xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 58919326e72f63c380dc3271dd1cc8bdf1bbe3e4)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 	/*
19 	 * In order to read the offloaded state of an rdp in a safe
20 	 * and stable way and prevent from its value to be changed
21 	 * under us, we must either hold the barrier mutex, the cpu
22 	 * hotplug lock (read or write) or the nocb lock. Local
23 	 * non-preemptible reads are also safe. NOCB kthreads and
24 	 * timers have their own means of synchronization against the
25 	 * offloaded state updaters.
26 	 */
27 	RCU_LOCKDEP_WARN(
28 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 		  rcu_lockdep_is_held_nocb(rdp) ||
31 		  (rdp == this_cpu_ptr(&rcu_data) &&
32 		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
33 		  rcu_current_is_nocb_kthread(rdp)),
34 		"Unsafe read of RCU_NOCB offloaded state"
35 	);
36 
37 	return rcu_segcblist_is_offloaded(&rdp->cblist);
38 }
39 
40 /*
41  * Check the RCU kernel configuration parameters and print informative
42  * messages about anything out of the ordinary.
43  */
44 static void __init rcu_bootup_announce_oddness(void)
45 {
46 	if (IS_ENABLED(CONFIG_RCU_TRACE))
47 		pr_info("\tRCU event tracing is enabled.\n");
48 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
49 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
50 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
51 			RCU_FANOUT);
52 	if (rcu_fanout_exact)
53 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
54 	if (IS_ENABLED(CONFIG_PROVE_RCU))
55 		pr_info("\tRCU lockdep checking is enabled.\n");
56 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
57 		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
58 	if (RCU_NUM_LVLS >= 4)
59 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
60 	if (RCU_FANOUT_LEAF != 16)
61 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
62 			RCU_FANOUT_LEAF);
63 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
64 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
65 			rcu_fanout_leaf);
66 	if (nr_cpu_ids != NR_CPUS)
67 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
68 #ifdef CONFIG_RCU_BOOST
69 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
70 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
71 #endif
72 	if (blimit != DEFAULT_RCU_BLIMIT)
73 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
74 	if (qhimark != DEFAULT_RCU_QHIMARK)
75 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
76 	if (qlowmark != DEFAULT_RCU_QLOMARK)
77 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
78 	if (qovld != DEFAULT_RCU_QOVLD)
79 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
80 	if (jiffies_till_first_fqs != ULONG_MAX)
81 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
82 	if (jiffies_till_next_fqs != ULONG_MAX)
83 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
84 	if (jiffies_till_sched_qs != ULONG_MAX)
85 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
86 	if (rcu_kick_kthreads)
87 		pr_info("\tKick kthreads if too-long grace period.\n");
88 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
89 		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
90 	if (gp_preinit_delay)
91 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
92 	if (gp_init_delay)
93 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
94 	if (gp_cleanup_delay)
95 		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
96 	if (!use_softirq)
97 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
98 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
99 		pr_info("\tRCU debug extended QS entry/exit.\n");
100 	rcupdate_announce_bootup_oddness();
101 }
102 
103 #ifdef CONFIG_PREEMPT_RCU
104 
105 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
106 static void rcu_read_unlock_special(struct task_struct *t);
107 
108 /*
109  * Tell them what RCU they are running.
110  */
111 static void __init rcu_bootup_announce(void)
112 {
113 	pr_info("Preemptible hierarchical RCU implementation.\n");
114 	rcu_bootup_announce_oddness();
115 }
116 
117 /* Flags for rcu_preempt_ctxt_queue() decision table. */
118 #define RCU_GP_TASKS	0x8
119 #define RCU_EXP_TASKS	0x4
120 #define RCU_GP_BLKD	0x2
121 #define RCU_EXP_BLKD	0x1
122 
123 /*
124  * Queues a task preempted within an RCU-preempt read-side critical
125  * section into the appropriate location within the ->blkd_tasks list,
126  * depending on the states of any ongoing normal and expedited grace
127  * periods.  The ->gp_tasks pointer indicates which element the normal
128  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
129  * indicates which element the expedited grace period is waiting on (again,
130  * NULL if none).  If a grace period is waiting on a given element in the
131  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
132  * adding a task to the tail of the list blocks any grace period that is
133  * already waiting on one of the elements.  In contrast, adding a task
134  * to the head of the list won't block any grace period that is already
135  * waiting on one of the elements.
136  *
137  * This queuing is imprecise, and can sometimes make an ongoing grace
138  * period wait for a task that is not strictly speaking blocking it.
139  * Given the choice, we needlessly block a normal grace period rather than
140  * blocking an expedited grace period.
141  *
142  * Note that an endless sequence of expedited grace periods still cannot
143  * indefinitely postpone a normal grace period.  Eventually, all of the
144  * fixed number of preempted tasks blocking the normal grace period that are
145  * not also blocking the expedited grace period will resume and complete
146  * their RCU read-side critical sections.  At that point, the ->gp_tasks
147  * pointer will equal the ->exp_tasks pointer, at which point the end of
148  * the corresponding expedited grace period will also be the end of the
149  * normal grace period.
150  */
151 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
152 	__releases(rnp->lock) /* But leaves rrupts disabled. */
153 {
154 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
155 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
156 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
157 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
158 	struct task_struct *t = current;
159 
160 	raw_lockdep_assert_held_rcu_node(rnp);
161 	WARN_ON_ONCE(rdp->mynode != rnp);
162 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
163 	/* RCU better not be waiting on newly onlined CPUs! */
164 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
165 		     rdp->grpmask);
166 
167 	/*
168 	 * Decide where to queue the newly blocked task.  In theory,
169 	 * this could be an if-statement.  In practice, when I tried
170 	 * that, it was quite messy.
171 	 */
172 	switch (blkd_state) {
173 	case 0:
174 	case                RCU_EXP_TASKS:
175 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
176 	case RCU_GP_TASKS:
177 	case RCU_GP_TASKS + RCU_EXP_TASKS:
178 
179 		/*
180 		 * Blocking neither GP, or first task blocking the normal
181 		 * GP but not blocking the already-waiting expedited GP.
182 		 * Queue at the head of the list to avoid unnecessarily
183 		 * blocking the already-waiting GPs.
184 		 */
185 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
186 		break;
187 
188 	case                                              RCU_EXP_BLKD:
189 	case                                RCU_GP_BLKD:
190 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
191 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
192 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
193 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
194 
195 		/*
196 		 * First task arriving that blocks either GP, or first task
197 		 * arriving that blocks the expedited GP (with the normal
198 		 * GP already waiting), or a task arriving that blocks
199 		 * both GPs with both GPs already waiting.  Queue at the
200 		 * tail of the list to avoid any GP waiting on any of the
201 		 * already queued tasks that are not blocking it.
202 		 */
203 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
204 		break;
205 
206 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
207 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
208 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
209 
210 		/*
211 		 * Second or subsequent task blocking the expedited GP.
212 		 * The task either does not block the normal GP, or is the
213 		 * first task blocking the normal GP.  Queue just after
214 		 * the first task blocking the expedited GP.
215 		 */
216 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
217 		break;
218 
219 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
220 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
221 
222 		/*
223 		 * Second or subsequent task blocking the normal GP.
224 		 * The task does not block the expedited GP. Queue just
225 		 * after the first task blocking the normal GP.
226 		 */
227 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
228 		break;
229 
230 	default:
231 
232 		/* Yet another exercise in excessive paranoia. */
233 		WARN_ON_ONCE(1);
234 		break;
235 	}
236 
237 	/*
238 	 * We have now queued the task.  If it was the first one to
239 	 * block either grace period, update the ->gp_tasks and/or
240 	 * ->exp_tasks pointers, respectively, to reference the newly
241 	 * blocked tasks.
242 	 */
243 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
244 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
245 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
246 	}
247 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
248 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
249 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
250 		     !(rnp->qsmask & rdp->grpmask));
251 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
252 		     !(rnp->expmask & rdp->grpmask));
253 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
254 
255 	/*
256 	 * Report the quiescent state for the expedited GP.  This expedited
257 	 * GP should not be able to end until we report, so there should be
258 	 * no need to check for a subsequent expedited GP.  (Though we are
259 	 * still in a quiescent state in any case.)
260 	 */
261 	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
262 		rcu_report_exp_rdp(rdp);
263 	else
264 		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
265 }
266 
267 /*
268  * Record a preemptible-RCU quiescent state for the specified CPU.
269  * Note that this does not necessarily mean that the task currently running
270  * on the CPU is in a quiescent state:  Instead, it means that the current
271  * grace period need not wait on any RCU read-side critical section that
272  * starts later on this CPU.  It also means that if the current task is
273  * in an RCU read-side critical section, it has already added itself to
274  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
275  * current task, there might be any number of other tasks blocked while
276  * in an RCU read-side critical section.
277  *
278  * Unlike non-preemptible-RCU, quiescent state reports for expedited
279  * grace periods are handled separately via deferred quiescent states
280  * and context switch events.
281  *
282  * Callers to this function must disable preemption.
283  */
284 static void rcu_qs(void)
285 {
286 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
287 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
288 		trace_rcu_grace_period(TPS("rcu_preempt"),
289 				       __this_cpu_read(rcu_data.gp_seq),
290 				       TPS("cpuqs"));
291 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
292 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
293 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
294 	}
295 }
296 
297 /*
298  * We have entered the scheduler, and the current task might soon be
299  * context-switched away from.  If this task is in an RCU read-side
300  * critical section, we will no longer be able to rely on the CPU to
301  * record that fact, so we enqueue the task on the blkd_tasks list.
302  * The task will dequeue itself when it exits the outermost enclosing
303  * RCU read-side critical section.  Therefore, the current grace period
304  * cannot be permitted to complete until the blkd_tasks list entries
305  * predating the current grace period drain, in other words, until
306  * rnp->gp_tasks becomes NULL.
307  *
308  * Caller must disable interrupts.
309  */
310 void rcu_note_context_switch(bool preempt)
311 {
312 	struct task_struct *t = current;
313 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
314 	struct rcu_node *rnp;
315 
316 	trace_rcu_utilization(TPS("Start context switch"));
317 	lockdep_assert_irqs_disabled();
318 	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
319 	if (rcu_preempt_depth() > 0 &&
320 	    !t->rcu_read_unlock_special.b.blocked) {
321 
322 		/* Possibly blocking in an RCU read-side critical section. */
323 		rnp = rdp->mynode;
324 		raw_spin_lock_rcu_node(rnp);
325 		t->rcu_read_unlock_special.b.blocked = true;
326 		t->rcu_blocked_node = rnp;
327 
328 		/*
329 		 * Verify the CPU's sanity, trace the preemption, and
330 		 * then queue the task as required based on the states
331 		 * of any ongoing and expedited grace periods.
332 		 */
333 		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
334 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
335 		trace_rcu_preempt_task(rcu_state.name,
336 				       t->pid,
337 				       (rnp->qsmask & rdp->grpmask)
338 				       ? rnp->gp_seq
339 				       : rcu_seq_snap(&rnp->gp_seq));
340 		rcu_preempt_ctxt_queue(rnp, rdp);
341 	} else {
342 		rcu_preempt_deferred_qs(t);
343 	}
344 
345 	/*
346 	 * Either we were not in an RCU read-side critical section to
347 	 * begin with, or we have now recorded that critical section
348 	 * globally.  Either way, we can now note a quiescent state
349 	 * for this CPU.  Again, if we were in an RCU read-side critical
350 	 * section, and if that critical section was blocking the current
351 	 * grace period, then the fact that the task has been enqueued
352 	 * means that we continue to block the current grace period.
353 	 */
354 	rcu_qs();
355 	if (rdp->cpu_no_qs.b.exp)
356 		rcu_report_exp_rdp(rdp);
357 	rcu_tasks_qs(current, preempt);
358 	trace_rcu_utilization(TPS("End context switch"));
359 }
360 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
361 
362 /*
363  * Check for preempted RCU readers blocking the current grace period
364  * for the specified rcu_node structure.  If the caller needs a reliable
365  * answer, it must hold the rcu_node's ->lock.
366  */
367 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
368 {
369 	return READ_ONCE(rnp->gp_tasks) != NULL;
370 }
371 
372 /* limit value for ->rcu_read_lock_nesting. */
373 #define RCU_NEST_PMAX (INT_MAX / 2)
374 
375 static void rcu_preempt_read_enter(void)
376 {
377 	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
378 }
379 
380 static int rcu_preempt_read_exit(void)
381 {
382 	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
383 
384 	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
385 	return ret;
386 }
387 
388 static void rcu_preempt_depth_set(int val)
389 {
390 	WRITE_ONCE(current->rcu_read_lock_nesting, val);
391 }
392 
393 /*
394  * Preemptible RCU implementation for rcu_read_lock().
395  * Just increment ->rcu_read_lock_nesting, shared state will be updated
396  * if we block.
397  */
398 void __rcu_read_lock(void)
399 {
400 	rcu_preempt_read_enter();
401 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
402 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
403 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
404 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
405 	barrier();  /* critical section after entry code. */
406 }
407 EXPORT_SYMBOL_GPL(__rcu_read_lock);
408 
409 /*
410  * Preemptible RCU implementation for rcu_read_unlock().
411  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
412  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
413  * invoke rcu_read_unlock_special() to clean up after a context switch
414  * in an RCU read-side critical section and other special cases.
415  */
416 void __rcu_read_unlock(void)
417 {
418 	struct task_struct *t = current;
419 
420 	barrier();  // critical section before exit code.
421 	if (rcu_preempt_read_exit() == 0) {
422 		barrier();  // critical-section exit before .s check.
423 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
424 			rcu_read_unlock_special(t);
425 	}
426 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
427 		int rrln = rcu_preempt_depth();
428 
429 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
430 	}
431 }
432 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
433 
434 /*
435  * Advance a ->blkd_tasks-list pointer to the next entry, instead
436  * returning NULL if at the end of the list.
437  */
438 static struct list_head *rcu_next_node_entry(struct task_struct *t,
439 					     struct rcu_node *rnp)
440 {
441 	struct list_head *np;
442 
443 	np = t->rcu_node_entry.next;
444 	if (np == &rnp->blkd_tasks)
445 		np = NULL;
446 	return np;
447 }
448 
449 /*
450  * Return true if the specified rcu_node structure has tasks that were
451  * preempted within an RCU read-side critical section.
452  */
453 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
454 {
455 	return !list_empty(&rnp->blkd_tasks);
456 }
457 
458 /*
459  * Report deferred quiescent states.  The deferral time can
460  * be quite short, for example, in the case of the call from
461  * rcu_read_unlock_special().
462  */
463 static void
464 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
465 {
466 	bool empty_exp;
467 	bool empty_norm;
468 	bool empty_exp_now;
469 	struct list_head *np;
470 	bool drop_boost_mutex = false;
471 	struct rcu_data *rdp;
472 	struct rcu_node *rnp;
473 	union rcu_special special;
474 
475 	/*
476 	 * If RCU core is waiting for this CPU to exit its critical section,
477 	 * report the fact that it has exited.  Because irqs are disabled,
478 	 * t->rcu_read_unlock_special cannot change.
479 	 */
480 	special = t->rcu_read_unlock_special;
481 	rdp = this_cpu_ptr(&rcu_data);
482 	if (!special.s && !rdp->cpu_no_qs.b.exp) {
483 		local_irq_restore(flags);
484 		return;
485 	}
486 	t->rcu_read_unlock_special.s = 0;
487 	if (special.b.need_qs) {
488 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
489 			rcu_report_qs_rdp(rdp);
490 			udelay(rcu_unlock_delay);
491 		} else {
492 			rcu_qs();
493 		}
494 	}
495 
496 	/*
497 	 * Respond to a request by an expedited grace period for a
498 	 * quiescent state from this CPU.  Note that requests from
499 	 * tasks are handled when removing the task from the
500 	 * blocked-tasks list below.
501 	 */
502 	if (rdp->cpu_no_qs.b.exp)
503 		rcu_report_exp_rdp(rdp);
504 
505 	/* Clean up if blocked during RCU read-side critical section. */
506 	if (special.b.blocked) {
507 
508 		/*
509 		 * Remove this task from the list it blocked on.  The task
510 		 * now remains queued on the rcu_node corresponding to the
511 		 * CPU it first blocked on, so there is no longer any need
512 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
513 		 */
514 		rnp = t->rcu_blocked_node;
515 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
516 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
517 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
518 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
519 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
520 			     (!empty_norm || rnp->qsmask));
521 		empty_exp = sync_rcu_exp_done(rnp);
522 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
523 		np = rcu_next_node_entry(t, rnp);
524 		list_del_init(&t->rcu_node_entry);
525 		t->rcu_blocked_node = NULL;
526 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
527 						rnp->gp_seq, t->pid);
528 		if (&t->rcu_node_entry == rnp->gp_tasks)
529 			WRITE_ONCE(rnp->gp_tasks, np);
530 		if (&t->rcu_node_entry == rnp->exp_tasks)
531 			WRITE_ONCE(rnp->exp_tasks, np);
532 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
533 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
534 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
535 			if (&t->rcu_node_entry == rnp->boost_tasks)
536 				WRITE_ONCE(rnp->boost_tasks, np);
537 		}
538 
539 		/*
540 		 * If this was the last task on the current list, and if
541 		 * we aren't waiting on any CPUs, report the quiescent state.
542 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
543 		 * so we must take a snapshot of the expedited state.
544 		 */
545 		empty_exp_now = sync_rcu_exp_done(rnp);
546 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
547 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
548 							 rnp->gp_seq,
549 							 0, rnp->qsmask,
550 							 rnp->level,
551 							 rnp->grplo,
552 							 rnp->grphi,
553 							 !!rnp->gp_tasks);
554 			rcu_report_unblock_qs_rnp(rnp, flags);
555 		} else {
556 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
557 		}
558 
559 		/*
560 		 * If this was the last task on the expedited lists,
561 		 * then we need to report up the rcu_node hierarchy.
562 		 */
563 		if (!empty_exp && empty_exp_now)
564 			rcu_report_exp_rnp(rnp, true);
565 
566 		/* Unboost if we were boosted. */
567 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
568 			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
569 	} else {
570 		local_irq_restore(flags);
571 	}
572 }
573 
574 /*
575  * Is a deferred quiescent-state pending, and are we also not in
576  * an RCU read-side critical section?  It is the caller's responsibility
577  * to ensure it is otherwise safe to report any deferred quiescent
578  * states.  The reason for this is that it is safe to report a
579  * quiescent state during context switch even though preemption
580  * is disabled.  This function cannot be expected to understand these
581  * nuances, so the caller must handle them.
582  */
583 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
584 {
585 	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
586 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
587 	       rcu_preempt_depth() == 0;
588 }
589 
590 /*
591  * Report a deferred quiescent state if needed and safe to do so.
592  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
593  * not being in an RCU read-side critical section.  The caller must
594  * evaluate safety in terms of interrupt, softirq, and preemption
595  * disabling.
596  */
597 static void rcu_preempt_deferred_qs(struct task_struct *t)
598 {
599 	unsigned long flags;
600 
601 	if (!rcu_preempt_need_deferred_qs(t))
602 		return;
603 	local_irq_save(flags);
604 	rcu_preempt_deferred_qs_irqrestore(t, flags);
605 }
606 
607 /*
608  * Minimal handler to give the scheduler a chance to re-evaluate.
609  */
610 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
611 {
612 	struct rcu_data *rdp;
613 
614 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
615 	rdp->defer_qs_iw_pending = false;
616 }
617 
618 /*
619  * Handle special cases during rcu_read_unlock(), such as needing to
620  * notify RCU core processing or task having blocked during the RCU
621  * read-side critical section.
622  */
623 static void rcu_read_unlock_special(struct task_struct *t)
624 {
625 	unsigned long flags;
626 	bool irqs_were_disabled;
627 	bool preempt_bh_were_disabled =
628 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
629 
630 	/* NMI handlers cannot block and cannot safely manipulate state. */
631 	if (in_nmi())
632 		return;
633 
634 	local_irq_save(flags);
635 	irqs_were_disabled = irqs_disabled_flags(flags);
636 	if (preempt_bh_were_disabled || irqs_were_disabled) {
637 		bool expboost; // Expedited GP in flight or possible boosting.
638 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
639 		struct rcu_node *rnp = rdp->mynode;
640 
641 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
642 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
643 			   IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
644 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
645 			    t->rcu_blocked_node);
646 		// Need to defer quiescent state until everything is enabled.
647 		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
648 			// Using softirq, safe to awaken, and either the
649 			// wakeup is free or there is either an expedited
650 			// GP in flight or a potential need to deboost.
651 			raise_softirq_irqoff(RCU_SOFTIRQ);
652 		} else {
653 			// Enabling BH or preempt does reschedule, so...
654 			// Also if no expediting and no possible deboosting,
655 			// slow is OK.  Plus nohz_full CPUs eventually get
656 			// tick enabled.
657 			set_tsk_need_resched(current);
658 			set_preempt_need_resched();
659 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
660 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
661 				// Get scheduler to re-evaluate and call hooks.
662 				// If !IRQ_WORK, FQS scan will eventually IPI.
663 				init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
664 				rdp->defer_qs_iw_pending = true;
665 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
666 			}
667 		}
668 		local_irq_restore(flags);
669 		return;
670 	}
671 	rcu_preempt_deferred_qs_irqrestore(t, flags);
672 }
673 
674 /*
675  * Check that the list of blocked tasks for the newly completed grace
676  * period is in fact empty.  It is a serious bug to complete a grace
677  * period that still has RCU readers blocked!  This function must be
678  * invoked -before- updating this rnp's ->gp_seq.
679  *
680  * Also, if there are blocked tasks on the list, they automatically
681  * block the newly created grace period, so set up ->gp_tasks accordingly.
682  */
683 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
684 {
685 	struct task_struct *t;
686 
687 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
688 	raw_lockdep_assert_held_rcu_node(rnp);
689 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
690 		dump_blkd_tasks(rnp, 10);
691 	if (rcu_preempt_has_tasks(rnp) &&
692 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
693 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
694 		t = container_of(rnp->gp_tasks, struct task_struct,
695 				 rcu_node_entry);
696 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
697 						rnp->gp_seq, t->pid);
698 	}
699 	WARN_ON_ONCE(rnp->qsmask);
700 }
701 
702 /*
703  * Check for a quiescent state from the current CPU, including voluntary
704  * context switches for Tasks RCU.  When a task blocks, the task is
705  * recorded in the corresponding CPU's rcu_node structure, which is checked
706  * elsewhere, hence this function need only check for quiescent states
707  * related to the current CPU, not to those related to tasks.
708  */
709 static void rcu_flavor_sched_clock_irq(int user)
710 {
711 	struct task_struct *t = current;
712 
713 	lockdep_assert_irqs_disabled();
714 	if (user || rcu_is_cpu_rrupt_from_idle()) {
715 		rcu_note_voluntary_context_switch(current);
716 	}
717 	if (rcu_preempt_depth() > 0 ||
718 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
719 		/* No QS, force context switch if deferred. */
720 		if (rcu_preempt_need_deferred_qs(t)) {
721 			set_tsk_need_resched(t);
722 			set_preempt_need_resched();
723 		}
724 	} else if (rcu_preempt_need_deferred_qs(t)) {
725 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
726 		return;
727 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
728 		rcu_qs(); /* Report immediate QS. */
729 		return;
730 	}
731 
732 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
733 	if (rcu_preempt_depth() > 0 &&
734 	    __this_cpu_read(rcu_data.core_needs_qs) &&
735 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
736 	    !t->rcu_read_unlock_special.b.need_qs &&
737 	    time_after(jiffies, rcu_state.gp_start + HZ))
738 		t->rcu_read_unlock_special.b.need_qs = true;
739 }
740 
741 /*
742  * Check for a task exiting while in a preemptible-RCU read-side
743  * critical section, clean up if so.  No need to issue warnings, as
744  * debug_check_no_locks_held() already does this if lockdep is enabled.
745  * Besides, if this function does anything other than just immediately
746  * return, there was a bug of some sort.  Spewing warnings from this
747  * function is like as not to simply obscure important prior warnings.
748  */
749 void exit_rcu(void)
750 {
751 	struct task_struct *t = current;
752 
753 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
754 		rcu_preempt_depth_set(1);
755 		barrier();
756 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
757 	} else if (unlikely(rcu_preempt_depth())) {
758 		rcu_preempt_depth_set(1);
759 	} else {
760 		return;
761 	}
762 	__rcu_read_unlock();
763 	rcu_preempt_deferred_qs(current);
764 }
765 
766 /*
767  * Dump the blocked-tasks state, but limit the list dump to the
768  * specified number of elements.
769  */
770 static void
771 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
772 {
773 	int cpu;
774 	int i;
775 	struct list_head *lhp;
776 	struct rcu_data *rdp;
777 	struct rcu_node *rnp1;
778 
779 	raw_lockdep_assert_held_rcu_node(rnp);
780 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
781 		__func__, rnp->grplo, rnp->grphi, rnp->level,
782 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
783 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
784 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
785 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
786 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
787 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
788 		READ_ONCE(rnp->exp_tasks));
789 	pr_info("%s: ->blkd_tasks", __func__);
790 	i = 0;
791 	list_for_each(lhp, &rnp->blkd_tasks) {
792 		pr_cont(" %p", lhp);
793 		if (++i >= ncheck)
794 			break;
795 	}
796 	pr_cont("\n");
797 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
798 		rdp = per_cpu_ptr(&rcu_data, cpu);
799 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
800 			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
801 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
802 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
803 	}
804 }
805 
806 #else /* #ifdef CONFIG_PREEMPT_RCU */
807 
808 /*
809  * If strict grace periods are enabled, and if the calling
810  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
811  * report that quiescent state and, if requested, spin for a bit.
812  */
813 void rcu_read_unlock_strict(void)
814 {
815 	struct rcu_data *rdp;
816 
817 	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
818 		return;
819 	rdp = this_cpu_ptr(&rcu_data);
820 	rcu_report_qs_rdp(rdp);
821 	udelay(rcu_unlock_delay);
822 }
823 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
824 
825 /*
826  * Tell them what RCU they are running.
827  */
828 static void __init rcu_bootup_announce(void)
829 {
830 	pr_info("Hierarchical RCU implementation.\n");
831 	rcu_bootup_announce_oddness();
832 }
833 
834 /*
835  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
836  * how many quiescent states passed, just if there was at least one since
837  * the start of the grace period, this just sets a flag.  The caller must
838  * have disabled preemption.
839  */
840 static void rcu_qs(void)
841 {
842 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
843 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
844 		return;
845 	trace_rcu_grace_period(TPS("rcu_sched"),
846 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
847 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
848 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
849 		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
850 }
851 
852 /*
853  * Register an urgently needed quiescent state.  If there is an
854  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
855  * dyntick-idle quiescent state visible to other CPUs, which will in
856  * some cases serve for expedited as well as normal grace periods.
857  * Either way, register a lightweight quiescent state.
858  */
859 void rcu_all_qs(void)
860 {
861 	unsigned long flags;
862 
863 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
864 		return;
865 	preempt_disable();
866 	/* Load rcu_urgent_qs before other flags. */
867 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
868 		preempt_enable();
869 		return;
870 	}
871 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
872 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
873 		local_irq_save(flags);
874 		rcu_momentary_dyntick_idle();
875 		local_irq_restore(flags);
876 	}
877 	rcu_qs();
878 	preempt_enable();
879 }
880 EXPORT_SYMBOL_GPL(rcu_all_qs);
881 
882 /*
883  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
884  */
885 void rcu_note_context_switch(bool preempt)
886 {
887 	trace_rcu_utilization(TPS("Start context switch"));
888 	rcu_qs();
889 	/* Load rcu_urgent_qs before other flags. */
890 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
891 		goto out;
892 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
893 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
894 		rcu_momentary_dyntick_idle();
895 	rcu_tasks_qs(current, preempt);
896 out:
897 	trace_rcu_utilization(TPS("End context switch"));
898 }
899 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
900 
901 /*
902  * Because preemptible RCU does not exist, there are never any preempted
903  * RCU readers.
904  */
905 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
906 {
907 	return 0;
908 }
909 
910 /*
911  * Because there is no preemptible RCU, there can be no readers blocked.
912  */
913 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
914 {
915 	return false;
916 }
917 
918 /*
919  * Because there is no preemptible RCU, there can be no deferred quiescent
920  * states.
921  */
922 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
923 {
924 	return false;
925 }
926 
927 // Except that we do need to respond to a request by an expedited grace
928 // period for a quiescent state from this CPU.  Note that requests from
929 // tasks are handled when removing the task from the blocked-tasks list
930 // below.
931 static void rcu_preempt_deferred_qs(struct task_struct *t)
932 {
933 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
934 
935 	if (rdp->cpu_no_qs.b.exp)
936 		rcu_report_exp_rdp(rdp);
937 }
938 
939 /*
940  * Because there is no preemptible RCU, there can be no readers blocked,
941  * so there is no need to check for blocked tasks.  So check only for
942  * bogus qsmask values.
943  */
944 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
945 {
946 	WARN_ON_ONCE(rnp->qsmask);
947 }
948 
949 /*
950  * Check to see if this CPU is in a non-context-switch quiescent state,
951  * namely user mode and idle loop.
952  */
953 static void rcu_flavor_sched_clock_irq(int user)
954 {
955 	if (user || rcu_is_cpu_rrupt_from_idle()) {
956 
957 		/*
958 		 * Get here if this CPU took its interrupt from user
959 		 * mode or from the idle loop, and if this is not a
960 		 * nested interrupt.  In this case, the CPU is in
961 		 * a quiescent state, so note it.
962 		 *
963 		 * No memory barrier is required here because rcu_qs()
964 		 * references only CPU-local variables that other CPUs
965 		 * neither access nor modify, at least not while the
966 		 * corresponding CPU is online.
967 		 */
968 
969 		rcu_qs();
970 	}
971 }
972 
973 /*
974  * Because preemptible RCU does not exist, tasks cannot possibly exit
975  * while in preemptible RCU read-side critical sections.
976  */
977 void exit_rcu(void)
978 {
979 }
980 
981 /*
982  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
983  */
984 static void
985 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
986 {
987 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
988 }
989 
990 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
991 
992 /*
993  * If boosting, set rcuc kthreads to realtime priority.
994  */
995 static void rcu_cpu_kthread_setup(unsigned int cpu)
996 {
997 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
998 #ifdef CONFIG_RCU_BOOST
999 	struct sched_param sp;
1000 
1001 	sp.sched_priority = kthread_prio;
1002 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1003 #endif /* #ifdef CONFIG_RCU_BOOST */
1004 
1005 	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1006 }
1007 
1008 #ifdef CONFIG_RCU_BOOST
1009 
1010 /*
1011  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1012  * or ->boost_tasks, advancing the pointer to the next task in the
1013  * ->blkd_tasks list.
1014  *
1015  * Note that irqs must be enabled: boosting the task can block.
1016  * Returns 1 if there are more tasks needing to be boosted.
1017  */
1018 static int rcu_boost(struct rcu_node *rnp)
1019 {
1020 	unsigned long flags;
1021 	struct task_struct *t;
1022 	struct list_head *tb;
1023 
1024 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1025 	    READ_ONCE(rnp->boost_tasks) == NULL)
1026 		return 0;  /* Nothing left to boost. */
1027 
1028 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1029 
1030 	/*
1031 	 * Recheck under the lock: all tasks in need of boosting
1032 	 * might exit their RCU read-side critical sections on their own.
1033 	 */
1034 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1035 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1036 		return 0;
1037 	}
1038 
1039 	/*
1040 	 * Preferentially boost tasks blocking expedited grace periods.
1041 	 * This cannot starve the normal grace periods because a second
1042 	 * expedited grace period must boost all blocked tasks, including
1043 	 * those blocking the pre-existing normal grace period.
1044 	 */
1045 	if (rnp->exp_tasks != NULL)
1046 		tb = rnp->exp_tasks;
1047 	else
1048 		tb = rnp->boost_tasks;
1049 
1050 	/*
1051 	 * We boost task t by manufacturing an rt_mutex that appears to
1052 	 * be held by task t.  We leave a pointer to that rt_mutex where
1053 	 * task t can find it, and task t will release the mutex when it
1054 	 * exits its outermost RCU read-side critical section.  Then
1055 	 * simply acquiring this artificial rt_mutex will boost task
1056 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1057 	 *
1058 	 * Note that task t must acquire rnp->lock to remove itself from
1059 	 * the ->blkd_tasks list, which it will do from exit() if from
1060 	 * nowhere else.  We therefore are guaranteed that task t will
1061 	 * stay around at least until we drop rnp->lock.  Note that
1062 	 * rnp->lock also resolves races between our priority boosting
1063 	 * and task t's exiting its outermost RCU read-side critical
1064 	 * section.
1065 	 */
1066 	t = container_of(tb, struct task_struct, rcu_node_entry);
1067 	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1068 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1069 	/* Lock only for side effect: boosts task t's priority. */
1070 	rt_mutex_lock(&rnp->boost_mtx);
1071 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1072 	rnp->n_boosts++;
1073 
1074 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1075 	       READ_ONCE(rnp->boost_tasks) != NULL;
1076 }
1077 
1078 /*
1079  * Priority-boosting kthread, one per leaf rcu_node.
1080  */
1081 static int rcu_boost_kthread(void *arg)
1082 {
1083 	struct rcu_node *rnp = (struct rcu_node *)arg;
1084 	int spincnt = 0;
1085 	int more2boost;
1086 
1087 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1088 	for (;;) {
1089 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1090 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1091 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1092 			 READ_ONCE(rnp->exp_tasks));
1093 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1094 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1095 		more2boost = rcu_boost(rnp);
1096 		if (more2boost)
1097 			spincnt++;
1098 		else
1099 			spincnt = 0;
1100 		if (spincnt > 10) {
1101 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1102 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1103 			schedule_timeout_idle(2);
1104 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1105 			spincnt = 0;
1106 		}
1107 	}
1108 	/* NOTREACHED */
1109 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Check to see if it is time to start boosting RCU readers that are
1115  * blocking the current grace period, and, if so, tell the per-rcu_node
1116  * kthread to start boosting them.  If there is an expedited grace
1117  * period in progress, it is always time to boost.
1118  *
1119  * The caller must hold rnp->lock, which this function releases.
1120  * The ->boost_kthread_task is immortal, so we don't need to worry
1121  * about it going away.
1122  */
1123 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1124 	__releases(rnp->lock)
1125 {
1126 	raw_lockdep_assert_held_rcu_node(rnp);
1127 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1128 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1129 		return;
1130 	}
1131 	if (rnp->exp_tasks != NULL ||
1132 	    (rnp->gp_tasks != NULL &&
1133 	     rnp->boost_tasks == NULL &&
1134 	     rnp->qsmask == 0 &&
1135 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1136 		if (rnp->exp_tasks == NULL)
1137 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1138 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1139 		rcu_wake_cond(rnp->boost_kthread_task,
1140 			      READ_ONCE(rnp->boost_kthread_status));
1141 	} else {
1142 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1143 	}
1144 }
1145 
1146 /*
1147  * Is the current CPU running the RCU-callbacks kthread?
1148  * Caller must have preemption disabled.
1149  */
1150 static bool rcu_is_callbacks_kthread(void)
1151 {
1152 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1153 }
1154 
1155 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1156 
1157 /*
1158  * Do priority-boost accounting for the start of a new grace period.
1159  */
1160 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1161 {
1162 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1163 }
1164 
1165 /*
1166  * Create an RCU-boost kthread for the specified node if one does not
1167  * already exist.  We only create this kthread for preemptible RCU.
1168  */
1169 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1170 {
1171 	unsigned long flags;
1172 	int rnp_index = rnp - rcu_get_root();
1173 	struct sched_param sp;
1174 	struct task_struct *t;
1175 
1176 	mutex_lock(&rnp->boost_kthread_mutex);
1177 	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
1178 		goto out;
1179 
1180 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1181 			   "rcub/%d", rnp_index);
1182 	if (WARN_ON_ONCE(IS_ERR(t)))
1183 		goto out;
1184 
1185 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1186 	rnp->boost_kthread_task = t;
1187 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1188 	sp.sched_priority = kthread_prio;
1189 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1190 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1191 
1192  out:
1193 	mutex_unlock(&rnp->boost_kthread_mutex);
1194 }
1195 
1196 /*
1197  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1198  * served by the rcu_node in question.  The CPU hotplug lock is still
1199  * held, so the value of rnp->qsmaskinit will be stable.
1200  *
1201  * We don't include outgoingcpu in the affinity set, use -1 if there is
1202  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1203  * this function allows the kthread to execute on any CPU.
1204  */
1205 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1206 {
1207 	struct task_struct *t = rnp->boost_kthread_task;
1208 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1209 	cpumask_var_t cm;
1210 	int cpu;
1211 
1212 	if (!t)
1213 		return;
1214 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1215 		return;
1216 	mutex_lock(&rnp->boost_kthread_mutex);
1217 	for_each_leaf_node_possible_cpu(rnp, cpu)
1218 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1219 		    cpu != outgoingcpu)
1220 			cpumask_set_cpu(cpu, cm);
1221 	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
1222 	if (cpumask_empty(cm))
1223 		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
1224 	set_cpus_allowed_ptr(t, cm);
1225 	mutex_unlock(&rnp->boost_kthread_mutex);
1226 	free_cpumask_var(cm);
1227 }
1228 
1229 /*
1230  * Spawn boost kthreads -- called as soon as the scheduler is running.
1231  */
1232 static void __init rcu_spawn_boost_kthreads(void)
1233 {
1234 	struct rcu_node *rnp;
1235 
1236 	rcu_for_each_leaf_node(rnp)
1237 		if (rcu_rnp_online_cpus(rnp))
1238 			rcu_spawn_one_boost_kthread(rnp);
1239 }
1240 
1241 #else /* #ifdef CONFIG_RCU_BOOST */
1242 
1243 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1244 	__releases(rnp->lock)
1245 {
1246 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1247 }
1248 
1249 static bool rcu_is_callbacks_kthread(void)
1250 {
1251 	return false;
1252 }
1253 
1254 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1255 {
1256 }
1257 
1258 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1259 {
1260 }
1261 
1262 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1263 {
1264 }
1265 
1266 static void __init rcu_spawn_boost_kthreads(void)
1267 {
1268 }
1269 
1270 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1271 
1272 /*
1273  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1274  * grace-period kthread will do force_quiescent_state() processing?
1275  * The idea is to avoid waking up RCU core processing on such a
1276  * CPU unless the grace period has extended for too long.
1277  *
1278  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1279  * RCU_NOCB_CPU CPUs.
1280  */
1281 static bool rcu_nohz_full_cpu(void)
1282 {
1283 #ifdef CONFIG_NO_HZ_FULL
1284 	if (tick_nohz_full_cpu(smp_processor_id()) &&
1285 	    (!rcu_gp_in_progress() ||
1286 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1287 		return true;
1288 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1289 	return false;
1290 }
1291 
1292 /*
1293  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1294  */
1295 static void rcu_bind_gp_kthread(void)
1296 {
1297 	if (!tick_nohz_full_enabled())
1298 		return;
1299 	housekeeping_affine(current, HK_TYPE_RCU);
1300 }
1301 
1302 /* Record the current task on dyntick-idle entry. */
1303 static __always_inline void rcu_dynticks_task_enter(void)
1304 {
1305 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
1306 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
1307 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
1308 }
1309 
1310 /* Record no current task on dyntick-idle exit. */
1311 static __always_inline void rcu_dynticks_task_exit(void)
1312 {
1313 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
1314 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
1315 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
1316 }
1317 
1318 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
1319 static __always_inline void rcu_dynticks_task_trace_enter(void)
1320 {
1321 #ifdef CONFIG_TASKS_TRACE_RCU
1322 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1323 		current->trc_reader_special.b.need_mb = true;
1324 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1325 }
1326 
1327 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
1328 static __always_inline void rcu_dynticks_task_trace_exit(void)
1329 {
1330 #ifdef CONFIG_TASKS_TRACE_RCU
1331 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1332 		current->trc_reader_special.b.need_mb = false;
1333 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1334 }
1335