*
1520  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1521  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1522  * caller to set the timeout based on whether or not there are non-lazy
1523  * callbacks.
1524  *
1525  * The caller must have disabled interrupts.
1526  */
1527 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1528 {
1529 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1530 	unsigned long dj;
1531 
1532 	lockdep_assert_irqs_disabled();
1533 
1534 	/* Snapshot to detect later posting of non-lazy callback. */
1535 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1536 
1537 	/* If no callbacks, RCU doesn't need the CPU. */
1538 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1539 		*nextevt = KTIME_MAX;
1540 		return 0;
1541 	}
1542 
1543 	/* Attempt to advance callbacks. */
1544 	if (rcu_try_advance_all_cbs()) {
1545 		/* Some ready to invoke, so initiate later invocation. */
1546 		invoke_rcu_core();
1547 		return 1;
1548 	}
1549 	rdtp->last_accelerate = jiffies;
1550 
1551 	/* Request timer delay depending on laziness, and round. */
1552 	if (!rdtp->all_lazy) {
1553 		dj = round_up(rcu_idle_gp_delay + jiffies,
1554 			       rcu_idle_gp_delay) - jiffies;
1555 	} else {
1556 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1557 	}
1558 	*nextevt = basemono + dj * TICK_NSEC;
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Prepare a CPU for idle from an RCU perspective.  The first major task
1564  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1565  * The second major task is to check to see if a non-lazy callback has
1566  * arrived at a CPU that previously had only lazy callbacks.  The third
1567  * major task is to accelerate (that is, assign grace-period numbers to)
1568  * any recently arrived callbacks.
1569  *
1570  * The caller must have disabled interrupts.
1571  */
1572 static void rcu_prepare_for_idle(void)
1573 {
1574 	bool needwake;
1575 	struct rcu_data *rdp;
1576 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1577 	struct rcu_node *rnp;
1578 	struct rcu_state *rsp;
1579 	int tne;
1580 
1581 	lockdep_assert_irqs_disabled();
1582 	if (rcu_is_nocb_cpu(smp_processor_id()))
1583 		return;
1584 
1585 	/* Handle nohz enablement switches conservatively. */
1586 	tne = READ_ONCE(tick_nohz_active);
1587 	if (tne != rdtp->tick_nohz_enabled_snap) {
1588 		if (rcu_cpu_has_callbacks(NULL))
1589 			invoke_rcu_core(); /* force nohz to see update. */
1590 		rdtp->tick_nohz_enabled_snap = tne;
1591 		return;
1592 	}
1593 	if (!tne)
1594 		return;
1595 
1596 	/*
1597 	 * If a non-lazy callback arrived at a CPU having only lazy
1598 	 * callbacks, invoke RCU core for the side-effect of recalculating
1599 	 * idle duration on re-entry to idle.
1600 	 */
1601 	if (rdtp->all_lazy &&
1602 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1603 		rdtp->all_lazy = false;
1604 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1605 		invoke_rcu_core();
1606 		return;
1607 	}
1608 
1609 	/*
1610 	 * If we have not yet accelerated this jiffy, accelerate all
1611 	 * callbacks on this CPU.
1612 	 */
1613 	if (rdtp->last_accelerate == jiffies)
1614 		return;
1615 	rdtp->last_accelerate = jiffies;
1616 	for_each_rcu_flavor(rsp) {
1617 		rdp = this_cpu_ptr(rsp->rda);
1618 		if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1619 			continue;
1620 		rnp = rdp->mynode;
1621 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1622 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1623 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1624 		if (needwake)
1625 			rcu_gp_kthread_wake(rsp);
1626 	}
1627 }
1628 
1629 /*
1630  * Clean up for exit from idle.  Attempt to advance callbacks based on
1631  * any grace periods that elapsed while the CPU was idle, and if any
1632  * callbacks are now ready to invoke, initiate invocation.
1633  */
1634 static void rcu_cleanup_after_idle(void)
1635 {
1636 	lockdep_assert_irqs_disabled();
1637 	if (rcu_is_nocb_cpu(smp_processor_id()))
1638 		return;
1639 	if (rcu_try_advance_all_cbs())
1640 		invoke_rcu_core();
1641 }
1642 
1643 /*
1644  * Keep a running count of the number of non-lazy callbacks posted
1645  * on this CPU.  This running counter (which is never decremented) allows
1646  * rcu_prepare_for_idle() to detect when something out of the idle loop
1647  * posts a callback, even if an equal number of callbacks are invoked.
1648  * Of course, callbacks should only be posted from within a trace event
1649  * designed to be called from idle or from within RCU_NONIDLE().
1650  */
1651 static void rcu_idle_count_callbacks_posted(void)
1652 {
1653 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1654 }
1655 
1656 /*
1657  * Data for flushing lazy RCU callbacks at OOM time.
1658  */
1659 static atomic_t oom_callback_count;
1660 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1661 
1662 /*
1663  * RCU OOM callback -- decrement the outstanding count and deliver the
1664  * wake-up if we are the last one.
1665  */
1666 static void rcu_oom_callback(struct rcu_head *rhp)
1667 {
1668 	if (atomic_dec_and_test(&oom_callback_count))
1669 		wake_up(&oom_callback_wq);
1670 }
1671 
1672 /*
1673  * Post an rcu_oom_notify callback on the current CPU if it has at
1674  * least one lazy callback.  This will unnecessarily post callbacks
1675  * to CPUs that already have a non-lazy callback at the end of their
1676  * callback list, but this is an infrequent operation, so accept some
1677  * extra overhead to keep things simple.
1678  */
1679 static void rcu_oom_notify_cpu(void *unused)
1680 {
1681 	struct rcu_state *rsp;
1682 	struct rcu_data *rdp;
1683 
1684 	for_each_rcu_flavor(rsp) {
1685 		rdp = raw_cpu_ptr(rsp->rda);
1686 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1687 			atomic_inc(&oom_callback_count);
1688 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1689 		}
1690 	}
1691 }
1692 
1693 /*
1694  * If low on memory, ensure that each CPU has a non-lazy callback.
1695  * This will wake up CPUs that have only lazy callbacks, in turn
1696  * ensuring that they free up the corresponding memory in a timely manner.
1697  * Because an uncertain amount of memory will be freed in some uncertain
1698  * timeframe, we do not claim to have freed anything.
1699  */
1700 static int rcu_oom_notify(struct notifier_block *self,
1701 			  unsigned long notused, void *nfreed)
1702 {
1703 	int cpu;
1704 
1705 	/* Wait for callbacks from earlier instance to complete. */
1706 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1707 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1708 
1709 	/*
1710 	 * Prevent premature wakeup: ensure that all increments happen
1711 	 * before there is a chance of the counter reaching zero.
1712 	 */
1713 	atomic_set(&oom_callback_count, 1);
1714 
1715 	for_each_online_cpu(cpu) {
1716 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1717 		cond_resched_tasks_rcu_qs();
1718 	}
1719 
1720 	/* Unconditionally decrement: no need to wake ourselves up. */
1721 	atomic_dec(&oom_callback_count);
1722 
1723 	return NOTIFY_OK;
1724 }
1725 
1726 static struct notifier_block rcu_oom_nb = {
1727 	.notifier_call = rcu_oom_notify
1728 };
1729 
1730 static int __init rcu_register_oom_notifier(void)
1731 {
1732 	register_oom_notifier(&rcu_oom_nb);
1733 	return 0;
1734 }
1735 early_initcall(rcu_register_oom_notifier);
1736 
1737 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1738 
1739 #ifdef CONFIG_RCU_FAST_NO_HZ
1740 
1741 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1742 {
1743 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1744 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1745 
1746 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1747 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1748 		ulong2long(nlpd),
1749 		rdtp->all_lazy ? 'L' : '.',
1750 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1751 }
1752 
1753 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1754 
1755 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1756 {
1757 	*cp = '\0';
1758 }
1759 
1760 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1761 
1762 /* Initiate the stall-info list. */
1763 static void print_cpu_stall_info_begin(void)
1764 {
1765 	pr_cont("\n");
1766 }
1767 
1768 /*
1769  * Print out diagnostic information for the specified stalled CPU.
1770  *
1771  * If the specified CPU is aware of the current RCU grace period
1772  * (flavor specified by rsp), then print the number of scheduling
1773  * clock interrupts the CPU has taken during the time that it has
1774  * been aware.  Otherwise, print the number of RCU grace periods
1775  * that this CPU is ignorant of, for example, "1" if the CPU was
1776  * aware of the previous grace period.
1777  *
1778  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1779  */
1780 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1781 {
1782 	unsigned long delta;
1783 	char fast_no_hz[72];
1784 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1785 	struct rcu_dynticks *rdtp = rdp->dynticks;
1786 	char *ticks_title;
1787 	unsigned long ticks_value;
1788 
1789 	/*
1790 	 * We could be printing a lot while holding a spinlock.  Avoid
1791 	 * triggering hard lockup.
1792 	 */
1793 	touch_nmi_watchdog();
1794 
1795 	ticks_value = rcu_seq_ctr(rsp->gp_seq - rdp->gp_seq);
1796 	if (ticks_value) {
1797 		ticks_title = "GPs behind";
1798 	} else {
1799 		ticks_title = "ticks this GP";
1800 		ticks_value = rdp->ticks_this_gp;
1801 	}
1802 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1803 	delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
1804 	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1805 	       cpu,
1806 	       "O."[!!cpu_online(cpu)],
1807 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1808 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1809 	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1810 			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1811 				"!."[!delta],
1812 	       ticks_value, ticks_title,
1813 	       rcu_dynticks_snap(rdtp) & 0xfff,
1814 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1815 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1816 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1817 	       fast_no_hz);
1818 }
1819 
1820 /* Terminate the stall-info list. */
1821 static void print_cpu_stall_info_end(void)
1822 {
1823 	pr_err("\t");
1824 }
1825 
1826 /* Zero ->ticks_this_gp for all flavors of RCU. */
1827 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1828 {
1829 	rdp->ticks_this_gp = 0;
1830 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1831 }
1832 
1833 /* Increment ->ticks_this_gp for all flavors of RCU. */
1834 static void increment_cpu_stall_ticks(void)
1835 {
1836 	struct rcu_state *rsp;
1837 
1838 	for_each_rcu_flavor(rsp)
1839 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1840 }
1841 
1842 #ifdef CONFIG_RCU_NOCB_CPU
1843 
1844 /*
1845  * Offload callback processing from the boot-time-specified set of CPUs
1846  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1847  * kthread created that pulls the callbacks from the corresponding CPU,
1848  * waits for a grace period to elapse, and invokes the callbacks.
1849  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1850  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1851  * has been specified, in which case each kthread actively polls its
1852  * CPU.  (Which isn't so great for energy efficiency, but which does
1853  * reduce RCU's overhead on that CPU.)
1854  *
1855  * This is intended to be used in conjunction with Frederic Weisbecker's
1856  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1857  * running CPU-bound user-mode computations.
1858  *
1859  * Offloading of callback processing could also in theory be used as
1860  * an energy-efficiency measure because CPUs with no RCU callbacks
1861  * queued are more aggressive about entering dyntick-idle mode.
1862  */
1863 
1864 
1865 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1866 static int __init rcu_nocb_setup(char *str)
1867 {
1868 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1869 	cpulist_parse(str, rcu_nocb_mask);
1870 	return 1;
1871 }
1872 __setup("rcu_nocbs=", rcu_nocb_setup);
1873 
1874 static int __init parse_rcu_nocb_poll(char *arg)
1875 {
1876 	rcu_nocb_poll = true;
1877 	return 0;
1878 }
1879 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1880 
1881 /*
1882  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1883  * grace period.
1884  */
1885 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1886 {
1887 	swake_up_all(sq);
1888 }
1889 
1890 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1891 {
1892 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1893 }
1894 
1895 static void rcu_init_one_nocb(struct rcu_node *rnp)
1896 {
1897 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1898 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1899 }
1900 
1901 /* Is the specified CPU a no-CBs CPU? */
1902 bool rcu_is_nocb_cpu(int cpu)
1903 {
1904 	if (cpumask_available(rcu_nocb_mask))
1905 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1906 	return false;
1907 }
1908 
1909 /*
1910  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1911  * and this function releases it.
1912  */
1913 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1914 			       unsigned long flags)
1915 	__releases(rdp->nocb_lock)
1916 {
1917 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1918 
1919 	lockdep_assert_held(&rdp->nocb_lock);
1920 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1921 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1922 		return;
1923 	}
1924 	if (rdp_leader->nocb_leader_sleep || force) {
1925 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1926 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1927 		del_timer(&rdp->nocb_timer);
1928 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1929 		smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1930 		swake_up_one(&rdp_leader->nocb_wq);
1931 	} else {
1932 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1933 	}
1934 }
1935 
1936 /*
1937  * Kick the leader kthread for this NOCB group, but caller has not
1938  * acquired locks.
1939  */
1940 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1941 {
1942 	unsigned long flags;
1943 
1944 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1945 	__wake_nocb_leader(rdp, force, flags);
1946 }
1947 
1948 /*
1949  * Arrange to wake the leader kthread for this NOCB group at some
1950  * future time when it is safe to do so.
1951  */
1952 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1953 				   const char *reason)
1954 {
1955 	unsigned long flags;
1956 
1957 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1958 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1959 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1960 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1961 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1962 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1963 }
1964 
1965 /*
1966  * Does the specified CPU need an RCU callback for the specified flavor
1967  * of rcu_barrier()?
1968  */
1969 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1970 {
1971 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1972 	unsigned long ret;
1973 #ifdef CONFIG_PROVE_RCU
1974 	struct rcu_head *rhp;
1975 #endif /* #ifdef CONFIG_PROVE_RCU */
1976 
1977 	/*
1978 	 * Check count of all no-CBs callbacks awaiting invocation.
1979 	 * There needs to be a barrier before this function is called,
1980 	 * but associated with a prior determination that no more
1981 	 * callbacks would be posted.  In the worst case, the first
1982 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1983 	 * necessarily rely on this, not a substitute for the caller
1984 	 * getting the concurrency design right!).  There must also be
1985 	 * a barrier between the following load an posting of a callback
1986 	 * (if a callback is in fact needed).  This is associated with an
1987 	 * atomic_inc() in the caller.
1988 	 */
1989 	ret = atomic_long_read(&rdp->nocb_q_count);
1990 
1991 #ifdef CONFIG_PROVE_RCU
1992 	rhp = READ_ONCE(rdp->nocb_head);
1993 	if (!rhp)
1994 		rhp = READ_ONCE(rdp->nocb_gp_head);
1995 	if (!rhp)
1996 		rhp = READ_ONCE(rdp->nocb_follower_head);
1997 
1998 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1999 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
2000 	    rcu_scheduler_fully_active) {
2001 		/* RCU callback enqueued before CPU first came online??? */
2002 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2003 		       cpu, rhp->func);
2004 		WARN_ON_ONCE(1);
2005 	}
2006 #endif /* #ifdef CONFIG_PROVE_RCU */
2007 
2008 	return !!ret;
2009 }
2010 
2011 /*
2012  * Enqueue the specified string of rcu_head structures onto the specified
2013  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2014  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2015  * counts are supplied by rhcount and rhcount_lazy.
2016  *
2017  * If warranted, also wake up the kthread servicing this CPUs queues.
2018  */
2019 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2020 				    struct rcu_head *rhp,
2021 				    struct rcu_head **rhtp,
2022 				    int rhcount, int rhcount_lazy,
2023 				    unsigned long flags)
2024 {
2025 	int len;
2026 	struct rcu_head **old_rhpp;
2027 	struct task_struct *t;
2028 
2029 	/* Enqueue the callback on the nocb list and update counts. */
2030 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2031 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
2032 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2033 	WRITE_ONCE(*old_rhpp, rhp);
2034 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2035 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2036 
2037 	/* If we are not being polled and there is a kthread, awaken it ... */
2038 	t = READ_ONCE(rdp->nocb_kthread);
2039 	if (rcu_nocb_poll || !t) {
2040 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2041 				    TPS("WakeNotPoll"));
2042 		return;
2043 	}
2044 	len = atomic_long_read(&rdp->nocb_q_count);
2045 	if (old_rhpp == &rdp->nocb_head) {
2046 		if (!irqs_disabled_flags(flags)) {
2047 			/* ... if queue was empty ... */
2048 			wake_nocb_leader(rdp, false);
2049 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2050 					    TPS("WakeEmpty"));
2051 		} else {
2052 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
2053 					       TPS("WakeEmptyIsDeferred"));
2054 		}
2055 		rdp->qlen_last_fqs_check = 0;
2056 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2057 		/* ... or if many callbacks queued. */
2058 		if (!irqs_disabled_flags(flags)) {
2059 			wake_nocb_leader(rdp, true);
2060 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2061 					    TPS("WakeOvf"));
2062 		} else {
2063 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
2064 					       TPS("WakeOvfIsDeferred"));
2065 		}
2066 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2067 	} else {
2068 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2069 	}
2070 	return;
2071 }
2072 
2073 /*
2074  * This is a helper for __call_rcu(), which invokes this when the normal
2075  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2076  * function returns failure back to __call_rcu(), which can complain
2077  * appropriately.
2078  *
2079  * Otherwise, this function queues the callback where the corresponding
2080  * "rcuo" kthread can find it.
2081  */
2082 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2083 			    bool lazy, unsigned long flags)
2084 {
2085 
2086 	if (!rcu_is_nocb_cpu(rdp->cpu))
2087 		return false;
2088 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2089 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2090 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2091 					 (unsigned long)rhp->func,
2092 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2093 					 -atomic_long_read(&rdp->nocb_q_count));
2094 	else
2095 		trace_rcu_callback(rdp->rsp->name, rhp,
2096 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2097 				   -atomic_long_read(&rdp->nocb_q_count));
2098 
2099 	/*
2100 	 * If called from an extended quiescent state with interrupts
2101 	 * disabled, invoke the RCU core in order to allow the idle-entry
2102 	 * deferred-wakeup check to function.
2103 	 */
2104 	if (irqs_disabled_flags(flags) &&
2105 	    !rcu_is_watching() &&
2106 	    cpu_online(smp_processor_id()))
2107 		invoke_rcu_core();
2108 
2109 	return true;
2110 }
2111 
2112 /*
2113  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2114  * not a no-CBs CPU.
2115  */
2116 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2117 						     struct rcu_data *rdp,
2118 						     unsigned long flags)
2119 {
2120 	lockdep_assert_irqs_disabled();
2121 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2122 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2123 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2124 				rcu_segcblist_tail(&rdp->cblist),
2125 				rcu_segcblist_n_cbs(&rdp->cblist),
2126 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2127 	rcu_segcblist_init(&rdp->cblist);
2128 	rcu_segcblist_disable(&rdp->cblist);
2129 	return true;
2130 }
2131 
2132 /*
2133  * If necessary, kick off a new grace period, and either way wait
2134  * for a subsequent grace period to complete.
2135  */
2136 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2137 {
2138 	unsigned long c;
2139 	bool d;
2140 	unsigned long flags;
2141 	bool needwake;
2142 	struct rcu_node *rnp = rdp->mynode;
2143 
2144 	local_irq_save(flags);
2145 	c = rcu_seq_snap(&rdp->rsp->gp_seq);
2146 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2147 		local_irq_restore(flags);
2148 	} else {
2149 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2150 		needwake = rcu_start_this_gp(rnp, rdp, c);
2151 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2152 		if (needwake)
2153 			rcu_gp_kthread_wake(rdp->rsp);
2154 	}
2155 
2156 	/*
2157 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2158 	 * up the load average.
2159 	 */
2160 	trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2161 	for (;;) {
2162 		swait_event_interruptible_exclusive(
2163 			rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2164 			(d = rcu_seq_done(&rnp->gp_seq, c)));
2165 		if (likely(d))
2166 			break;
2167 		WARN_ON(signal_pending(current));
2168 		trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2169 	}
2170 	trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2171 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2172 }
2173 
2174 /*
2175  * Leaders come here to wait for additional callbacks to show up.
2176  * This function does not return until callbacks appear.
2177  */
2178 static void nocb_leader_wait(struct rcu_data *my_rdp)
2179 {
2180 	bool firsttime = true;
2181 	unsigned long flags;
2182 	bool gotcbs;
2183 	struct rcu_data *rdp;
2184 	struct rcu_head **tail;
2185 
2186 wait_again:
2187 
2188 	/* Wait for callbacks to appear. */
2189 	if (!rcu_nocb_poll) {
2190 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2191 		swait_event_interruptible_exclusive(my_rdp->nocb_wq,
2192 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2193 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2194 		my_rdp->nocb_leader_sleep = true;
2195 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2196 		del_timer(&my_rdp->nocb_timer);
2197 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2198 	} else if (firsttime) {
2199 		firsttime = false; /* Don't drown trace log with "Poll"! */
2200 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2201 	}
2202 
2203 	/*
2204 	 * Each pass through the following loop checks a follower for CBs.
2205 	 * We are our own first follower.  Any CBs found are moved to
2206 	 * nocb_gp_head, where they await a grace period.
2207 	 */
2208 	gotcbs = false;
2209 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2210 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2211 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2212 		if (!rdp->nocb_gp_head)
2213 			continue;  /* No CBs here, try next follower. */
2214 
2215 		/* Move callbacks to wait-for-GP list, which is empty. */
2216 		WRITE_ONCE(rdp->nocb_head, NULL);
2217 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2218 		gotcbs = true;
2219 	}
2220 
2221 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2222 	if (unlikely(!gotcbs)) {
2223 		WARN_ON(signal_pending(current));
2224 		if (rcu_nocb_poll) {
2225 			schedule_timeout_interruptible(1);
2226 		} else {
2227 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2228 					    TPS("WokeEmpty"));
2229 		}
2230 		goto wait_again;
2231 	}
2232 
2233 	/* Wait for one grace period. */
2234 	rcu_nocb_wait_gp(my_rdp);
2235 
2236 	/* Each pass through the following loop wakes a follower, if needed. */
2237 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2238 		if (!rcu_nocb_poll &&
2239 		    READ_ONCE(rdp->nocb_head) &&
2240 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2241 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2242 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2243 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2244 		}
2245 		if (!rdp->nocb_gp_head)
2246 			continue; /* No CBs, so no need to wake follower. */
2247 
2248 		/* Append callbacks to follower's "done" list. */
2249 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2250 		tail = rdp->nocb_follower_tail;
2251 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2252 		*tail = rdp->nocb_gp_head;
2253 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2254 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2255 			/* List was empty, so wake up the follower.  */
2256 			swake_up_one(&rdp->nocb_wq);
2257 		}
2258 	}
2259 
2260 	/* If we (the leader) don't have CBs, go wait some more. */
2261 	if (!my_rdp->nocb_follower_head)
2262 		goto wait_again;
2263 }
2264 
2265 /*
2266  * Followers come here to wait for additional callbacks to show up.
2267  * This function does not return until callbacks appear.
2268  */
2269 static void nocb_follower_wait(struct rcu_data *rdp)
2270 {
2271 	for (;;) {
2272 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2273 		swait_event_interruptible_exclusive(rdp->nocb_wq,
2274 					 READ_ONCE(rdp->nocb_follower_head));
2275 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2276 			/* ^^^ Ensure CB invocation follows _head test. */
2277 			return;
2278 		}
2279 		WARN_ON(signal_pending(current));
2280 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2281 	}
2282 }
2283 
2284 /*
2285  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2286  * callbacks queued by the corresponding no-CBs CPU, however, there is
2287  * an optional leader-follower relationship so that the grace-period
2288  * kthreads don't have to do quite so many wakeups.
2289  */
2290 static int rcu_nocb_kthread(void *arg)
2291 {
2292 	int c, cl;
2293 	unsigned long flags;
2294 	struct rcu_head *list;
2295 	struct rcu_head *next;
2296 	struct rcu_head **tail;
2297 	struct rcu_data *rdp = arg;
2298 
2299 	/* Each pass through this loop invokes one batch of callbacks */
2300 	for (;;) {
2301 		/* Wait for callbacks. */
2302 		if (rdp->nocb_leader == rdp)
2303 			nocb_leader_wait(rdp);
2304 		else
2305 			nocb_follower_wait(rdp);
2306 
2307 		/* Pull the ready-to-invoke callbacks onto local list. */
2308 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2309 		list = rdp->nocb_follower_head;
2310 		rdp->nocb_follower_head = NULL;
2311 		tail = rdp->nocb_follower_tail;
2312 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2313 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2314 		BUG_ON(!list);
2315 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2316 
2317 		/* Each pass through the following loop invokes a callback. */
2318 		trace_rcu_batch_start(rdp->rsp->name,
2319 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2320 				      atomic_long_read(&rdp->nocb_q_count), -1);
2321 		c = cl = 0;
2322 		while (list) {
2323 			next = list->next;
2324 			/* Wait for enqueuing to complete, if needed. */
2325 			while (next == NULL && &list->next != tail) {
2326 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2327 						    TPS("WaitQueue"));
2328 				schedule_timeout_interruptible(1);
2329 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2330 						    TPS("WokeQueue"));
2331 				next = list->next;
2332 			}
2333 			debug_rcu_head_unqueue(list);
2334 			local_bh_disable();
2335 			if (__rcu_reclaim(rdp->rsp->name, list))
2336 				cl++;
2337 			c++;
2338 			local_bh_enable();
2339 			cond_resched_tasks_rcu_qs();
2340 			list = next;
2341 		}
2342 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2343 		smp_mb__before_atomic();  /* _add after CB invocation. */
2344 		atomic_long_add(-c, &rdp->nocb_q_count);
2345 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2346 	}
2347 	return 0;
2348 }
2349 
2350 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2351 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2352 {
2353 	return READ_ONCE(rdp->nocb_defer_wakeup);
2354 }
2355 
2356 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2357 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2358 {
2359 	unsigned long flags;
2360 	int ndw;
2361 
2362 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2363 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2364 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2365 		return;
2366 	}
2367 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2368 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2369 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2370 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2371 }
2372 
2373 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2374 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2375 {
2376 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2377 
2378 	do_nocb_deferred_wakeup_common(rdp);
2379 }
2380 
2381 /*
2382  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2383  * This means we do an inexact common-case check.  Note that if
2384  * we miss, ->nocb_timer will eventually clean things up.
2385  */
2386 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2387 {
2388 	if (rcu_nocb_need_deferred_wakeup(rdp))
2389 		do_nocb_deferred_wakeup_common(rdp);
2390 }
2391 
2392 void __init rcu_init_nohz(void)
2393 {
2394 	int cpu;
2395 	bool need_rcu_nocb_mask = false;
2396 	struct rcu_state *rsp;
2397 
2398 #if defined(CONFIG_NO_HZ_FULL)
2399 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2400 		need_rcu_nocb_mask = true;
2401 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2402 
2403 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2404 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2405 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2406 			return;
2407 		}
2408 	}
2409 	if (!cpumask_available(rcu_nocb_mask))
2410 		return;
2411 
2412 #if defined(CONFIG_NO_HZ_FULL)
2413 	if (tick_nohz_full_running)
2414 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2415 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2416 
2417 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2418 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2419 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2420 			    rcu_nocb_mask);
2421 	}
2422 	if (cpumask_empty(rcu_nocb_mask))
2423 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2424 	else
2425 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2426 			cpumask_pr_args(rcu_nocb_mask));
2427 	if (rcu_nocb_poll)
2428 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2429 
2430 	for_each_rcu_flavor(rsp) {
2431 		for_each_cpu(cpu, rcu_nocb_mask)
2432 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2433 		rcu_organize_nocb_kthreads(rsp);
2434 	}
2435 }
2436 
2437 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2438 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2439 {
2440 	rdp->nocb_tail = &rdp->nocb_head;
2441 	init_swait_queue_head(&rdp->nocb_wq);
2442 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2443 	raw_spin_lock_init(&rdp->nocb_lock);
2444 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2445 }
2446 
2447 /*
2448  * If the specified CPU is a no-CBs CPU that does not already have its
2449  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2450  * brought online out of order, this can require re-organizing the
2451  * leader-follower relationships.
2452  */
2453 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2454 {
2455 	struct rcu_data *rdp;
2456 	struct rcu_data *rdp_last;
2457 	struct rcu_data *rdp_old_leader;
2458 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2459 	struct task_struct *t;
2460 
2461 	/*
2462 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2463 	 * then nothing to do.
2464 	 */
2465 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2466 		return;
2467 
2468 	/* If we didn't spawn the leader first, reorganize! */
2469 	rdp_old_leader = rdp_spawn->nocb_leader;
2470 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2471 		rdp_last = NULL;
2472 		rdp = rdp_old_leader;
2473 		do {
2474 			rdp->nocb_leader = rdp_spawn;
2475 			if (rdp_last && rdp != rdp_spawn)
2476 				rdp_last->nocb_next_follower = rdp;
2477 			if (rdp == rdp_spawn) {
2478 				rdp = rdp->nocb_next_follower;
2479 			} else {
2480 				rdp_last = rdp;
2481 				rdp = rdp->nocb_next_follower;
2482 				rdp_last->nocb_next_follower = NULL;
2483 			}
2484 		} while (rdp);
2485 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2486 	}
2487 
2488 	/* Spawn the kthread for this CPU and RCU flavor. */
2489 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2490 			"rcuo%c/%d", rsp->abbr, cpu);
2491 	BUG_ON(IS_ERR(t));
2492 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2493 }
2494 
2495 /*
2496  * If the specified CPU is a no-CBs CPU that does not already have its
2497  * rcuo kthreads, spawn them.
2498  */
2499 static void rcu_spawn_all_nocb_kthreads(int cpu)
2500 {
2501 	struct rcu_state *rsp;
2502 
2503 	if (rcu_scheduler_fully_active)
2504 		for_each_rcu_flavor(rsp)
2505 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2506 }
2507 
2508 /*
2509  * Once the scheduler is running, spawn rcuo kthreads for all online
2510  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2511  * non-boot CPUs come online -- if this changes, we will need to add
2512  * some mutual exclusion.
2513  */
2514 static void __init rcu_spawn_nocb_kthreads(void)
2515 {
2516 	int cpu;
2517 
2518 	for_each_online_cpu(cpu)
2519 		rcu_spawn_all_nocb_kthreads(cpu);
2520 }
2521 
2522 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2523 static int rcu_nocb_leader_stride = -1;
2524 module_param(rcu_nocb_leader_stride, int, 0444);
2525 
2526 /*
2527  * Initialize leader-follower relationships for all no-CBs CPU.
2528  */
2529 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2530 {
2531 	int cpu;
2532 	int ls = rcu_nocb_leader_stride;
2533 	int nl = 0;  /* Next leader. */
2534 	struct rcu_data *rdp;
2535 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2536 	struct rcu_data *rdp_prev = NULL;
2537 
2538 	if (!cpumask_available(rcu_nocb_mask))
2539 		return;
2540 	if (ls == -1) {
2541 		ls = int_sqrt(nr_cpu_ids);
2542 		rcu_nocb_leader_stride = ls;
2543 	}
2544 
2545 	/*
2546 	 * Each pass through this loop sets up one rcu_data structure.
2547 	 * Should the corresponding CPU come online in the future, then
2548 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2549 	 */
2550 	for_each_cpu(cpu, rcu_nocb_mask) {
2551 		rdp = per_cpu_ptr(rsp->rda, cpu);
2552 		if (rdp->cpu >= nl) {
2553 			/* New leader, set up for followers & next leader. */
2554 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2555 			rdp->nocb_leader = rdp;
2556 			rdp_leader = rdp;
2557 		} else {
2558 			/* Another follower, link to previous leader. */
2559 			rdp->nocb_leader = rdp_leader;
2560 			rdp_prev->nocb_next_follower = rdp;
2561 		}
2562 		rdp_prev = rdp;
2563 	}
2564 }
2565 
2566 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2567 static bool init_nocb_callback_list(struct rcu_data *rdp)
2568 {
2569 	if (!rcu_is_nocb_cpu(rdp->cpu))
2570 		return false;
2571 
2572 	/* If there are early-boot callbacks, move them to nocb lists. */
2573 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2574 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2575 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2576 		atomic_long_set(&rdp->nocb_q_count,
2577 				rcu_segcblist_n_cbs(&rdp->cblist));
2578 		atomic_long_set(&rdp->nocb_q_count_lazy,
2579 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2580 		rcu_segcblist_init(&rdp->cblist);
2581 	}
2582 	rcu_segcblist_disable(&rdp->cblist);
2583 	return true;
2584 }
2585 
2586 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2587 
2588 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2589 {
2590 	WARN_ON_ONCE(1); /* Should be dead code. */
2591 	return false;
2592 }
2593 
2594 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2595 {
2596 }
2597 
2598 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2599 {
2600 	return NULL;
2601 }
2602 
2603 static void rcu_init_one_nocb(struct rcu_node *rnp)
2604 {
2605 }
2606 
2607 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2608 			    bool lazy, unsigned long flags)
2609 {
2610 	return false;
2611 }
2612 
2613 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2614 						     struct rcu_data *rdp,
2615 						     unsigned long flags)
2616 {
2617 	return false;
2618 }
2619 
2620 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2621 {
2622 }
2623 
2624 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2625 {
2626 	return false;
2627 }
2628 
2629 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2630 {
2631 }
2632 
2633 static void rcu_spawn_all_nocb_kthreads(int cpu)
2634 {
2635 }
2636 
2637 static void __init rcu_spawn_nocb_kthreads(void)
2638 {
2639 }
2640 
2641 static bool init_nocb_callback_list(struct rcu_data *rdp)
2642 {
2643 	return false;
2644 }
2645 
2646 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2647 
2648 /*
2649  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2650  * grace-period kthread will do force_quiescent_state() processing?
2651  * The idea is to avoid waking up RCU core processing on such a
2652  * CPU unless the grace period has extended for too long.
2653  *
2654  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2655  * CONFIG_RCU_NOCB_CPU CPUs.
2656  */
2657 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2658 {
2659 #ifdef CONFIG_NO_HZ_FULL
2660 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2661 	    (!rcu_gp_in_progress(rsp) ||
2662 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2663 		return true;
2664 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2665 	return false;
2666 }
2667 
2668 /*
2669  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2670  */
2671 static void rcu_bind_gp_kthread(void)
2672 {
2673 	if (!tick_nohz_full_enabled())
2674 		return;
2675 	housekeeping_affine(current, HK_FLAG_RCU);
2676 }
2677 
2678 /* Record the current task on dyntick-idle entry. */
2679 static void rcu_dynticks_task_enter(void)
2680 {
2681 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2682 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2683 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2684 }
2685 
2686 /* Record no current task on dyntick-idle exit. */
2687 static void rcu_dynticks_task_exit(void)
2688 {
2689 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2690 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2691 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2692 }
2693